-
Notifications
You must be signed in to change notification settings - Fork 12
/
pipeline.py
executable file
·337 lines (311 loc) · 12.7 KB
/
pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
"""
The MIT License
Copyright (c) 2017 Yujun Lin
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
from magma import *
set_mantle_target("ice40")
import mantle
import math
import pickle
from mantle.lattice.ice40 import ROMB, SB_LUT4
image_id = 9
num_cycles = 16
num_classes = 10
# operand width
N = 16
# number of bits for num_cycles
n = int(math.ceil(math.log2(num_cycles)))
# number of bits for num_classes
b = int(math.ceil(math.log2(num_classes)))
# number of bits for bit counter output
n_bc = int(math.floor(math.log2(N))) + 1
# number of bits for bit counter output accumulator
n_bc_adder = int(math.floor(math.log2(N*num_cycles))) + 1
# read weight and images
# weight matrix is of image_size x num_classes, here is 10 x 256, each is 1 bit
# image vector is of image_size, here is 256, each is 1 bit
filename = 'nn_train/BNN.pkl'
with open(filename, 'rb') as input_file:
checkpoint = pickle.load(input_file)
# weights is ndarray of size 10 (rows) x 256 / 16 = 160, each entry standing for 16 bits
weights = checkpoint['weights_int16']
weights_f = weights.flatten()
# weight_list is list of size 160, each entry standing for 16 bits
weights_list = weights_f.tolist()
# weight_list is list of size 256, each entry standing for 16 bits
for i in range(256 - len(weights_list)):
weights_list.append(0)
# imgs is ndarray of size 10 (images) x 16 x 16 / 16 = 160, each entry standing for 16 bits
imgs = checkpoint['imgs_int16']
imgs_f = imgs.flatten()
# imgs_list is list of size 160, every 16 entries standing for one image
imgs_list = imgs_f.tolist()
# generate address for weight and image block
# idx means the idx-th row of weight matrix
# cycle means the cycle-th block of idx-th row of weight matrix
# cycle also means the cycle-th block of image vector
class Controller(Circuit):
name = "Controller"
IO = ['CLK', In(Clock), 'IDX', Out(Bits(b)),
'CYCLE', Out(Bits(n))]
@classmethod
def definition(io):
adder_cycle = mantle.Add(n, cin=False, cout=False)
reg_cycle = mantle.Register(n, has_reset=True)
adder_idx = mantle.Add(b, cin=False, cout=False)
reg_idx = mantle.Register(b, has_ce=True)
wire(io.CLK, reg_cycle.CLK)
wire(io.CLK, reg_idx.CLK)
wire(reg_cycle.O, adder_cycle.I0)
wire(bits(1, n), adder_cycle.I1)
wire(adder_cycle.O, reg_cycle.I)
comparison_cycle = mantle.EQ(n)
wire(reg_cycle.O, comparison_cycle.I0)
wire(bits(num_cycles-1, n), comparison_cycle.I1)
# if cycle-th is the last, then switch to next idx (accumulate idx) and clear cycle
wire(comparison_cycle.O, reg_cycle.RESET)
wire(comparison_cycle.O, reg_idx.CE)
comparison_idx = mantle.EQ(b)
wire(reg_idx.O, comparison_idx.I0)
wire(bits(num_classes-1, b), comparison_idx.I1)
wire(reg_idx.O, adder_idx.I0)
wire(bits(0, b-1), adder_idx.I1[1:])
nand_gate = mantle.NAnd()
wire(comparison_cycle.O, nand_gate.I0)
wire(comparison_idx.O, nand_gate.I1)
# after all idx rows, we stop accumulating idx
wire(nand_gate.O, adder_idx.I1[0])
wire(adder_idx.O, reg_idx.I)
wire(reg_idx.O, io.IDX)
wire(adder_cycle.O, io.CYCLE)
# Test Unit for Rom Reading
class TestReadRom(Circuit):
name = "TestReadRom2"
IO = ['IDX', In(Bits(b)), 'CYCLE', In(Bits(n)), 'CLK', In(Clock),
'WEIGHT', Out(Bits(N)), 'IMAGE', Out(Bits(N))]
@classmethod
def definition(io):
weights_list = [1] + [2**16-1]*15 + [3] + [2**16-1]*15 + ([0] + [2**16-1]*15)*((256-32)//16)
weigths_rom = ROMB(len(weights_list), 16, weights_list)
lut_list = []
for i in range(N):
lut_list.append(SB_LUT4(LUT_INIT=1))
wire(io.CYCLE, weigths_rom.RADDR[:n])
wire(io.IDX, weigths_rom.RADDR[n:n+b])
if n + b < 8:
wire(bits(0, 8-n-b), weigths_rom.RADDR[n+b:])
wire(1, weigths_rom.RE)
wire(weigths_rom.RDATA, io.WEIGHT)
wire(io.CLK, weigths_rom.RCLK)
for i in range(N):
wire(io.CYCLE, bits([lut_list[i].I0, lut_list[i].I1, lut_list[i].I2, lut_list[i].I3]))
wire(lut_list[i].O, io.IMAGE[i])
# Read ROM unit
class ReadRom(Circuit):
assert N == 16
name = "ReadRom"
IO = ['IDX', In(Bits(b)), 'CYCLE', In(Bits(n)), 'CLK', In(Clock),
'WEIGHT', Out(Bits(N)), 'IMAGE', Out(Bits(N))]
@classmethod
def definition(io):
weigths_rom = ROMB(len(weights_list), 16, weights_list)
# using 16 LUTs to store the image, each LUT contributes 1 bit per cycle
lut_list = []
for i in range(N):
lut_list.append(SB_LUT4(LUT_INIT=imgs_list[N * image_id + i]))
wire(io.CYCLE, weigths_rom.RADDR[:n])
wire(io.IDX, weigths_rom.RADDR[n:n + b])
if n+b < 8:
wire(bits(0, 8-n-b), weigths_rom.RADDR[n+b:])
wire(1, weigths_rom.RE)
wire(weigths_rom.RDATA, io.WEIGHT)
wire(io.CLK, weigths_rom.RCLK)
for i in range(N):
wire(io.CYCLE, bits([lut_list[i].I0, lut_list[i].I1, lut_list[i].I2, lut_list[i].I3]))
wire(lut_list[i].O, io.IMAGE[i])
# 4-bit pop count
class BitCounter4(Circuit):
name = "BitCounter4"
IO = ['I', In(Bits(4)), 'O', Out(Bits(3))]
@classmethod
def definition(io):
lut_list = []
lut_list.append(SB_LUT4(LUT_INIT=int('0110100110010110', 2)))
lut_list.append(SB_LUT4(LUT_INIT=int('0111111011101000', 2)))
lut_list.append(SB_LUT4(LUT_INIT=int('1000000000000000', 2)))
for i in range(3):
wire(io.I, bits([lut_list[i].I0, lut_list[i].I1, lut_list[i].I2, lut_list[i].I3]))
wire(lut_list[i].O, io.O[i])
# 8-bit pop count
class BitCounter8(Circuit):
name = "BitCounter8"
IO = ['I', In(Bits(8)), 'O', Out(Bits(4))]
@classmethod
def definition(io):
counter_1 = BitCounter4()
counter_2 = BitCounter4()
wire(io.I[:4], counter_1.I)
wire(io.I[4:], counter_2.I)
adders = [mantle.HalfAdder()] + [mantle.FullAdder() for _ in range(2)]
for i in range(3):
wire(counter_1.O[i], adders[i].I0)
wire(counter_2.O[i], adders[i].I1)
if i > 0:
wire(adders[i-1].COUT, adders[i].CIN)
wire(adders[i].O, io.O[i])
wire(adders[-1].COUT, io.O[-1])
# 16-bit pop count
class BitCounter16(Circuit):
name = 'BitCounter16'
IO = ['I', In(Bits(16)), 'O', Out(Bits(5))]
@classmethod
def definition(io):
counter_1 = BitCounter8()
counter_2 = BitCounter8()
wire(io.I[:8], counter_1.I)
wire(io.I[8:], counter_2.I)
adders = [mantle.HalfAdder()] + [mantle.FullAdder() for _ in range(3)]
for i in range(4):
wire(counter_1.O[i], adders[i].I0)
wire(counter_2.O[i], adders[i].I1)
if i > 0:
wire(adders[i-1].COUT, adders[i].CIN)
wire(adders[i].O, io.O[i])
wire(adders[-1].COUT, io.O[-1])
# pop count
def DefineBitCounter(n):
if n <= 4:
return BitCounter4
elif n <= 8:
return BitCounter8
elif n <= 16:
return BitCounter16
else:
return None
# classifier unit: using compare operation to decide the final prediction label of image
class Classifier(Circuit):
name = "Classifier"
IO = ['I', In(Bits(n_bc_adder)), 'IDX', In(Bits(b)), 'CLK', In(Clock), 'O', Out(Bits(b))]
@classmethod
def definition(io):
comparison = mantle.UGT(n_bc_adder)
reg_count = mantle.Register(n_bc_adder, has_ce=True)
reg_idx = mantle.Register(b, has_ce=True)
wire(io.I, comparison.I0)
wire(reg_count.O, comparison.I1)
wire(comparison.O, reg_count.CE)
wire(comparison.O, reg_idx.CE)
wire(io.CLK, reg_count.CLK)
wire(io.CLK, reg_idx.CLK)
wire(io.I, reg_count.I)
wire(io.IDX, reg_idx.I)
wire(reg_idx.O, io.O)
class Pipeline(Circuit):
name = "Pipeline"
IO = ['CLK', In(Clock), 'O', Out(Bits(b)), 'D', Out(Bit)]
@classmethod
def definition(io):
# IF - get cycle_id, label_index_id
controller = Controller()
reg_1_cycle = mantle.Register(n)
reg_1_control = mantle.DFF(init=1)
wire(io.CLK, controller.CLK)
wire(io.CLK, reg_1_cycle.CLK)
wire(io.CLK, reg_1_control.CLK)
reg_1_idx = controller.IDX
wire(controller.CYCLE, reg_1_cycle.I)
wire(1, reg_1_control.I)
# RR - get weight block, image block of N bits
readROM = ReadRom()
wire(reg_1_idx, readROM.IDX)
wire(reg_1_cycle.O, readROM.CYCLE)
reg_2 = mantle.Register(N + b + n)
reg_2_control = mantle.DFF()
reg_2_weight = readROM.WEIGHT
wire(io.CLK, reg_2.CLK)
wire(io.CLK, readROM.CLK)
wire(io.CLK, reg_2_control.CLK)
wire(readROM.IMAGE, reg_2.I[:N])
wire(reg_1_idx, reg_2.I[N:N + b])
wire(reg_1_cycle.O, reg_2.I[N + b:])
wire(reg_1_control.O, reg_2_control.I)
# EX - NXOr for multiplication, pop count and accumulate the result for activation
multiplier = mantle.NXOr(height=2, width=N)
bit_counter = DefineBitCounter(N)()
adder = mantle.Add(n_bc_adder, cin=False, cout=False)
mux_for_adder_0 = mantle.Mux(height=2, width=n_bc_adder)
mux_for_adder_1 = mantle.Mux(height=2, width=n_bc_adder)
reg_3_1 = mantle.Register(n_bc_adder)
reg_3_2 = mantle.Register(b + n)
wire(io.CLK, reg_3_1.CLK)
wire(io.CLK, reg_3_2.CLK)
wire(reg_2_weight, multiplier.I0)
wire(reg_2.O[:N], multiplier.I1)
wire(multiplier.O, bit_counter.I)
wire(bits(0, n_bc_adder), mux_for_adder_0.I0)
wire(bit_counter.O, mux_for_adder_0.I1[:n_bc])
if n_bc_adder > n_bc:
wire(bits(0, n_bc_adder - n_bc), mux_for_adder_0.I1[n_bc:])
# only when data read is ready (i.e. control signal is high), accumulate the pop count result
wire(reg_2_control.O, mux_for_adder_0.S)
wire(reg_3_1.O, mux_for_adder_1.I0)
wire(bits(0, n_bc_adder), mux_for_adder_1.I1)
if n == 4:
comparison_3 = SB_LUT4(LUT_INIT=int('0'*15+'1', 2))
wire(reg_2.O[N+b:], bits([comparison_3.I0, comparison_3.I1, comparison_3.I2, comparison_3.I3]))
else:
comparison_3 = mantle.EQ(n)
wire(reg_2.O[N+b:], comparison_3.I0)
wire(bits(0, n), comparison_3.I1)
wire(comparison_3.O, mux_for_adder_1.S)
wire(mux_for_adder_0.O, adder.I0)
wire(mux_for_adder_1.O, adder.I1)
wire(adder.O, reg_3_1.I)
wire(reg_2.O[N:], reg_3_2.I)
# CF - classify the image
classifier = Classifier()
reg_4 = mantle.Register(n + b)
reg_4_idx = classifier.O
wire(io.CLK, classifier.CLK)
wire(io.CLK, reg_4.CLK)
wire(reg_3_1.O, classifier.I)
wire(reg_3_2.O[:b], classifier.IDX)
wire(reg_3_2.O, reg_4.I)
# WB - wait to show the result until the end
reg_5 = mantle.Register(b, has_ce=True)
comparison_5_1 = mantle.EQ(b)
comparison_5_2 = mantle.EQ(n)
and_gate = mantle.And()
wire(io.CLK, reg_5.CLK)
wire(reg_4_idx, reg_5.I)
wire(reg_4.O[:b], comparison_5_1.I0)
wire(bits(num_classes - 1, b), comparison_5_1.I1)
wire(reg_4.O[b:], comparison_5_2.I0)
wire(bits(num_cycles - 1, n), comparison_5_2.I1)
wire(comparison_5_1.O, and_gate.I0)
wire(comparison_5_2.O, and_gate.I1)
wire(and_gate.O, reg_5.CE)
wire(reg_5.O, io.O)
# latch the light indicating the end
reg_6 = mantle.DFF()
wire(io.CLK, reg_6.CLK)
or_gate = mantle.Or()
wire(and_gate.O, or_gate.I0)
wire(reg_6.O, or_gate.I1)
wire(or_gate.O, reg_6.I)
wire(reg_6.O, io.D)