-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgaugetheory.tex
82 lines (75 loc) · 3.49 KB
/
gaugetheory.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
\documentclass[CheatSheet]{subfiles}
\begin{document}
\summarystyle
\section{Gauge theory}
\paragraph{SU(N)}Fundamental rep.~$\symbf N\sim (\tau^{a})_{ij}$ (Hermitian), $\overline{\symbf N}\sim(-\tau^{a*})_{ij}$, and adjoint rep.~$\text{\textbf{adj.}}\sim (f^a)^{bc}$.\footnote{Upper and lower gauge indices are equivalent, while Lorentz indices and Weyl-spinor indices are different for super- and subscripts because they are raised/lowered by, e.g., metric tensors.}
\begin{align*}
&\Tr(\tau_a\tau_b)=\frac12\delta_{ab},\qquad
[\tau_a,\tau_b]=\ii f_{abc}\tau_c,&
&[\tau_a,[\tau_b,\tau_c]] = [[\tau_a,\tau_b],\tau_c] + [\tau_b,[\tau_a,\tau_c]],\\
&f^{abc}=-2\ii\Tr([\tau^a,\tau^b]\tau^c): \text{real, anti-symmetric},&
&f^{ade}f^{bcd} + f^{bde}f^{cad} + f^{cde}f^{abd} = 0.
\end{align*}
\begin{align}
\symbf{N}_i
&\mapsto [\exp(\ii g\theta^a \tau^a)]_{ij}\symbf{N}_j
\simeq \symbf{N}_i + \ii g\theta^a \tau^a_{ij}\symbf{N}_j\\\notag
\overline{\symbf{N}}_i
&\mapsto
\overline{\symbf{N}}_j [\exp(-\ii g\theta^a \tau^a)]_{ji}
= [\exp(-\ii g\theta^a \tau^{a*})]_{ij} \overline{\symbf{N}}_j \qquad\text{(i.e., $\overline{\symbf{N}}_i=\symbf N_i^*$)}\\
&\simeq\overline{\symbf{N}}_j -\ii g\theta^a \overline{\symbf{N}}_j\tau^a_{ji}
\simeq \overline{\symbf{N}}_j -\ii g\theta^a \tau^{a*}_{ij} \overline{\symbf{N}}_j\end{align}
\paragraph{SU(2)} Fundamental representation $\TWO\sim T^a \equiv \sigma^a/2$ and adjoint representation $\THREE\sim \nep^{abc}$.
\begin{equation*}
\Tr(T_aT_b)=\frac12\delta_{ab},\qquad
[T_a,T_b]=\ii \nep_{abc}T_c,\qquad
\overline\TWO = \TWO^* = \nep\TWO\quad (\because T^*=\nep T \nep=-\nep T\nep^{-1}),
\end{equation*}
where the last identity comes as follows:
\begin{equation}
\nep_{ij} \TWO_j
\mapsto
\nep_{ij}\left(
[\exp(\ii g\theta^a T^a)]_{jk}\TWO_k
\right)
= [\nep\exp(\ii g\theta^a T^a)\nep^{-1}]_{ij}\nep\TWO_j
= [\exp(-\ii g\theta^a T^{a*})]_{ij}(\nep_{jk}\TWO_k).
\end{equation}
\paragraph{SU(3)} Fundamental rep.~$\THREE\sim\tau^a\equiv \lambda^a/2$, $\overline\THREE\sim(-\tau^{a*})$, and adjoint rep.~$\symbf8\sim (f^a)^{bc}$.
\begin{align}\notag
\THREE:~\phi_a&
\to [\exp(\ii g \theta^\alpha \tau^\alpha)]_{ab}\phi_b,
&
\THREEbar:~\phi_a&
\to[\exp(-\ii g \theta^\alpha \tau^{\alpha*})]_{ab}\phi_b,
\\
\phi_a^*&
\to[\exp(-\ii g \theta^\alpha \tau^{\alpha*})]_{ab}\phi_b^*,
&
\phi_a^*&
\to[\exp(\ii g \theta^\alpha \tau^{\alpha})]_{ab}\phi_b^*.
\end{align}
\clearpage
\detailstyle
\subsection{Gell-Mann matrices}
Gell-Mann matrices and a Mathematica code to generate them are:
\begin{align}
\lambda_{1\text{--}8} &=
\left(\begin{smallmatrix} 0&1&0 \\ 1&0&0 \\ 0&0&0 \end{smallmatrix}\right),
\left(\begin{smallmatrix} 0&-\ii&0 \\ \ii&0&0 \\ 0&0&0 \end{smallmatrix}\right),
\left(\begin{smallmatrix} 1&0&0 \\ 0&-1&0 \\ 0&0&0 \end{smallmatrix}\right),
\left(\begin{smallmatrix} 0&0&1 \\ 0&0&0 \\ 1&0&0 \end{smallmatrix}\right),
\left(\begin{smallmatrix} 0&0&-\ii \\ 0&0&0 \\ \ii&0&0 \end{smallmatrix}\right),
\left(\begin{smallmatrix} 0&0&0 \\ 0&0&1 \\ 0&1&0 \end{smallmatrix}\right),
\left(\begin{smallmatrix} 0&0&0 \\ 0&0&-\ii \\ 0&\ii&0 \end{smallmatrix}\right),
\tfrac1{\sqrt3}\left(\begin{smallmatrix} 1&0&0 \\ 0&1&0 \\ 0&0&-2 \end{smallmatrix}\right).
\end{align}
\begin{minted}{wolfram}
GellMann[0] := DiagonalMatrix[{1,1,1}]/Sqrt[3/2]
GellMann[8] := DiagonalMatrix[{1,1,-2}]/Sqrt[3]
GellMann[a:1|2|3|4|5|6|7] := Module[
{p=Switch[a,1|2|3,{1,2,0},4|5,{1,0,2},6|7,{0,1,2}]},
Table[If[i*j==0, 0, PauliMatrix[{1,2,3,1,2,1,2}[[a]]][[i,j]]], {i,p}, {j,p}]]
\end{minted}
\end{document}