This repository has been archived by the owner on Jul 25, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 130
/
Copy pathpvconv.py
39 lines (33 loc) · 1.59 KB
/
pvconv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import torch.nn as nn
import modules.functional as F
from modules.voxelization import Voxelization
from modules.shared_mlp import SharedMLP
from modules.se import SE3d
__all__ = ['PVConv']
class PVConv(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, resolution, with_se=False, normalize=True, eps=0):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.resolution = resolution
self.voxelization = Voxelization(resolution, normalize=normalize, eps=eps)
voxel_layers = [
nn.Conv3d(in_channels, out_channels, kernel_size, stride=1, padding=kernel_size // 2),
nn.BatchNorm3d(out_channels, eps=1e-4),
nn.LeakyReLU(0.1, True),
nn.Conv3d(out_channels, out_channels, kernel_size, stride=1, padding=kernel_size // 2),
nn.BatchNorm3d(out_channels, eps=1e-4),
nn.LeakyReLU(0.1, True),
]
if with_se:
voxel_layers.append(SE3d(out_channels))
self.voxel_layers = nn.Sequential(*voxel_layers)
self.point_features = SharedMLP(in_channels, out_channels)
def forward(self, inputs):
features, coords = inputs
voxel_features, voxel_coords = self.voxelization(features, coords)
voxel_features = self.voxel_layers(voxel_features)
voxel_features = F.trilinear_devoxelize(voxel_features, voxel_coords, self.resolution, self.training)
fused_features = voxel_features + self.point_features(features)
return fused_features, coords