forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 1
/
MipVarArray.cs
111 lines (100 loc) · 3.62 KB
/
MipVarArray.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
// Copyright 2010-2021 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// [START program]
// [START import]
using System;
using Google.OrTools.LinearSolver;
// [END import]
// [START program_part1]
public class MipVarArray
{
// [START data_model]
class DataModel
{
public double[,] ConstraintCoeffs = {
{ 5, 7, 9, 2, 1 },
{ 18, 4, -9, 10, 12 },
{ 4, 7, 3, 8, 5 },
{ 5, 13, 16, 3, -7 },
};
public double[] Bounds = { 250, 285, 211, 315 };
public double[] ObjCoeffs = { 7, 8, 2, 9, 6 };
public int NumVars = 5;
public int NumConstraints = 4;
}
// [END data_model]
public static void Main()
{
// [START data]
DataModel data = new DataModel();
// [END data]
// [END program_part1]
// [START solver]
// Create the linear solver with the SCIP backend.
Solver solver = Solver.CreateSolver("SCIP");
// [END solver]
// [START program_part2]
// [START variables]
Variable[] x = new Variable[data.NumVars];
for (int j = 0; j < data.NumVars; j++)
{
x[j] = solver.MakeIntVar(0.0, double.PositiveInfinity, $"x_{j}");
}
Console.WriteLine("Number of variables = " + solver.NumVariables());
// [END variables]
// [START constraints]
for (int i = 0; i < data.NumConstraints; ++i)
{
Constraint constraint = solver.MakeConstraint(0, data.Bounds[i], "");
for (int j = 0; j < data.NumVars; ++j)
{
constraint.SetCoefficient(x[j], data.ConstraintCoeffs[i, j]);
}
}
Console.WriteLine("Number of constraints = " + solver.NumConstraints());
// [END constraints]
// [START objective]
Objective objective = solver.Objective();
for (int j = 0; j < data.NumVars; ++j)
{
objective.SetCoefficient(x[j], data.ObjCoeffs[j]);
}
objective.SetMaximization();
// [END objective]
// [START solve]
Solver.ResultStatus resultStatus = solver.Solve();
// [END solve]
// [START print_solution]
// Check that the problem has an optimal solution.
if (resultStatus != Solver.ResultStatus.OPTIMAL)
{
Console.WriteLine("The problem does not have an optimal solution!");
return;
}
Console.WriteLine("Solution:");
Console.WriteLine("Optimal objective value = " + solver.Objective().Value());
for (int j = 0; j < data.NumVars; ++j)
{
Console.WriteLine("x[" + j + "] = " + x[j].SolutionValue());
}
// [END print_solution]
// [START advanced]
Console.WriteLine("\nAdvanced usage:");
Console.WriteLine("Problem solved in " + solver.WallTime() + " milliseconds");
Console.WriteLine("Problem solved in " + solver.Iterations() + " iterations");
Console.WriteLine("Problem solved in " + solver.Nodes() + " branch-and-bound nodes");
// [END advanced]
}
}
// [END program_part2]
// [END program]