-
Notifications
You must be signed in to change notification settings - Fork 0
/
correlation.php
143 lines (129 loc) · 3.38 KB
/
correlation.php
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
<?php
$event=$_GET['event'];
$omlDir = "/home/mmehari/oml2/";
// $omlDir = "/home/michael/oml2/";
// $omlDir = "/var/lib/oml2/";
$exprIDArray = json_decode($_POST['data']);
$table = $_GET['table'];
$seq = $_GET['seq'];
$metric = $_GET['metric'];
$group = $_GET['group'];
$RECORDS = Array();
$MEAN = Array();
$RUN_SIZE = sizeof($exprIDArray);
for ($i=0; $i<$RUN_SIZE; $i++)
{
$database = $omlDir.$exprIDArray[$i].".sq3";
try
{
$db = new PDO("sqlite:".$database);
$sqlCommand = "select GROUP_CONCAT(".$metric.") from ".$table." where oml_sender_id=(select id from _senders where name='".$group."') group by oml_seq";
$result = $db->query($sqlCommand);
$db = NULL;
}
catch(PDOException $e)
{
echo "failure";
}
$RECORDS_ROUND = Array();
$MEAN_ROUND = 0;
foreach($result as $value)
{
$valueArray = explode(",", $value[0]);
$RECORDS_ROUND[] = $valueArray[$seq];
$MEAN_ROUND = $MEAN_ROUND + $valueArray[$seq];
}
// watch out division by zero
if(sizeof($RECORDS_ROUND) != 0)
$MEAN_ROUND = $MEAN_ROUND/sizeof($RECORDS_ROUND);
else
$MEAN_ROUND = 0;
$RECORDS[$i] = $RECORDS_ROUND;
$MEAN[$i] = $MEAN_ROUND;
}
// standard deviation calculation
$STDEV = Array();
for ($i=0; $i<$RUN_SIZE; $i++)
{
$DATA_SIZE = sizeof($RECORDS[$i]);
$TEMP_VAR = 0;
for ($k=0; $k<$DATA_SIZE; $k++)
$TEMP_VAR = $TEMP_VAR + ($RECORDS[$i][$k]- $MEAN[$i])*($RECORDS[$i][$k]- $MEAN[$i]);
$STDEV[$i] = sqrt($TEMP_VAR/($DATA_SIZE-1));
}
// covariance matrix calculation
$COV = Array();
for ($i=0; $i<$RUN_SIZE; $i++)
{
for ($j=0; $j<$i; $j++)
{
// select the shortest data size
$DATA_SIZE = (sizeof($RECORDS[$i]) > sizeof($RECORDS[$j])) ? sizeof($RECORDS[$j]) : sizeof($RECORDS[$i]);
$TEMP_VAR = 0;
for ($k=0; $k<$DATA_SIZE; $k++)
$TEMP_VAR = $TEMP_VAR + ($RECORDS[$i][$k]- $MEAN[$i])*($RECORDS[$j][$k]- $MEAN[$j]);
$COV[$i][$j] = $TEMP_VAR/($DATA_SIZE-1);
}
}
// correlation matrix calculation
$COR = Array();
for ($i=0; $i<$RUN_SIZE; $i++)
{
for ($j=0; $j<$i; $j++)
{
$COR[$i][$j] = $COV[$i][$j]/($STDEV[$i]*$STDEV[$j]);
$COR[$j][$i] = $COR[$i][$j]; // create identical diagonal element
}
}
// calculate mean correlation array from correlation matrix
$MEAN_COR = Array();
for ($i=0; $i<$RUN_SIZE; $i++)
{
$TEMP_VAR = 0;
for ($j=0; $j<$RUN_SIZE; $j++)
{
if($i != $j)
$TEMP_VAR = $TEMP_VAR + $COR[$i][$j];
}
$MEAN_COR[$i] = ($TEMP_VAR + 1) / $RUN_SIZE;
}
if($event=="bestRun")
{
$BEST_RUN = 0;
$BEST_MEAN_COR = $MEAN_COR[0];
for ($i=1; $i<$RUN_SIZE; $i++)
{
if($MEAN_COR[$i] > $BEST_MEAN_COR)
{
$BEST_RUN = $i;
$BEST_MEAN_COR = $MEAN_COR[$i];
}
}
echo $BEST_RUN+1;
}
elseif($event=="corrMat")
{
$selectedRunArray = json_decode($_POST['run']);
echo "<b>CORRELATION MATRIX</b>";
echo "<table border='1' cellpadding='7' bordercolor='#4875B7'>";
for ($i=0; $i<=$RUN_SIZE; $i++)
{
echo "<tr>";
for ($j=0; $j<=$RUN_SIZE; $j++)
{
if($i==0 && $j==0)
echo "<td><b>ID</b></td>";
elseif($i==0 && $j!=0)
echo "<td align='center'><b>".$selectedRunArray[$j-1]."</b></td>";
elseif($i!=0 && $j==0)
echo "<td align='center'><b>".$selectedRunArray[$i-1]."</b></td>";
elseif($i==$j)
echo "<td align='center'>1</td>";
else
echo "<td align='center'>".sprintf("%.7f",$COR[$i-1][$j-1])."</td>";
}
echo "</tr>";
}
echo "</table>";
}
?>