-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSUGRA.tex
149 lines (140 loc) · 5.73 KB
/
SUGRA.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
%#!platexmake CheatSheet
%%% Time-Stamp: <>
%%% 一部で日本語が使用されています。
\section{Supergravity}
\subsection{Minimal SUGRA Lagrangian}
Minimal SUGRA Lagrangian is constructed from supergravity multiplet
$(\bein a\mu,\psi^\alpha_\mu, B_\mu, F_\phi)$.
\begin{equation}
\Lag = -\frac{M^2}{2}eR+e\epsilon^{\mu\nu\rho\sigma}\bar\psi_\mu\bSnd\DD_\rho\psi_\sigma
\end{equation}
where
\begin{align}
\DD_\mu\psi_\nu
&:=\Pm\psi_\nu+\frac12\omega\T_\mu^a^b\sigma_{ab}\psi_\nu\qquad
\left[\omega\T_\mu^a^b : {\text{``spin接続''}}\right]\\
e&:=\det \bein a\mu\\
M&:=1/\sqrt{8\pi G} \quad \text{(Reduced Planck mass)}\\
R&:={\bein a\mu}{\bein b\nu}R\T_\mu_\nu^a^b\\
R\T_\mu_\nu^a^b
&:=\Pm\omega\T_\nu^a^b-\Pn\omega\T_\mu^a^b
-\omega\T_\mu^a^c\omega\T_\nu_c^b+\omega\T_\nu^a^c\omega\T_\mu_c^b.
\end{align}
\subsection{General SUGRA Lagrangian}
The components of general SUGRA Lagrangian is
\begin{equation}
\Phi_i = (\phi_i,\chi^\alpha_i,F_i),\qquad
V^{(a)}=(A^{(a)}_\mu,\lambda^{\alpha(a)},D^{(a)}),\qquad
G=(\bein \mu a,\psi_\mu^\alpha,B_\mu,F_\phi),
\end{equation}
and described with following functions:
\begin{itemize}
\item K\"ahler potential $K(\Phi,\Phi^*)$
\begin{itemize}
\item Real function of chiral multiplets.
\item In global SUSY, $\int\dd^4\theta K$ yields kinetic terms of the
chiral multiplet.
\item ``Minimal K\"ahler'' is (if no gauge interaction)
$K=\Phi\Phi^\dagger$, which is
\begin{equation}
\int\dd^4\theta\ \Phi\Phi^*=\Pm \phi^*\Pm\phi+\ii\bar\chi\bSm\Pm
\chi + F^*F.
\end{equation}
\end{itemize}
\item Super Potential $W(\Phi)$
\item Gauge kinetic term $f_{(a)(b)}(\Phi)$
\begin{itemize}
\item Some function which satisfies $f_{(a)(b)} = f_{(b)(a)}$.
\item $(a), (b), ...$ are indices for adjoint representation of gauge
group.
\item Minimal one is $f_{(a)(b)} \propto \delta_{(a)(b)}.$
\end{itemize}
\end{itemize}
\def\epsmnrs{\epsilon^{\mu\nu\rho\sigma}}
\def\fR{{f\suprm{R}}}
\def\fI{{f\suprm{I}}}
\begin{align}
\Lag
={}&
-\frac12eR
+eg_{ij^*}\DD_\mu\phi^i\DD^\mu\phi^{*j}
-\frac12eg^2D_{(a)}D^{(a)}
\notag\\&
+\ii eg_{ij^*}\bar\chi^j\bSm\DD_\mu\chi^i
+e\epsmnrs\bar\psi_\mu\bSnd\DD_\rho\psi_\sigma
\notag\\&
-\frac14e\fR_{(ab)}F^{(a)}_{\mu\nu}F^{\mu\nu(b)}
+\frac18e\epsmnrs\fI_{(ab)}f^{(a)}_{\mu\nu}f^{(b)}_{\rho\sigma}
\notag\\&
+\frac\ii2e\left[\lambda_{(a)}\Sm\DD_\mu\bar\lambda^{(a)}
+ \bar\lambda_{(a)}\bSm\DD_\mu\lambda^{(a)}\right]
-\frac12\fI_{(ab)}\DD_\mu\left[e\lambda^{(a)}\Sm\bar\lambda^{(b)}\right]
\notag\\&
+\sqrt2egg_{ij^*}X^{*j}_{(a)}\chi^i\lambda^{(a)}
+\sqrt2egg_{ij^*}X^{i}_{(a)}\bar\chi^j\bar\lambda^{(a)}
\notag\\&
-\frac\ii4\sqrt2 eg\partial_if_{(ab)}D^{(a)}\chi^i\lambda^{(b)}
+\frac\ii4\sqrt2 eg\partial_{i*}f^*_{(ab)}D^{(a)}\bar\chi^i\bar\lambda^{(b)}
\notag\\&
-\frac14\sqrt2e\partial_if_{(ab)}\chi^i\sigma^{\mu\nu}\lambda^{(a)}F^{(b)}_{\mu\nu}
-\frac14\sqrt2e\partial_{i^*}f^*_{(ab)}\bar\chi^i\bar\sigma^{\mu\nu}\bar\lambda^{(a)}F^{(b)}_{\mu\nu}
\notag\\&
+\frac12egD_{(a)}\psi_\mu\Sm\bar\lambda^{(a)}
-\frac12egD_{(a)}\bar\psi_\mu\bSm\lambda^{(a)}
\notag\\&
-\frac12\sqrt2eg_{ij^*}\DD_\nu\phi^{*j}\chi^i\Sm\bSn\psi_\mu
-\frac12\sqrt2eg_{ij^*}\DD_\nu\phi^i\bar\chi^j\bSm\Sn\bar\psi_\mu
\notag\\&
-\frac\ii4e\left[\psi_\mu\sigma^{\nu\rho}\Sm\bar\lambda_{(a)}
+ \bar\psi_\mu\bar\sigma^{\nu\rho}\bSm\lambda_{(a)}\right]
\left[F^{(a)}_{\nu\rho}+\hat F^{(a)}_{\nu\rho}\right]
\notag\\&
+\frac14eg_{ij^*}\left[\ii\epsmnrs\psi_\mu\sigma_\nu\bar\psi_\rho
+ \psi_\mu\Ss\bar\psi^\mu\right]
\chi^i\sigma_\sigma\bar\chi^i
\notag\\&
-\frac18e\left[g_{ij^*}g_{kl^*}-2R_{ij^*kl^*}\right]\chi^i\chi^k\bar\chi^j\bar\chi^l
\notag\\&
+\frac1{16}e\left[2g_{ij^*}\fR_{(ab)}
+ {\fR^{(cd)}}^{-1}\partial_if_{(bc)}\partial_{j^*}f^*_{(ad)}\right]
\bar\chi^j\bSm\chi^i\bar\lambda^{(a)}\bar\sigma_\mu\lambda^{(b)}
\notag\\&
+\frac18e\nabla_i\partial_jf_{(ab)}\chi^i\chi^j\lambda^{(a)}\lambda^{(b)}
+\frac18e\nabla_{i^*}\partial_{j^*}f^*_{(ab)}\bar\chi^i\bar\chi^j\bar\lambda^{(a)}\bar\lambda^{(b)}
\notag\\&
+\frac1{16}e{\fR^{(cd)}}^{-1}\partial_if_{(ac)}\partial_jf_{(bd)}
\chi^i\lambda^{(a)}\chi^j\lambda^{(b)}
\notag\\&
+\frac1{16}e{\fR^{(cd)}}^{-1}\partial_{i^*}f^*_{(ac)}\partial_{j^*}f^*_{(bd)}
\bar\chi^i\bar\lambda^{(a)}\bar\chi^j\bar\lambda^{(b)}
\notag\\&
-\frac1{16}eg^{ij^*}\partial_if_{(ab)}\partial_{j^*}f^*_{(cd)}
\lambda^{(a)}\lambda^{(b)}\bar\lambda^{c}\bar\lambda^{(d)}
\notag\\&
+\frac3{16}e\lambda_{(a)}\Sm\bar\lambda^{(a)}\lambda_{(b)}\sigma_\mu\bar\lambda^{(b)}
\notag\\&
+\frac\ii4\sqrt2 e\partial_{i}f_{(ab)}\left[
\chi^i\sigma^{\mu\nu}\lambda^{(a)}\psi_\mu\sigma_\nu\bar\lambda^{(b)}
- \frac14\bar\psi_\mu\bSm\chi^i\lambda^{(a)}\lambda^{(b)}\right]
\notag\\&
+\frac\ii4\sqrt2 e\partial_{i^*}f^*_{(ab)}\left[
\bar\chi^i\bar\sigma^{\mu\nu}\bar\lambda^{(a)}\bar\psi_\mu\bar\sigma_\nu\lambda^{(b)}
- \frac14\psi_\mu\Sm\bar\chi^i\bar\lambda^{(a)}\bar\lambda^{(b)}\right]
\notag\\&
-e\ee^{K/2}\left[W^*\psi_\mu\sigma^{\mu\nu}\psi_\nu
+ W \bar\psi_\mu\bar\sigma^{\mu\nu}\bar\psi_\nu\right]
\notag\\&
+\frac\ii2\sqrt2e\ee^{K/2}\left[D_iW\chi^i\Sm\bar\psi_\mu
+ D_{i^*}W^*\bar\chi^i\bSm\psi_\mu\right]
\notag\\&
-\frac12e\ee^{K/2}\left[\DD_i D_jW\chi^i\chi^j+\DD_{i^*}D_{j^*}W^*\bar\chi^i\bar\chi^j\right]
\notag\\&
+\frac14e\ee^{K/2}g^{ij^*}\left[ D_{j^*}W^*\partial_if_{(ab)}\lambda^{(a)}\lambda^{(b)}
+ D_iW\partial_{j^*}f^*_{(ab)}\bar\lambda^{(a)}\bar\lambda^{(b)}
\right]
\notag\\&
-e\ee^{K}\left[g^{ij^*}(D_iW)(D_{j^*}W^*)-3W^*W\right]
\end{align}
%%% Local Variables:
%%% TeX-master: "CheatSheet.tex"
%%% End: