-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathExampleMagmaCode5.mgm
156 lines (133 loc) · 3.36 KB
/
ExampleMagmaCode5.mgm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
// Examples on writing functions
Z := Integers();
Q := Rationals();
R := RealField(20);
P<x> := PolynomialRing(Q);
Matrix(Z, 3,2, [1,2,3,4,5,6]);
Matrix(Z, 2,3, [1,2,3,4,5,6]);
Matrix(Z, [ [1,2,3],[4,5,6] ]);
// We get errors if we don't give enough entries
Matrix(Z, 2,3, [1,2,3,4,5]);
Matrix(Z, [ [1,2,3],[4,5] ]);
// We can leave out the field/ring and let Magma decide
Matrix([ [1,2,3],[4,5,6] ]);
// Parent command gives information about an object,
// can tell us things like where coefficients live, etc.
Parent( Matrix([ [1,2,3],[4,5,6] ]) );
Parent( Matrix([ [1/1,2,3],[4,5,6] ]) );
Parent( Matrix(Q, [ [1,2,3],[4,5,6] ]) );
// Have some special commands for structured matrices
DiagonalMatrix(Q, [1,2,3,4,5];
DiagonalMatrix(Q, [1,2,3,4,5]);
UpperTriangularMatrix(Q, [1,2,3,4]);
UpperTriangularMatrix(Q, [1,2,3,4,5,6]);
SymmetricMatrix(Q, [1,2,3,4,5,6]);
// Vectors created just like matrices
Vector( [1,2,3,4]);
Vector(Q, [1,2,3,4]);
Vector(R, [1,2,3,4]);
A := Matrix( [ [1,4], [2,5], [3,6] ] );
A;
v := Vector([7,8,9]);
// Vectors are rows, multiply from left of a matrix.
A*v;
v*A;
// Can have polynomial entries:
A := Matrix( [ [x^2,2*x], [3*x,5*x^3], [4,6*x] ] );
A;
v*A;
v1 := Vector([2*x^2, 5*x]);
v2 := Vector([5,7]);
v1;
v2;
// This gives an error because Magma decided v1 has entries from P,
// v2 has entries from Z
(v1, v2);
// By making sure entries of v2 are viewed as polynomials, we can compute dot product
v1 := Vector([2*x^2, 5*x]);
v2 := Vector(P, [5,7]);
v1;
v2;
(v1, v2);
M1 := Matrix(2,3, [1,2,3,4,5,6]);
M2 := Matrix(3,5, [ i^2 : i in [1..15]]);
M2;
M1;
M1*M2;
Transpose(M2;
Transpose(M2);
M2;
EchelonForm(M2);
u := Vector(Q, [1,5,7]);
// We know that we can project a vector x onto the line through u
// using the formula ((u,x)/(u,u))*u.
function ProjU(x)
return ((u,x) / (u,u))*u;
end function;
ProjU( Vector(Q, [13,5,3] ));
// This function takes a vector u, then builds & returns a function
function ProjFunc(u)
function ProjU(x)
return ((u,x) / (u,u))*u;
end function;
return ProjU;
end function;
f := ProjFunc( Vector(Q, [1,1,1]));
f( Vector(Q, [3,4,7]));
// Echelon Form depends on where the coefficients live,
// Magma will only do row operations involving coefficients structure
M2;
EchelonForm(M2);
M2 := Matrix(Q,3,5, [ i^2 : i in [1..15]]);
EchelonForm(M2);
// For integers, Magma won't multiply the row by (1/5),
// even though the result would have integer entries.
// This reduces to reduced echelon over the rational numbers.
// EchelonForm(M) returns E, B so that B*M = E
E,B := EchelonForm(M2);
E;
B;
B*M2 eq E;
M := Matrix(R, 2,2, [0,1,-1,0]);
M;
Eigenvalues(M);
M := Matrix(R, 2,2, [0,1,2,0]);
Eigenvalues(M);
M := Matrix(Q, 2,2, [0,1,2,0]);
Eigenvalues(M);
M := Matrix(R, 2,2, [0,1,2,0]);
M := Matrix(R, 2,2, [0,1,2,0]);
M;
EV := Eigenvalues(M);
EV;
EV[1];
lambda := EV[1][1];
lambda;
Eigenspace(M, lambda);
Eigenspaces(M);
Eigenspace;
M := Matrix(Q, 4,4, [0, -1, 0, -4, 1, 0, 3, 5, 4, 1, 2, 4, 6, 8, 0]);
M := Matrix(Q, 4,4, [0, -1, 0, -4, 1, 0, 3, 5,3, 4, 1, 2, 4, 6, 8, 0]);
M;
Eigenvalues(M);
M := DiagonalMatrix(Q, [1,1,3,3]);
M;
Eigenvalues(M);
Eigenspace(M, 3);
V := VectorSpace(Q,4);
V;
v1 := Vector(Q, [1,3,2,7]);
v2 := Vector(Q, [3,-1,0,1]);
v1 in V;
elt<V | 1,3,2,7> eq v1;
V![1,3,2,7] eq v1;
Normalize(v2);
u := (1/Norm(v2)) * v2;
u;
U := sub<V | v1, v2>;
U;
A := Matrix(Q, [[1,2,3], [2,3,4], [3,4,5]]);
A;
Inverse(A);
A^-1;
Determinant(A);