forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 3
/
linear.py
220 lines (186 loc) · 7.91 KB
/
linear.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional
import numpy as np
import tensorrt as trt
from .._common import default_net, default_trtnet
from .._utils import str_dtype_to_trt
from ..functional import (Tensor, _add_plugin_info, _create_tensor, allgather,
allreduce, cast, matmul)
from ..module import Module
from ..parameter import Parameter
from ..plugin import TRT_LLM_PLUGIN_NAMESPACE
from .lora import Lora, LoraRuntimeParams
def _gemm_plugin(input: Tensor,
mat2: Tensor,
transa: bool = False,
transb: bool = False,
use_fp8: bool = False,
strict_dtype: Optional[str] = None) -> Tensor:
plg_creator = trt.get_plugin_registry().get_plugin_creator(
'Gemm', '1', TRT_LLM_PLUGIN_NAMESPACE)
assert plg_creator is not None
transa = 1 if transa else 0
transa = trt.PluginField("transa", np.array(transa, dtype=np.int32),
trt.PluginFieldType.INT32)
transb = 1 if transb else 0
transb = trt.PluginField("transb", np.array(transb, dtype=np.int32),
trt.PluginFieldType.INT32)
use_fp8 = 1 if use_fp8 else 0
use_fp8 = trt.PluginField("use_fp8", np.array(use_fp8, dtype=np.int32),
trt.PluginFieldType.INT32)
if strict_dtype is not None:
p_dtype = strict_dtype
else:
p_dtype = str_dtype_to_trt(default_net().plugin_config.gemm_plugin)
pf_type = trt.PluginField("type_id", np.array([int(p_dtype)], np.int32),
trt.PluginFieldType.INT32)
pfc = trt.PluginFieldCollection([transa, transb, pf_type, use_fp8])
gemm_plug = plg_creator.create_plugin("gemm", pfc)
plug_inputs = [input.trt_tensor, mat2.trt_tensor]
layer = default_trtnet().add_plugin_v2(plug_inputs, gemm_plug)
_add_plugin_info(layer, plg_creator, "gemm", pfc)
return _create_tensor(layer.get_output(0), layer)
class Linear(Module):
def __init__(self,
in_features,
out_features,
bias=True,
dtype=None,
use_fp8=False,
tp_group=None,
tp_size=1,
gather_output=True,
share_weight=None,
strict_dtype=False,
max_lora_rank=None):
super().__init__()
self.in_features = in_features
self.out_features = out_features // tp_size
self.dtype = dtype
self.use_fp8 = use_fp8
if not share_weight:
self.weight = Parameter(shape=(self.out_features, self.in_features),
dtype=('fp8' if use_fp8 else dtype))
else:
self.weight = share_weight
self.tp_size = tp_size
self.tp_group = tp_group
self.gather_output = gather_output
self.strict_dtype = self.dtype if strict_dtype else None
if bias:
self.bias = Parameter(shape=(self.out_features, ), dtype=dtype)
else:
self.register_parameter('bias', None)
if max_lora_rank is None:
max_lora_rank = min(self.in_features, self.out_features)
self.lora = Lora(
in_hidden_size=self.in_features,
out_hidden_sizes=[self.out_features],
max_low_rank=max_lora_rank,
)
def multiply_gather(self,
x,
weight,
gemm_plugin,
lora_runtime_params: LoraRuntimeParams = None):
hidden_state = x
if gemm_plugin:
x = _gemm_plugin(x,
weight,
transb=True,
use_fp8=self.use_fp8,
strict_dtype=self.strict_dtype)
else:
x = matmul(x, weight, transb=True)
if default_net(
).plugin_config.lora_plugin and lora_runtime_params is not None:
x = x + self.lora(hidden_state,
lora_runtime_params=lora_runtime_params)
if self.bias is not None:
bias = cast(self.bias.value, x.dtype)
x = x + bias
if self.gather_output and self.tp_size > 1 and self.tp_group is not None:
# [dim0, local_dim] -> [dim0 * tp_size, local_dim] --> [dim0, local_dim * tp_size]
x = allgather(x, self.tp_group, gather_dim=-1)
return x
def forward(self, x, lora_runtime_params: LoraRuntimeParams = None):
return self.multiply_gather(x,
self.weight.value,
default_net().plugin_config.gemm_plugin,
lora_runtime_params=lora_runtime_params)
ColumnLinear = Linear
class RowLinear(Module):
def __init__(self,
in_features,
out_features,
bias=True,
dtype=None,
use_fp8=False,
tp_group=None,
tp_size=1,
strict_dtype: bool = False,
max_lora_rank=None):
super().__init__()
self.in_features = in_features // tp_size
self.out_features = out_features
self.dtype = dtype
self.use_fp8 = use_fp8
self.weight = Parameter(shape=(self.out_features, self.in_features),
dtype=('fp8' if use_fp8 else dtype))
if bias:
self.bias = Parameter(shape=(self.out_features, ), dtype=dtype)
else:
self.register_parameter('bias', None)
self.tp_group = tp_group
self.tp_size = tp_size
if max_lora_rank is None:
max_lora_rank = min(self.in_features, self.out_features)
self.lora = Lora(
in_hidden_size=self.in_features,
out_hidden_sizes=[self.out_features],
max_low_rank=max_lora_rank,
)
self.strict_dtype = self.dtype if strict_dtype else None
def multiply_reduce(self,
x,
weight,
gemm_plugin,
use_fp8=False,
lora_runtime_params: LoraRuntimeParams = None):
hidden_state = x
if gemm_plugin:
x = _gemm_plugin(x,
weight,
transb=True,
use_fp8=self.use_fp8,
strict_dtype=self.strict_dtype)
else:
x = matmul(x, weight, transb=True)
if default_net(
).plugin_config.lora_plugin and lora_runtime_params is not None:
x = x + self.lora(hidden_state,
lora_runtime_params=lora_runtime_params)
if self.tp_size > 1 and self.tp_group is not None:
x = allreduce(x, self.tp_group)
if self.bias is not None:
bias = cast(self.bias.value, x.dtype)
x = x + bias
return x
def forward(self, x, lora_runtime_params: LoraRuntimeParams = None):
return self.multiply_reduce(x,
self.weight.value,
default_net().plugin_config.gemm_plugin,
lora_runtime_params=lora_runtime_params)