-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathStandardModel_old.tex
736 lines (706 loc) · 26.7 KB
/
StandardModel_old.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
%#!platexmake CheatSheet
%%% Time-Stamp: <2016-01-26 15:28:38 misho>
%%% 一部で日本語が使用されています。
\section{Standard Model}
Any representations assumed to be {\it normalized Hermitian}. Note that the $\gSU(2)$ $\vc{2}$ representation is
\begin{equation}
T^a=\frac12\sigma^a;\qquad \left[T^a,T^b\right]=\ii \epsilon^{abc}T^c;\qquad T^\pm := T^1\pm\ii T^2.
\end{equation}
We use the following abridged notations:
\begin{align}
(\partial A)_{\mu\nu}&:=\partial_\mu A_\nu-\partial_\nu A_\mu,&
F_{\mu\nu}^a &:= \Pm A^a_\nu- \Pn A^a_\mu + gf^{abc}A^b_\mu A^c_\nu.
\end{align}
\subsection{Symmetries and Fields}
\begin{center}
\begin{tabular}[b]{@{\Vrule\ }c@{\ }l|c|c|c@{\ \Vrule}}\Hrule
& & $\gSU(3)\s{strong}$ & $\gSU(2)\s{weak} $ & $\gU(1)_Y$ \\\Hrule
&\multicolumn{4}{l@{\Vrule}}{{\bf Matter Fields} (Fermionic / Lorentz Spinor)}\\\hline
$\PL Q_i$ &: Left-handed quarks & $\vc 3$ & $\vc 2$ & $1/6$\\\hline
$\PL U_i$ &: Right-handed up-type quarks & $\vc 3$ & $\vc 1$ & $2/3$\\\hline
$\PR D_i$ &: Right-handed down-type quarks & $\vc 3$ & $\vc 1$ & $-1/3$\\\hline
$\PR L_i$ &: Left-handed leptons & $\vc 1$ & $\vc 2$ & $-1/2$\\\hline
$\PR E_i$ &: Right-handed leptons & $\vc 1$ & $\vc 1$ & $-1$\\\Hrule
&\multicolumn{4}{l@{\Vrule}}{{\bf Higgs Field} (Bosonic / Lorentz Scalar)}\\\hline
$H$ &: Higgs & $\vc 1$ & $\vc 2$ & $1/2$\\\Hrule
&\multicolumn{4}{l@{\Vrule}}{{\bf Gauge Fields} (Bosonic / Lorentz Vector)}\\\hline
$G$ &: Gluons & $\vc 8$ & $\vc 1$ & $0$\\\hline
$W$ &: Weak bosons & $\vc 1$ & $\vc 3$ & $0$\\\hline
$B$ &: B boson & $\vc 1$ & $\vc 1$ & $0$\\\Hrule
\end{tabular}
\end{center}
\paragraph{Full Lagrangian}
$ \Lag = \Lag\s{gauge}
+ \Lag\s{Higgs}
+ \Lag\s{matter}
+ \Lag\s{湯川}$
\begin{align}
\text{where\quad}
%%% Gauge Boson Kinetic
\Lag\s{gauge} =&\
-\frac14B^{\mu\nu}B_{\mu\nu}
-\frac14W^{a\mu\nu}W^a_{\mu\nu}
-\frac14G^{a\mu\nu}G^a_{\mu\nu}\\
%%% Higgs
\Lag\s{Higgs} =&\
\left|\left(\partial_\mu-\ii g_2W_\mu-\frac12\ii g_1B_\mu\right)H\right|^2
- V(H),\\
%%% MATTERS
\begin{split}\label{eq:SMLagMatter}
\Lag\s{matter} =&\
% Left Quark
\overline Q_i\ii\gamma^\mu\left(\partial_\mu-\ii g_3G_\mu-\ii
g_2W_\mu-\frac16\ii g_1B_\mu\right)\PL Q_i\\
& % Up Quark
+ \overline U_i\ii\gamma^\mu\left(\partial_\mu-\ii g_3G_\mu-\frac23\ii g_1B_\mu\right)\PR U_i\\
& % Down Quark
+ \overline D_i\ii\gamma^\mu\left(\partial_\mu-\ii g_3G_\mu+\frac13\ii g_1B_\mu\right)\PR D_i\\
& % Left Lepton
+ \overline L_i\ii\gamma^\mu\left(\partial_\mu-\ii g_2W_\mu+\frac12\ii g_1B_\mu\right)\PL L_i\\
& % Right Electron
+ \overline E_i\ii\gamma^\mu\left(\partial_\mu+\ii g_1B_\mu\right)\PR E_i,
\end{split}\\
%%% YUKAWA
\Lag\s{湯川} =&\
\overline U_i(y_u)_{ij}H\PL Q_j - \overline D_i (y_d)_{ij}H^\dagger\PL Q_j - \overline E_i(y_e)_{ij}H^\dagger\PL
L_j + \Hc
\end{align}
We have no freedom to add other terms into this Lagrangian of the gauge theory. See Appendix~\ref{sec:no-other-term}.
\paragraph{Gauge Kinetic Terms}
the gauge kinetic terms can be expanded as
\begin{align}
\Lag\s{gauge}
=& -\frac14(\partial B)(\partial B)\notag\\
\label{eq:SMGaugeKineticBWG}
& -\frac14(\partial W^a)(\partial W^a)
-g_2\epsilon^{abc}(\partial_\mu W_\nu^a)W^{\mu b}W^{\nu c}
-\frac{{g_2}^2}4
\left(\epsilon^{eab}W_\mu^aW_\nu^b\right)\left(\epsilon^{ecd}W^{c\mu}W^{d\nu}\right)\\
&-\frac14(\partial G^a)(\partial G^a)
-g_3f^{abc}(\partial_\mu G_\nu^a)G^{\mu b}G^{\nu c}
-\frac{{g_3}^2}4
\left(f^{eab}G_\mu^aG_\nu^b\right)\left(f^{ecd}G^{c\mu}G^{d\nu}\right).\notag
\end{align}
\subsection{Higgs Mechanism}
\paragraph{Higgs Potential}
\label{sec:higgs-mechanism}
The (renormalizable) Higgs potential must be
\begin{equation}
V(H) = -\mu^2(H^\dagger H) + \lambda\left(H^\dagger H\right)^2.
\end{equation}
for the $\gSU(2)$, and $\lambda>0$ in order not to run away the VEVs, while $\mu^2$ is positive for the EWSB.
To discuss this clearly, let us {\em redefine} the Higgs field {\em by gauge-fixing} as
\begin{equation}
H = \frac1{\sqrt2}\pmat{\phi_1+\ii\phi_2\\v+(h+\ii\phi_3)}, \where v=\sqrt{\frac{\mu^2}{\lambda}}.
\end{equation}
Here $h$ is the ``Higgs boson,'' and $\phi_i$ are 南部--Goldstone bosons.
The Higgs potential becomes
\begin{equation}
V(h) = \frac{\mu^2}{4v^2}h^4 + \frac{\mu^2}v h^3 + \mu^2h^2,
\end{equation}
and now we know the Higgs boson has acquired mass $m_h=\sqrt2 \mu$. Also
\begin{align}
\Lag\stx{Higgs}&=
\left|\left(\partial_\mu-\ii g_2W_\mu-\frac12\ii g_1B_\mu\right)H\right|^2\\
&= \frac12(\partial_\mu h)^2+\frac{(v+h)^2}8\Bigl[{g_2}^2{W_1}^2+{g_2}^2{W_2}^2+(g_1B-g_2W_3)^2\Bigr].
\end{align}
Redefining the gauge fields (with concerning the norms) as
\begin{align}
W^\pm_\mu&:=\frac1{\sqrt2}(W^1_\mu\mp\ii W^2_\mu),&
\pmat{Z_\mu \\ A_\mu}
&:= \pmat{%
\cos\theta\s w & -\sin\theta\s w\\
\sin\theta\s w & \cos\theta\s w
}
\pmat{W^3_\mu \\ B_\mu},
\end{align}
where
\begin{align}
&\tan\theta\s w := \frac{g_1}{g_2},\qquad
e := -\frac{g_1g_2}{\sqrt{{g_1}^2+{g_2}^2}};\qquad
g_Z := \sqrt{{g_1}^2+{g_2}^2};\\
&g_1=\frac{|e|}{\cos\theta\s w}=g_Z\sin\theta\s w,\qquad
g_2=\frac{|e|}{\sin\theta\s w}=g_Z\cos\theta\s w.
\end{align}
We obtain the following terms in $\Lag\s{Higgs}$:
\begin{equation}
\Lag\s{Higgs}
\supset \frac12(\partial_\mu h)^2+\frac{(v+h)^2}4\Bigl[{g_2}^2{W^+}^\mu W^-_\mu + \frac{{g_Z}^2}{2}Z^\mu Z_\mu\Bigr].
\end{equation}
Here we have omitted the 南部--Goldstone bosons.
\begin{rightnote}
Here we present another form:
\begin{eqnarray}
g_1B_\mu
&=& |e| A_\mu-\tan\theta\s w Z_\mu,\\
g_2W_\mu
&=& \frac{g_2}{\sqrt2}\left(W^+_\mu T^+ + W^-_\mu T^-\right)
+\left(\frac{|e|}{\tan\theta\s w}Z_\mu+|e|A_\mu\right)T^3,
\end{eqnarray}
\begin{equation}
Z^0_\mu:=\frac1{\sqrt{{g_1}^2+{g_2}^2}}(g_2 W^3_\mu-g_1B_\mu),\quad
A_\mu:=\frac1{\sqrt{{g_1}^2+{g_2}^2}}(g_1 W^3_\mu+g_2B_\mu)
\end{equation}\vspace{-2em}
\end{rightnote}
You can see the gauge bosons have acquired the masses
\begin{equation}
m_A = 0, \quad m_W :=\frac{g_2}2v,\quad m_Z :=\frac{g_Z}2v.
\end{equation}
\paragraph{Gauge Term}
The $\gSU(2)$ gauge term is converted into
\begin{align*}
W^{a\mu\nu}W^a_{\mu\nu}
&= (\partial W^3)(\partial W^3) + 2(\partial W^+)(\partial W^-)
\\&\quad
- 4\ii g\left[
(\partial W^3)^{\mu\nu}W^+_\mu W^-_\nu
+ (\partial W^+)^{\mu\nu}W^-_\mu W^3_\nu
+ (\partial W^-)^{\mu\nu}W^3_\mu W^+_\nu
\right]
\\&\quad
-2g^2(\Hmn\Hrs-\Hmr\Hns)
\left(
W^+_\mu W^+_\nu W^-_\rho W^-_\sigma - 2 W^3_\mu W^3_\nu W^+_\rho W^-_\sigma
\right),
\end{align*}
and therefore the final expression is
\begin{equation}
\label{eq:SMGaugeKineticGZG}
\begin{split}
\Lag\s{gauge}&:=
-\frac14\left[
G^{a\mu\nu}G^a_{\mu\nu} + (\partial Z)^{\mu\nu}(\partial Z)_{\mu\nu}+(\partial A)^{\mu\nu}(\partial A)_{\mu\nu}+2(\partial W^+)^{\mu\nu}(\partial W^-)_{\mu\nu}
\right]\\&\quad
+\frac{\ii |e|}{\tan\theta\s w}\Bigl[
(\partial W^+)^{\mu\nu}W^-_\mu Z_\nu + (\partial W^-)^{\mu\nu}Z_\mu W^+_\nu + (\partial Z)^{\mu\nu}W^+_\mu W^-_\nu
\Bigr]\\&\quad
+ \ii |e|\Bigl[
(\partial W^+)^{\mu\nu}W^-_\mu A_\nu + (\partial W^-)^{\mu\nu}A_\mu W^+_\nu + (\partial A)^{\mu\nu}W^+_\mu W^-_\nu
\Bigr]\\&\quad
+(\Hmn\Hrs-\Hmr\Hns)\left[
\frac{|e|^2}{2\sin^2\theta\s w}W^+_\mu W^+_\nu W^-_\rho W^-_\sigma
+\frac{|e|^2}{\tan^2\theta\s w}W^+_\mu Z_\nu W^-_\rho Z_\sigma
\right.\\&\left.\qquad\qquad\qquad
+\frac{|e|^2}{\tan\theta\s w}\left(W^+_\mu Z_\nu W^-_\rho A_\sigma + W^+_\mu A_\nu W^-_\rho Z_\sigma\right)
+|e|^2W^+_\mu A_\nu W^-_\rho A_\sigma\right].
\end{split}
\end{equation}
\paragraph{湯川 Term}
\begin{equation}\begin{split}
\Lag\s{湯川}=
&\overline U y_uH\PL Q - \overline D y_dH^\dagger\PL Q - \overline E y_eH^\dagger\PL L
+ \Hc\\
=
& \overline U y_u\epsilon^{\alpha\beta}H^{\alpha}\PL Q^{\beta}
-\overline D y_d{H^\dagger}^{\alpha}\PL Q^\alpha
-\overline E y_e{H^\dagger}^{\alpha}\PL L^\alpha + \Hc\\
=
&-\frac{v+h}{\sqrt2}\left(
\overline U y_u\PL Q^1
+ \overline D y_d\PL Q^2
+ \overline E y_e\PL L^2
\right) + \Hc
\end{split}\end{equation}
\subsection{Full Lagrangian After Higgs Mechanism}
Now we have the following Lagrangian (with omitting $\PL$ etc.):
\begin{equation}\begin{split}
\Lag =
& \Lag\s{gauge}
{\ +\ }{m_W}^2W^+W^-
{\ +\ }\frac{{m_Z}^2}2Z^2\\
%Higgs
\NOTE{Higgs}&
{\ +\ }\frac12(\partial_\mu h)^2
{\ -}\frac12{m_h}^2h^2
{-}\sqrt{\frac\lambda2}m_h h^3
{-}\frac14\lambda h^4
\\&
{\ +\ }\frac{v{g_2}^2}{4}W^+W^-h
{\ +\ }\frac{v({g_1}^2+{g_2}^2)}{8}Z^2h\\&
{\ +\ }\frac{{g_2}^2}{4}W^+W^-h^2
{\ +\ }\frac{{g_1}^2+{g_2}^2}{8}Z^2h^2\\
&
{\ -\ }\left(\frac{1}{\sqrt2}h\bar U y_u Q^1
{\ +\ }\frac{1}{\sqrt2}h\bar D y_d Q^2
{\ +\ }\frac{1}{\sqrt2}h\bar E y_e L^2 \ +\ \Hc\right)\\
%SU(3) Interactions
\NOTE{$\gSU(3)$}&
{\ +\ }\bar Q\left(\ii\slashed\partial+g_3\slashed G\right) Q
{\ +\ }\bar U\left(\ii\slashed\partial+g_3\slashed G\right) U
{\ +\ }\bar D\left(\ii\slashed\partial+g_3\slashed G\right) D
{\ +\ }\bar L\left(\ii\slashed\partial\right) L
{\ +\ }\bar E\left(\ii\slashed\partial\right) E\\
\NOTE{$W$}&
{\ +\ }\bar Q\frac{g_2}{\sqrt2}\left(\slashed W^+ T^+ + \slashed W^- T^-\right)Q
{\ +\ }\bar L\frac{g_2}{\sqrt2}\left(\slashed W^+ T^+ + \slashed W^- T^-\right)L\\
\NOTE{$A$\&$Z^0$}&
{\ +\ }\bar Q\left[
\left(T^3+\frac16\right)|e|\slashed A
+\left(\frac{|e|c}{s}T^3-\frac{|e|s}{6c}\right)\slashed Z^0
\right] Q\\
&{\ +\ }\bar U\left(\frac23 |e|\slashed A-\frac{2|e|s}{3c}\slashed Z\right) U\\
&{\ +\ }\bar D\left(-\frac13 |e|\slashed A+\frac{|e|s}{3c}\slashed Z\right) D\\
&{\ +\ }\bar L\left[
\left(T^3-\frac12\right)|e|\slashed A
+\left(\frac{|e|c}{s}T^3+\frac{|e|s}{2c}\right)\slashed Z^0
\right] L\\
&
{\ +\ }\bar E\left(-|e|\slashed A+\frac{|e|s}{c}\slashed Z\right) E\\
\NOTE{湯川項}& % Yukawa
{\ -\ }\left(\frac{1}{\sqrt2}v\bar U y_u Q^1
{\ +\ }\frac{1}{\sqrt2}v\bar D y_d Q^2
{\ +\ }\frac{1}{\sqrt2}v\bar E y_e L^2\ +\ \Hc\right)
\end{split}\end{equation}
\subsection{Mass Eigenstates}
Here we will obtain the mass eigenstates of the fermions, by diagonalizing the 湯川 matrices.
We use the singular value decomposition method to mass matrices $Y_\bullet:=vy_\bullet/\sqrt2$.
Generally, any matrices can be transformed with two unitary matrices $\Psi$ and $\Phi$ as
\begin{equation}
Y=\Phi^\dagger\pmat{m_1&0&0\\0&m_2&0\\0&0&m_3}\Psi =:\Phi^\dagger M\Psi\qquad(m_i\ge0).
\end{equation}
Using this $\Psi$ and $\Phi$, we can rotate the basis as
\begin{align}
&Q^1\mapsto \Psi_u^\dagger Q^1,\quad
Q^2\mapsto \Psi_d^\dagger Q^2,\quad
L\mapsto \Psi_e^\dagger L,\quad
&U\mapsto \Phi_u^\dagger U,\quad
D\mapsto \Phi_d^\dagger D,\quad
E\mapsto \Phi_e^\dagger E,\label{eq:gaugeeig_to_masseig}
\end{align}
and now we have the 湯川 terms in mass eigenstates as
\begin{equation}
\Lag\s{湯川}
= -\left(1+\frac{1}{v}h\right)\left[
{(m_u)_i} \overline U_i \PL Q_i^1
+ {(m_d)_i} \overline D_i \PL Q_i^2
+ {(m_e)_i} \overline E_i \PL L_i^2 + \Hc\right].
\end{equation}
In the transformation from the gauge eigenstates to the mass eigenstates, almost all the terms in the Lagrangian are not modified.
However, only the terms of quark--quark--$W$ interactions do change drastically, as
\begin{align}
\Lag
&\supset
\overline Q\ii\gamma^\mu\left(-\ii g_2W_\mu-\frac16\ii g_1B_\mu\right)\PL Q\\
&=\overline Q\frac{g_2}{\sqrt2}\left(\slashed W^+ T^+ + \slashed W^- T^-\right)\PL Q
\quad+\quad(\text{interaction terms with $Z$ and $A$})\\
&\mapsto%
\frac{g_2}{\sqrt2}
\pmat{\overline Q^1\Psi_u&\overline Q^2\Psi_d}
\pmat{0&\slashed W^+\\\slashed W^-&0}\PL\pmat{\Psi_u^\dagger Q^1\\\Psi_d^\dagger Q^2} + (\quad{\cdots}\quad)\\
&=\frac{g_2}{\sqrt2}\left[\overline Q^2\slashed W^-X \PL Q^1+ \overline Q^1\slashed W^+X^\dagger\PL Q^2\right]+(\quad{\cdots}\quad),
\end{align}
where $X:=\Psi_d\Psi_u^\dagger$ is a matrix, so-called the Cabbibo--小林--益川~(CKM) matrix, which is {\em not} diagonal, and {\em not} real, generally.
These terms violate the flavor symmetry of quarks, and even the $CP$-symmetry.
\begin{rightnote}
In our notation, $CP$-transformation of a spinor is described as
\begin{equation}
\mathscr{CP}\left(\psi\right)= -\ii\eta^*\trans{(\overline\psi\G2)},\quad
\mathscr{CP}\left(\overline\psi\right)= \ii\eta\trans{(\G2\psi)},
\end{equation}
where $\eta$ is a complex phase ($|\eta|=1$).
Under this transformation, those terms are transformed as, e.g.,
\begin{eqnarray}
\mathscr{CP}\left( \overline Q^2\slashed W^-X \PL Q^1\right)
&=&
\trans{(\G2Q^2)} \mathscr{P}(-{\slashed W^+})X\PL\trans{(\overline Q^1\G2)}\notag\\
&=&-{W_\mu^+}^P\trans{(\G2Q^2)}\trans{(\overline Q^1\trans X\G2\PL\trans{\Gm })}\\
&=&(\overline Q^1{\slashed W^+}\trans X\PL Q^2).\notag
\end{eqnarray}
Therefore, we can see that the $CP$-symmetry is maintained if and only if $\trans X=X^\dagger$, that is, if and only if $X$ is a real matrix.
\end{rightnote}
Thus the Lagrangian is
\begin{align}
\Lag =
& \Lag\s{gauge}\notag\\
\NOTE{質量項}& % Yukawa
{\quad+\quad}{m_W}^2W^+W^-
{\quad+\quad}\frac{{m_Z}^2}2Z^2
\notag\\&
{\quad-\quad}\left(\bar U M_u \PL Q^1
{\ +\ }\bar D M_d \PL Q^2
{\ +\ }\bar E M_e \PL L^2\ +\ \Hc\right)
\notag\\[.5zw]
%Higgs
\NOTE{Higgs Field}&
{\quad+\quad}\frac12(\partial_\mu h)^2
{\quad-}\frac12{m_h}^2h^2
{-}\sqrt{\frac\lambda2}m_h h^3
{-}\frac14\lambda h^4\notag\\
\NOTE{Higgsとの結合}&
{\quad+\quad}\frac{v{g_2}^2}{4}W^+W^-h
{\quad+\quad}\frac{v({g_1}^2+{g_2}^2)}{8}Z^2h\notag\\&
{\quad+\quad}\frac{{g_2}^2}{4}W^+W^-h^2
{\quad+\quad}\frac{{g_1}^2+{g_2}^2}{8}Z^2h^2\notag\\
&
{\quad-\quad}\left(\frac1v\bar U M_u \PL Q^1h
{\ +\ }\frac1v\bar D M_d \PL Q^2h
{\ +\ }\frac1v\bar E M_e \PL L^2h\ +\ \Hc\right)\notag\\[1zw]
%SU(3) Interactions
\NOTE{$\gSU(3)$および微分項}&
{\quad+\quad}\bar Q\left(\ii\slashed\partial+g_3\slashed G\right) \PL Q
{\quad+\quad}\bar U\left(\ii\slashed\partial+g_3\slashed G\right) \PR U
{\quad+\quad}\bar D\left(\ii\slashed\partial+g_3\slashed G\right) \PR D\notag\\
&
{\quad+\quad}\bar L\left(\ii\slashed\partial\right) \PL L
{\quad+\quad}\bar E\left(\ii\slashed\partial\right) \PR E\notag\\[1zw]
\NOTE{$W$ boson}&
{\quad+\quad}\frac{g_2}{\sqrt2}\left[
\bar Q^2\slashed W^-X \PL Q^1+ \bar Q^1\slashed W^+X^\dagger \PL Q^2\right]
\qquad\NOTE{← $CP$ and flavor violating!}
\notag\\
&
{\quad+\quad}\bar L\frac{g_2}{\sqrt2}\left(\slashed W^+ T^+ + \slashed W^- T^-\right)\PL L\notag\\
\NOTE{$A$\&$Z^0$ boson}&
{\quad+\quad}\bar Q\left[
\left(T^3+\frac16\right)|e|\slashed A
+\left(\frac{|e|c}{s}T^3-\frac{|e|s}{6c}\right)\slashed Z^0
\right]\PL Q\notag\\
&{\quad+\quad}\bar U\left(\frac23 |e|\slashed A-\frac{2|e|s}{3c}\slashed Z\right) \PR U\notag\\
&{\quad+\quad}\bar D\left(-\frac13 |e|\slashed A+\frac{|e|s}{3c}\slashed Z\right) \PR D\notag\\
&{\quad+\quad}\bar L\left[
\left(T^3-\frac12\right)|e|\slashed A
+\left(\frac{|e|c}{s}T^3+\frac{|e|s}{2c}\right)\slashed Z^0
\right] \PL L\notag\\
&
{\quad+\quad}\bar E\left(-|e|\slashed A+\frac{|e|s}{c}\slashed Z\right) \PR E.
\end{align}
\newpage
\subsection{Chiral Notation}
In the chiral expression, the Lagrangian is written as
\begin{align}
\mathcal L
=& \text{(Higgs terms)} + \text{(Gauge fields strength)}\notag\\
& + Q\s L^\dagger\ii\bar\sigma^\mu\left(\partial_\mu-\ii g_3G_\mu-\ii
g_2W_\mu-\frac16\ii g_1B_\mu\right)Q\s L\notag\\
& + U\s R^\dagger\ii\sigma^\mu\left(\partial_\mu-\ii g_3G_\mu-\frac23\ii g_1B_\mu\right)U\s R\notag\\
& + D\s R^\dagger\ii\sigma^\mu\left(\partial_\mu-\ii g_3G_\mu+\frac13\ii g_1B_\mu\right)D\s R\notag\\
& + L\s L^\dagger\ii\bar\sigma^\mu\left(\partial_\mu-\ii g_2W_\mu+\frac12\ii g_1B_\mu\right)L\s L\notag\\
& + E\s R^\dagger\ii\sigma^\mu\left(\partial_\mu+\ii g_1B_\mu\right)E\s R\notag\\
& % Yukawa
-\left(U^\dagger\s R y_uHQ\s L + D^\dagger\s R y_dH^\dagger Q\s L +
E^\dagger \s R y_eH^\dagger L\s L + \Hc\right)\notag\\
=& \text{(Higgs terms)} + \text{(Gauge fields strength)}\notag\\
&
+ \ii Q\s L^\dagger\bar\sigma^\mu\partial_\mu Q\s L
+ \ii U\s R \bar\sigma^\mu\partial_\mu U\s R^\dagger
+ \ii D\s R \bar\sigma^\mu\partial_\mu D\s R^\dagger
+ \ii L\s L^\dagger\bar\sigma^\mu\partial_\mu L\s L
+ \ii E\s R \bar\sigma^\mu\partial_\mu E\s R^\dagger \notag\\
&
+ g_3\left(
Q\s L^\dagger\bar\sigma^\mu G_\mu Q\s L
+U\s R^\dagger\bar\sigma^\mu G_\mu U\s R
+D\s R^\dagger\bar\sigma^\mu G_\mu D\s R
\right)\notag\\
&
+ g_2\left(
Q\s L^\dagger\bar\sigma^\mu W_\mu Q\s L
+L\s L^\dagger\bar\sigma^\mu W_\mu L\s L
\right)\notag\\
&+ g_1\left(
\frac16 Q\s L^\dagger\bar\sigma^\mu B_\mu Q\s L
+\frac23 U\s R^\dagger\bar\sigma^\mu B_\mu U\s R
-\frac13 D\s R^\dagger\bar\sigma^\mu B_\mu D\s R
-\frac12 L\s L^\dagger\bar\sigma^\mu B_\mu L\s L
- E\s R^\dagger\bar\sigma^\mu B_\mu E\s R
\right)\notag\\
& % Yukawa
- \left(U^\dagger\s R y_uHQ\s L + D^\dagger\s R y_dH^\dagger Q\s L +
E^\dagger \s R y_eH^\dagger L\s L + \Hc\right),
\end{align}
and finally we obtain
\begin{align}
\Lag =
& \text{(Gauge bosons and Higgs)}\notag\\
&
+ \ii Q\s L^\dagger\bar\sigma^\mu\partial_\mu Q\s L
+ \ii U\s R \bar\sigma^\mu\partial_\mu U\s R^\dagger
+ \ii D\s R \bar\sigma^\mu\partial_\mu D\s R^\dagger
+ \ii L\s L^\dagger\bar\sigma^\mu\partial_\mu L\s L
+ \ii E\s R \bar\sigma^\mu\partial_\mu E\s R^\dagger \notag\\
&
+ g_3\left(
Q\s L^\dagger\bar\sigma^\mu G_\mu Q\s L
+U\s R^\dagger\bar\sigma^\mu G_\mu U\s R
+D\s R^\dagger\bar\sigma^\mu G_\mu D\s R
\right)\notag\\
&
-m_u(u\s R^\dagger u\s L+u\s L^\dagger u\s R)-\text{(quarks)}
-m_e(e\s R^\dagger e\s L+e\s L^\dagger e\s R)-\text{(leptons)}
\notag\\&
-\frac{m_u}v(u\s R^\dagger u\s L+u\s L^\dagger u\s R)h - \text{(quarks)}
-\frac{m_e}v(e\s R^\dagger e\s L+e\s L^\dagger e\s R)h - \text{(leptons)}
\notag\\
&+
\frac{g_2}{\sqrt2}\left[
\pmat{d\s L^\dagger\ s\s L^\dagger\ b\s L^\dagger}
\bar\sigma^\mu W^-_\mu X \pmat{u\s L\\c\s L\\t\s L}
+
\pmat{u\s L^\dagger\ c\s L^\dagger\ t\s L^\dagger}
\bar\sigma^\mu W^+_\mu X^\dagger \pmat{d\s L\\s\s L\\b\s L}
\right]
\notag\\&
+\frac{g_2}{\sqrt2}\left[
\nu_e^\dagger\bar\sigma^\mu W^+_\mu e\s L + e\s L^\dagger\bar\sigma^\mu W^-_\mu \nu_e
\right]\notag\\
&
+|e|\left[
\frac23 u\s L^\dagger \bar\sigma^\mu A_\mu u\s L
- \frac13 d\s L^\dagger \bar\sigma^\mu A_\mu d\s L
+ \frac23 u\s R^\dagger \sigma^\mu A_\mu u\s R
- \frac13 d\s R^\dagger \sigma^\mu A_\mu d\s R
+ \text{(quarks)}
\right.\notag\\&\left.\qquad\qquad
- e\s L^\dagger \bar\sigma^\mu A_\mu e\s L
- e\s R^\dagger \sigma^\mu A_\mu e\s R
+ \text{(leptons)}\right]\notag\\
&%
+\frac{|e|s}{c}\left[
\left(\frac{c^2}{2s^2}-\frac16\right)u\s L^\dagger \bar\sigma^\mu Z_\mu u\s L
- \left(\frac{c^2}{2s^2}+\frac16\right)d\s L^\dagger \bar\sigma^\mu Z_\mu d\s L
- \frac23 u\s R^\dagger \sigma^\mu Z_\mu u\s R
+ \frac13 d\s R^\dagger \sigma^\mu Z_\mu d\s R
\right.\notag\\&\left.\qquad\qquad
+ \left(\frac{c^2}{2s^2}+\frac12\right)\nu_e^\dagger \bar\sigma^\mu Z_\mu \nu_e
- \left(\frac{c^2}{2s^2}-\frac12\right)e\s L^\dagger \bar\sigma^\mu Z_\mu e\s L
+ e\s R^\dagger \sigma^\mu Z_\mu e\s R
+ \text{(others)}\right].
\end{align}
\newpage
\subsection{Values of SM Parameters}
\newcommand{\upd}[1]{{\RED{#1}}}
\vskip-24pt\hskip200pt{\small(Extracted from PDG 2010 / \upd{2012})}
\subsubsection{Experimental Values}
\subparagraph{Theoretical Parameters}
\NOTE{These values are all in $\overline{\rm{MS}}$ scheme.}
\begin{align*}
\alpha^{-1}\s{EM}(0) &= 137.035999\upd{074(44)} &
G\s{F} &= \frac{{g_2}^2}{4\sqrt2{m_W}^2} = \frac1{\sqrt2v^2} = 1.16637\upd{87(6)}\EE-5\un{GeV^{-2}}&
\end{align*}
\begin{align*}
\alpha^{-1}\s{EM}(m_Z) &= 127.9\upd{44(14)} &
m_W(m_W) &= 80.3\upd{85(15)}\un{GeV} &
\Gamma_W &\approx 2.085(42)\un{GeV}
\\
\alpha^{-1}\s{EM}(m_\tau) &= 133.4\upd{71(14)} &
m_Z(m_Z) &= 91.1876(21)\un{GeV} &
\Gamma_Z &\approx 2.4952(23)\un{GeV}
\\
\alpha\s{s}(m_Z) &= 0.118\upd{4(7)} &
\sin^2\theta\s W(m_Z) &= 0.23116(1\upd{2}) &
\sin^2\theta\s{eff} &= 0.23146(12)
\end{align*}
\subparagraph{Masses and Lifetimes}
\NOTE{$t$ pole mass is the ``MC mass''. Quark $\overline{\rm{MS}}$ mass at 1\,GeV can be obtained by $\times 1.35$.}
\begin{align*}
e &: 0.5109989\upd{28(11)}\un{MeV} &
\mu &: 105.6583\upd{715(35)}\un{MeV} &
\tau &: 1.77682(16)\un{GeV} &
\end{align*}
\begin{align*}
\text{\small [$\overline{\rm MS}$ (2\,GeV)]}\ \
u &: \upd{2.3\pmunc{0.7}{0.5}}\un{MeV} &
\text{\small [$\overline{\rm MS}$($m$)]}\ \
c &: 1.2{\upd{75(25)}}\un{GeV} &
\text{\small [pole]}\ \
c &: 1.67(7)\un{GeV}
\\
d &: \upd{4.8\pmunc{0.7}{0.3}}\un{MeV} &
b &: 4.1\upd{8(3)}\un{GeV} &
b &: 4.78(6)\un{GeV}
\\
s &: \upd{95\pm5}\un{MeV} &
t &: 160\pmunc{5}{4}\un{GeV} &
t &: 17\upd{3.5(6)(8)}\un{GeV}
\end{align*}
\begin{align*}
\pi^\pm &: 139.57018(35)\un{MeV}&
K^\pm &: 493.677(16) \un{MeV}&
p &: 938.2720\upd{46(21)} \un{MeV}\\
\pi^0 &: 134.9766(6) \un{MeV}&
K^0 &: 497.614(24) \un{MeV}&
n &: 939.5653\upd{79(21)}\un{MeV}
\end{align*}
\begin{align*}
\mu &: 2.1969\upd{811(22)} \un{\mu s} \ (659\un{m}) &
\pi^\pm &: 2.6033(5)\EE-8 \un{s}&
K^\pm &: 1.2380(21)\EE-8 \un{s} \ (3.7\un{m})\\
\tau &: 2.906(10)\EE{-13} \un{s} \ (87\un{\mu m})&
\pi^0 &: 8.\upd{52(18)}\EE-{17}\un{s}&
K^0\s{S}&: 8.95\upd{64}(33)\EE{-11}\un{s} \ (2.68\un{cm})&\\
&&&&
K^0\s{L}&: 5.116(2\upd{1})\EE-8\un{s} \ (15.3\un{m})
\end{align*}
\subparagraph{Other Important Values}
\begin{align*}
a_e &= 11596521.8076(27)\EE{-10} &
d^{\rm EDM}_e &< 10.5\EE{-28}e\un{cm}&
& \Br(\tau\to e) = 17.83(4)\%
\\
a_\mu &= 11659209(6)\EE{-10} &
d^{\rm EDM}_\mu &= -1(9)\EE{-20}e\un{cm}&
& \Br(\tau\to \mu) = 17.41(4)\%
\\
&&
\sin^22\theta_{12} &= 0.857(24)&
& \Br(\tau\to \text{had}) \sim 64.8\%
\\
&&
\sin^22\theta_{23} &> 0.95&
& \Delta m_{\nu21}^2 = 7.50(20)\EE-5\eV^2
\\
&&
\sin^22\theta_{13} &= 0.098(13)&
& \left|\Delta m_{\nu32}^2\right| = 0.00232(^{12}_{08})\eV^2\\
\end{align*}
\subparagraph{CKM matrix}
\begin{equation*}
V\s{CKM}=
\pmat{
0.97425(22) & 0.2252(9) & 0.0084(6)\\
0.230(11) & 1.006(23) & 0.0429(26)\\
0.00415(49) & 0.0409(11) & 0.89(7)
}
\approx
\pmat{
0.9742\upd{7(15)} & 0.225\upd{34(65)} & 0.003\upd{51(^{15}_{14})}\\
0.225\upd{20(65)} & 0.9734\upd{4}(16) & 0.04\upd{12(^{11}_{05})}\\
0.008\upd{67(^{29}_{31})} & 0.04\upd{04(^{11}_{05})} & 0.9991\upd{46(^{21}_{46})}
}
\end{equation*}
\begin{align*}
\lambda &= 0.22535(65),&
A&=0.811\pmunc{0.022}{0.012},&
\bar\rho&=0.131\pmunc{0.026}{0.013},&
\bar\eta&=0.345\pmunc{0.013}{0.014};&
J&=(2.96\pmunc{20}{16})\EE-5
\end{align*}
\subsubsection{Estimation of SM Parameters}
For EW scale, we can estimate the values as
\begin{align}
|e|&\sim 0.313,& g_1 &\sim 0.357, & g_2 &\sim 0.652, & g_Z &\sim 0.743; &
v=\sqrt{\frac{\mu^2}\lambda} &\sim 246\un{GeV}
\end{align}
Therefore 湯川 matrices are (after diagonalization), since $vy/\sqrt2=M$,
\begin{align}
y_u&\sim \pmat{10^{-5}&0&0\\0&0.007&0\\0&0&0.997}&
y_d&\sim \pmat{3\times10^{-5}&0&0\\0&0.0005&0\\0&0&0.02}&
y_e&\sim \pmat{3\times10^{-6}&0&0\\0&0.0006&0\\0&0&0.01}&
\end{align}
Also, for $m_h\sim 125\un{GeV}$, we can estimate the Higgs potential as $\mu\sim88\un{GeV}$ and $\lambda \sim 0.13$.
\subsection{南部--Goldstone Boson}
Defining the 南部--Goldstone mode as
\begin{equation}
H = \frac1{\sqrt2}\pmat{-\ii \sqrt2 \phi^+(x) \\ v+h(x)+\ii\phi_3(x)}, \where v=\sqrt{\frac{\mu^2}{\lambda}},
\end{equation}
The Higgs part of the Lagrangian turns out to be
\begin{align}\begin{split}
\Lag&\supset \left|\DD_\mu H\right|^2 + \mu^2\left|H\right|^2 - \lambda\left|H\right|^4\\
&=
\frac{\lambda}{4}v^4+ \left(1+\frac{2h}{v}\right)\left(m_W^2 W^{+\mu}W^-_\mu + \frac{m_Z^2}2Z^\mu Z_\mu\right)
-
\frac{m_h^2}{2}\left(h+\frac{h^2+\phi_3^2+2\phi^+\phi^-}{2v}\right)^2
\\&\quad
+m_Z Z^\mu\Pm\phi^3
+m_W
\left[
W^-_\mu\left(
\partial^\mu
-\ii|e|A^\mu+\frac{\ii|e|s}{c}Z^\mu
\right)\phi^+
+\Hc\right]
\\&\quad
+\frac12\left(\Pm h-\frac{g_Z}2 Z_\mu\phi_3-\frac{g_2}{2} W_\mu^+\phi^- -\frac{g_2}{2} W_\mu^-\phi^+\right)^2
\\&\quad
+
\frac12\left(\Pm\phi_3+\frac{g_Z}2 Z_\mu h -\frac{\ii g_2}{2}W_\mu^+\phi^- +\frac{\ii g_2}{2}W_\mu^-\phi^+\right)^2
\\&\quad
+\abs{\left[\Pm-\ii|e|A_\mu -\frac{\ii|e|s}{c}\left(\frac{c^2}{2s^2}-\frac12\right)
Z_\mu\right]\phi^+ + \frac{g_2}{2}(h+\ii\phi^3) W^+_\mu}^2,
\end{split}
\end{align}
and the 湯川 interactions are
\begin{align}
\begin{split}
\Lag&\supset
\overline U y_uH\PL Q - \overline D y_dH^\dagger\PL Q - \overline E y_eH^\dagger\PL L
\\&
=-\frac{v+h+\ii\phi^3}{\sqrt2}\left(
\overline U y_u\PL Q^1
+ \overline D y_d\PL Q^2
+ \overline E y_e\PL L^2
\right)
\\&\quad
-\ii
\left(
\phi^+ \overline Uy_u\PL Q^2+\phi^-\overline D y_d\PL Q^1+\phi^-\overline Ey_e\PL L^1
\right).
\end{split}
\end{align}
\subsection{CKM matrix}\label{sec:CKM}\noindent
\begin{minipage}[t]{0.53\textwidth}
\subparagraph{PDG SM convention}(2014 \S12)
\[
-\mathcal L \supset Y_{ij}^d H^a \overline{Q_i^a} d_j - Y_{ij}^u\epsilon^{ab} H^a\overline{Q_i^b}u_j
;
\quad
Y^{\rm diag} = V_L Y V_R^\dagger
\]
\subparagraph{SLHA2 convention}(0801.0045)
\begin{align*}
\Lag&\supset
\textstyle\int\dd^2\theta\,W
\supset
\int\dd^2\theta\,\epsilon^{ab}\left(
Y^D_{ij}\Hd^a Q_i^b\bar D_j
- Y^U_{ij}\Hu^a Q_i^b\bar U_j
\right)
\\
&\therefore -\Lag \supset
Y^D_{ij}\HdZ \psi_{Q_i^2}\psi_{\bar D_j}
+ Y^U_{ij}\HuZ \psi_{Q_i^1}\psi_{\bar U_j}
\quad \text{\footnotesize (See Eq.~43)}
\\&\qquad\qquad\leadsto
(Y^D_{ij})^*\HdZ{}^* \overline{Q_i^2}d_j
+ (Y^U_{ij})^*\HuZ{}^* \overline{Q_i^1}u_j;
\\
&Y^{\rm diag} = U^\dagger \trans{Y}V = V^\dagger Y^* U
\end{align*}
\end{minipage}%
\hfill%
\begin{minipage}[t]{0.44\textwidth}
In both conventions,
\begin{align*}
V\s{CKM} &= V_L^u V_R^{d\dagger} \text{(PDG)} = V_U^\dagger V_D \text{(SLHA)}
\\& =
\pmat{V_{ud}&V_{us}&V_{ub}\\V_{cd}&V_{cs}&\cdots};
\end{align*}
and in Wolfenstein parameterization, $V\s{CKM}\approx$
\[
\pmat{
1-\lambda^2/2 & \lambda & A\lambda^3(\rho-\ii \eta)\\
-\lambda & 1-\lambda^2/2 & A\lambda^2\\
A\lambda^3(1-\rho-\ii\eta) & -A\lambda^2 & 1
}.
\]
\hfill\NOTE{Be careful of the minus sign before $\eta$.}
\end{minipage}
Also we have a standard parameterization without approximation:
\begin{equation}
V\s{CKM} =\pmat{
c_{12} c_{13} & s_{12} c_{13} & s_{13} \ee^{-\ii\delta}\\
-s_{12} c_{23} - c_{12} s_{23} s_{13} \ee^{\ii\delta}& c_{12} c_{23} - s_{12}s_{23}s_{13} \ee^{\ii\delta}& s_{23}c_{13}\\
s_{12}s_{23} - c_{12} c_{23} s_{13}\ee^{\ii\delta} & -c_{12}s_{23}-s_{12}c_{23}s_{13}\ee^{\ii\delta} & c_{23} c_{13}
},
\end{equation}
which relates to the Wolfenstein parameterization via
\begin{align}
\lambda &= s_{12},& A &= \frac{s_{23}}{\lambda^2},&
\rho+\ii\eta&=\frac{s_{13}\ee^{\ii\delta}}{A\lambda^3}
= \frac{(\bar\rho+\ii\bar\eta)\sqrt{1-A^2\lambda^4}}
{\sqrt{1-\lambda^2}\left[1-A^2\lambda^4(\bar\rho+\ii\bar\eta)\right]}
= \left(\bar\rho+\ii\bar\eta\right)\left(1+\frac{\lambda^2}{2}+\Order(\lambda^4)\right).
\end{align}
%%% Local Variables:
%%% TeX-master: "CheatSheet.tex"
%%% End: