forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlp_utils.cc
163 lines (142 loc) · 4.62 KB
/
lp_utils.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
// Copyright 2010-2021 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/lp_data/lp_utils.h"
#include "ortools/lp_data/sparse_column.h"
namespace operations_research {
namespace glop {
template <typename SparseColumnLike>
Fractional SquaredNormTemplate(const SparseColumnLike& column) {
Fractional sum(0.0);
for (const SparseColumn::Entry e : column) {
sum += Square(e.coefficient());
}
return sum;
}
Fractional SquaredNorm(const SparseColumn& v) {
return SquaredNormTemplate<SparseColumn>(v);
}
Fractional SquaredNorm(const ColumnView& v) {
return SquaredNormTemplate<ColumnView>(v);
}
Fractional PreciseSquaredNorm(const SparseColumn& v) {
KahanSum sum;
for (const SparseColumn::Entry e : v) {
sum.Add(Square(e.coefficient()));
}
return sum.Value();
}
Fractional PreciseSquaredNorm(const ScatteredColumn& v) {
if (v.ShouldUseDenseIteration()) {
return PreciseSquaredNorm(v.values);
}
KahanSum sum;
for (const RowIndex row : v.non_zeros) {
sum.Add(Square(v[row]));
}
return sum.Value();
}
Fractional SquaredNorm(const DenseColumn& column) {
Fractional sum(0.0);
RowIndex row(0);
const size_t num_blocks = column.size().value() / 4;
for (size_t i = 0; i < num_blocks; ++i) {
// See the comment in ScalarProduct in the header for some notes about the
// effect of adding up several squares at a time.
sum += Square(column[row++]) + Square(column[row++]) +
Square(column[row++]) + Square(column[row++]);
}
while (row < column.size()) {
sum += Square(column[row++]);
}
return sum;
}
Fractional PreciseSquaredNorm(const DenseColumn& column) {
KahanSum sum;
for (RowIndex row(0); row < column.size(); ++row) {
sum.Add(Square(column[row]));
}
return sum.Value();
}
Fractional InfinityNorm(const DenseColumn& v) {
Fractional infinity_norm = 0.0;
for (RowIndex row(0); row < v.size(); ++row) {
infinity_norm = std::max(infinity_norm, fabs(v[row]));
}
return infinity_norm;
}
template <typename SparseColumnLike>
Fractional InfinityNormTemplate(const SparseColumnLike& column) {
Fractional infinity_norm = 0.0;
for (const SparseColumn::Entry e : column) {
infinity_norm = std::max(infinity_norm, fabs(e.coefficient()));
}
return infinity_norm;
}
Fractional InfinityNorm(const SparseColumn& v) {
return InfinityNormTemplate<SparseColumn>(v);
}
Fractional InfinityNorm(const ColumnView& v) {
return InfinityNormTemplate<ColumnView>(v);
}
double Density(const DenseRow& row) {
if (row.empty()) return 0.0;
int sum = 0.0;
for (ColIndex col(0); col < row.size(); ++col) {
if (row[col] != Fractional(0.0)) ++sum;
}
return static_cast<double>(sum) / row.size().value();
}
void RemoveNearZeroEntries(Fractional threshold, DenseRow* row) {
if (threshold == Fractional(0.0)) return;
for (ColIndex col(0); col < row->size(); ++col) {
if (fabs((*row)[col]) < threshold) {
(*row)[col] = Fractional(0.0);
}
}
}
void RemoveNearZeroEntries(Fractional threshold, DenseColumn* column) {
if (threshold == Fractional(0.0)) return;
for (RowIndex row(0); row < column->size(); ++row) {
if (fabs((*column)[row]) < threshold) {
(*column)[row] = Fractional(0.0);
}
}
}
Fractional RestrictedInfinityNorm(const ColumnView& column,
const DenseBooleanColumn& rows_to_consider,
RowIndex* row_index) {
Fractional infinity_norm = 0.0;
for (const SparseColumn::Entry e : column) {
if (rows_to_consider[e.row()] && fabs(e.coefficient()) > infinity_norm) {
infinity_norm = fabs(e.coefficient());
*row_index = e.row();
}
}
return infinity_norm;
}
void SetSupportToFalse(const ColumnView& column, DenseBooleanColumn* b) {
for (const SparseColumn::Entry e : column) {
if (e.coefficient() != 0.0) {
(*b)[e.row()] = false;
}
}
}
bool IsDominated(const ColumnView& column, const DenseColumn& radius) {
for (const SparseColumn::Entry e : column) {
DCHECK_GE(radius[e.row()], 0.0);
if (fabs(e.coefficient()) > radius[e.row()]) return false;
}
return true;
}
} // namespace glop
} // namespace operations_research