-
Notifications
You must be signed in to change notification settings - Fork 0
/
deflate.js
2088 lines (1763 loc) · 69 KB
/
deflate.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
Copyright (c) 2013 Gildas Lormeau. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the distribution.
3. The names of the authors may not be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JCRAFT,
INC. OR ANY CONTRIBUTORS TO THIS SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This program is based on JZlib 1.0.2 ymnk, JCraft,Inc.
* JZlib is based on zlib-1.1.3, so all credit should go authors
* Jean-loup Gailly([email protected]) and Mark Adler([email protected])
* and contributors of zlib.
*/
(function(obj) {
// Global
var MAX_BITS = 15;
var D_CODES = 30;
var BL_CODES = 19;
var LENGTH_CODES = 29;
var LITERALS = 256;
var L_CODES = (LITERALS + 1 + LENGTH_CODES);
var HEAP_SIZE = (2 * L_CODES + 1);
var END_BLOCK = 256;
// Bit length codes must not exceed MAX_BL_BITS bits
var MAX_BL_BITS = 7;
// repeat previous bit length 3-6 times (2 bits of repeat count)
var REP_3_6 = 16;
// repeat a zero length 3-10 times (3 bits of repeat count)
var REPZ_3_10 = 17;
// repeat a zero length 11-138 times (7 bits of repeat count)
var REPZ_11_138 = 18;
// The lengths of the bit length codes are sent in order of decreasing
// probability, to avoid transmitting the lengths for unused bit
// length codes.
var Buf_size = 8 * 2;
// JZlib version : "1.0.2"
var Z_DEFAULT_COMPRESSION = -1;
// compression strategy
var Z_FILTERED = 1;
var Z_HUFFMAN_ONLY = 2;
var Z_DEFAULT_STRATEGY = 0;
var Z_NO_FLUSH = 0;
var Z_PARTIAL_FLUSH = 1;
var Z_FULL_FLUSH = 3;
var Z_FINISH = 4;
var Z_OK = 0;
var Z_STREAM_END = 1;
var Z_NEED_DICT = 2;
var Z_STREAM_ERROR = -2;
var Z_DATA_ERROR = -3;
var Z_BUF_ERROR = -5;
// Tree
// see definition of array dist_code below
var _dist_code = [ 0, 1, 2, 3, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 16, 17, 18, 18, 19, 19,
20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
27, 27, 27, 27, 27, 27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 29,
29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29 ];
function Tree() {
var that = this;
// dyn_tree; // the dynamic tree
// max_code; // largest code with non zero frequency
// stat_desc; // the corresponding static tree
// Compute the optimal bit lengths for a tree and update the total bit
// length
// for the current block.
// IN assertion: the fields freq and dad are set, heap[heap_max] and
// above are the tree nodes sorted by increasing frequency.
// OUT assertions: the field len is set to the optimal bit length, the
// array bl_count contains the frequencies for each bit length.
// The length opt_len is updated; static_len is also updated if stree is
// not null.
function gen_bitlen(s) {
var tree = that.dyn_tree;
var stree = that.stat_desc.static_tree;
var extra = that.stat_desc.extra_bits;
var base = that.stat_desc.extra_base;
var max_length = that.stat_desc.max_length;
var h; // heap index
var n, m; // iterate over the tree elements
var bits; // bit length
var xbits; // extra bits
var f; // frequency
var overflow = 0; // number of elements with bit length too large
for (bits = 0; bits <= MAX_BITS; bits++)
s.bl_count[bits] = 0;
// In a first pass, compute the optimal bit lengths (which may
// overflow in the case of the bit length tree).
tree[s.heap[s.heap_max] * 2 + 1] = 0; // root of the heap
for (h = s.heap_max + 1; h < HEAP_SIZE; h++) {
n = s.heap[h];
bits = tree[tree[n * 2 + 1] * 2 + 1] + 1;
if (bits > max_length) {
bits = max_length;
overflow++;
}
tree[n * 2 + 1] = bits;
// We overwrite tree[n*2+1] which is no longer needed
if (n > that.max_code)
continue; // not a leaf node
s.bl_count[bits]++;
xbits = 0;
if (n >= base)
xbits = extra[n - base];
f = tree[n * 2];
s.opt_len += f * (bits + xbits);
if (stree)
s.static_len += f * (stree[n * 2 + 1] + xbits);
}
if (overflow === 0)
return;
// This happens for example on obj2 and pic of the Calgary corpus
// Find the first bit length which could increase:
do {
bits = max_length - 1;
while (s.bl_count[bits] === 0)
bits--;
s.bl_count[bits]--; // move one leaf down the tree
s.bl_count[bits + 1] += 2; // move one overflow item as its brother
s.bl_count[max_length]--;
// The brother of the overflow item also moves one step up,
// but this does not affect bl_count[max_length]
overflow -= 2;
} while (overflow > 0);
for (bits = max_length; bits !== 0; bits--) {
n = s.bl_count[bits];
while (n !== 0) {
m = s.heap[--h];
if (m > that.max_code)
continue;
if (tree[m * 2 + 1] != bits) {
s.opt_len += (bits - tree[m * 2 + 1]) * tree[m * 2];
tree[m * 2 + 1] = bits;
}
n--;
}
}
}
// Reverse the first len bits of a code, using straightforward code (a
// faster
// method would use a table)
// IN assertion: 1 <= len <= 15
function bi_reverse(code, // the value to invert
len // its bit length
) {
var res = 0;
do {
res |= code & 1;
code >>>= 1;
res <<= 1;
} while (--len > 0);
return res >>> 1;
}
// Generate the codes for a given tree and bit counts (which need not be
// optimal).
// IN assertion: the array bl_count contains the bit length statistics for
// the given tree and the field len is set for all tree elements.
// OUT assertion: the field code is set for all tree elements of non
// zero code length.
function gen_codes(tree, // the tree to decorate
max_code, // largest code with non zero frequency
bl_count // number of codes at each bit length
) {
var next_code = []; // next code value for each
// bit length
var code = 0; // running code value
var bits; // bit index
var n; // code index
var len;
// The distribution counts are first used to generate the code values
// without bit reversal.
for (bits = 1; bits <= MAX_BITS; bits++) {
next_code[bits] = code = ((code + bl_count[bits - 1]) << 1);
}
// Check that the bit counts in bl_count are consistent. The last code
// must be all ones.
// Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
// "inconsistent bit counts");
// Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
for (n = 0; n <= max_code; n++) {
len = tree[n * 2 + 1];
if (len === 0)
continue;
// Now reverse the bits
tree[n * 2] = bi_reverse(next_code[len]++, len);
}
}
// Construct one Huffman tree and assigns the code bit strings and lengths.
// Update the total bit length for the current block.
// IN assertion: the field freq is set for all tree elements.
// OUT assertions: the fields len and code are set to the optimal bit length
// and corresponding code. The length opt_len is updated; static_len is
// also updated if stree is not null. The field max_code is set.
that.build_tree = function(s) {
var tree = that.dyn_tree;
var stree = that.stat_desc.static_tree;
var elems = that.stat_desc.elems;
var n, m; // iterate over heap elements
var max_code = -1; // largest code with non zero frequency
var node; // new node being created
// Construct the initial heap, with least frequent element in
// heap[1]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
// heap[0] is not used.
s.heap_len = 0;
s.heap_max = HEAP_SIZE;
for (n = 0; n < elems; n++) {
if (tree[n * 2] !== 0) {
s.heap[++s.heap_len] = max_code = n;
s.depth[n] = 0;
} else {
tree[n * 2 + 1] = 0;
}
}
// The pkzip format requires that at least one distance code exists,
// and that at least one bit should be sent even if there is only one
// possible code. So to avoid special checks later on we force at least
// two codes of non zero frequency.
while (s.heap_len < 2) {
node = s.heap[++s.heap_len] = max_code < 2 ? ++max_code : 0;
tree[node * 2] = 1;
s.depth[node] = 0;
s.opt_len--;
if (stree)
s.static_len -= stree[node * 2 + 1];
// node is 0 or 1 so it does not have extra bits
}
that.max_code = max_code;
// The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
// establish sub-heaps of increasing lengths:
for (n = Math.floor(s.heap_len / 2); n >= 1; n--)
s.pqdownheap(tree, n);
// Construct the Huffman tree by repeatedly combining the least two
// frequent nodes.
node = elems; // next internal node of the tree
do {
// n = node of least frequency
n = s.heap[1];
s.heap[1] = s.heap[s.heap_len--];
s.pqdownheap(tree, 1);
m = s.heap[1]; // m = node of next least frequency
s.heap[--s.heap_max] = n; // keep the nodes sorted by frequency
s.heap[--s.heap_max] = m;
// Create a new node father of n and m
tree[node * 2] = (tree[n * 2] + tree[m * 2]);
s.depth[node] = Math.max(s.depth[n], s.depth[m]) + 1;
tree[n * 2 + 1] = tree[m * 2 + 1] = node;
// and insert the new node in the heap
s.heap[1] = node++;
s.pqdownheap(tree, 1);
} while (s.heap_len >= 2);
s.heap[--s.heap_max] = s.heap[1];
// At this point, the fields freq and dad are set. We can now
// generate the bit lengths.
gen_bitlen(s);
// The field len is now set, we can generate the bit codes
gen_codes(tree, that.max_code, s.bl_count);
};
}
Tree._length_code = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16,
16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 20,
20, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
22, 22, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 28 ];
Tree.base_length = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 0 ];
Tree.base_dist = [ 0, 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384,
24576 ];
// Mapping from a distance to a distance code. dist is the distance - 1 and
// must not have side effects. _dist_code[256] and _dist_code[257] are never
// used.
Tree.d_code = function(dist) {
return ((dist) < 256 ? _dist_code[dist] : _dist_code[256 + ((dist) >>> 7)]);
};
// extra bits for each length code
Tree.extra_lbits = [ 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0 ];
// extra bits for each distance code
Tree.extra_dbits = [ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13 ];
// extra bits for each bit length code
Tree.extra_blbits = [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 7 ];
Tree.bl_order = [ 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 ];
// StaticTree
function StaticTree(static_tree, extra_bits, extra_base, elems, max_length) {
var that = this;
that.static_tree = static_tree;
that.extra_bits = extra_bits;
that.extra_base = extra_base;
that.elems = elems;
that.max_length = max_length;
}
StaticTree.static_ltree = [ 12, 8, 140, 8, 76, 8, 204, 8, 44, 8, 172, 8, 108, 8, 236, 8, 28, 8, 156, 8, 92, 8, 220, 8, 60, 8, 188, 8, 124, 8, 252, 8, 2, 8,
130, 8, 66, 8, 194, 8, 34, 8, 162, 8, 98, 8, 226, 8, 18, 8, 146, 8, 82, 8, 210, 8, 50, 8, 178, 8, 114, 8, 242, 8, 10, 8, 138, 8, 74, 8, 202, 8, 42,
8, 170, 8, 106, 8, 234, 8, 26, 8, 154, 8, 90, 8, 218, 8, 58, 8, 186, 8, 122, 8, 250, 8, 6, 8, 134, 8, 70, 8, 198, 8, 38, 8, 166, 8, 102, 8, 230, 8,
22, 8, 150, 8, 86, 8, 214, 8, 54, 8, 182, 8, 118, 8, 246, 8, 14, 8, 142, 8, 78, 8, 206, 8, 46, 8, 174, 8, 110, 8, 238, 8, 30, 8, 158, 8, 94, 8,
222, 8, 62, 8, 190, 8, 126, 8, 254, 8, 1, 8, 129, 8, 65, 8, 193, 8, 33, 8, 161, 8, 97, 8, 225, 8, 17, 8, 145, 8, 81, 8, 209, 8, 49, 8, 177, 8, 113,
8, 241, 8, 9, 8, 137, 8, 73, 8, 201, 8, 41, 8, 169, 8, 105, 8, 233, 8, 25, 8, 153, 8, 89, 8, 217, 8, 57, 8, 185, 8, 121, 8, 249, 8, 5, 8, 133, 8,
69, 8, 197, 8, 37, 8, 165, 8, 101, 8, 229, 8, 21, 8, 149, 8, 85, 8, 213, 8, 53, 8, 181, 8, 117, 8, 245, 8, 13, 8, 141, 8, 77, 8, 205, 8, 45, 8,
173, 8, 109, 8, 237, 8, 29, 8, 157, 8, 93, 8, 221, 8, 61, 8, 189, 8, 125, 8, 253, 8, 19, 9, 275, 9, 147, 9, 403, 9, 83, 9, 339, 9, 211, 9, 467, 9,
51, 9, 307, 9, 179, 9, 435, 9, 115, 9, 371, 9, 243, 9, 499, 9, 11, 9, 267, 9, 139, 9, 395, 9, 75, 9, 331, 9, 203, 9, 459, 9, 43, 9, 299, 9, 171, 9,
427, 9, 107, 9, 363, 9, 235, 9, 491, 9, 27, 9, 283, 9, 155, 9, 411, 9, 91, 9, 347, 9, 219, 9, 475, 9, 59, 9, 315, 9, 187, 9, 443, 9, 123, 9, 379,
9, 251, 9, 507, 9, 7, 9, 263, 9, 135, 9, 391, 9, 71, 9, 327, 9, 199, 9, 455, 9, 39, 9, 295, 9, 167, 9, 423, 9, 103, 9, 359, 9, 231, 9, 487, 9, 23,
9, 279, 9, 151, 9, 407, 9, 87, 9, 343, 9, 215, 9, 471, 9, 55, 9, 311, 9, 183, 9, 439, 9, 119, 9, 375, 9, 247, 9, 503, 9, 15, 9, 271, 9, 143, 9,
399, 9, 79, 9, 335, 9, 207, 9, 463, 9, 47, 9, 303, 9, 175, 9, 431, 9, 111, 9, 367, 9, 239, 9, 495, 9, 31, 9, 287, 9, 159, 9, 415, 9, 95, 9, 351, 9,
223, 9, 479, 9, 63, 9, 319, 9, 191, 9, 447, 9, 127, 9, 383, 9, 255, 9, 511, 9, 0, 7, 64, 7, 32, 7, 96, 7, 16, 7, 80, 7, 48, 7, 112, 7, 8, 7, 72, 7,
40, 7, 104, 7, 24, 7, 88, 7, 56, 7, 120, 7, 4, 7, 68, 7, 36, 7, 100, 7, 20, 7, 84, 7, 52, 7, 116, 7, 3, 8, 131, 8, 67, 8, 195, 8, 35, 8, 163, 8,
99, 8, 227, 8 ];
StaticTree.static_dtree = [ 0, 5, 16, 5, 8, 5, 24, 5, 4, 5, 20, 5, 12, 5, 28, 5, 2, 5, 18, 5, 10, 5, 26, 5, 6, 5, 22, 5, 14, 5, 30, 5, 1, 5, 17, 5, 9, 5,
25, 5, 5, 5, 21, 5, 13, 5, 29, 5, 3, 5, 19, 5, 11, 5, 27, 5, 7, 5, 23, 5 ];
StaticTree.static_l_desc = new StaticTree(StaticTree.static_ltree, Tree.extra_lbits, LITERALS + 1, L_CODES, MAX_BITS);
StaticTree.static_d_desc = new StaticTree(StaticTree.static_dtree, Tree.extra_dbits, 0, D_CODES, MAX_BITS);
StaticTree.static_bl_desc = new StaticTree(null, Tree.extra_blbits, 0, BL_CODES, MAX_BL_BITS);
// Deflate
var MAX_MEM_LEVEL = 9;
var DEF_MEM_LEVEL = 8;
function Config(good_length, max_lazy, nice_length, max_chain, func) {
var that = this;
that.good_length = good_length;
that.max_lazy = max_lazy;
that.nice_length = nice_length;
that.max_chain = max_chain;
that.func = func;
}
var STORED = 0;
var FAST = 1;
var SLOW = 2;
var config_table = [ new Config(0, 0, 0, 0, STORED), new Config(4, 4, 8, 4, FAST), new Config(4, 5, 16, 8, FAST), new Config(4, 6, 32, 32, FAST),
new Config(4, 4, 16, 16, SLOW), new Config(8, 16, 32, 32, SLOW), new Config(8, 16, 128, 128, SLOW), new Config(8, 32, 128, 256, SLOW),
new Config(32, 128, 258, 1024, SLOW), new Config(32, 258, 258, 4096, SLOW) ];
var z_errmsg = [ "need dictionary", // Z_NEED_DICT
// 2
"stream end", // Z_STREAM_END 1
"", // Z_OK 0
"", // Z_ERRNO (-1)
"stream error", // Z_STREAM_ERROR (-2)
"data error", // Z_DATA_ERROR (-3)
"", // Z_MEM_ERROR (-4)
"buffer error", // Z_BUF_ERROR (-5)
"",// Z_VERSION_ERROR (-6)
"" ];
// block not completed, need more input or more output
var NeedMore = 0;
// block flush performed
var BlockDone = 1;
// finish started, need only more output at next deflate
var FinishStarted = 2;
// finish done, accept no more input or output
var FinishDone = 3;
// preset dictionary flag in zlib header
var PRESET_DICT = 0x20;
var INIT_STATE = 42;
var BUSY_STATE = 113;
var FINISH_STATE = 666;
// The deflate compression method
var Z_DEFLATED = 8;
var STORED_BLOCK = 0;
var STATIC_TREES = 1;
var DYN_TREES = 2;
var MIN_MATCH = 3;
var MAX_MATCH = 258;
var MIN_LOOKAHEAD = (MAX_MATCH + MIN_MATCH + 1);
function smaller(tree, n, m, depth) {
var tn2 = tree[n * 2];
var tm2 = tree[m * 2];
return (tn2 < tm2 || (tn2 == tm2 && depth[n] <= depth[m]));
}
function Deflate() {
var that = this;
var strm; // pointer back to this zlib stream
var status; // as the name implies
// pending_buf; // output still pending
var pending_buf_size; // size of pending_buf
// pending_out; // next pending byte to output to the stream
// pending; // nb of bytes in the pending buffer
var method; // STORED (for zip only) or DEFLATED
var last_flush; // value of flush param for previous deflate call
var w_size; // LZ77 window size (32K by default)
var w_bits; // log2(w_size) (8..16)
var w_mask; // w_size - 1
var window;
// Sliding window. Input bytes are read into the second half of the window,
// and move to the first half later to keep a dictionary of at least wSize
// bytes. With this organization, matches are limited to a distance of
// wSize-MAX_MATCH bytes, but this ensures that IO is always
// performed with a length multiple of the block size. Also, it limits
// the window size to 64K, which is quite useful on MSDOS.
// To do: use the user input buffer as sliding window.
var window_size;
// Actual size of window: 2*wSize, except when the user input buffer
// is directly used as sliding window.
var prev;
// Link to older string with same hash index. To limit the size of this
// array to 64K, this link is maintained only for the last 32K strings.
// An index in this array is thus a window index modulo 32K.
var head; // Heads of the hash chains or NIL.
var ins_h; // hash index of string to be inserted
var hash_size; // number of elements in hash table
var hash_bits; // log2(hash_size)
var hash_mask; // hash_size-1
// Number of bits by which ins_h must be shifted at each input
// step. It must be such that after MIN_MATCH steps, the oldest
// byte no longer takes part in the hash key, that is:
// hash_shift * MIN_MATCH >= hash_bits
var hash_shift;
// Window position at the beginning of the current output block. Gets
// negative when the window is moved backwards.
var block_start;
var match_length; // length of best match
var prev_match; // previous match
var match_available; // set if previous match exists
var strstart; // start of string to insert
var match_start; // start of matching string
var lookahead; // number of valid bytes ahead in window
// Length of the best match at previous step. Matches not greater than this
// are discarded. This is used in the lazy match evaluation.
var prev_length;
// To speed up deflation, hash chains are never searched beyond this
// length. A higher limit improves compression ratio but degrades the speed.
var max_chain_length;
// Attempt to find a better match only when the current match is strictly
// smaller than this value. This mechanism is used only for compression
// levels >= 4.
var max_lazy_match;
// Insert new strings in the hash table only if the match length is not
// greater than this length. This saves time but degrades compression.
// max_insert_length is used only for compression levels <= 3.
var level; // compression level (1..9)
var strategy; // favor or force Huffman coding
// Use a faster search when the previous match is longer than this
var good_match;
// Stop searching when current match exceeds this
var nice_match;
var dyn_ltree; // literal and length tree
var dyn_dtree; // distance tree
var bl_tree; // Huffman tree for bit lengths
var l_desc = new Tree(); // desc for literal tree
var d_desc = new Tree(); // desc for distance tree
var bl_desc = new Tree(); // desc for bit length tree
// that.heap_len; // number of elements in the heap
// that.heap_max; // element of largest frequency
// The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
// The same heap array is used to build all trees.
// Depth of each subtree used as tie breaker for trees of equal frequency
that.depth = [];
var l_buf; // index for literals or lengths */
// Size of match buffer for literals/lengths. There are 4 reasons for
// limiting lit_bufsize to 64K:
// - frequencies can be kept in 16 bit counters
// - if compression is not successful for the first block, all input
// data is still in the window so we can still emit a stored block even
// when input comes from standard input. (This can also be done for
// all blocks if lit_bufsize is not greater than 32K.)
// - if compression is not successful for a file smaller than 64K, we can
// even emit a stored file instead of a stored block (saving 5 bytes).
// This is applicable only for zip (not gzip or zlib).
// - creating new Huffman trees less frequently may not provide fast
// adaptation to changes in the input data statistics. (Take for
// example a binary file with poorly compressible code followed by
// a highly compressible string table.) Smaller buffer sizes give
// fast adaptation but have of course the overhead of transmitting
// trees more frequently.
// - I can't count above 4
var lit_bufsize;
var last_lit; // running index in l_buf
// Buffer for distances. To simplify the code, d_buf and l_buf have
// the same number of elements. To use different lengths, an extra flag
// array would be necessary.
var d_buf; // index of pendig_buf
// that.opt_len; // bit length of current block with optimal trees
// that.static_len; // bit length of current block with static trees
var matches; // number of string matches in current block
var last_eob_len; // bit length of EOB code for last block
// Output buffer. bits are inserted starting at the bottom (least
// significant bits).
var bi_buf;
// Number of valid bits in bi_buf. All bits above the last valid bit
// are always zero.
var bi_valid;
// number of codes at each bit length for an optimal tree
that.bl_count = [];
// heap used to build the Huffman trees
that.heap = [];
dyn_ltree = [];
dyn_dtree = [];
bl_tree = [];
function lm_init() {
var i;
window_size = 2 * w_size;
head[hash_size - 1] = 0;
for (i = 0; i < hash_size - 1; i++) {
head[i] = 0;
}
// Set the default configuration parameters:
max_lazy_match = config_table[level].max_lazy;
good_match = config_table[level].good_length;
nice_match = config_table[level].nice_length;
max_chain_length = config_table[level].max_chain;
strstart = 0;
block_start = 0;
lookahead = 0;
match_length = prev_length = MIN_MATCH - 1;
match_available = 0;
ins_h = 0;
}
function init_block() {
var i;
// Initialize the trees.
for (i = 0; i < L_CODES; i++)
dyn_ltree[i * 2] = 0;
for (i = 0; i < D_CODES; i++)
dyn_dtree[i * 2] = 0;
for (i = 0; i < BL_CODES; i++)
bl_tree[i * 2] = 0;
dyn_ltree[END_BLOCK * 2] = 1;
that.opt_len = that.static_len = 0;
last_lit = matches = 0;
}
// Initialize the tree data structures for a new zlib stream.
function tr_init() {
l_desc.dyn_tree = dyn_ltree;
l_desc.stat_desc = StaticTree.static_l_desc;
d_desc.dyn_tree = dyn_dtree;
d_desc.stat_desc = StaticTree.static_d_desc;
bl_desc.dyn_tree = bl_tree;
bl_desc.stat_desc = StaticTree.static_bl_desc;
bi_buf = 0;
bi_valid = 0;
last_eob_len = 8; // enough lookahead for inflate
// Initialize the first block of the first file:
init_block();
}
// Restore the heap property by moving down the tree starting at node k,
// exchanging a node with the smallest of its two sons if necessary,
// stopping
// when the heap property is re-established (each father smaller than its
// two sons).
that.pqdownheap = function(tree, // the tree to restore
k // node to move down
) {
var heap = that.heap;
var v = heap[k];
var j = k << 1; // left son of k
while (j <= that.heap_len) {
// Set j to the smallest of the two sons:
if (j < that.heap_len && smaller(tree, heap[j + 1], heap[j], that.depth)) {
j++;
}
// Exit if v is smaller than both sons
if (smaller(tree, v, heap[j], that.depth))
break;
// Exchange v with the smallest son
heap[k] = heap[j];
k = j;
// And continue down the tree, setting j to the left son of k
j <<= 1;
}
heap[k] = v;
};
// Scan a literal or distance tree to determine the frequencies of the codes
// in the bit length tree.
function scan_tree(tree,// the tree to be scanned
max_code // and its largest code of non zero frequency
) {
var n; // iterates over all tree elements
var prevlen = -1; // last emitted length
var curlen; // length of current code
var nextlen = tree[0 * 2 + 1]; // length of next code
var count = 0; // repeat count of the current code
var max_count = 7; // max repeat count
var min_count = 4; // min repeat count
if (nextlen === 0) {
max_count = 138;
min_count = 3;
}
tree[(max_code + 1) * 2 + 1] = 0xffff; // guard
for (n = 0; n <= max_code; n++) {
curlen = nextlen;
nextlen = tree[(n + 1) * 2 + 1];
if (++count < max_count && curlen == nextlen) {
continue;
} else if (count < min_count) {
bl_tree[curlen * 2] += count;
} else if (curlen !== 0) {
if (curlen != prevlen)
bl_tree[curlen * 2]++;
bl_tree[REP_3_6 * 2]++;
} else if (count <= 10) {
bl_tree[REPZ_3_10 * 2]++;
} else {
bl_tree[REPZ_11_138 * 2]++;
}
count = 0;
prevlen = curlen;
if (nextlen === 0) {
max_count = 138;
min_count = 3;
} else if (curlen == nextlen) {
max_count = 6;
min_count = 3;
} else {
max_count = 7;
min_count = 4;
}
}
}
// Construct the Huffman tree for the bit lengths and return the index in
// bl_order of the last bit length code to send.
function build_bl_tree() {
var max_blindex; // index of last bit length code of non zero freq
// Determine the bit length frequencies for literal and distance trees
scan_tree(dyn_ltree, l_desc.max_code);
scan_tree(dyn_dtree, d_desc.max_code);
// Build the bit length tree:
bl_desc.build_tree(that);
// opt_len now includes the length of the tree representations, except
// the lengths of the bit lengths codes and the 5+5+4 bits for the
// counts.
// Determine the number of bit length codes to send. The pkzip format
// requires that at least 4 bit length codes be sent. (appnote.txt says
// 3 but the actual value used is 4.)
for (max_blindex = BL_CODES - 1; max_blindex >= 3; max_blindex--) {
if (bl_tree[Tree.bl_order[max_blindex] * 2 + 1] !== 0)
break;
}
// Update opt_len to include the bit length tree and counts
that.opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4;
return max_blindex;
}
// Output a byte on the stream.
// IN assertion: there is enough room in pending_buf.
function put_byte(p) {
that.pending_buf[that.pending++] = p;
}
function put_short(w) {
put_byte(w & 0xff);
put_byte((w >>> 8) & 0xff);
}
function putShortMSB(b) {
put_byte((b >> 8) & 0xff);
put_byte((b & 0xff) & 0xff);
}
function send_bits(value, length) {
var val, len = length;
if (bi_valid > Buf_size - len) {
val = value;
// bi_buf |= (val << bi_valid);
bi_buf |= ((val << bi_valid) & 0xffff);
put_short(bi_buf);
bi_buf = val >>> (Buf_size - bi_valid);
bi_valid += len - Buf_size;
} else {
// bi_buf |= (value) << bi_valid;
bi_buf |= (((value) << bi_valid) & 0xffff);
bi_valid += len;
}
}
function send_code(c, tree) {
var c2 = c * 2;
send_bits(tree[c2] & 0xffff, tree[c2 + 1] & 0xffff);
}
// Send a literal or distance tree in compressed form, using the codes in
// bl_tree.
function send_tree(tree,// the tree to be sent
max_code // and its largest code of non zero frequency
) {
var n; // iterates over all tree elements
var prevlen = -1; // last emitted length
var curlen; // length of current code
var nextlen = tree[0 * 2 + 1]; // length of next code
var count = 0; // repeat count of the current code
var max_count = 7; // max repeat count
var min_count = 4; // min repeat count
if (nextlen === 0) {
max_count = 138;
min_count = 3;
}
for (n = 0; n <= max_code; n++) {
curlen = nextlen;
nextlen = tree[(n + 1) * 2 + 1];
if (++count < max_count && curlen == nextlen) {
continue;
} else if (count < min_count) {
do {
send_code(curlen, bl_tree);
} while (--count !== 0);
} else if (curlen !== 0) {
if (curlen != prevlen) {
send_code(curlen, bl_tree);
count--;
}
send_code(REP_3_6, bl_tree);
send_bits(count - 3, 2);
} else if (count <= 10) {
send_code(REPZ_3_10, bl_tree);
send_bits(count - 3, 3);
} else {
send_code(REPZ_11_138, bl_tree);
send_bits(count - 11, 7);
}
count = 0;
prevlen = curlen;
if (nextlen === 0) {
max_count = 138;
min_count = 3;
} else if (curlen == nextlen) {
max_count = 6;
min_count = 3;
} else {
max_count = 7;
min_count = 4;
}
}
}
// Send the header for a block using dynamic Huffman trees: the counts, the
// lengths of the bit length codes, the literal tree and the distance tree.
// IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
function send_all_trees(lcodes, dcodes, blcodes) {
var rank; // index in bl_order
send_bits(lcodes - 257, 5); // not +255 as stated in appnote.txt
send_bits(dcodes - 1, 5);
send_bits(blcodes - 4, 4); // not -3 as stated in appnote.txt
for (rank = 0; rank < blcodes; rank++) {
send_bits(bl_tree[Tree.bl_order[rank] * 2 + 1], 3);
}
send_tree(dyn_ltree, lcodes - 1); // literal tree
send_tree(dyn_dtree, dcodes - 1); // distance tree
}
// Flush the bit buffer, keeping at most 7 bits in it.
function bi_flush() {
if (bi_valid == 16) {
put_short(bi_buf);
bi_buf = 0;
bi_valid = 0;
} else if (bi_valid >= 8) {
put_byte(bi_buf & 0xff);
bi_buf >>>= 8;
bi_valid -= 8;
}
}
// Send one empty static block to give enough lookahead for inflate.
// This takes 10 bits, of which 7 may remain in the bit buffer.
// The current inflate code requires 9 bits of lookahead. If the
// last two codes for the previous block (real code plus EOB) were coded
// on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
// the last real code. In this case we send two empty static blocks instead
// of one. (There are no problems if the previous block is stored or fixed.)
// To simplify the code, we assume the worst case of last real code encoded
// on one bit only.
function _tr_align() {
send_bits(STATIC_TREES << 1, 3);
send_code(END_BLOCK, StaticTree.static_ltree);
bi_flush();
// Of the 10 bits for the empty block, we have already sent
// (10 - bi_valid) bits. The lookahead for the last real code (before
// the EOB of the previous block) was thus at least one plus the length
// of the EOB plus what we have just sent of the empty static block.
if (1 + last_eob_len + 10 - bi_valid < 9) {
send_bits(STATIC_TREES << 1, 3);
send_code(END_BLOCK, StaticTree.static_ltree);
bi_flush();
}
last_eob_len = 7;
}
// Save the match info and tally the frequency counts. Return true if
// the current block must be flushed.
function _tr_tally(dist, // distance of matched string
lc // match length-MIN_MATCH or unmatched char (if dist==0)
) {
var out_length, in_length, dcode;
that.pending_buf[d_buf + last_lit * 2] = (dist >>> 8) & 0xff;
that.pending_buf[d_buf + last_lit * 2 + 1] = dist & 0xff;
that.pending_buf[l_buf + last_lit] = lc & 0xff;
last_lit++;
if (dist === 0) {
// lc is the unmatched char
dyn_ltree[lc * 2]++;
} else {
matches++;
// Here, lc is the match length - MIN_MATCH
dist--; // dist = match distance - 1
dyn_ltree[(Tree._length_code[lc] + LITERALS + 1) * 2]++;
dyn_dtree[Tree.d_code(dist) * 2]++;
}
if ((last_lit & 0x1fff) === 0 && level > 2) {
// Compute an upper bound for the compressed length
out_length = last_lit * 8;
in_length = strstart - block_start;
for (dcode = 0; dcode < D_CODES; dcode++) {
out_length += dyn_dtree[dcode * 2] * (5 + Tree.extra_dbits[dcode]);
}
out_length >>>= 3;
if ((matches < Math.floor(last_lit / 2)) && out_length < Math.floor(in_length / 2))
return true;
}
return (last_lit == lit_bufsize - 1);
// We avoid equality with lit_bufsize because of wraparound at 64K
// on 16 bit machines and because stored blocks are restricted to
// 64K-1 bytes.
}
// Send the block data compressed using the given Huffman trees
function compress_block(ltree, dtree) {
var dist; // distance of matched string
var lc; // match length or unmatched char (if dist === 0)
var lx = 0; // running index in l_buf
var code; // the code to send
var extra; // number of extra bits to send
if (last_lit !== 0) {
do {
dist = ((that.pending_buf[d_buf + lx * 2] << 8) & 0xff00) | (that.pending_buf[d_buf + lx * 2 + 1] & 0xff);
lc = (that.pending_buf[l_buf + lx]) & 0xff;
lx++;
if (dist === 0) {
send_code(lc, ltree); // send a literal byte
} else {
// Here, lc is the match length - MIN_MATCH