forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmultiple_knapsack_mip.py
executable file
·109 lines (97 loc) · 3.48 KB
/
multiple_knapsack_mip.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
#!/usr/bin/env python3
# Copyright 2010-2021 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# [START program]
"""Solve a multiple knapsack problem using a MIP solver."""
# [START import]
from ortools.linear_solver import pywraplp
# [END import]
def main():
# [START data]
data = {}
data['weights'] = [
48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36
]
data['values'] = [
10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25
]
assert len(data['weights']) == len(data['values'])
data['num_items'] = len(data['weights'])
data['all_items'] = range(data['num_items'])
data['bin_capacities'] = [100, 100, 100, 100, 100]
data['num_bins'] = len(data['bin_capacities'])
data['all_bins'] = range(data['num_bins'])
# [END data]
# Create the mip solver with the SCIP backend.
# [START solver]
solver = pywraplp.Solver.CreateSolver('SCIP')
if solver is None:
print('SCIP solver unavailable.')
return
# [END solver]
# Variables.
# [START variables]
# x[i, b] = 1 if item i is packed in bin b.
x = {}
for i in data['all_items']:
for b in data['all_bins']:
x[i, b] = solver.BoolVar(f'x_{i}_{b}')
# [END variables]
# Constraints.
# [START constraints]
# Each item is assigned to at most one bin.
for i in data['all_items']:
solver.Add(sum(x[i, b] for b in data['all_bins']) <= 1)
# The amount packed in each bin cannot exceed its capacity.
for b in data['all_bins']:
solver.Add(
sum(x[i, b] * data['weights'][i]
for i in data['all_items']) <= data['bin_capacities'][b])
# [END constraints]
# Objective.
# [START objective]
# Maximize total value of packed items.
objective = solver.Objective()
for i in data['all_items']:
for b in data['all_bins']:
objective.SetCoefficient(x[i, b], data['values'][i])
objective.SetMaximization()
# [END objective]
# [START solve]
status = solver.Solve()
# [END solve]
# [START print_solution]
if status == pywraplp.Solver.OPTIMAL:
print(f'Total packed value: {objective.Value()}')
total_weight = 0
for b in data['all_bins']:
print(f'Bin {b}')
bin_weight = 0
bin_value = 0
for i in data['all_items']:
if x[i, b].solution_value() > 0:
print(
f"Item {i} weight: {data['weights'][i]} value: {data['values'][i]}"
)
bin_weight += data['weights'][i]
bin_value += data['values'][i]
print(f'Packed bin weight: {bin_weight}')
print(f'Packed bin value: {bin_value}\n')
total_weight += bin_weight
print(f'Total packed weight: {total_weight}')
else:
print('The problem does not have an optimal solution.')
# [END print_solution]
if __name__ == '__main__':
main()
# [END program]