-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
32 lines (21 loc) · 1.12 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
from template_model import MLP, inception_v3, End2EndModel, BottleneckMLP
# Concept predictor for Independent Model (CUB)
def bottleneck_model(pretrained, num_classes, use_aux, n_attributes):
return inception_v3(pretrained=pretrained, num_classes=num_classes, aux_logits=use_aux,
n_attributes=n_attributes, bottleneck=True)
# bottleneck for MNIST
def mnist_bottleneck(n_attributes):
return BottleneckMLP(n_attributes)
# bottleneck for CMNIST
def cmnist_bottleneck(n_attributes):
return BottleneckMLP(n_attributes, input_size=2352)
# Independent Model
def independent_model(n_attributes, num_classes):
# X -> C part is separate, this is only the C -> Y part
return MLP(input_dim=n_attributes, num_classes=num_classes)
# Joint Model
def joint_model(pretrained, num_classes, use_aux, n_attributes, use_sigmoid):
model1 = inception_v3(pretrained=pretrained, num_classes=num_classes, aux_logits=use_aux,
n_attributes=n_attributes, bottleneck=True)
model2 = MLP(input_dim=n_attributes, num_classes=num_classes)
return End2EndModel(model1, model2, use_sigmoid)