forked from mlubin/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcomplete_optimizer.cc
156 lines (132 loc) · 5.93 KB
/
complete_optimizer.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
// Copyright 2010-2021 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/bop/complete_optimizer.h"
#include <cstdint>
#include "ortools/bop/bop_util.h"
#include "ortools/sat/boolean_problem.h"
namespace operations_research {
namespace bop {
SatCoreBasedOptimizer::SatCoreBasedOptimizer(const std::string& name)
: BopOptimizerBase(name),
state_update_stamp_(ProblemState::kInitialStampValue),
initialized_(false),
assumptions_already_added_(false) {
// This is in term of number of variables not at their minimal value.
lower_bound_ = sat::Coefficient(0);
upper_bound_ = sat::kCoefficientMax;
}
SatCoreBasedOptimizer::~SatCoreBasedOptimizer() {}
BopOptimizerBase::Status SatCoreBasedOptimizer::SynchronizeIfNeeded(
const ProblemState& problem_state) {
if (state_update_stamp_ == problem_state.update_stamp()) {
return BopOptimizerBase::CONTINUE;
}
state_update_stamp_ = problem_state.update_stamp();
// Note that if the solver is not empty, this only load the newly learned
// information.
const BopOptimizerBase::Status status =
LoadStateProblemToSatSolver(problem_state, &solver_);
if (status != BopOptimizerBase::CONTINUE) return status;
if (!initialized_) {
// Initialize the algorithm.
nodes_ = sat::CreateInitialEncodingNodes(
problem_state.original_problem().objective(), &offset_, &repository_);
initialized_ = true;
// This is used by the "stratified" approach.
stratified_lower_bound_ = sat::Coefficient(0);
for (sat::EncodingNode* n : nodes_) {
stratified_lower_bound_ = std::max(stratified_lower_bound_, n->weight());
}
}
// Extract the new upper bound.
if (problem_state.solution().IsFeasible()) {
upper_bound_ = problem_state.solution().GetCost() + offset_;
}
return BopOptimizerBase::CONTINUE;
}
sat::SatSolver::Status SatCoreBasedOptimizer::SolveWithAssumptions() {
const std::vector<sat::Literal> assumptions =
sat::ReduceNodesAndExtractAssumptions(upper_bound_,
stratified_lower_bound_,
&lower_bound_, &nodes_, &solver_);
return solver_.ResetAndSolveWithGivenAssumptions(assumptions);
}
// Only run this if there is an objective.
bool SatCoreBasedOptimizer::ShouldBeRun(
const ProblemState& problem_state) const {
return problem_state.original_problem().objective().literals_size() > 0;
}
BopOptimizerBase::Status SatCoreBasedOptimizer::Optimize(
const BopParameters& parameters, const ProblemState& problem_state,
LearnedInfo* learned_info, TimeLimit* time_limit) {
SCOPED_TIME_STAT(&stats_);
CHECK(learned_info != nullptr);
CHECK(time_limit != nullptr);
learned_info->Clear();
const BopOptimizerBase::Status sync_status =
SynchronizeIfNeeded(problem_state);
if (sync_status != BopOptimizerBase::CONTINUE) {
return sync_status;
}
int64_t conflict_limit = parameters.max_number_of_conflicts_in_random_lns();
double deterministic_time_at_last_sync = solver_.deterministic_time();
while (!time_limit->LimitReached()) {
sat::SatParameters sat_params = solver_.parameters();
sat_params.set_max_time_in_seconds(time_limit->GetTimeLeft());
sat_params.set_max_deterministic_time(
time_limit->GetDeterministicTimeLeft());
sat_params.set_random_seed(parameters.random_seed());
sat_params.set_max_number_of_conflicts(conflict_limit);
solver_.SetParameters(sat_params);
const int64_t old_num_conflicts = solver_.num_failures();
const sat::SatSolver::Status sat_status =
assumptions_already_added_ ? solver_.Solve() : SolveWithAssumptions();
time_limit->AdvanceDeterministicTime(solver_.deterministic_time() -
deterministic_time_at_last_sync);
deterministic_time_at_last_sync = solver_.deterministic_time();
assumptions_already_added_ = true;
conflict_limit -= solver_.num_failures() - old_num_conflicts;
learned_info->lower_bound = lower_bound_.value() - offset_.value();
// This is possible because we over-constrain the objective.
if (sat_status == sat::SatSolver::INFEASIBLE) {
return problem_state.solution().IsFeasible()
? BopOptimizerBase::OPTIMAL_SOLUTION_FOUND
: BopOptimizerBase::INFEASIBLE;
}
ExtractLearnedInfoFromSatSolver(&solver_, learned_info);
if (sat_status == sat::SatSolver::LIMIT_REACHED || conflict_limit < 0) {
return BopOptimizerBase::CONTINUE;
}
if (sat_status == sat::SatSolver::FEASIBLE) {
stratified_lower_bound_ =
MaxNodeWeightSmallerThan(nodes_, stratified_lower_bound_);
// We found a better solution!
SatAssignmentToBopSolution(solver_.Assignment(), &learned_info->solution);
if (stratified_lower_bound_ > 0) {
assumptions_already_added_ = false;
return BopOptimizerBase::SOLUTION_FOUND;
}
return BopOptimizerBase::OPTIMAL_SOLUTION_FOUND;
}
// The interesting case: we have a core.
// TODO(user): Check that this cannot fail because of the conflict limit.
std::vector<sat::Literal> core = solver_.GetLastIncompatibleDecisions();
sat::MinimizeCore(&solver_, &core);
const sat::Coefficient min_weight = sat::ComputeCoreMinWeight(nodes_, core);
sat::ProcessCore(core, min_weight, &repository_, &nodes_, &solver_);
assumptions_already_added_ = false;
}
return BopOptimizerBase::CONTINUE;
}
} // namespace bop
} // namespace operations_research