forked from fishercoder1534/Leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
_716.java
252 lines (217 loc) · 7.32 KB
/
_716.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
package com.fishercoder.solutions;
import java.util.ArrayList;
import java.util.Deque;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.Stack;
import java.util.TreeMap;
public class _716 {
public static class Solution1 {
/**
* This is O(n) for popMax() and pop() while O(1) for the other three operations which is UN-acceptable during an interview!
* We need to do better than O(n) time complexity in order to ace the interview!
* But O(1) is impossible, so let's aim for O(logn).
*/
public static class MaxStack {
private int max;
private Stack<Integer> stack;
/**
* initialize your data structure here.
*/
public MaxStack() {
max = Integer.MIN_VALUE;
stack = new Stack<>();
}
public void push(int x) {
if (x > max) {
max = x;
}
stack.push(x);
}
public int pop() {
if (stack.peek() == max) {
int result = stack.pop();
max = findMax();
return result;
} else {
return stack.pop();
}
}
private int findMax() {
if (!stack.isEmpty()) {
Iterator<Integer> iterator = stack.iterator();
int max = stack.peek();
while (iterator.hasNext()) {
max = Math.max(max, iterator.next());
}
return max;
} else {
max = Integer.MIN_VALUE;
return max;
}
}
public int top() {
return stack.peek();
}
public int peekMax() {
return max;
}
public int popMax() {
Stack<Integer> tmp = new Stack<>();
int result = 0;
while (!stack.isEmpty()) {
if (stack.peek() != max) {
tmp.push(stack.pop());
} else {
result = stack.pop();
break;
}
}
while (!tmp.isEmpty()) {
stack.push(tmp.pop());
}
max = findMax();
return result;
}
}
}
public static class Solution2 {
/**
* Use a treemap and a doubly linked list to achieve O(logn) time complexity.
*/
static class Node {
int val;
Node prev;
Node next;
public Node(int val) {
this.val = val;
}
}
static class DoublyLinkedList {
Node head;
Node tail;
public DoublyLinkedList() {
head = new Node(0);
tail = new Node(0);
head.next = tail;
tail.prev = head;
}
public Node add(int val) {
/**For this doubly linked list, we always add it to the end of the list*/
Node x = new Node(val);
x.next = tail;
x.prev = tail.prev;
tail.prev.next = x;
tail.prev = tail.prev.next;
return x;
}
public int pop() {
/**for pop(), we always pop one from the tail of the doubly linked list*/
return unlink(tail.prev).val;
}
public Node unlink(Node node) {
node.prev.next = node.next;
node.next.prev = node.prev;
return node;
}
public int peek() {
return tail.prev.val;
}
}
public static class MaxStack {
TreeMap<Integer, List<Node>> treeMap;
/**
* the reason we have a list of nodes as treemap's value is because one value could be pushed
* multiple times into this MaxStack and we want to keep track of all of them.
*/
DoublyLinkedList doublyLinkedList;
/**
* initialize your data structure here.
*/
public MaxStack() {
treeMap = new TreeMap();
doublyLinkedList = new DoublyLinkedList();
}
public void push(int x) {
Node node = doublyLinkedList.add(x);
if (!treeMap.containsKey(x)) {
treeMap.put(x, new ArrayList<>());
}
treeMap.get(x).add(node);
}
public int pop() {
int val = doublyLinkedList.pop();
List<Node> nodes = treeMap.get(val);
nodes.remove(nodes.size() - 1);
if (nodes.isEmpty()) {
treeMap.remove(val);
}
return val;
}
public int top() {
return doublyLinkedList.peek();
}
public int peekMax() {
return treeMap.lastKey();
}
public int popMax() {
int max = treeMap.lastKey();
List<Node> nodes = treeMap.get(max);
Node node = nodes.remove(nodes.size() - 1);
doublyLinkedList.unlink(node);
if (nodes.isEmpty()) {
treeMap.remove(max);
}
return max;
}
}
}
public static class Solution3 {
/**
* My completely original solution on 10/25/2021.
* popMax() takes O(n) time, all other operations take O(1) time.
*/
public static class MaxStack {
Deque<int[]> stack;
Deque<int[]> tmp;
public MaxStack() {
stack = new LinkedList<>();
tmp = new LinkedList<>();
}
public void push(int x) {
if (stack.isEmpty()) {
stack.addLast(new int[]{x, x});
} else {
int[] last = stack.peekLast();
stack.addLast(new int[]{x, Math.max(last[1], x)});
}
}
public int pop() {
return stack.pollLast()[0];
}
public int top() {
return stack.peekLast()[0];
}
public int peekMax() {
return stack.peekLast()[1];
}
public int popMax() {
tmp.clear();
while (stack.peekLast()[0] != stack.peekLast()[1]) {
tmp.addLast(stack.pollLast());
}
int[] max = stack.pollLast();
while (!tmp.isEmpty()) {
int[] curr = tmp.pollLast();
if (!stack.isEmpty()) {
stack.addLast(new int[]{curr[0], Math.max(curr[0], stack.peekLast()[1])});
} else {
stack.addLast(new int[]{curr[0], curr[0]});
}
}
return max[0];
}
}
}
}