forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 1
/
lp_utils.h
389 lines (345 loc) · 14.5 KB
/
lp_utils.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
// Copyright 2010-2021 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Basic utility functions on Fractional or row/column of Fractional.
#ifndef OR_TOOLS_LP_DATA_LP_UTILS_H_
#define OR_TOOLS_LP_DATA_LP_UTILS_H_
#include "ortools/base/accurate_sum.h"
#include "ortools/lp_data/lp_types.h"
#include "ortools/lp_data/scattered_vector.h"
#include "ortools/lp_data/sparse_column.h"
namespace operations_research {
namespace glop {
// TODO(user): For some Fractional types, it may not gain much (or even nothing
// if we are in infinite precision) to use this sum. A solution is to templatize
// this class and specialize it to a normal sum for the Fractional type we want
// so in this case the PreciseXXX() functions below will become equivalent to
// their normal version.
typedef AccurateSum<Fractional> KahanSum;
// Returns the square of a Fractional.
// Useful to shorten the code when f is an expression or a long name.
inline Fractional Square(Fractional f) { return f * f; }
// Returns distance from a given fractional number to the closest integer. It
// means that the result is always contained in range of [0.0, 0.5].
static inline Fractional Fractionality(Fractional f) {
return std::abs(f - std::round(f));
}
// Returns the scalar product between u and v.
// The precise versions use KahanSum and are about two times slower.
template <class DenseRowOrColumn1, class DenseRowOrColumn2>
Fractional ScalarProduct(const DenseRowOrColumn1& u,
const DenseRowOrColumn2& v) {
DCHECK_EQ(u.size().value(), v.size().value());
Fractional sum(0.0);
typename DenseRowOrColumn1::IndexType i(0);
typename DenseRowOrColumn2::IndexType j(0);
const size_t num_blocks = u.size().value() / 4;
for (size_t block = 0; block < num_blocks; ++block) {
// Computing the sum of 4 elements at once may allow the compiler to
// generate more efficient code, e.g. using SIMD and checking the loop
// condition much less frequently.
//
// This produces different results from the case where each multiplication
// is added to sum separately. An extreme example of this can be derived
// using the fact that 1e11 + 2e-6 == 1e11, but 1e11 + 8e-6 > 1e11.
//
// While the results are different, they aren't necessarily better or worse.
// Typically, sum will be of larger magnitude than any individual
// multiplication, so one might expect, in practice, this method to yield
// more accurate results. However, if accuracy is vital, use the precise
// version.
sum += (u[i++] * v[j++]) + (u[i++] * v[j++]) + (u[i++] * v[j++]) +
(u[i++] * v[j++]);
}
while (i < u.size()) {
sum += u[i++] * v[j++];
}
return sum;
}
// Note: This version is heavily used in the pricing.
// TODO(user): Optimize this more (SSE or unroll with two sums). Another
// option is to skip the u[col] that are 0.0 rather than fetching the coeff
// and doing a Fractional multiplication.
template <class DenseRowOrColumn>
Fractional ScalarProduct(const DenseRowOrColumn& u, const SparseColumn& v) {
Fractional sum(0.0);
for (const SparseColumn::Entry e : v) {
sum += u[typename DenseRowOrColumn::IndexType(e.row().value())] *
e.coefficient();
}
return sum;
}
template <class DenseRowOrColumn, class DenseRowOrColumn2>
Fractional PreciseScalarProduct(const DenseRowOrColumn& u,
const DenseRowOrColumn2& v) {
DCHECK_EQ(u.size().value(), v.size().value());
KahanSum sum;
for (typename DenseRowOrColumn::IndexType i(0); i < u.size(); ++i) {
sum.Add(u[i] * v[typename DenseRowOrColumn2::IndexType(i.value())]);
}
return sum.Value();
}
template <class DenseRowOrColumn>
Fractional PreciseScalarProduct(const DenseRowOrColumn& u,
const SparseColumn& v) {
KahanSum sum;
for (const SparseColumn::Entry e : v) {
sum.Add(u[typename DenseRowOrColumn::IndexType(e.row().value())] *
e.coefficient());
}
return sum.Value();
}
template <class DenseRowOrColumn>
Fractional PreciseScalarProduct(const DenseRowOrColumn& u,
const ScatteredColumn& v) {
DCHECK_EQ(u.size().value(), v.values.size().value());
if (v.ShouldUseDenseIteration()) {
return PreciseScalarProduct(u, v.values);
}
KahanSum sum;
for (const auto e : v) {
sum.Add(u[typename DenseRowOrColumn::IndexType(e.row().value())] *
e.coefficient());
}
return sum.Value();
}
// Computes a scalar product for entries with index not greater than max_index.
template <class DenseRowOrColumn>
Fractional PartialScalarProduct(const DenseRowOrColumn& u,
const SparseColumn& v, int max_index) {
Fractional sum(0.0);
for (const SparseColumn::Entry e : v) {
if (e.row().value() >= max_index) {
return sum;
}
sum += u[typename DenseRowOrColumn::IndexType(e.row().value())] *
e.coefficient();
}
return sum;
}
// Returns the norm^2 (sum of the square of the entries) of the given column.
// The precise version uses KahanSum and are about two times slower.
Fractional SquaredNorm(const SparseColumn& v);
Fractional SquaredNorm(const DenseColumn& column);
Fractional SquaredNorm(const ColumnView& v);
Fractional PreciseSquaredNorm(const SparseColumn& v);
Fractional PreciseSquaredNorm(const DenseColumn& column);
Fractional PreciseSquaredNorm(const ScatteredColumn& v);
// Returns the maximum of the |coefficients| of 'v'.
Fractional InfinityNorm(const DenseColumn& v);
Fractional InfinityNorm(const SparseColumn& v);
Fractional InfinityNorm(const ColumnView& v);
// Returns the fraction of non-zero entries of the given row.
//
// TODO(user): Take a Scattered row/col instead. This is only used to report
// stats, but we should still have a sparse version to do it faster.
double Density(const DenseRow& row);
// Sets to 0.0 all entries of the given row whose fabs() is lower than the given
// threshold.
void RemoveNearZeroEntries(Fractional threshold, DenseRow* row);
void RemoveNearZeroEntries(Fractional threshold, DenseColumn* column);
// Transposition functions implemented below with a cast so it should actually
// have no complexity cost.
const DenseRow& Transpose(const DenseColumn& col);
const DenseColumn& Transpose(const DenseRow& row);
// Returns the maximum of the |coefficients| of the given column restricted
// to the rows_to_consider. Also returns the first RowIndex 'row' that attains
// this maximum. If the maximum is 0.0, then row_index is left untouched.
Fractional RestrictedInfinityNorm(const ColumnView& column,
const DenseBooleanColumn& rows_to_consider,
RowIndex* row_index);
// Sets to false the entry b[row] if column[row] is non null.
// Note that if 'b' was true only on the non-zero position of column, this can
// be used as a fast way to clear 'b'.
void SetSupportToFalse(const ColumnView& column, DenseBooleanColumn* b);
// Returns true iff for all 'row' we have '|column[row]| <= radius[row]'.
bool IsDominated(const ColumnView& column, const DenseColumn& radius);
// This cast based implementation should be safe, as long as DenseRow and
// DenseColumn are implemented by the same underlying type.
// We still do some DCHECK to be sure it works as expected in addition to the
// unit tests.
inline const DenseRow& Transpose(const DenseColumn& col) {
const DenseRow& row = reinterpret_cast<const DenseRow&>(col);
DCHECK_EQ(col.size(), ColToRowIndex(row.size()));
DCHECK(col.empty() || (&(col[RowIndex(0)]) == &(row[ColIndex(0)])));
return row;
}
// Similar comment as the other Transpose() implementation above.
inline const DenseColumn& Transpose(const DenseRow& row) {
const DenseColumn& col = reinterpret_cast<const DenseColumn&>(row);
DCHECK_EQ(col.size(), ColToRowIndex(row.size()));
DCHECK(col.empty() || (&(col[RowIndex(0)]) == &(row[ColIndex(0)])));
return col;
}
// Computes the positions of the non-zeros of a dense vector.
template <typename IndexType>
inline void ComputeNonZeros(const StrictITIVector<IndexType, Fractional>& input,
std::vector<IndexType>* non_zeros) {
non_zeros->clear();
const IndexType end = input.size();
for (IndexType index(0); index < end; ++index) {
if (input[index] != 0.0) {
non_zeros->push_back(index);
}
}
}
// Returns true if the given Fractional container is all zeros.
template <typename Container>
inline bool IsAllZero(const Container& input) {
for (Fractional value : input) {
if (value != 0.0) return false;
}
return true;
}
// Returns true if the given vector of bool is all false.
template <typename BoolVector>
bool IsAllFalse(const BoolVector& v) {
return std::all_of(v.begin(), v.end(), [](bool value) { return !value; });
}
// Permutes the given dense vector. It uses for this an all zero scratchpad.
template <typename IndexType, typename PermutationIndexType>
inline void PermuteWithScratchpad(
const Permutation<PermutationIndexType>& permutation,
StrictITIVector<IndexType, Fractional>* zero_scratchpad,
StrictITIVector<IndexType, Fractional>* input_output) {
DCHECK(IsAllZero(*zero_scratchpad));
const IndexType size = input_output->size();
zero_scratchpad->swap(*input_output);
input_output->resize(size, 0.0);
for (IndexType index(0); index < size; ++index) {
const Fractional value = (*zero_scratchpad)[index];
if (value != 0.0) {
const IndexType permuted_index(
permutation[PermutationIndexType(index.value())].value());
(*input_output)[permuted_index] = value;
}
}
zero_scratchpad->assign(size, 0.0);
}
// Same as PermuteAndComputeNonZeros() except that we assume that the given
// non-zeros are the initial non-zeros positions of output.
template <typename IndexType>
inline void PermuteWithKnownNonZeros(
const Permutation<IndexType>& permutation,
StrictITIVector<IndexType, Fractional>* zero_scratchpad,
StrictITIVector<IndexType, Fractional>* output,
std::vector<IndexType>* non_zeros) {
DCHECK(IsAllZero(*zero_scratchpad));
zero_scratchpad->swap(*output);
output->resize(zero_scratchpad->size(), 0.0);
for (IndexType& index_ref : *non_zeros) {
const Fractional value = (*zero_scratchpad)[index_ref];
(*zero_scratchpad)[index_ref] = 0.0;
const IndexType permuted_index(permutation[index_ref]);
(*output)[permuted_index] = value;
index_ref = permuted_index;
}
}
// Sets a dense vector for which the non zeros are known to be non_zeros.
template <typename IndexType, typename ScatteredRowOrCol>
inline void ClearAndResizeVectorWithNonZeros(IndexType size,
ScatteredRowOrCol* v) {
// Only use the sparse version if there is less than 5% non-zeros positions
// compared to the wanted size. Note that in most cases the vector will
// already be of the correct size.
const double kSparseThreshold = 0.05;
if (!v->non_zeros.empty() &&
v->non_zeros.size() < kSparseThreshold * size.value()) {
for (const IndexType index : v->non_zeros) {
DCHECK_LT(index, v->values.size());
(*v)[index] = 0.0;
}
v->values.resize(size, 0.0);
DCHECK(IsAllZero(v->values));
} else {
v->values.AssignToZero(size);
}
v->non_zeros.clear();
}
// Changes the sign of all the entries in the given vector.
template <typename IndexType>
inline void ChangeSign(StrictITIVector<IndexType, Fractional>* data) {
const IndexType end = data->size();
for (IndexType i(0); i < end; ++i) {
(*data)[i] = -(*data)[i];
}
}
// Given N Fractional elements, this class maintains their sum and can
// provide, for each element X, the sum of all elements except X.
// The subtelty is that it works well with infinities: for example, if there is
// exactly one infinite element X, then SumWithout(X) will be finite.
//
// Two flavors of this class are provided: SumWithPositiveInfiniteAndOneMissing
// supports calling Add() with normal numbers and positive infinities (and will
// DCHECK() that), and SumWithNegativeInfiniteAndOneMissing does the same with
// negative infinities.
//
// The numerical accuracy suffers however. If X is 1e100 and SumWithout(X)
// should be 1e-100, then the value actually returned by SumWithout(X) is likely
// to be wrong.
template <bool supported_infinity_is_positive>
class SumWithOneMissing {
public:
SumWithOneMissing() : num_infinities_(0), sum_() {}
void Add(Fractional x) {
DCHECK(!std::isnan(x));
if (!IsFinite(x)) {
DCHECK_EQ(x, Infinity());
++num_infinities_;
return;
}
// If we overflow, then there is not much we can do. This is needed
// because KahanSum seems to give nan if we try to add stuff to an
// infinite sum.
if (!IsFinite(sum_.Value())) return;
sum_.Add(x);
}
void RemoveOneInfinity() {
DCHECK_GE(num_infinities_, 1);
--num_infinities_;
}
Fractional Sum() const {
if (num_infinities_ > 0) return Infinity();
return sum_.Value();
}
Fractional SumWithout(Fractional x) const {
if (IsFinite(x)) {
if (num_infinities_ > 0) return Infinity();
return sum_.Value() - x;
}
DCHECK_EQ(Infinity(), x);
if (num_infinities_ > 1) return Infinity();
return sum_.Value();
}
// When the term we substract has a big magnitude, the SumWithout() can be
// quite imprecise. On can use these version to have more defensive bounds.
Fractional SumWithoutLb(Fractional c) const {
if (!IsFinite(c)) return SumWithout(c);
return SumWithout(c) - std::abs(c) * 1e-12;
}
Fractional SumWithoutUb(Fractional c) const {
if (!IsFinite(c)) return SumWithout(c);
return SumWithout(c) + std::abs(c) * 1e-12;
}
private:
Fractional Infinity() const {
return supported_infinity_is_positive ? kInfinity : -kInfinity;
}
// Count how many times Add() was called with an infinite value.
int num_infinities_;
KahanSum sum_; // stripped of all the infinite values.
};
typedef SumWithOneMissing<true> SumWithPositiveInfiniteAndOneMissing;
typedef SumWithOneMissing<false> SumWithNegativeInfiniteAndOneMissing;
} // namespace glop
} // namespace operations_research
#endif // OR_TOOLS_LP_DATA_LP_UTILS_H_