forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 1
/
matrix_scaler.cc
475 lines (435 loc) · 18.1 KB
/
matrix_scaler.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
// Copyright 2010-2021 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/lp_data/matrix_scaler.h"
#include <algorithm>
#include <cmath>
#include <vector>
#include "absl/strings/str_format.h"
#include "ortools/base/logging.h"
#include "ortools/base/strong_vector.h"
#include "ortools/glop/revised_simplex.h"
#include "ortools/lp_data/lp_utils.h"
#include "ortools/lp_data/sparse.h"
#include "ortools/util/time_limit.h"
namespace operations_research {
namespace glop {
SparseMatrixScaler::SparseMatrixScaler()
: matrix_(nullptr), row_scale_(), col_scale_() {}
void SparseMatrixScaler::Init(SparseMatrix* matrix) {
DCHECK(matrix != nullptr);
matrix_ = matrix;
row_scale_.resize(matrix_->num_rows(), 1.0);
col_scale_.resize(matrix_->num_cols(), 1.0);
}
void SparseMatrixScaler::Clear() {
matrix_ = nullptr;
row_scale_.clear();
col_scale_.clear();
}
Fractional SparseMatrixScaler::RowUnscalingFactor(RowIndex row) const {
DCHECK_GE(row, 0);
return row < row_scale_.size() ? row_scale_[row] : 1.0;
}
Fractional SparseMatrixScaler::ColUnscalingFactor(ColIndex col) const {
DCHECK_GE(col, 0);
return col < col_scale_.size() ? col_scale_[col] : 1.0;
}
Fractional SparseMatrixScaler::RowScalingFactor(RowIndex row) const {
return 1.0 / RowUnscalingFactor(row);
}
Fractional SparseMatrixScaler::ColScalingFactor(ColIndex col) const {
return 1.0 / ColUnscalingFactor(col);
}
std::string SparseMatrixScaler::DebugInformationString() const {
// Note that some computations are redundant with the computations made in
// some callees, but we do not care as this function is supposed to be called
// with FLAGS_v set to 1.
DCHECK(!row_scale_.empty());
DCHECK(!col_scale_.empty());
Fractional max_magnitude;
Fractional min_magnitude;
matrix_->ComputeMinAndMaxMagnitudes(&min_magnitude, &max_magnitude);
const Fractional dynamic_range = max_magnitude / min_magnitude;
std::string output = absl::StrFormat(
"Min magnitude = %g, max magnitude = %g\n"
"Dynamic range = %g\n"
"Variance = %g\n"
"Minimum row scale = %g, maximum row scale = %g\n"
"Minimum col scale = %g, maximum col scale = %g\n",
min_magnitude, max_magnitude, dynamic_range,
VarianceOfAbsoluteValueOfNonZeros(),
*std::min_element(row_scale_.begin(), row_scale_.end()),
*std::max_element(row_scale_.begin(), row_scale_.end()),
*std::min_element(col_scale_.begin(), col_scale_.end()),
*std::max_element(col_scale_.begin(), col_scale_.end()));
return output;
}
void SparseMatrixScaler::Scale(GlopParameters::ScalingAlgorithm method) {
// This is an implementation of the algorithm described in
// Benichou, M., Gauthier, J-M., Hentges, G., and Ribiere, G.,
// "The efficient solution of large-scale linear programming problems —
// some algorithmic techniques and computational results,"
// Mathematical Programming 13(3) (December 1977).
// http://www.springerlink.com/content/j3367676856m0064/
DCHECK(matrix_ != nullptr);
Fractional max_magnitude;
Fractional min_magnitude;
matrix_->ComputeMinAndMaxMagnitudes(&min_magnitude, &max_magnitude);
if (min_magnitude == 0.0) {
DCHECK_EQ(0.0, max_magnitude);
return; // Null matrix: nothing to do.
}
VLOG(1) << "Before scaling:\n" << DebugInformationString();
if (method == GlopParameters::LINEAR_PROGRAM) {
Status lp_status = LPScale();
// Revert to the default scaling method if there is an error with the LP.
if (lp_status.ok()) {
return;
} else {
VLOG(1) << "Error with LP scaling: " << lp_status.error_message();
}
}
// TODO(user): Decide precisely for which value of dynamic range we should cut
// off geometric scaling.
const Fractional dynamic_range = max_magnitude / min_magnitude;
const Fractional kMaxDynamicRangeForGeometricScaling = 1e20;
if (dynamic_range < kMaxDynamicRangeForGeometricScaling) {
const int kScalingIterations = 4;
const Fractional kVarianceThreshold(10.0);
for (int iteration = 0; iteration < kScalingIterations; ++iteration) {
const RowIndex num_rows_scaled = ScaleRowsGeometrically();
const ColIndex num_cols_scaled = ScaleColumnsGeometrically();
const Fractional variance = VarianceOfAbsoluteValueOfNonZeros();
VLOG(1) << "Geometric scaling iteration " << iteration
<< ". Rows scaled = " << num_rows_scaled
<< ", columns scaled = " << num_cols_scaled << "\n";
VLOG(1) << DebugInformationString();
if (variance < kVarianceThreshold ||
(num_cols_scaled == 0 && num_rows_scaled == 0)) {
break;
}
}
}
RowIndex rows_equilibrated = EquilibrateRows();
ColIndex cols_equilibrated = EquilibrateColumns();
VLOG(1) << "Equilibration step: Rows scaled = " << rows_equilibrated
<< ", columns scaled = " << cols_equilibrated << "\n";
VLOG(1) << DebugInformationString();
}
namespace {
template <class I>
void ScaleVector(const absl::StrongVector<I, Fractional>& scale, bool up,
absl::StrongVector<I, Fractional>* vector_to_scale) {
RETURN_IF_NULL(vector_to_scale);
const I size(std::min(scale.size(), vector_to_scale->size()));
if (up) {
for (I i(0); i < size; ++i) {
(*vector_to_scale)[i] *= scale[i];
}
} else {
for (I i(0); i < size; ++i) {
(*vector_to_scale)[i] /= scale[i];
}
}
}
template <typename InputIndexType>
ColIndex CreateOrGetScaleIndex(
InputIndexType num, LinearProgram* lp,
absl::StrongVector<InputIndexType, ColIndex>* scale_var_indices) {
if ((*scale_var_indices)[num] == -1) {
(*scale_var_indices)[num] = lp->CreateNewVariable();
}
return (*scale_var_indices)[num];
}
} // anonymous namespace
void SparseMatrixScaler::ScaleRowVector(bool up, DenseRow* row_vector) const {
DCHECK(row_vector != nullptr);
ScaleVector(col_scale_, up, row_vector);
}
void SparseMatrixScaler::ScaleColumnVector(bool up,
DenseColumn* column_vector) const {
DCHECK(column_vector != nullptr);
ScaleVector(row_scale_, up, column_vector);
}
Fractional SparseMatrixScaler::VarianceOfAbsoluteValueOfNonZeros() const {
DCHECK(matrix_ != nullptr);
Fractional sigma_square(0.0);
Fractional sigma_abs(0.0);
double n = 0.0; // n is used in a calculation involving doubles.
const ColIndex num_cols = matrix_->num_cols();
for (ColIndex col(0); col < num_cols; ++col) {
for (const SparseColumn::Entry e : matrix_->column(col)) {
const Fractional magnitude = fabs(e.coefficient());
if (magnitude != 0.0) {
sigma_square += magnitude * magnitude;
sigma_abs += magnitude;
++n;
}
}
}
if (n == 0.0) return 0.0;
// Since we know all the population (the non-zeros) and we are not using a
// sample, the variance is defined as below.
// For an explanation, see:
// http://en.wikipedia.org/wiki/Variance
// #Population_variance_and_sample_variance
return (sigma_square - sigma_abs * sigma_abs / n) / n;
}
// For geometric scaling, we compute the maximum and minimum magnitudes
// of non-zeros in a row (resp. column). Let us denote these numbers as
// max and min. We then scale the row (resp. column) by dividing the
// coefficients by sqrt(min * max).
RowIndex SparseMatrixScaler::ScaleRowsGeometrically() {
DCHECK(matrix_ != nullptr);
DenseColumn max_in_row(matrix_->num_rows(), 0.0);
DenseColumn min_in_row(matrix_->num_rows(), kInfinity);
const ColIndex num_cols = matrix_->num_cols();
for (ColIndex col(0); col < num_cols; ++col) {
for (const SparseColumn::Entry e : matrix_->column(col)) {
const Fractional magnitude = fabs(e.coefficient());
const RowIndex row = e.row();
if (magnitude != 0.0) {
max_in_row[row] = std::max(max_in_row[row], magnitude);
min_in_row[row] = std::min(min_in_row[row], magnitude);
}
}
}
const RowIndex num_rows = matrix_->num_rows();
DenseColumn scaling_factor(num_rows, 0.0);
for (RowIndex row(0); row < num_rows; ++row) {
if (max_in_row[row] == 0.0) {
scaling_factor[row] = 1.0;
} else {
DCHECK_NE(kInfinity, min_in_row[row]);
scaling_factor[row] = sqrt(max_in_row[row] * min_in_row[row]);
}
}
return ScaleMatrixRows(scaling_factor);
}
ColIndex SparseMatrixScaler::ScaleColumnsGeometrically() {
DCHECK(matrix_ != nullptr);
ColIndex num_cols_scaled(0);
const ColIndex num_cols = matrix_->num_cols();
for (ColIndex col(0); col < num_cols; ++col) {
Fractional max_in_col(0.0);
Fractional min_in_col(kInfinity);
for (const SparseColumn::Entry e : matrix_->column(col)) {
const Fractional magnitude = fabs(e.coefficient());
if (magnitude != 0.0) {
max_in_col = std::max(max_in_col, magnitude);
min_in_col = std::min(min_in_col, magnitude);
}
}
if (max_in_col != 0.0) {
const Fractional factor(sqrt(ToDouble(max_in_col * min_in_col)));
ScaleMatrixColumn(col, factor);
num_cols_scaled++;
}
}
return num_cols_scaled;
}
// For equilibration, we compute the maximum magnitude of non-zeros
// in a row (resp. column), and then scale the row (resp. column) by dividing
// the coefficients this maximum magnitude.
// This brings the largest coefficient in a row equal to 1.0.
RowIndex SparseMatrixScaler::EquilibrateRows() {
DCHECK(matrix_ != nullptr);
const RowIndex num_rows = matrix_->num_rows();
DenseColumn max_magnitude(num_rows, 0.0);
const ColIndex num_cols = matrix_->num_cols();
for (ColIndex col(0); col < num_cols; ++col) {
for (const SparseColumn::Entry e : matrix_->column(col)) {
const Fractional magnitude = fabs(e.coefficient());
if (magnitude != 0.0) {
const RowIndex row = e.row();
max_magnitude[row] = std::max(max_magnitude[row], magnitude);
}
}
}
for (RowIndex row(0); row < num_rows; ++row) {
if (max_magnitude[row] == 0.0) {
max_magnitude[row] = 1.0;
}
}
return ScaleMatrixRows(max_magnitude);
}
ColIndex SparseMatrixScaler::EquilibrateColumns() {
DCHECK(matrix_ != nullptr);
ColIndex num_cols_scaled(0);
const ColIndex num_cols = matrix_->num_cols();
for (ColIndex col(0); col < num_cols; ++col) {
const Fractional max_magnitude = InfinityNorm(matrix_->column(col));
if (max_magnitude != 0.0) {
ScaleMatrixColumn(col, max_magnitude);
num_cols_scaled++;
}
}
return num_cols_scaled;
}
RowIndex SparseMatrixScaler::ScaleMatrixRows(const DenseColumn& factors) {
// Matrix rows are scaled by dividing their coefficients by factors[row].
DCHECK(matrix_ != nullptr);
const RowIndex num_rows = matrix_->num_rows();
DCHECK_EQ(num_rows, factors.size());
RowIndex num_rows_scaled(0);
for (RowIndex row(0); row < num_rows; ++row) {
const Fractional factor = factors[row];
DCHECK_NE(0.0, factor);
if (factor != 1.0) {
++num_rows_scaled;
row_scale_[row] *= factor;
}
}
const ColIndex num_cols = matrix_->num_cols();
for (ColIndex col(0); col < num_cols; ++col) {
SparseColumn* const column = matrix_->mutable_column(col);
if (column != nullptr) {
column->ComponentWiseDivide(factors);
}
}
return num_rows_scaled;
}
void SparseMatrixScaler::ScaleMatrixColumn(ColIndex col, Fractional factor) {
// A column is scaled by dividing by factor.
DCHECK(matrix_ != nullptr);
col_scale_[col] *= factor;
DCHECK_NE(0.0, factor);
SparseColumn* const column = matrix_->mutable_column(col);
if (column != nullptr) {
column->DivideByConstant(factor);
}
}
void SparseMatrixScaler::Unscale() {
// Unscaling is easier than scaling since all scaling factors are stored.
DCHECK(matrix_ != nullptr);
const ColIndex num_cols = matrix_->num_cols();
for (ColIndex col(0); col < num_cols; ++col) {
const Fractional column_scale = col_scale_[col];
DCHECK_NE(0.0, column_scale);
SparseColumn* const column = matrix_->mutable_column(col);
if (column != nullptr) {
column->MultiplyByConstant(column_scale);
column->ComponentWiseMultiply(row_scale_);
}
}
}
Status SparseMatrixScaler::LPScale() {
DCHECK(matrix_ != nullptr);
auto linear_program = absl::make_unique<LinearProgram>();
GlopParameters params;
auto simplex = absl::make_unique<RevisedSimplex>();
simplex->SetParameters(params);
// Begin linear program construction.
// Beta represents the largest distance from zero among the constraint pairs.
// It resembles a slack variable because the 'objective' of each constraint is
// to cancel out the log "w" of the original nonzero |a_ij| (a.k.a. |a_rc|).
// Approaching 0 by addition in log space is the same as approaching 1 by
// multiplication in linear space. Hence, each variable's log magnitude is
// subtracted from the log row scale and log column scale. If the sum is
// positive, the positive constraint is trivially satisfied, but the negative
// constraint will determine the minimum necessary value of beta for that
// variable and scaling factors, and vice versa.
// For an MxN matrix, the resulting scaling LP has M+N+1 variables and
// O(M*N) constraints (2*M*N at maximum). As a result, using this LP to scale
// another linear program, will typically increase the time to
// optimization by a factor of 4, and has increased the time of some benchmark
// LPs by up to 10.
// Indices to variables in the LinearProgram populated by
// GenerateLinearProgram.
absl::StrongVector<ColIndex, ColIndex> col_scale_var_indices;
absl::StrongVector<RowIndex, ColIndex> row_scale_var_indices;
row_scale_var_indices.resize(RowToIntIndex(matrix_->num_rows()), kInvalidCol);
col_scale_var_indices.resize(ColToIntIndex(matrix_->num_cols()), kInvalidCol);
const ColIndex beta = linear_program->CreateNewVariable();
linear_program->SetVariableBounds(beta, -kInfinity, kInfinity);
// Default objective is to minimize.
linear_program->SetObjectiveCoefficient(beta, 1);
matrix_->CleanUp();
const ColIndex num_cols = matrix_->num_cols();
for (ColIndex col(0); col < num_cols; ++col) {
SparseColumn* const column = matrix_->mutable_column(col);
// This is the variable representing the log of the scale factor for col.
const ColIndex column_scale = CreateOrGetScaleIndex<ColIndex>(
col, linear_program.get(), &col_scale_var_indices);
linear_program->SetVariableBounds(column_scale, -kInfinity, kInfinity);
for (EntryIndex i : column->AllEntryIndices()) {
const Fractional log_magnitude =
log2(std::abs(column->EntryCoefficient(i)));
const RowIndex row = column->EntryRow(i);
// This is the variable representing the log of the scale factor for row.
const ColIndex row_scale = CreateOrGetScaleIndex<RowIndex>(
row, linear_program.get(), &row_scale_var_indices);
linear_program->SetVariableBounds(row_scale, -kInfinity, kInfinity);
// This is derived from the formulation in
// min β
// Subject to:
// ∀ c∈C, v∈V, p_{c,v} ≠ 0.0, w_{c,v} + s^{var}_v + s^{comb}_c + β ≥ 0.0
// ∀ c∈C, v∈V, p_{c,v} ≠ 0.0, w_{c,v} + s^{var}_v + s^{comb}_c ≤ β
// If a variable is integer, its scale factor is zero.
// Start with the constraint w_cv + s_c + s_v + beta >= 0.
const RowIndex positive_constraint =
linear_program->CreateNewConstraint();
// Subtract the constant w_cv from both sides.
linear_program->SetConstraintBounds(positive_constraint, -log_magnitude,
kInfinity);
// +s_c, meaning (log) scale of the constraint C, pointed by row_scale.
linear_program->SetCoefficient(positive_constraint, row_scale, 1);
// +s_v, meaning (log) scale of the variable V, pointed by column_scale.
linear_program->SetCoefficient(positive_constraint, column_scale, 1);
// +beta
linear_program->SetCoefficient(positive_constraint, beta, 1);
// Construct the constraint w_cv + s_c + s_v <= beta.
const RowIndex negative_constraint =
linear_program->CreateNewConstraint();
// Subtract w (and beta) from both sides.
linear_program->SetConstraintBounds(negative_constraint, -kInfinity,
-log_magnitude);
// +s_c, meaning (log) scale of the constraint C, pointed by row_scale.
linear_program->SetCoefficient(negative_constraint, row_scale, 1);
// +s_v, meaning (log) scale of the variable V, pointed by column_scale.
linear_program->SetCoefficient(negative_constraint, column_scale, 1);
// -beta
linear_program->SetCoefficient(negative_constraint, beta, -1);
}
}
// End linear program construction.
linear_program->AddSlackVariablesWhereNecessary(false);
const Status simplex_status =
simplex->Solve(*linear_program, TimeLimit::Infinite().get());
if (!simplex_status.ok()) {
return simplex_status;
} else {
// Now the solution variables can be interpreted and translated from log
// space.
// For each row scale, unlog it and scale the constraints and constraint
// bounds.
const ColIndex num_cols = matrix_->num_cols();
for (ColIndex col(0); col < num_cols; ++col) {
const Fractional column_scale =
exp2(-simplex->GetVariableValue(CreateOrGetScaleIndex<ColIndex>(
col, linear_program.get(), &col_scale_var_indices)));
ScaleMatrixColumn(col, column_scale);
}
const RowIndex num_rows = matrix_->num_rows();
DenseColumn row_scale(num_rows, 0.0);
for (RowIndex row(0); row < num_rows; ++row) {
row_scale[row] =
exp2(-simplex->GetVariableValue(CreateOrGetScaleIndex<RowIndex>(
row, linear_program.get(), &row_scale_var_indices)));
}
ScaleMatrixRows(row_scale);
return Status::OK();
}
}
} // namespace glop
} // namespace operations_research