forked from numerobis/KSP-scripts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
engine.py
281 lines (231 loc) · 10 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
# KSP Engine descriptions.
# Copyright 2012 Benoit Hudson
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
from __future__ import division
import math
from physics import g0
"""
This module encodes information about the engines available in KSP.
It also includes some functions related to the ideal rocket equation.
TODO: read this from the part.cfg files.
"""
###########################################################################
# This exception is thrown when we ask for the required propellant + tank mass,
# but it's infinite because of insufficient Isp.
class WeakEngineException(Exception):
def __init__(self, Isp):
self.Isp = Isp
###########################################################################
class engine(object):
def __init__(self, name, IspAtm, IspVac, mass, thrust,
vectoring = False, radial = False, large = False):
self.name = name
self.IspAtm = IspAtm # seconds
self.IspVac = IspVac # seconds
self.mass = mass # tonnes
self.thrust = thrust # kN
self.vectoring = vectoring # true or false
self.radial = radial # true of false
self.large = large # true: 2m, false: 1m (can use bi/tricoupler)
def __str__(self): return self.name
def Isp(self, planet, altitude):
# Assumption: Isp is in a linear correspondence with pressure,
# clipped to 1 Atm (as determined by experiments on Kerbin and Eve).
#
# This is patently false for the jets.
#
if planet is None or altitude is None:
return self.IspVac
pressure = planet.pressure(altitude)
if pressure > 1: pressure = 1
Isp = pressure * self.IspAtm + (1.0 - pressure) * self.IspVac
return Isp
def __str__(self):
return self.name
# We have a none engine for fuel-only stages in asparagus staging. It has no
# mass, no thrust, Isp doesn't matter. Make it radial, so that the optimizer
# can allow putting engines directly below this stage.
noEngine = engine("none", 0, 0, 0, 0, radial=True)
types = (
# One of the choices of engines is to have none...
noEngine,
# Jets. TODO
# Bipropellant engines, in order of Isp first, and thrust:mass ratio second
engine("LV-N", 220, 800, 2.25, 60, vectoring=True),
engine("Aerospike", 388, 390, 1.5, 175),
engine("LV-909", 300, 390, 0.5, 50, vectoring=True),
engine("Poodle", 270, 390, 2.5, 220, vectoring=True, large=True),
engine("LV-T30", 320, 370, 1.25, 215),
engine("LV-T45", 320, 370, 1.5, 200, vectoring=True),
engine("Mainsail", 280, 330, 6, 1500, vectoring=True, large=True),
engine("Mark 55", 290, 320, 0.9, 120, vectoring=True, radial=True),
engine("24-77", 250, 300, 0.09, 20, vectoring=True, radial=True),
engine("LV-1", 220, 290, 0.03, 1.5),
# TODO: we need a *lot* of power for the ion engine, which starts to add
# more mass than just the 0.25. Also, the dry mass is much more than 1/4
# of the propellant, and the number of containers starts to matter. So,
# for now, just ignore it.
# engine("ion", 4200,4200, 0.25, 0.5),
# TODO: solid-fuel rockets aren't handled correctly yet with respect to fuel
# calculations.
# engine("Sepratron", 100, 0.15, 20, solid=9),
# engine("RT-10", 240, 0.5, 250, solid=433),
# engine("BACC", 250, 1.75, 300, solid=850),
)
_engineDict = dict((e.name.lower(), e) for e in types)
def getEngine(name):
return _engineDict[name.lower()]
# To help the heuristics, choose the best possible Isp at a given altitude.
def maxIsp(planet, altitude):
ispMaxEngine = max(types, key = lambda x: x.Isp(planet, altitude))
return ispMaxEngine.Isp(planet, altitude)
# To help the heuristics, choose the best possible mass to achieve a given
# thrust.
maxThrustPerMassEngine = max(types, key =
lambda x: 0 if x.thrust == 0 else x.thrust / x.mass)
def lightestEngineForThrust(thrust):
num = thrust / maxThrustPerMassEngine.thrust
return (maxThrustPerMassEngine, num)
##############################
## Tsiokolvsky rocket equation
beta = 8 # ratio of propellant mass : dry mass in the big stock tanks.
def alpha(deltaV, Isp):
# Corner cases: if deltaV is 0, alpha is 1: m1 = m0 obviously.
# If Isp is 0, alpha is undefined; raise an exception
if deltaV == 0: return 1
if Isp == 0: raise WeakEngineException(Isp)
return math.exp(deltaV / (Isp * g0))
def propellantMass(deltaV, Isp, m0):
return m0 * (alpha(deltaV, Isp) - 1)
def burnMass(deltaV, Isp, m0):
"""
Return the mass of propellant and tanks that we'll need to burn.
Assume tanks hold beta times their mass. The assumption is false
for some of the smallest tanks.
Raise WeakEngineException if it is impossible to achieve the deltaV with
that given Isp. While the ideal rocket equation allows arbitrary deltaV,
it doesn't take account of tank dry mass, which grows as propellant mass
grows.
deltaV: m/s
Isp: s
m0: tonnes, should include payload, engines, decouplers, but
not the propellant and tanks we're using.
return (propellant mass, tank mass)
"""
# The amount of fuel we need is derived from the ideal rocket
# equation. Let alpha = e^{deltaV/Isp.g0}, beta = ratio of
# propellant to dry mass of a tank. Then:
# tankMass = (alpha-1) * payload / (1 - alpha + beta)
# Where the relevant payload here includes engines and decouplers.
# Clearly, if (1-alpha+beta) <= 0 then we are in an impossible
# state: this corresponds to needing infinite fuel.
a = alpha(deltaV, Isp)
if 1 - a + beta <= 0: raise WeakEngineException(Isp)
tankMass = m0 * (a - 1) / (1 - a + beta)
propMass = tankMass * beta
return (propMass, tankMass)
def burnTime(deltaV, Isp, thrust, m0):
"""
Return the time needed to perform the burn.
m0 is the dry mass including tanks.
Raise WeakEngineException if there is no thrust.
"""
# If there's no deltaV, or no mass, we don't burn at all.
if deltaV == 0 or m0 == 0: return 0
# If there's no thrust but we want to move, problem...
if Isp == 0 or thrust == 0:
raise WeakEngineException(Isp)
# The mass flow rate of an engine is thrust / (Isp * g0)
# The mass we expel is from the ideal rocket equation.
# The amount of time we burn is thus mprop / (thrust/(Isp*g0))
mprop = propellantMass(deltaV, Isp, m0)
return mprop * Isp * g0 / thrust
def minThrustForBurnTime(deltaV, Isp, m0, time):
"""
Return the minimum thrust necessary to achieve a burn in the time
limit.
m0 is the dry mass including tanks.
"""
m1 = propellantMass(deltaV, Isp, m0)
return m1 * Isp * g0 / time
def combineIsp(engines, planet, altitude):
"""
Given a dictionary mapping engine -> count, or a list of pairs, compute the
Isp of the system at the given altitude on the given planet. Pass in None
for the planet to get vacuum values.
This is the weighted sum of the impulses of each type, with weights
based off the relative mass flow rate of the engines. Proving this
requires re-deriving the ideal rocket equation, but with two engines,
and generalizing in the obvious way.
"""
def alpha(e, c):
# no thrust => no contribution (even if Isp is zero)
if c == 0 or e.thrust == 0: return 0
else: return e.thrust * c / e.Isp(planet, altitude)
try:
return (sum(e.thrust * c for (e,c) in engines.iteritems())
/ sum(alpha(e,c) for (e,c) in engines.iteritems()))
except AttributeError:
return (sum(e.thrust * c for (e,c) in engines)
/ sum(alpha(e,c) for (e,c) in engines))
# combine 2x nuke and 1x sail
# print combineIsp( [(getEngine("mainsail"), 1), (getEngine("lv-n"), 2)], None, None)
###########################################################################
## Notes about experiments:
## I ran an experiment to see how Isp varied for the nuke as altitude
## changes. Here are the results.
# Explanation for the systematic error, in part, is that the altimeter measures
# about 20m off from the engine -- below during launch on Kerbin, above while
# crashing on Eve.
# On Kerbin:
# alt | IspExperiment | IspCalculated | Error
# kerbinaltIsp =
# (83, 229.6, 229.5, -0.05),
# (530, 279.7, 278.3, -1.37),
# (1020, 328.5, 327.0, -1.47),
# (2010, 413.5, 412.0, -1.51),
# (3020, 484.4, 483.0, -1.44),
# (4030, 542.3, 540.9, -1.35),
# (5034, 589.3, 588.1, -1.22),
# (6100, 629.9, 628.8, -1.13),
# (7700, 676.7, 675.7, -1.04),
# (9135, 707.6, 706.7, -0.92),
# (10767, 733.5, 732.7, -0.83),
# (13400, 760.7, 760.2, -0.47),
# (16874, 780.5, 780.1, -0.35),
# (23600, 795.0, 794.8, -0.17),
# (31147, 798.9, 798.9, -0.04),
# (35833, 799.6, 799.6, -0.05),
# (47552, 800.0, 800.0, -0.04),
# On Eve:
# evealtIsp = (
# (78213, 800.0, 800.0, -0.04),
# (76300, 799.9, 799.9, 0.05),
# (67000, 799.8, 799.8, -0.00),
# (61261, 799.5, 799.5, 0.04),
# (50040, 798.0, 797.7, -0.28),
# (39847, 790.1, 790.2, 0.12),
# (33970, 777.2, 777.4, 0.16),
# (28439, 749.6, 750.1, 0.51),
# (23500, 699.4, 699.0, -0.42),
# (18714, 599.0, 599.9, 0.86),
# (15946, 501.7, 502.8, 1.08),
# (13845, 397.5, 398.7, 1.24),
# (12351, 301.9, 303.3, 1.37),
# (11635, 248.3, 249.8, 1.48),
# (11271, 220.0, 220.4, 0.41),
# (9528, 220.0, 220.0, 0.00),
# (5100, 220.0, 220.0, 0.00),
# (4000, 220.0, 220.0, 0.00),
# )