forked from mlubin/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pywraplp_test.py
executable file
·99 lines (88 loc) · 3.43 KB
/
pywraplp_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
#!/usr/bin/env python3
# Copyright 2010-2021 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Simple unit tests for python/linear_solver.swig. Not exhaustive."""
import unittest
from ortools.linear_solver import linear_solver_pb2
from ortools.linear_solver import pywraplp
from google.protobuf import text_format
TEXT_MODEL = """
variable {
lower_bound: 1.0
upper_bound: 10.0
objective_coefficient: 2.0
}
variable {
lower_bound: 1.0
upper_bound: 10.0
objective_coefficient: 1.0
}
constraint {
lower_bound: -10000.0
upper_bound: 4.0
var_index: 0
var_index: 1
coefficient: 1.0
coefficient: 2.0
}
"""
class PyWrapLp(unittest.TestCase):
def test_proto(self):
input_proto = linear_solver_pb2.MPModelProto()
text_format.Merge(TEXT_MODEL, input_proto)
solver = pywraplp.Solver('solveFromProto',
pywraplp.Solver.CBC_MIXED_INTEGER_PROGRAMMING)
# For now, create the model from the proto by parsing the proto
errors = solver.LoadModelFromProto(input_proto)
self.assertFalse(errors)
solver.Solve()
# Fill solution
solution = linear_solver_pb2.MPSolutionResponse()
solver.FillSolutionResponseProto(solution)
self.assertEqual(solution.objective_value, 3.0)
self.assertEqual(solution.variable_value[0], 1.0)
self.assertEqual(solution.variable_value[1], 1.0)
self.assertEqual(solution.best_objective_bound, 3.0)
def test_external_api(self):
solver = pywraplp.Solver('TestExternalAPI',
pywraplp.Solver.GLOP_LINEAR_PROGRAMMING)
infinity = solver.Infinity()
infinity2 = solver.infinity()
self.assertEqual(infinity, infinity2)
# x1, x2 and x3 are continuous non-negative variables.
x1 = solver.NumVar(0.0, infinity, 'x1')
x2 = solver.NumVar(0.0, infinity, 'x2')
x3 = solver.NumVar(0.0, infinity, 'x3')
self.assertEqual(x1.Lb(), 0)
self.assertEqual(x1.Ub(), infinity)
self.assertFalse(x1.Integer())
solver.Maximize(10 * x1 + 6 * x2 + 4 * x3 + 5)
self.assertEqual(solver.Objective().Offset(), 5)
c0 = solver.Add(10 * x1 + 4 * x2 + 5 * x3 <= 600, 'ConstraintName0')
c1 = solver.Add(2 * x1 + 2 * x2 + 6 * x3 <= 300)
sum_of_vars = sum([x1, x2, x3])
solver.Add(sum_of_vars <= 100.0, 'OtherConstraintName')
self.assertEqual(c1.Lb(), -infinity)
self.assertEqual(c1.Ub(), 300)
c1.SetLb(-100000)
self.assertEqual(c1.Lb(), -100000)
c1.SetUb(301)
self.assertEqual(c1.Ub(), 301)
solver.SetTimeLimit(10000)
result_status = solver.Solve()
# The problem has an optimal solution.
self.assertEqual(result_status, pywraplp.Solver.OPTIMAL)
self.assertAlmostEqual(x1.ReducedCost(), 0.0)
self.assertAlmostEqual(c0.DualValue(), 0.6666666666666667)
if __name__ == '__main__':
unittest.main()