-
Notifications
You must be signed in to change notification settings - Fork 0
/
bwamem_pair.c
368 lines (355 loc) · 16.3 KB
/
bwamem_pair.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <math.h>
#include "kstring.h"
#include "bwamem.h"
#include "kvec.h"
#include "utils.h"
#include "ksw.h"
#ifdef USE_MALLOC_WRAPPERS
# include "malloc_wrap.h"
#endif
#define MIN_RATIO 0.8
#define MIN_DIR_CNT 10
#define MIN_DIR_RATIO 0.05
#define OUTLIER_BOUND 2.0
#define MAPPING_BOUND 3.0
#define MAX_STDDEV 4.0
static inline int mem_infer_dir(int64_t l_pac, int64_t b1, int64_t b2, int64_t *dist)
{
int64_t p2;
int r1 = (b1 >= l_pac), r2 = (b2 >= l_pac);
p2 = r1 == r2? b2 : (l_pac<<1) - 1 - b2; // p2 is the coordinate of read 2 on the read 1 strand
*dist = p2 > b1? p2 - b1 : b1 - p2;
return (r1 == r2? 0 : 1) ^ (p2 > b1? 0 : 3);
}
static int cal_sub(const mem_opt_t *opt, mem_alnreg_v *r)
{
int j;
for (j = 1; j < r->n; ++j) { // choose unique alignment
int b_max = r->a[j].qb > r->a[0].qb? r->a[j].qb : r->a[0].qb;
int e_min = r->a[j].qe < r->a[0].qe? r->a[j].qe : r->a[0].qe;
if (e_min > b_max) { // have overlap
int min_l = r->a[j].qe - r->a[j].qb < r->a[0].qe - r->a[0].qb? r->a[j].qe - r->a[j].qb : r->a[0].qe - r->a[0].qb;
if (e_min - b_max >= min_l * opt->mask_level) break; // significant overlap
}
}
return j < r->n? r->a[j].score : opt->min_seed_len * opt->a;
}
void mem_pestat(const mem_opt_t *opt, int64_t l_pac, int n, const mem_alnreg_v *regs, mem_pestat_t pes[4])
{
int i, d, max;
uint64_v isize[4];
memset(pes, 0, 4 * sizeof(mem_pestat_t));
memset(isize, 0, sizeof(kvec_t(int)) * 4);
for (i = 0; i < n>>1; ++i) {
int dir;
int64_t is;
mem_alnreg_v *r[2];
r[0] = (mem_alnreg_v*)®s[i<<1|0];
r[1] = (mem_alnreg_v*)®s[i<<1|1];
if (r[0]->n == 0 || r[1]->n == 0) continue;
if (cal_sub(opt, r[0]) > MIN_RATIO * r[0]->a[0].score) continue;
if (cal_sub(opt, r[1]) > MIN_RATIO * r[1]->a[0].score) continue;
if (r[0]->a[0].rid != r[1]->a[0].rid) continue; // not on the same chr
dir = mem_infer_dir(l_pac, r[0]->a[0].rb, r[1]->a[0].rb, &is);
if (is && is <= opt->max_ins) kv_push(uint64_t, isize[dir], is);
}
if (bwa_verbose >= 3) fprintf(stderr, "[M::%s] # candidate unique pairs for (FF, FR, RF, RR): (%ld, %ld, %ld, %ld)\n", __func__, isize[0].n, isize[1].n, isize[2].n, isize[3].n);
for (d = 0; d < 4; ++d) { // TODO: this block is nearly identical to the one in bwtsw2_pair.c. It would be better to merge these two.
mem_pestat_t *r = &pes[d];
uint64_v *q = &isize[d];
int p25, p50, p75, x;
if (q->n < MIN_DIR_CNT) {
fprintf(stderr, "[M::%s] skip orientation %c%c as there are not enough pairs\n", __func__, "FR"[d>>1&1], "FR"[d&1]);
r->failed = 1;
continue;
} else fprintf(stderr, "[M::%s] analyzing insert size distribution for orientation %c%c...\n", __func__, "FR"[d>>1&1], "FR"[d&1]);
ks_introsort_64(q->n, q->a);
p25 = q->a[(int)(.25 * q->n + .499)];
p50 = q->a[(int)(.50 * q->n + .499)];
p75 = q->a[(int)(.75 * q->n + .499)];
r->low = (int)(p25 - OUTLIER_BOUND * (p75 - p25) + .499);
if (r->low < 1) r->low = 1;
r->high = (int)(p75 + OUTLIER_BOUND * (p75 - p25) + .499);
fprintf(stderr, "[M::%s] (25, 50, 75) percentile: (%d, %d, %d)\n", __func__, p25, p50, p75);
fprintf(stderr, "[M::%s] low and high boundaries for computing mean and std.dev: (%d, %d)\n", __func__, r->low, r->high);
for (i = x = 0, r->avg = 0; i < q->n; ++i)
if (q->a[i] >= r->low && q->a[i] <= r->high)
r->avg += q->a[i], ++x;
r->avg /= x;
for (i = 0, r->std = 0; i < q->n; ++i)
if (q->a[i] >= r->low && q->a[i] <= r->high)
r->std += (q->a[i] - r->avg) * (q->a[i] - r->avg);
r->std = sqrt(r->std / x);
fprintf(stderr, "[M::%s] mean and std.dev: (%.2f, %.2f)\n", __func__, r->avg, r->std);
r->low = (int)(p25 - MAPPING_BOUND * (p75 - p25) + .499);
r->high = (int)(p75 + MAPPING_BOUND * (p75 - p25) + .499);
if (r->low > r->avg - MAX_STDDEV * r->std) r->low = (int)(r->avg - MAX_STDDEV * r->std + .499);
if (r->high < r->avg - MAX_STDDEV * r->std) r->high = (int)(r->avg + MAX_STDDEV * r->std + .499);
if (r->low < 1) r->low = 1;
fprintf(stderr, "[M::%s] low and high boundaries for proper pairs: (%d, %d)\n", __func__, r->low, r->high);
free(q->a);
}
for (d = 0, max = 0; d < 4; ++d)
max = max > isize[d].n? max : isize[d].n;
for (d = 0; d < 4; ++d)
if (pes[d].failed == 0 && isize[d].n < max * MIN_DIR_RATIO) {
pes[d].failed = 1;
fprintf(stderr, "[M::%s] skip orientation %c%c\n", __func__, "FR"[d>>1&1], "FR"[d&1]);
}
}
int mem_matesw(const mem_opt_t *opt, const bntseq_t *bns, const uint8_t *pac, const mem_pestat_t pes[4], const mem_alnreg_t *a, int l_ms, const uint8_t *ms, mem_alnreg_v *ma)
{
extern int mem_sort_dedup_patch(const mem_opt_t *opt, const bntseq_t *bns, const uint8_t *pac, uint8_t *query, int n, mem_alnreg_t *a);
int64_t l_pac = bns->l_pac;
int i, r, skip[4], n = 0, rid;
for (r = 0; r < 4; ++r)
skip[r] = pes[r].failed? 1 : 0;
for (i = 0; i < ma->n; ++i) { // check which orinentation has been found
int64_t dist;
r = mem_infer_dir(l_pac, a->rb, ma->a[i].rb, &dist);
if (dist >= pes[r].low && dist <= pes[r].high)
skip[r] = 1;
}
if (skip[0] + skip[1] + skip[2] + skip[3] == 4) return 0; // consistent pair exist; no need to perform SW
for (r = 0; r < 4; ++r) {
int is_rev, is_larger;
uint8_t *seq, *rev = 0, *ref = 0;
int64_t rb, re;
if (skip[r]) continue;
is_rev = (r>>1 != (r&1)); // whether to reverse complement the mate
is_larger = !(r>>1); // whether the mate has larger coordinate
if (is_rev) {
rev = malloc(l_ms); // this is the reverse complement of $ms
for (i = 0; i < l_ms; ++i) rev[l_ms - 1 - i] = ms[i] < 4? 3 - ms[i] : 4;
seq = rev;
} else seq = (uint8_t*)ms;
if (!is_rev) {
rb = is_larger? a->rb + pes[r].low : a->rb - pes[r].high;
re = (is_larger? a->rb + pes[r].high: a->rb - pes[r].low) + l_ms; // if on the same strand, end position should be larger to make room for the seq length
} else {
rb = (is_larger? a->rb + pes[r].low : a->rb - pes[r].high) - l_ms; // similarly on opposite strands
re = is_larger? a->rb + pes[r].high: a->rb - pes[r].low;
}
if (rb < 0) rb = 0;
if (re > l_pac<<1) re = l_pac<<1;
if (rb < re) ref = bns_fetch_seq(bns, pac, &rb, (rb+re)>>1, &re, &rid);
if (a->rid == rid && re - rb >= opt->min_seed_len) { // no funny things happening
kswr_t aln;
mem_alnreg_t b;
int tmp, xtra = KSW_XSUBO | KSW_XSTART | (l_ms * opt->a < 250? KSW_XBYTE : 0) | (opt->min_seed_len * opt->a);
aln = ksw_align2(l_ms, seq, re - rb, ref, 5, opt->mat, opt->o_del, opt->e_del, opt->o_ins, opt->e_ins, xtra, 0);
memset(&b, 0, sizeof(mem_alnreg_t));
if (aln.score >= opt->min_seed_len && aln.qb >= 0) { // something goes wrong if aln.qb < 0
b.rid = a->rid;
b.qb = is_rev? l_ms - (aln.qe + 1) : aln.qb;
b.qe = is_rev? l_ms - aln.qb : aln.qe + 1;
b.rb = is_rev? (l_pac<<1) - (rb + aln.te + 1) : rb + aln.tb;
b.re = is_rev? (l_pac<<1) - (rb + aln.tb) : rb + aln.te + 1;
b.score = aln.score;
b.csub = aln.score2;
b.secondary = -1;
b.seedcov = (b.re - b.rb < b.qe - b.qb? b.re - b.rb : b.qe - b.qb) >> 1;
// printf("*** %d, [%lld,%lld], %d:%d, (%lld,%lld), (%lld,%lld) == (%lld,%lld)\n", aln.score, rb, re, is_rev, is_larger, a->rb, a->re, ma->a[0].rb, ma->a[0].re, b.rb, b.re);
kv_push(mem_alnreg_t, *ma, b); // make room for a new element
// move b s.t. ma is sorted
for (i = 0; i < ma->n - 1; ++i) // find the insertion point
if (ma->a[i].score < b.score) break;
tmp = i;
for (i = ma->n - 1; i > tmp; --i) ma->a[i] = ma->a[i-1];
ma->a[i] = b;
}
++n;
}
if (n) ma->n = mem_sort_dedup_patch(opt, 0, 0, 0, ma->n, ma->a);
if (rev) free(rev);
free(ref);
}
return n;
}
int mem_pair(const mem_opt_t *opt, const bntseq_t *bns, const uint8_t *pac, const mem_pestat_t pes[4], bseq1_t s[2], mem_alnreg_v a[2], int id, int *sub, int *n_sub, int z[2])
{
pair64_v v, u;
int r, i, k, y[4], ret; // y[] keeps the last hit
int64_t l_pac = bns->l_pac;
kv_init(v); kv_init(u);
for (r = 0; r < 2; ++r) { // loop through read number
for (i = 0; i < a[r].n; ++i) {
pair64_t key;
mem_alnreg_t *e = &a[r].a[i];
key.x = e->rb < l_pac? e->rb : (l_pac<<1) - 1 - e->rb; // forward position
key.x = (uint64_t)e->rid<<32 | (key.x - bns->anns[e->rid].offset);
key.y = (uint64_t)e->score << 32 | i << 2 | (e->rb >= l_pac)<<1 | r;
kv_push(pair64_t, v, key);
}
}
ks_introsort_128(v.n, v.a);
y[0] = y[1] = y[2] = y[3] = -1;
//for (i = 0; i < v.n; ++i) printf("[%d]\t%d\t%c%ld\n", i, (int)(v.a[i].y&1)+1, "+-"[v.a[i].y>>1&1], (long)v.a[i].x);
for (i = 0; i < v.n; ++i) {
for (r = 0; r < 2; ++r) { // loop through direction
int dir = r<<1 | (v.a[i].y>>1&1), which;
if (pes[dir].failed) continue; // invalid orientation
which = r<<1 | ((v.a[i].y&1)^1);
if (y[which] < 0) continue; // no previous hits
for (k = y[which]; k >= 0; --k) { // TODO: this is a O(n^2) solution in the worst case; remember to check if this loop takes a lot of time (I doubt)
int64_t dist;
int q;
double ns;
pair64_t *p;
if ((v.a[k].y&3) != which) continue;
dist = (int64_t)v.a[i].x - v.a[k].x;
//printf("%d: %lld\n", k, dist);
if (dist > pes[dir].high) break;
if (dist < pes[dir].low) continue;
ns = (dist - pes[dir].avg) / pes[dir].std;
q = (int)((v.a[i].y>>32) + (v.a[k].y>>32) + .721 * log(2. * erfc(fabs(ns) * M_SQRT1_2)) * opt->a + .499); // .721 = 1/log(4)
if (q < 0) q = 0;
p = kv_pushp(pair64_t, u);
p->y = (uint64_t)k<<32 | i;
p->x = (uint64_t)q<<32 | (hash_64(p->y ^ id<<8) & 0xffffffffU);
//printf("[%lld,%lld]\t%d\tdist=%ld\n", v.a[k].x, v.a[i].x, q, (long)dist);
}
}
y[v.a[i].y&3] = i;
}
if (u.n) { // found at least one proper pair
int tmp = opt->a + opt->b;
tmp = tmp > opt->o_del + opt->e_del? tmp : opt->o_del + opt->e_del;
tmp = tmp > opt->o_ins + opt->e_ins? tmp : opt->o_ins + opt->e_ins;
ks_introsort_128(u.n, u.a);
i = u.a[u.n-1].y >> 32; k = u.a[u.n-1].y << 32 >> 32;
z[v.a[i].y&1] = v.a[i].y<<32>>34; // index of the best pair
z[v.a[k].y&1] = v.a[k].y<<32>>34;
ret = u.a[u.n-1].x >> 32;
*sub = u.n > 1? u.a[u.n-2].x>>32 : 0;
for (i = (long)u.n - 2, *n_sub = 0; i >= 0; --i)
if (*sub - (int)(u.a[i].x>>32) <= tmp) ++*n_sub;
} else ret = 0, *sub = 0, *n_sub = 0;
free(u.a); free(v.a);
return ret;
}
#define raw_mapq(diff, a) ((int)(6.02 * (diff) / (a) + .499))
int mem_sam_pe(const mem_opt_t *opt, const bntseq_t *bns, const uint8_t *pac, const mem_pestat_t pes[4], uint64_t id, bseq1_t s[2], mem_alnreg_v a[2], bam_hdr_t *header)
{
extern void mem_mark_primary_se(const mem_opt_t *opt, int n, mem_alnreg_t *a, int64_t id);
extern int mem_approx_mapq_se(const mem_opt_t *opt, const mem_alnreg_t *a);
extern void mem_reg2sam_se(const mem_opt_t *opt, const bntseq_t *bns, const uint8_t *pac, bseq1_t *s, mem_alnreg_v *a, int extra_flag, const mem_aln_t *m, bam_hdr_t *h);
extern void mem_aln2sam(const bntseq_t *bns, kstring_t *str, bseq1_t *s, int n, const mem_aln_t *list, int which, const mem_aln_t *m, int softclip_all, bam_hdr_t *h);
extern char **mem_gen_alt(const mem_opt_t *opt, const bntseq_t *bns, const uint8_t *pac, const mem_alnreg_v *a, int l_query, const char *query);
int n = 0, i, j, z[2], o, subo, n_sub, extra_flag = 1;
kstring_t str;
mem_aln_t h[2];
str.l = str.m = 0; str.s = 0;
if (!(opt->flag & MEM_F_NO_RESCUE)) { // then perform SW for the best alignment
mem_alnreg_v b[2];
kv_init(b[0]); kv_init(b[1]);
for (i = 0; i < 2; ++i)
for (j = 0; j < a[i].n; ++j)
if (a[i].a[j].score >= a[i].a[0].score - opt->pen_unpaired)
kv_push(mem_alnreg_t, b[i], a[i].a[j]);
for (i = 0; i < 2; ++i)
for (j = 0; j < b[i].n && j < opt->max_matesw; ++j)
n += mem_matesw(opt, bns, pac, pes, &b[i].a[j], s[!i].l_seq, (uint8_t*)s[!i].seq, &a[!i]);
free(b[0].a); free(b[1].a);
}
mem_mark_primary_se(opt, a[0].n, a[0].a, id<<1|0);
mem_mark_primary_se(opt, a[1].n, a[1].a, id<<1|1);
if (opt->flag&MEM_F_NOPAIRING) goto no_pairing;
// pairing single-end hits
if (a[0].n && a[1].n && (o = mem_pair(opt, bns, pac, pes, s, a, id, &subo, &n_sub, z)) > 0) {
int is_multi[2], q_pe, score_un, q_se[2];
char **XA[2];
// check if an end has multiple hits even after mate-SW
for (i = 0; i < 2; ++i) {
for (j = 1; j < a[i].n; ++j)
if (a[i].a[j].secondary < 0 && a[i].a[j].score >= opt->T) break;
is_multi[i] = j < a[i].n? 1 : 0;
}
if (is_multi[0] || is_multi[1]) goto no_pairing; // TODO: in rare cases, the true hit may be long but with low score
// compute mapQ for the best SE hit
score_un = a[0].a[0].score + a[1].a[0].score - opt->pen_unpaired;
//q_pe = o && subo < o? (int)(MEM_MAPQ_COEF * (1. - (double)subo / o) * log(a[0].a[z[0]].seedcov + a[1].a[z[1]].seedcov) + .499) : 0;
subo = subo > score_un? subo : score_un;
q_pe = raw_mapq(o - subo, opt->a);
if (n_sub > 0) q_pe -= (int)(4.343 * log(n_sub+1) + .499);
if (q_pe < 0) q_pe = 0;
if (q_pe > 60) q_pe = 60;
q_pe = (int)(q_pe * (1. - .5 * (a[0].a[0].frac_rep + a[1].a[0].frac_rep)) + .499);
// the following assumes no split hits
if (o > score_un) { // paired alignment is preferred
mem_alnreg_t *c[2];
c[0] = &a[0].a[z[0]]; c[1] = &a[1].a[z[1]];
for (i = 0; i < 2; ++i) {
if (c[i]->secondary >= 0)
c[i]->sub = a[i].a[c[i]->secondary].score, c[i]->secondary = -2;
q_se[i] = mem_approx_mapq_se(opt, c[i]);
}
q_se[0] = q_se[0] > q_pe? q_se[0] : q_pe < q_se[0] + 40? q_pe : q_se[0] + 40;
q_se[1] = q_se[1] > q_pe? q_se[1] : q_pe < q_se[1] + 40? q_pe : q_se[1] + 40;
extra_flag |= 2;
// cap at the tandem repeat score
q_se[0] = q_se[0] < raw_mapq(c[0]->score - c[0]->csub, opt->a)? q_se[0] : raw_mapq(c[0]->score - c[0]->csub, opt->a);
q_se[1] = q_se[1] < raw_mapq(c[1]->score - c[1]->csub, opt->a)? q_se[1] : raw_mapq(c[1]->score - c[1]->csub, opt->a);
} else { // the unpaired alignment is preferred
z[0] = z[1] = 0;
q_se[0] = mem_approx_mapq_se(opt, &a[0].a[0]);
q_se[1] = mem_approx_mapq_se(opt, &a[1].a[0]);
}
// suboptimal hits
if (!(opt->flag & MEM_F_ALL)) {
for (i = 0; i < 2; ++i) {
int k = a[i].a[z[i]].secondary;
if (k >= 0) { // switch secondary and primary
assert(a[i].a[k].secondary < 0);
for (j = 0; j < a[i].n; ++j)
if (a[i].a[j].secondary == k || j == k)
a[i].a[j].secondary = z[i];
a[i].a[z[i]].secondary = -1;
}
XA[i] = mem_gen_alt(opt, bns, pac, &a[i], s[i].l_seq, s[i].seq);
}
} else XA[0] = XA[1] = 0;
// write SAM
h[0] = mem_reg2aln(opt, bns, pac, s[0].l_seq, s[0].seq, &a[0].a[z[0]]); h[0].mapq = q_se[0]; h[0].flag |= 0x40 | extra_flag; h[0].XA = XA[0]? XA[0][z[0]] : 0;
h[1] = mem_reg2aln(opt, bns, pac, s[1].l_seq, s[1].seq, &a[1].a[z[1]]); h[1].mapq = q_se[1]; h[1].flag |= 0x80 | extra_flag; h[1].XA = XA[1]? XA[1][z[1]] : 0;
mem_aln2sam(bns, &str, &s[0], 1, &h[0], 0, &h[1], opt->flag&MEM_F_SOFTCLIP, header);
#ifndef USE_HTSLIB
s[0].sam = strdup(str.s); str.l = 0; /// not using HTSLIB
#endif
mem_aln2sam(bns, &str, &s[1], 1, &h[1], 0, &h[0], opt->flag&MEM_F_SOFTCLIP, header);
#ifndef USE_HTSLIB
s[1].sam = str.s; // not using HTSLIB
#endif
if (strcmp(s[0].name, s[1].name) != 0) err_fatal(__func__, "paired reads have different names: \"%s\", \"%s\"\n", s[0].name, s[1].name);
free(h[0].cigar); // h[0].XA will be freed in the following block
free(h[1].cigar);
// free XA
for (i = 0; i < 2; ++i) {
if (XA[i]) {
for (j = 0; j < a[i].n; ++j) free(XA[i][j]);
free(XA[i]);
}
}
} else goto no_pairing;
return n;
no_pairing:
for (i = 0; i < 2; ++i) {
if (a[i].n && a[i].a[0].score >= opt->T)
h[i] = mem_reg2aln(opt, bns, pac, s[i].l_seq, s[i].seq, &a[i].a[0]);
else h[i] = mem_reg2aln(opt, bns, pac, s[i].l_seq, s[i].seq, 0);
}
if (!(opt->flag & MEM_F_NOPAIRING) && h[0].rid == h[1].rid && h[0].rid >= 0) { // if the top hits from the two ends constitute a proper pair, flag it.
int64_t dist;
int d;
d = mem_infer_dir(bns->l_pac, a[0].a[0].rb, a[1].a[0].rb, &dist);
if (!pes[d].failed && dist >= pes[d].low && dist <= pes[d].high) extra_flag |= 2;
}
mem_reg2sam_se(opt, bns, pac, &s[0], &a[0], 0x41|extra_flag, &h[1], header);
mem_reg2sam_se(opt, bns, pac, &s[1], &a[1], 0x81|extra_flag, &h[0], header);
if (strcmp(s[0].name, s[1].name) != 0) err_fatal(__func__, "paired reads have different names: \"%s\", \"%s\"\n", s[0].name, s[1].name);
free(h[0].cigar); free(h[1].cigar);
return n;
}