-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathLecture2-2.nb
1361 lines (1282 loc) · 57.3 KB
/
Lecture2-2.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 7.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 145, 7]
NotebookDataLength[ 58580, 1353]
NotebookOptionsPosition[ 52750, 1263]
NotebookOutlinePosition[ 53182, 1280]
CellTagsIndexPosition[ 53139, 1277]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[TextData[{
Cell[BoxData[
FormBox[
SuperscriptBox["\[Phi]", "4"], TraditionalForm]], "None",ExpressionUUID->
"2366bd6e-817a-4191-8cdc-c4530ab02356"],
" theory"
}], "Title",
CellChangeTimes->{{3.537755556453061*^9,
3.53775556929044*^9}},ExpressionUUID->"474e70e3-d9bb-45b6-9ed6-\
619543f48c49"],
Cell[CellGroupData[{
Cell["Initialization", "Subsection",
CellChangeTimes->{{3.5360374730944557`*^9,
3.536037479508855*^9}},ExpressionUUID->"225939c1-5860-407f-ac8a-\
9a40646ac5ab"],
Cell[TextData[{
"Generate model files from ",
ButtonBox["phi4.fr",
BaseStyle->"Hyperlink",
ButtonData->{"phi4.fr", None}],
" by using FeynRules before doing this tutorial. See the example in \
\[OpenCurlyDoubleQuote]",
ButtonBox["phi4_feynrules.wl",
BaseStyle->"Hyperlink",
ButtonData->{"phi4_feynrules.nb", None}],
"\[CloseCurlyDoubleQuote]."
}], "Text",
CellChangeTimes->{{3.630407361427362*^9, 3.630407369333026*^9}, {
3.63040860623291*^9, 3.630408730857409*^9}, {3.6848166068079443`*^9,
3.684816607101491*^9},
3.72864295240482*^9},ExpressionUUID->"7303bf53-5c6a-41a0-a431-\
fbf445794ae7"],
Cell[BoxData[
RowBox[{
RowBox[{"Quit", "[", "]"}], ";"}]], "Input",
CellChangeTimes->{{3.5360382549509077`*^9, 3.536038276342574*^9},
3.53603834277113*^9, {3.63040870828338*^9, 3.630408715560848*^9}, {
3.6848182917660418`*^9,
3.684818292431243*^9}},ExpressionUUID->"e00bc644-e866-49cf-9589-\
e6f93e8eff1d"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"<<", "FeynArts`"}], "\[IndentingNewLine]",
RowBox[{"<<", "FormCalc`"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"model", "=",
RowBox[{"FileNameJoin", "[",
RowBox[{"{",
RowBox[{
RowBox[{"NotebookDirectory", "[", "]"}], ",",
"\"\<phi_to_four_theory_FA\>\"", ",", "\"\<phi_to_four_theory_FA\>\""}],
"}"}], "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"(*",
RowBox[{
RowBox[{"_Hel", "=", "0"}], ";"}], "*)"}]}]}], "Input",
CellChangeTimes->{{3.5360373787170563`*^9, 3.536037381121767*^9}, {
3.5360374895751467`*^9, 3.536037548333282*^9}, {3.536037650722055*^9,
3.536037657410592*^9}, {3.5360379743666153`*^9, 3.5360380215197287`*^9}, {
3.536038063766507*^9, 3.536038183907959*^9}, {3.536038388610857*^9,
3.53603838940345*^9}, {3.536045708094194*^9, 3.536045714062668*^9}, {
3.536052625049251*^9, 3.536052625325549*^9}, {3.536053272279801*^9,
3.536053273111397*^9}, {3.5363028962875032`*^9, 3.536302959580532*^9}, {
3.583232144794043*^9, 3.5832321452628736`*^9}, {3.630407217847831*^9,
3.630407276241263*^9}, {3.630408749673829*^9, 3.630408751189788*^9}, {
3.68481709328397*^9,
3.684817110837873*^9}},ExpressionUUID->"0a132810-b330-4509-a4fa-\
55696b4fa74f"],
Cell[CellGroupData[{
Cell[BoxData["\<\"\"\>"], "Print",
CellChangeTimes->{
3.733278842492011*^9},ExpressionUUID->"40be6d88-6972-4a16-8f8b-\
8acda8b4b11b"],
Cell[BoxData["\<\"FeynArts 3.10 (12 Mar 2018)\"\>"], "Print",
CellChangeTimes->{
3.733278842499118*^9},ExpressionUUID->"e7f138c0-1f78-43d9-9b33-\
7612bb0c20d1"],
Cell[BoxData["\<\"by Hagen Eck, Sepp Kueblbeck, and Thomas Hahn\"\>"], "Print",
CellChangeTimes->{
3.7332788425094147`*^9},ExpressionUUID->"e3bbd4a4-8f03-426b-b090-\
02b3a87558de"],
Cell[BoxData["\<\"\"\>"], "Print",
CellChangeTimes->{
3.7332788425758123`*^9},ExpressionUUID->"d8891cbc-6455-47bc-aa90-\
2ce0f120d693"],
Cell[BoxData["\<\"FormCalc 9.6 (16 Apr 2018)\"\>"], "Print",
CellChangeTimes->{
3.73327884258633*^9},ExpressionUUID->"8374f005-a5e7-4147-adbf-b03c49415154"],
Cell[BoxData["\<\"by Thomas Hahn\"\>"], "Print",
CellChangeTimes->{
3.733278842596019*^9},ExpressionUUID->"06a8eae6-aacf-4721-bf50-\
7013ddefbac3"]
}, Open ]]
}, Open ]],
Cell["You can ascertain that the files exist by", "Text",
CellChangeTimes->{{3.728642982762167*^9,
3.728643012759325*^9}},ExpressionUUID->"3427769e-5d43-4983-aa67-\
9d5565ecd81f"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"FileExistsQ", "[",
RowBox[{"model", "<>", "\"\<.mod\>\""}], "]"}], "\[IndentingNewLine]",
RowBox[{"FileExistsQ", "[",
RowBox[{"model", "<>", "\"\<.gen\>\""}], "]"}]}], "Input",ExpressionUUID->\
"0fe85dde-22a5-4f9d-b1bd-5883fecb66d5"],
Cell[BoxData["True"], "Output",
CellChangeTimes->{3.7286429983921957`*^9,
3.733278843840819*^9},ExpressionUUID->"313b35b3-8831-477b-a763-\
30c9333c244d"],
Cell[BoxData["True"], "Output",
CellChangeTimes->{3.7286429983921957`*^9,
3.733278843849842*^9},ExpressionUUID->"3ce5b843-fa42-41f3-b951-\
9729b1267981"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Create Topology (and also ignore helicities)", "Subsection",
CellChangeTimes->{{3.5360398319912243`*^9, 3.5360398413102627`*^9}, {
3.536039916228428*^9, 3.53603992045197*^9}, {3.536053280853504*^9,
3.536053289164153*^9}},ExpressionUUID->"a9366923-fb69-41d3-b6ee-\
b69857c6aedf"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"topo", "=",
RowBox[{"CreateTopologies", "[",
RowBox[{"0", ",",
RowBox[{"2", "\[Rule]", "2"}]}], "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Paint", "[", "topo", "]"}], ";"}], "\[IndentingNewLine]",
RowBox[{"diag", "=",
RowBox[{"InsertFields", "[",
RowBox[{"topo", ",",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"S", "[", "1", "]"}], ",",
RowBox[{"S", "[", "1", "]"}]}], "}"}], "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"S", "[", "1", "]"}], ",",
RowBox[{"S", "[", "1", "]"}]}], "}"}]}], ",",
RowBox[{"InsertionLevel", "\[Rule]",
RowBox[{"{", "Classes", "}"}]}], ",", "\[IndentingNewLine]",
RowBox[{"Model", "\[Rule]", "model"}], ",",
RowBox[{"GenericModel", "\[Rule]", "model"}]}],
"]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Paint", "[", "diag", "]"}], ";"}]}], "Input",
CellChangeTimes->{{3.5360398433189297`*^9, 3.536039858887414*^9}, {
3.5360398916549*^9, 3.53603989217457*^9}, {3.5360457214194193`*^9,
3.536045731074902*^9}, {3.536052641845634*^9, 3.536052642668128*^9}, {
3.5360532647260027`*^9, 3.5360532794224253`*^9}, {3.536302964932878*^9,
3.536303076163979*^9}, {3.6848171009669456`*^9,
3.684817102672256*^9}},ExpressionUUID->"c76d8d90-61cb-454a-9bcb-\
4aa3d91f747e"],
Cell[CellGroupData[{
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"> Top. \"\>", "\[InvisibleSpace]", "1",
"\[InvisibleSpace]", "\<\" \"\>",
"\[InvisibleSpace]", "\<\"aebe/cede/0.m\"\>",
"\[InvisibleSpace]", "\<\", \"\>",
"\[InvisibleSpace]", "\<\"1 diagram\"\>"}],
SequenceForm["> Top. ", 1, " ", "aebe/cede/0.m", ", ", "1 diagram"],
Editable->False]], "Print",
CellChangeTimes->{
3.536303014900371*^9, {3.536303049773774*^9, 3.536303076500031*^9},
3.537755683760273*^9, 3.5378615231622543`*^9, 3.583232251407583*^9,
3.630407197568304*^9, 3.6304072535810947`*^9, 3.630407295789062*^9,
3.630408757403454*^9, {3.6848171199470167`*^9, 3.684817146936548*^9},
3.684817203979534*^9, 3.684818297483844*^9, 3.728643000018675*^9,
3.7332788455074053`*^9},ExpressionUUID->"c8571336-2fdb-44fd-abc2-\
eb998fb0fd0f"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"> Top. \"\>", "\[InvisibleSpace]", "2",
"\[InvisibleSpace]", "\<\" \"\>",
"\[InvisibleSpace]", "\<\"aebe/cfdf/ef.m\"\>",
"\[InvisibleSpace]", "\<\", \"\>",
"\[InvisibleSpace]", "\<\"1 diagram\"\>"}],
SequenceForm["> Top. ", 2, " ", "aebe/cfdf/ef.m", ", ", "1 diagram"],
Editable->False]], "Print",
CellChangeTimes->{
3.536303014900371*^9, {3.536303049773774*^9, 3.536303076500031*^9},
3.537755683760273*^9, 3.5378615231622543`*^9, 3.583232251407583*^9,
3.630407197568304*^9, 3.6304072535810947`*^9, 3.630407295789062*^9,
3.630408757403454*^9, {3.6848171199470167`*^9, 3.684817146936548*^9},
3.684817203979534*^9, 3.684818297483844*^9, 3.728643000018675*^9,
3.7332788455153093`*^9},ExpressionUUID->"35032b59-680b-4797-9a8a-\
fb24b25c9b49"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"> Top. \"\>", "\[InvisibleSpace]", "3",
"\[InvisibleSpace]", "\<\" \"\>",
"\[InvisibleSpace]", "\<\"aebf/cedf/ef.m\"\>",
"\[InvisibleSpace]", "\<\", \"\>",
"\[InvisibleSpace]", "\<\"1 diagram\"\>"}],
SequenceForm["> Top. ", 3, " ", "aebf/cedf/ef.m", ", ", "1 diagram"],
Editable->False]], "Print",
CellChangeTimes->{
3.536303014900371*^9, {3.536303049773774*^9, 3.536303076500031*^9},
3.537755683760273*^9, 3.5378615231622543`*^9, 3.583232251407583*^9,
3.630407197568304*^9, 3.6304072535810947`*^9, 3.630407295789062*^9,
3.630408757403454*^9, {3.6848171199470167`*^9, 3.684817146936548*^9},
3.684817203979534*^9, 3.684818297483844*^9, 3.728643000018675*^9,
3.73327884552557*^9},ExpressionUUID->"dbe12428-d533-41ed-8394-\
3db022cfb193"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"> Top. \"\>", "\[InvisibleSpace]", "4",
"\[InvisibleSpace]", "\<\" \"\>",
"\[InvisibleSpace]", "\<\"aebf/cfde/ef.m\"\>",
"\[InvisibleSpace]", "\<\", \"\>",
"\[InvisibleSpace]", "\<\"1 diagram\"\>"}],
SequenceForm["> Top. ", 4, " ", "aebf/cfde/ef.m", ", ", "1 diagram"],
Editable->False]], "Print",
CellChangeTimes->{
3.536303014900371*^9, {3.536303049773774*^9, 3.536303076500031*^9},
3.537755683760273*^9, 3.5378615231622543`*^9, 3.583232251407583*^9,
3.630407197568304*^9, 3.6304072535810947`*^9, 3.630407295789062*^9,
3.630408757403454*^9, {3.6848171199470167`*^9, 3.684817146936548*^9},
3.684817203979534*^9, 3.684818297483844*^9, 3.728643000018675*^9,
3.73327884553502*^9},ExpressionUUID->"5c6764c1-0106-4094-b42e-\
311d91925ee0"],
Cell[BoxData[
GraphicsBox[{InsetBox[
GraphicsBox[
TagBox[
TooltipBox[
{Thickness[0.005],
LineBox[{{-9.094947017729282*^-12, 15.000000000003638`}, {
9.999999999983629, 10.000000000007276`}}],
LineBox[{{-9.094947017729282*^-12, 4.999999999996362}, {
9.999999999985448, 9.999999999989086}}],
LineBox[{{20.000000000009095`, 15.000000000003638`}, {
10.000000000009095`, 10.000000000003638`}}],
LineBox[{{20., 5.}, {10., 10.}}],
{PointSize[0.04], PointBox[{10., 10.}]}, InsetBox[
TagBox[
StyleBox[
TagBox["T1",
DisplayForm],
FontFamily->"Helvetica",
FontSize->7.997355371900827],
StyleForm[#, FontFamily -> "Helvetica", FontSize ->
7.997355371900827]& ], {10., -0.5}, {0, -1}]},
"\"aebe/cede/0.m\"",
TooltipStyle->"TextStyling"],
Annotation[#, "aebe/cede/0.m", "Tooltip"]& ],
AspectRatio->1,
PlotRange->{{-1, 21}, {-1, 21}}], {0, 44}, {0, 0}, {22, 22}], InsetBox[
GraphicsBox[
TagBox[
TooltipBox[
{Thickness[0.005],
LineBox[{{-5.4569682106375694`*^-12, 15.000000000005457`}, {
5.999999999996362, 10.000000000001819`}}],
LineBox[{{-9.094947017729282*^-12, 4.999999999992724}, {
5.999999999994543, 9.999999999994543}}],
LineBox[{{20.000000000007276`, 15.000000000003638`}, {
14.000000000005457`, 10.000000000003638`}}],
LineBox[{{20.00000000000182, 5.000000000001819}, {14., 10.}}],
LineBox[{{5.999999999990211, 10.}, {13.99999999998223, 10.}}],
{PointSize[0.04], PointBox[{6., 10.}], PointBox[{14., 10.}]}, InsetBox[
TagBox[
StyleBox[
TagBox["T2",
DisplayForm],
FontFamily->"Helvetica",
FontSize->7.997355371900827],
StyleForm[#, FontFamily -> "Helvetica", FontSize ->
7.997355371900827]& ], {10., -0.5}, {0, -1}]},
"\"aebe/cfdf/ef.m\"",
TooltipStyle->"TextStyling"],
Annotation[#, "aebe/cfdf/ef.m", "Tooltip"]& ],
AspectRatio->1,
PlotRange->{{-1, 21}, {-1, 21}}], {22, 44}, {0, 0}, {22, 22}], InsetBox[
GraphicsBox[
TagBox[
TooltipBox[
{Thickness[0.005],
LineBox[{{1.8189894035458565`*^-12, 15.000000000003638`}, {
9.999999999997726, 14.000000000003638`}}],
LineBox[{{-7.503331289626658*^-12, 5.000000000003638}, {
9.999999999988404, 6.}}],
LineBox[{{20.000000000002956`, 14.999999999996362`}, {
10.000000000002956`, 13.999999999996362`}}],
LineBox[{{19.999999999997726`, 4.999999999996362}, {9.999999999997726,
5.999999999996362}}],
LineBox[{{10., 14.000000000000908`}, {10., 6.000000000000009}}],
{PointSize[0.04], PointBox[{10., 14.}], PointBox[{10., 6.}]}, InsetBox[
TagBox[
StyleBox[
TagBox["T3",
DisplayForm],
FontFamily->"Helvetica",
FontSize->7.997355371900827],
StyleForm[#, FontFamily -> "Helvetica", FontSize ->
7.997355371900827]& ], {10., -0.5}, {0, -1}]},
"\"aebf/cedf/ef.m\"",
TooltipStyle->"TextStyling"],
Annotation[#, "aebf/cedf/ef.m", "Tooltip"]& ],
AspectRatio->1,
PlotRange->{{-1, 21}, {-1, 21}}], {44, 44}, {0, 0}, {22, 22}], InsetBox[
GraphicsBox[
TagBox[
TooltipBox[
{Thickness[0.005],
LineBox[{{1.8189894035458565`*^-12, 15.000000000003638`}, {
9.999999999997726, 14.000000000003638`}}],
LineBox[{{-7.503331289626658*^-12, 5.000000000003638}, {
9.999999999988404, 6.}}],
LineBox[{{20.00000000000182, 15.}, {10., 6.}}],
LineBox[{{20.00000000000182, 4.999999999998181}, {10.,
13.999999999998181`}}],
LineBox[{{10., 14.000000000000908`}, {10., 6.000000000000009}}],
{PointSize[0.04], PointBox[{10., 14.}], PointBox[{10., 6.}]}, InsetBox[
TagBox[
StyleBox[
TagBox["T4",
DisplayForm],
FontFamily->"Helvetica",
FontSize->7.997355371900827],
StyleForm[#, FontFamily -> "Helvetica", FontSize ->
7.997355371900827]& ], {10., -0.5}, {0, -1}]},
"\"aebf/cfde/ef.m\"",
TooltipStyle->"TextStyling"],
Annotation[#, "aebf/cfde/ef.m", "Tooltip"]& ],
AspectRatio->1,
PlotRange->{{-1, 21}, {-1, 21}}], {0, 22}, {0, 0}, {22, 22}], InsetBox[
TagBox[
StyleBox[
TagBox["2",
DisplayForm],
FontFamily->"Helvetica",
FontSize->11.996033057851239`],
StyleForm[#, FontFamily -> "Helvetica", FontSize ->
11.996033057851239`]& ], {28.5, 69.96}, {0, 0}], InsetBox[
TagBox[
StyleBox[
TagBox["\[RightArrow]",
DisplayForm],
FontFamily->"Helvetica",
FontSize->11.996033057851239`],
StyleForm[#, FontFamily -> "Helvetica", FontSize ->
11.996033057851239`]& ], {33., 69.96}, {0, 0}], InsetBox[
TagBox[
StyleBox[
TagBox["2",
DisplayForm],
FontFamily->"Helvetica",
FontSize->11.996033057851239`],
StyleForm[#, FontFamily -> "Helvetica", FontSize ->
11.996033057851239`]& ], {37.5, 69.96}, {0, 0}]},
AspectRatio->1.0999999999999999`,
ImageSize->{288, 288},
PlotRange->{{0, 66}, {0, 72.6}}]], "Print",
CellChangeTimes->{
3.536303014900371*^9, {3.536303049773774*^9, 3.536303076500031*^9},
3.537755683760273*^9, 3.5378615231622543`*^9, 3.583232251407583*^9,
3.630407197568304*^9, 3.6304072535810947`*^9, 3.630407295789062*^9,
3.630408757403454*^9, {3.6848171199470167`*^9, 3.684817146936548*^9},
3.684817203979534*^9, 3.684818297483844*^9, 3.728643000018675*^9,
3.7332788455466413`*^9},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztXFl0m0WW/okdm5B4y742SVgEDWm62UxYGro1hA7TUQZCouzC2ZQAMdk0
LGITAcQmCCZgFrMkROFgiFgEOGAGAwacICJAIIjOnDMP8zBv8zAPPNfUV3/d
36VS6U+5uxly5jjnWJFK9d/71a2vbtW9VaUFbTs2rt/ctmPT2raZV21r27Jx
09rtM+fdvI0X1ZzgOCe8hb+ZDt4zx6EX/u/n/3obL+LD8Pvh98Pvh98Pv/9/
8H4c/ruLlUolUTrzVyttRalTw0qFLAtyjPFMzhlJZaU8S7Y6LJjIOpce4+kM
azU8neBPB2KZITw9Qpb1JMOMZsIaeg0mWZ7LQY25Q5RYzwbSMSExnu5h/X0Z
Fg1w6ZEU6x3IO5cMUVodfy2yriiXEEyJ97BTayJr39AaUQZj9bEIL4t0dLNk
iAuJH9NcRdlV2YJTK8pqWbG3g8zFuytjFnC+qDxK4O3NpFk63c26u+LioUiy
i3V387I9adaXLw72Q8rth+qwzvca4vY3wQgEArLn6niD8+JZ9y/POqIhFuvq
NQs8HobFcKlfqTvG2bvvvss++ugj9tVXX7GjR4862yRnvvnmG3b48GFJTaOA
JlG8c+dOtmHDBrZ06VK2YMEC8T8+x2Ix8d0TTzzBXnrpJZbJZMoURaWiQ4cO
sba2NpbP5yUkXZE7PibgKfE0pEAapHZ0dAgt0OaHAvVMKFZKFJ9++ilbvnw5
6+rqEo6hEkWjDwq08e9BcQ0N1J4etmTJEvbaa69xZ2dCMdmA4sCBA74oli1b
VoHi5Zdf9lDkcjmBolGi+Omnn9gXX3yB/50LZNnrr78ukL333nvOiUZks/+B
yN58880yZORn33jjDTZ9+nThmvA//+ycJxFCD+R9/PHHwj1WIjxb1GzyRbhj
x44KhNFoVJQ3Nzd70xi0w06Q+HuJYNeuXSwSibCBgQHnJCOCC+VwUhG88MIL
I6VQGF16WGeOUjWRSLCNGzeyI0eOjDbKnav0nLQPd/6u0DFjxogxpgr94Ycf
RIu2b9/Ovv/++zFGoRfLOVc3+m233cZWrFjBPvvsM+dsKRDe4oYbbmD33HMP
QDQYBV4iBQJlMBgk+/EpLM3C4TD74IMPnN8qXuH6669njz32mPQzurRLpbSr
r75amZZK7O233xZM5RxyzjCM7mYfaTWqNG/6RC+BD3v37nVOl2Xvv/++0NLd
3e20WEuska/o6FWrVrHdu3c7pxpG2FhribR2+PrrrwVv77//flBmljYo+vr6
uAxboSOl0EKhwLZu3cpuueUWViwWT5ZVH3/8cY/n462F1kmhP/74I7vzzjvZ
TTfdxL799tvpCs/BHsnzCdZyT5RlDz/8MFu7di3GlTNVCuXcFhwH1/n7idZC
R8myZ5991uP6ZCmUT1Qq1ydZCz1JloHv6GnwfaKB71OsJY6WZe+8846QyD26
2yO87JNPPhGc5/7FtYeVxDEGzo81cH6atcQGA+ebNc5zyc50a4mNGufvu+8+
0IcUvfjiix7nZ1gLbTJwnrtJsjDvF4/zv7EW2mzm/ImyGA4QLNq0aRNYdbK1
XOoRlfM0vsB58B1zKn8/01roOAPnyb1onJ9lLZTYqPp48qvclh7nT7GWOEF6
E4Xz6Gri+qnWgibKtoHq8+fPZ1dccQWofdqQBYDFoVBI/HF22wuYIKcwDlvA
RzM0Ug/BMGRqUBVmBVVHmFk9e4hMc6l69913CxJwMhAvNGLb86JF89CSrfUG
YtszmIYb2IoxhXUTB25y5vZjrUlhKzwA2EpeUmW1vVegdTaxljssrwysXrx4
sfDk9s6LXB95aM5Iz8eSJ9+zZ88QfCy1kA8Iz0OT14EnX716tfDk9vMAeVIi
O5+fJGUrPLn9BEhTqsp5GpaglsL5ydZCVfescJ7mf43z9vN/vZnz0wyct1+p
kNsH57F2uvfeewF8hoHz9msqSv8R5/mKzx2GvGz//v0e5+1Xf7Ua5/nC1Jmt
cJ5WL/aLVFpLq5yntbTKefu1NM1L4DzGIDhP6/0vv/xScP7JJ5/0Xe9XxiM8
5hAt5jGIjEcq+G4OcKqFS8R1vmSU4VIF1xuNAk0B3bRp09i6desEx3kQ5wV0
GsnNAZ1f2NnU1CRmHdT4naz3yCOPsDVr1giGm2POCyT9EE9yyrJsNiuc7EMP
PeSYomSSrNLcHCKfJWcIXXJnZyeks9tvv100Fp28cOFCtmjRIpGW2rJlizAE
Rue4ceP84n+MDFrXm+P/WXKiBgjEpATi6aefLgOBdbIO4q677mKPPvooe+65
55AfErkimIJ390hpNb/0CA2yAwcOVEmPTNLA4YmhgEulUmXgMGQ4uGaFJHpW
SR2n5qxSgwHUvn37BKgHH3ywAtR1111nA2qRYVibE241VQA89dRTAgCyIToA
cFwF8Pzzz+sAVksA5Al27txZJe/oTu6svb1dLDBJPka7Kh9OS5HvbJIK4Bm2
bduGVFqV9OrxkIweLh0uPd5KGUrvw8vU/6vSf/LWSkU20N/P+vlfvli6VK/s
t+Gbjbdiu1Z8utVQj1Y5+WyiYnNWPidqxMrqBVkmP7hCKuYyLOpuE3oTfryr
13t2bnXAlXvMGSNgfbe2lhX73O3RSKqb9fX2jMDsyav29uerYG5VMNezTCzA
y8Ksm9cvFnJsTzwk2pUtlJyLfwm8pVKBdYQdoaQzO3C7xKFgk7jzLBVyWDDZ
49m3VOhmAS4ukc3/Y7ENbljnWGcs5BIgFGPZgaJXXzVeLdUvFnmEMcDSYkc/
wNK5IRrNzEq9Xi0r9HdLZgVYV3/xlqqYaoVI2qduTWQusYFTQ33D24NB1h0T
sG6r2o18UVDsY6l4ivUVqb/6WNRxD1SY4NFz+b4sy/blhZp8jsuIBOjwg4/p
lGMBhDWjtDMYH8SqVPWw5rtFNc4biTXH4gF345+wFnpcrOD94NiA+DgdzGC5
PVHxOWfC6p4VaGAWJxA4yALr700Lg+EMyb+KZ5ssnh0QgwI0iPMVTnsoIOok
e/LODpKR72PdfH2a5iufrmTEbXhXWpb1srw8ThEIx1gy0S4GlBPuZMXqjfI7
ADGy7ABELpNisY4e2SCbgxM51hWPikAuFG5nXdmBmHy0MOiIvUddp1rPnFbR
CSzX08WiIsUYZrHkHjZQLDkVhP8VJqzh0iGVumNanLlA3++QQxLxKAKBkpLR
6u0dnE63K/WwnsenUZI9CNQRj2DbE1s+OEZxs/QcR44cEWX4jkdyIyvguAc7
aFeeh4Zb5ZPQhKgXESOPfCh3hyAHISE+0UER2m9FXHeSHJoAhcwZAg+ktJBN
QfCycuVKduONN7Jbb72VJZNJEUQBPIIqAr9CyGgsA//KK6+IungGzyJbAVmQ
CdnQAV08iqpoJE3H2Olfv349tXSztB9aescdd4gmIKjk9pXJz1r2+eefiyYj
xjp69OgW2WLEk4haEee70e14bI+KbNnBgwfFfgCyPkjUwAoI1WytgBCTW+Eq
KRZGQMqMjLB79+4yIyDnoRsBezRQDQiAwmEKaBziKN04tWbjbDIYB4kSGIc2
yhAQIyiVWczNshhdjxwkpB0+fHiaj31gVrIPQlrdPgitq9jnvF/GPuN0+9SZ
7bPexz7qjgnye1B76NChG2Ux8rSbN28WmTpe/XSDfRDKk30Q4uv2ASXJPkhB
6PbhPWM6ytNosNnevXuFzR544IG/1WYzdJudaLZZm4/NaBcc4im3TAkM1EeL
se9yrmItJDrIWkiA6NZCogQJGTyLBI2PtfyOF9Ucw2roR91qSKiqVsOWh2o1
PkYCutVOMlttlY/VpkgLUWqPe2bvVB155f379zuXSY+KUz+wGtJEutWQrtKt
Bo41NTW5y5hGkdHFDgNaiqNRli39g97SMeaWLvNpKR0SwXdI10mHvE5zyB9+
+KHzF1lGjYUBKHOMHJxEVbl6ajTDWuwD62SzK2wzu8J/Vsakni1X08kV0X6z
Gdk1Pshmm51QRHFCGBPSCS3w4f8fdTRjzWgW+KChTRR1eK8yDO9/USwkdzyc
y3X9483652v6oYf0n2kYKCsMA+VaWaZuClW0f6JZ/5U+7adNFY2+Sw30XWQD
YbIZwp98IJxjpupiharYLZdUvc4GxVQzist8UJxrpuUijZaYiTxwx0Ax3Yxi
rg+KCw10pBO4qI/1B+gYttH/G7P+C3z007aZSseFsuytt94SjvXVV191ltro
n2nW/wcf/Zea6fhXhY44P8UjEGeZDYTZZghzJARMsvF4vAzC5WY6zjfTcbkN
ilPNKM7UUKDDn3nmGYHizwY68vnhKlmMKV+h4wobFKebUZzmg2KeQkcKK66U
ZagP74gN+FU2+s8w65/lo3++gY5BhY4oAx1X2+j/rVn/DB/9fzXT8QqpDlu7
MAvoGLGBcLYZwhQfCAvNdLxMoSNWOJKO19ug+J0ZxQQfFNea6XiJmY5tNih+
b0bR4oNiiYGO5LFUOq610X+uWX+Doh87uKp+cjkqHSk9insB5B3X2eg/36yf
zo6o4VGNARO4B0zuLZF6naJlz8+RdZQygQsyyJ2ut8HsTk+NOmbT6swENiJx
EJfRXzjloS7qzpJm0U6CjIA+Dk/e+xGVrMx8kawEmAgJGhoaZPazVoQN6EcJ
b42sihCupaWl6ir4DKWLTGdLvvvuO1Fjgw0+4i/6Rd/zQlBHD67xqYdTBYiI
+J8TEK9umV5PPZ5i1d8EDsmu5ubmspZyQ4p4CjXWKhaZOnVqWb1JkyaJg1A8
IOaWw6t7MArlar0pU6Z4FraynDvyRpetI+CAVEbhcIhCVGnFOvEMhI8dO1Zl
31nya5V848ePZ/PmzQPyqA0sd3k1yrS8EQ+pA7NKAjAiYSgBgPrYHPm1OpwV
l2RlvPOkSzEtwqrE+3QfTY0JLtAmSJwCUqJfXwh+68AqEe9SZdZTFmGt5jnS
aho4xwdFlXiSIhMtJphrniPX2KCY44OiSlRHEaEaFlymTZAYbVaT8Vk++qsE
U6aw4HLDBGm1JDnTR3+VMMYUE/zJTEer5WFAg6BG6VXCiL+Y6Rg009FqkXya
D4oqC/grZbG2CKNijY4rbVCc4tMdVZbRf5Zy1XUYLd9VOlqFKrN89FdZvRL1
1LCA0loqHa0CtpN99FdZN9KpXTUmWGCmo1XwPMMHwoVmCBcpdFRigioRhFUK
YZoPiovNKGhK0Oh4jUJH3ASUdFxig0KPj1QUfzSjONdAR0raqHS0SuRM0vSb
AnVN/zlSrhoWkMWJjvv27XOs0ll+kdk8s/6zFTqWZ0xcOuLovKSjVWpxnA+E
q80QKN7X6LjCTMdrbFD4BYchM4rTzHRcZaYjTWq+ad4mHxTXmlHQfQKi465d
u7yJWaXjkNLdDT44lphx0D1ZlZa0TFJp+TdvCIz2wbTcjGm6garrzVR1DyHW
iZWXfuKZx5oj5akWhJ2GvbSLdLCjFLB6rL/aDFa9aQNSo5iTOmomtbskbBF4
EUOpeGkvGIGbemCATlBj+5mOiE+cOFEGcS14L8pMm4qWW7DuHKpaot5gCcow
rDFbYoI2sKCPV99kHljurD2+7OiEbgnT0QnVErTDi61VucNb5zNe6qRKvx1Z
096iuiOLYxea8U7VbTfSx3YbzLaj62p4BC2GO9hscAenKFZTzxLYHDiB1ars
i7coo5tC0Rapaqg7sbAWWl3FWlN1a/nlsm4wW4uuOapO62aD05pcxVp/58mL
uQbLYLtWtwwyLn6WwekkxTLNumXkJQuc7NEM0262yxiFMeQ4t8oyHM+WjtNp
8LGLfrqCds8t7LJgCHbBhRzdLsjNkF1w20japa7CLu5RMNyalfag811kD+6A
vTuckE4/DqT+YBC8Mi6fuMmNMQJ1NRIYjgq4k/XoisaqnlhtLBfrVJz3Oh7O
+Q2XDpceR6Xiastx9MOJv/T7g/hP+KAmvBNTW6NXdvDXq8TdZDYZ8rYM6uRi
P5HJu/32M277MTpCV8MyuG7RGmP9JXntoUFKYf/9byykSaFfVkSNnnKlvR2R
Yyul5SnurXSG5Xn0YIINCCiq8v/5UvzaYbnyhFl5HSv0JKXyMC4diHmmWCx5
d4nkiXpUbhxsPO6c9Ip7A+4dlaS4jDBiEEcdf/0Plgq6FUKpHiGlVCp6l2hK
RVlUcso6wb3+4p3Wb42yzEDBnUiaZBNxP6To/vEv8FovgBaUn2h0wilxNh/y
G6XgXHfc+z6ayoi7BiMNLBC48hmY0Qv5wvFO1l9QrqI3kr1//neWcNvJJ0dp
70inZzWyBz5nU+FBgK0R1pnpr9X1ez9/WexnnTGlvhNgiT29FbqTuHwRCHAT
4GpCHWttDZRdWAglur1HSHZ/poOFA8qlhnCC9RbcTlex1Mr6hf4Mi4UCisyM
1x9uBFnLiZQavAgTSw/idJe79YK5mY6Ye9ND/IVYJlfJAAomwJBMKuoJ7egr
OE1lFORdFKIrRu1dojsH1XpiBrzbcKJfijrhalihr1Nc1gnF0453B6mUZ3H5
WDyTa9LHYFJSOxDtZIXyMVgruN/VHuT9EmLpgSLJzGck/1oT4GYZCtyg63Rt
ExBXfUYoQBIaEPJAfV3trJUTPV/ugQDgP1lXxO2wWHeeAHiXWYwA6B6iI67x
ZQlAf3rwBkwym9e8KF9NZhNBt0IgyrI5eQ+LszcRIjclXF+ZNnc8ZBKhQQ4G
QywUDNB4g0/Jq45HUVlX1vUYGKFwCLajh5PyhlWFv6uVPqfA0skonqB94VB7
B67tiCbrLXQdQqE/zaJBujdUK/q2IzNATkxt3SCHcLksJ34oMV9waaAJp6rF
Ql5Uy+XyYGiNIvKXmIOdE/4XgthS5g==\
\>"],ExpressionUUID->"34831ba0-311b-4892-bf16-6501c156e4da"],
Cell[BoxData["\<\"\"\>"], "Print",
CellChangeTimes->{
3.536303014900371*^9, {3.536303049773774*^9, 3.536303076500031*^9},
3.537755683760273*^9, 3.5378615231622543`*^9, 3.583232251407583*^9,
3.630407197568304*^9, 3.6304072535810947`*^9, 3.630407295789062*^9,
3.630408757403454*^9, {3.6848171199470167`*^9, 3.684817146936548*^9},
3.684817203979534*^9, 3.684818297483844*^9, 3.728643000018675*^9,
3.733278845558504*^9},ExpressionUUID->"57d30e9e-c93a-449a-a9dd-\
60ed54437823"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"\"\>", "\[InvisibleSpace]", "\<\"loading \"\>",
"\[InvisibleSpace]", "\<\"generic\"\>",
"\[InvisibleSpace]", "\<\" model file \"\>",
"\[InvisibleSpace]", \
"\<\"/Users/misho/.ghq/github.com/misho104/FeynLecture/phi_to_four_theory_FA/\
phi_to_four_theory_FA.gen\"\>"}],
SequenceForm[
"", "loading ", "generic", " model file ",
"/Users/misho/.ghq/github.com/misho104/FeynLecture/phi_to_four_theory_FA/\
phi_to_four_theory_FA.gen"],
Editable->False]], "Print",
CellChangeTimes->{
3.536303014900371*^9, {3.536303049773774*^9, 3.536303076500031*^9},
3.537755683760273*^9, 3.5378615231622543`*^9, 3.583232251407583*^9,
3.630407197568304*^9, 3.6304072535810947`*^9, 3.630407295789062*^9,
3.630408757403454*^9, {3.6848171199470167`*^9, 3.684817146936548*^9},
3.684817203979534*^9, 3.684818297483844*^9, 3.728643000018675*^9,
3.733278845567849*^9},ExpressionUUID->"704d854b-70db-4e05-9025-\
579a4c107529"],
Cell[BoxData["\<\"> $GenericMixing is OFF\"\>"], "Print",
CellChangeTimes->{
3.536303014900371*^9, {3.536303049773774*^9, 3.536303076500031*^9},
3.537755683760273*^9, 3.5378615231622543`*^9, 3.583232251407583*^9,
3.630407197568304*^9, 3.6304072535810947`*^9, 3.630407295789062*^9,
3.630408757403454*^9, {3.6848171199470167`*^9, 3.684817146936548*^9},
3.684817203979534*^9, 3.684818297483844*^9, 3.728643000018675*^9,
3.7332788455787582`*^9},ExpressionUUID->"0497d47b-fa39-495d-9fc8-\
8019cfdec465"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"generic model \"\>", "\[InvisibleSpace]",
RowBox[{
"{", "\<\"/Users/misho/.ghq/github.com/misho104/FeynLecture/phi_to_four_\
theory_FA/phi_to_four_theory_FA\"\>", "}"}],
"\[InvisibleSpace]", "\<\" initialized\"\>"}],
SequenceForm[
"generic model ", {
"/Users/misho/.ghq/github.com/misho104/FeynLecture/phi_to_four_theory_FA/\
phi_to_four_theory_FA"}, " initialized"],
Editable->False]], "Print",
CellChangeTimes->{
3.536303014900371*^9, {3.536303049773774*^9, 3.536303076500031*^9},
3.537755683760273*^9, 3.5378615231622543`*^9, 3.583232251407583*^9,
3.630407197568304*^9, 3.6304072535810947`*^9, 3.630407295789062*^9,
3.630408757403454*^9, {3.6848171199470167`*^9, 3.684817146936548*^9},
3.684817203979534*^9, 3.684818297483844*^9, 3.728643000018675*^9,
3.733278845589985*^9},ExpressionUUID->"d351d714-7a59-4d67-a431-\
ea9bce0303e9"],
Cell[BoxData["\<\"\"\>"], "Print",
CellChangeTimes->{
3.536303014900371*^9, {3.536303049773774*^9, 3.536303076500031*^9},
3.537755683760273*^9, 3.5378615231622543`*^9, 3.583232251407583*^9,
3.630407197568304*^9, 3.6304072535810947`*^9, 3.630407295789062*^9,
3.630408757403454*^9, {3.6848171199470167`*^9, 3.684817146936548*^9},
3.684817203979534*^9, 3.684818297483844*^9, 3.728643000018675*^9,
3.733278845600614*^9},ExpressionUUID->"fb54e725-edfd-4f75-b54e-\
6d06cf3e9570"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"\"\>", "\[InvisibleSpace]", "\<\"loading \"\>",
"\[InvisibleSpace]", "\<\"classes\"\>",
"\[InvisibleSpace]", "\<\" model file \"\>",
"\[InvisibleSpace]", \
"\<\"/Users/misho/.ghq/github.com/misho104/FeynLecture/phi_to_four_theory_FA/\
phi_to_four_theory_FA.mod\"\>"}],
SequenceForm[
"", "loading ", "classes", " model file ",
"/Users/misho/.ghq/github.com/misho104/FeynLecture/phi_to_four_theory_FA/\
phi_to_four_theory_FA.mod"],
Editable->False]], "Print",
CellChangeTimes->{
3.536303014900371*^9, {3.536303049773774*^9, 3.536303076500031*^9},
3.537755683760273*^9, 3.5378615231622543`*^9, 3.583232251407583*^9,
3.630407197568304*^9, 3.6304072535810947`*^9, 3.630407295789062*^9,
3.630408757403454*^9, {3.6848171199470167`*^9, 3.684817146936548*^9},
3.684817203979534*^9, 3.684818297483844*^9, 3.728643000018675*^9,
3.73327884561152*^9},ExpressionUUID->"51353e5b-6b2e-4186-b968-\
ae9857b18f6a"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"> \"\>", "\[InvisibleSpace]", "1",
"\[InvisibleSpace]", "\<\" particles (incl. antiparticles) in \"\>",
"\[InvisibleSpace]", "1", "\[InvisibleSpace]", "\<\" classes\"\>"}],
SequenceForm["> ", 1, " particles (incl. antiparticles) in ", 1, " classes"],
Editable->False]], "Print",
CellChangeTimes->{
3.536303014900371*^9, {3.536303049773774*^9, 3.536303076500031*^9},
3.537755683760273*^9, 3.5378615231622543`*^9, 3.583232251407583*^9,
3.630407197568304*^9, 3.6304072535810947`*^9, 3.630407295789062*^9,
3.630408757403454*^9, {3.6848171199470167`*^9, 3.684817146936548*^9},
3.684817203979534*^9, 3.684818297483844*^9, 3.728643000018675*^9,
3.733278845621994*^9},ExpressionUUID->"8a86a488-0990-46cb-bdf5-\
06cc3f351e5d"],
Cell[BoxData["\<\"> $CounterTerms are ON\"\>"], "Print",
CellChangeTimes->{
3.536303014900371*^9, {3.536303049773774*^9, 3.536303076500031*^9},
3.537755683760273*^9, 3.5378615231622543`*^9, 3.583232251407583*^9,
3.630407197568304*^9, 3.6304072535810947`*^9, 3.630407295789062*^9,
3.630408757403454*^9, {3.6848171199470167`*^9, 3.684817146936548*^9},
3.684817203979534*^9, 3.684818297483844*^9, 3.728643000018675*^9,
3.733278845633264*^9},ExpressionUUID->"8dfac210-1319-44d7-979a-\
1514216ff500"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"> \"\>", "\[InvisibleSpace]", "1",
"\[InvisibleSpace]", "\<\" vertices\"\>"}],
SequenceForm["> ", 1, " vertices"],
Editable->False]], "Print",
CellChangeTimes->{
3.536303014900371*^9, {3.536303049773774*^9, 3.536303076500031*^9},
3.537755683760273*^9, 3.5378615231622543`*^9, 3.583232251407583*^9,
3.630407197568304*^9, 3.6304072535810947`*^9, 3.630407295789062*^9,
3.630408757403454*^9, {3.6848171199470167`*^9, 3.684817146936548*^9},
3.684817203979534*^9, 3.684818297483844*^9, 3.728643000018675*^9,
3.733278845643701*^9},ExpressionUUID->"28bad8f6-97e2-44c6-bed7-\
ee9010992ff0"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"classes model \"\>", "\[InvisibleSpace]",
RowBox[{
"{", "\<\"/Users/misho/.ghq/github.com/misho104/FeynLecture/phi_to_four_\
theory_FA/phi_to_four_theory_FA\"\>", "}"}],
"\[InvisibleSpace]", "\<\" initialized\"\>"}],
SequenceForm[
"classes model ", {
"/Users/misho/.ghq/github.com/misho104/FeynLecture/phi_to_four_theory_FA/\
phi_to_four_theory_FA"}, " initialized"],
Editable->False]], "Print",
CellChangeTimes->{
3.536303014900371*^9, {3.536303049773774*^9, 3.536303076500031*^9},
3.537755683760273*^9, 3.5378615231622543`*^9, 3.583232251407583*^9,
3.630407197568304*^9, 3.6304072535810947`*^9, 3.630407295789062*^9,
3.630408757403454*^9, {3.6848171199470167`*^9, 3.684817146936548*^9},
3.684817203979534*^9, 3.684818297483844*^9, 3.728643000018675*^9,
3.73327884565333*^9},ExpressionUUID->"e27d79c0-183c-4435-988a-\
b7e29c4feb02"],
Cell[BoxData["\<\"\"\>"], "Print",
CellChangeTimes->{
3.536303014900371*^9, {3.536303049773774*^9, 3.536303076500031*^9},
3.537755683760273*^9, 3.5378615231622543`*^9, 3.583232251407583*^9,
3.630407197568304*^9, 3.6304072535810947`*^9, 3.630407295789062*^9,
3.630408757403454*^9, {3.6848171199470167`*^9, 3.684817146936548*^9},
3.684817203979534*^9, 3.684818297483844*^9, 3.728643000018675*^9,
3.7332788456628428`*^9},ExpressionUUID->"471f82fb-6d1c-4153-83f6-\
beb7a027b901"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"inserting at level(s) \"\>", "\[InvisibleSpace]",
RowBox[{"{", "Classes", "}"}]}],
SequenceForm["inserting at level(s) ", {FeynArts`Classes}],
Editable->False]], "Print",
CellChangeTimes->{
3.536303014900371*^9, {3.536303049773774*^9, 3.536303076500031*^9},
3.537755683760273*^9, 3.5378615231622543`*^9, 3.583232251407583*^9,
3.630407197568304*^9, 3.6304072535810947`*^9, 3.630407295789062*^9,
3.630408757403454*^9, {3.6848171199470167`*^9, 3.684817146936548*^9},
3.684817203979534*^9, 3.684818297483844*^9, 3.728643000018675*^9,
3.733278845672224*^9},ExpressionUUID->"b563a712-0d40-431e-b4ff-\
030a9cdd096f"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"> Top. \"\>", "\[InvisibleSpace]", "1",
"\[InvisibleSpace]", "\<\": \"\>",
"\[InvisibleSpace]", "\<\"1 Classes insertion\"\>"}],
SequenceForm["> Top. ", 1, ": ", "1 Classes insertion"],
Editable->False]], "Print",
CellChangeTimes->{
3.536303014900371*^9, {3.536303049773774*^9, 3.536303076500031*^9},
3.537755683760273*^9, 3.5378615231622543`*^9, 3.583232251407583*^9,
3.630407197568304*^9, 3.6304072535810947`*^9, 3.630407295789062*^9,
3.630408757403454*^9, {3.6848171199470167`*^9, 3.684817146936548*^9},
3.684817203979534*^9, 3.684818297483844*^9, 3.728643000018675*^9,
3.7332788456809273`*^9},ExpressionUUID->"388feafe-bc47-4b8a-ad70-\
df161ed30f50"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"> Top. \"\>", "\[InvisibleSpace]", "2",
"\[InvisibleSpace]", "\<\": \"\>",
"\[InvisibleSpace]", "\<\"0 Classes insertions\"\>"}],
SequenceForm["> Top. ", 2, ": ", "0 Classes insertions"],
Editable->False]], "Print",
CellChangeTimes->{
3.536303014900371*^9, {3.536303049773774*^9, 3.536303076500031*^9},
3.537755683760273*^9, 3.5378615231622543`*^9, 3.583232251407583*^9,
3.630407197568304*^9, 3.6304072535810947`*^9, 3.630407295789062*^9,
3.630408757403454*^9, {3.6848171199470167`*^9, 3.684817146936548*^9},
3.684817203979534*^9, 3.684818297483844*^9, 3.728643000018675*^9,
3.733278845690586*^9},ExpressionUUID->"0b954324-82e5-486e-b63b-\
b678c71ce919"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"> Top. \"\>", "\[InvisibleSpace]", "3",
"\[InvisibleSpace]", "\<\": \"\>",
"\[InvisibleSpace]", "\<\"0 Classes insertions\"\>"}],
SequenceForm["> Top. ", 3, ": ", "0 Classes insertions"],
Editable->False]], "Print",
CellChangeTimes->{
3.536303014900371*^9, {3.536303049773774*^9, 3.536303076500031*^9},
3.537755683760273*^9, 3.5378615231622543`*^9, 3.583232251407583*^9,
3.630407197568304*^9, 3.6304072535810947`*^9, 3.630407295789062*^9,
3.630408757403454*^9, {3.6848171199470167`*^9, 3.684817146936548*^9},
3.684817203979534*^9, 3.684818297483844*^9, 3.728643000018675*^9,
3.7332788457001057`*^9},ExpressionUUID->"023ce018-7680-405c-be1b-\
8cfca85a9f1c"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"> Top. \"\>", "\[InvisibleSpace]", "4",
"\[InvisibleSpace]", "\<\": \"\>",
"\[InvisibleSpace]", "\<\"0 Classes insertions\"\>"}],
SequenceForm["> Top. ", 4, ": ", "0 Classes insertions"],
Editable->False]], "Print",
CellChangeTimes->{
3.536303014900371*^9, {3.536303049773774*^9, 3.536303076500031*^9},
3.537755683760273*^9, 3.5378615231622543`*^9, 3.583232251407583*^9,
3.630407197568304*^9, 3.6304072535810947`*^9, 3.630407295789062*^9,
3.630408757403454*^9, {3.6848171199470167`*^9, 3.684817146936548*^9},
3.684817203979534*^9, 3.684818297483844*^9, 3.728643000018675*^9,
3.733278845708653*^9},ExpressionUUID->"560d60bb-26ec-437d-8ea5-\
1eb0e0ebbbd9"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"in total: \"\>",
"\[InvisibleSpace]", "\<\"1 Classes insertion\"\>"}],
SequenceForm["in total: ", "1 Classes insertion"],
Editable->False]], "Print",
CellChangeTimes->{
3.536303014900371*^9, {3.536303049773774*^9, 3.536303076500031*^9},
3.537755683760273*^9, 3.5378615231622543`*^9, 3.583232251407583*^9,
3.630407197568304*^9, 3.6304072535810947`*^9, 3.630407295789062*^9,
3.630408757403454*^9, {3.6848171199470167`*^9, 3.684817146936548*^9},
3.684817203979534*^9, 3.684818297483844*^9, 3.728643000018675*^9,
3.733278845717967*^9},ExpressionUUID->"a378b567-6ee9-4a4e-861b-\
d8c8bbb314f5"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"TopologyList", "[",
RowBox[{
RowBox[{"Process", "\[Rule]",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"S", "[", "1", "]"}], ",",
RowBox[{"S", "[", "1", "]"}]}], "}"}], "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"S", "[", "1", "]"}], ",",
RowBox[{"S", "[", "1", "]"}]}], "}"}]}]}], ",",
RowBox[{"Model", "\[Rule]",
RowBox[{
"{", "\<\"/Users/misho/.ghq/github.com/misho104/FeynLecture/phi_to_four_\
theory_FA/phi_to_four_theory_FA\"\>", "}"}]}], ",",
RowBox[{"GenericModel", "\[Rule]",
RowBox[{
"{", "\<\"/Users/misho/.ghq/github.com/misho104/FeynLecture/phi_to_four_\
theory_FA/phi_to_four_theory_FA\"\>", "}"}]}], ",",
RowBox[{"InsertionLevel", "\[Rule]",
RowBox[{"{", "Classes", "}"}]}], ",",
RowBox[{"ExcludeParticles", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"ExcludeFieldPoints", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"LastSelections", "\[Rule]",
RowBox[{"{", "}"}]}]}], "]"}], "[",
RowBox[{
RowBox[{
RowBox[{"Topology", "[", "1", "]"}], "[",
RowBox[{
RowBox[{
RowBox[{"Propagator", "[", "Incoming", "]"}], "[",
RowBox[{
RowBox[{
RowBox[{"Vertex", "[", "1", "]"}], "[", "1", "]"}], ",",
RowBox[{
RowBox[{"Vertex", "[", "4", "]"}], "[", "5", "]"}], ",",
RowBox[{"Field", "[", "1", "]"}]}], "]"}], ",",
RowBox[{
RowBox[{"Propagator", "[", "Incoming", "]"}], "[",
RowBox[{
RowBox[{
RowBox[{"Vertex", "[", "1", "]"}], "[", "2", "]"}], ",",
RowBox[{
RowBox[{"Vertex", "[", "4", "]"}], "[", "5", "]"}], ",",
RowBox[{"Field", "[", "2", "]"}]}], "]"}], ",",
RowBox[{
RowBox[{"Propagator", "[", "Outgoing", "]"}], "[",
RowBox[{
RowBox[{
RowBox[{"Vertex", "[", "1", "]"}], "[", "3", "]"}], ",",
RowBox[{
RowBox[{"Vertex", "[", "4", "]"}], "[", "5", "]"}], ",",
RowBox[{"Field", "[", "3", "]"}]}], "]"}], ",",
RowBox[{
RowBox[{"Propagator", "[", "Outgoing", "]"}], "[",
RowBox[{
RowBox[{
RowBox[{"Vertex", "[", "1", "]"}], "[", "4", "]"}], ",",
RowBox[{
RowBox[{"Vertex", "[", "4", "]"}], "[", "5", "]"}], ",",
RowBox[{"Field", "[", "4", "]"}]}], "]"}]}], "]"}], "\[Rule]",
RowBox[{
RowBox[{"Insertions", "[", "Generic", "]"}], "[",
RowBox[{
RowBox[{
RowBox[{"FeynmanGraph", "[",
RowBox[{"1", ",",
RowBox[{"Generic", "\[Equal]", "1"}]}], "]"}], "[",
RowBox[{
RowBox[{
RowBox[{"Field", "[", "1", "]"}], "\[Rule]",
RowBox[{"S", "[", "1", "]"}]}], ",",
RowBox[{
RowBox[{"Field", "[", "2", "]"}], "\[Rule]",
RowBox[{"S", "[", "1", "]"}]}], ",",
RowBox[{
RowBox[{"Field", "[", "3", "]"}], "\[Rule]",
RowBox[{"S", "[", "1", "]"}]}], ",",
RowBox[{
RowBox[{"Field", "[", "4", "]"}], "\[Rule]",
RowBox[{"S", "[", "1", "]"}]}]}], "]"}], "\[Rule]",
RowBox[{
RowBox[{"Insertions", "[", "Classes", "]"}], "[",
RowBox[{
RowBox[{"FeynmanGraph", "[",
RowBox[{"1", ",",
RowBox[{"Classes", "\[Equal]", "1"}]}], "]"}], "[",
RowBox[{
RowBox[{
RowBox[{"Field", "[", "1", "]"}], "\[Rule]",
RowBox[{"S", "[", "1", "]"}]}], ",",
RowBox[{
RowBox[{"Field", "[", "2", "]"}], "\[Rule]",
RowBox[{"S", "[", "1", "]"}]}], ",",
RowBox[{
RowBox[{"Field", "[", "3", "]"}], "\[Rule]",
RowBox[{"S", "[", "1", "]"}]}], ",",
RowBox[{
RowBox[{"Field", "[", "4", "]"}], "\[Rule]",
RowBox[{"S", "[", "1", "]"}]}]}], "]"}], "]"}]}], "]"}]}],
"]"}]], "Output",
CellChangeTimes->{
3.536303015740984*^9, {3.536303050109687*^9, 3.536303076786826*^9},
3.53775568442761*^9, 3.537861524172722*^9, 3.583232251492051*^9,
3.630407197684949*^9, 3.630407253679574*^9, 3.63040729588208*^9,
3.630408757495573*^9, {3.684817120078491*^9, 3.684817146997851*^9},
3.684817204148789*^9, 3.6848182976486683`*^9, 3.7286430002354383`*^9,
3.733278845727482*^9},ExpressionUUID->"fba9dd74-48a0-44c1-bcc3-\
866448fe46a8"],
Cell[CellGroupData[{
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"> Top. \"\>", "\[InvisibleSpace]", "1",
"\[InvisibleSpace]", "\<\" \"\>",
"\[InvisibleSpace]", "\<\"aebe/cede/0.m\"\>",
"\[InvisibleSpace]", "\<\", \"\>",
"\[InvisibleSpace]", "\<\"1 diagram\"\>"}],
SequenceForm["> Top. ", 1, " ", "aebe/cede/0.m", ", ", "1 diagram"],
Editable->False]], "Print",
CellChangeTimes->{
3.536303014900371*^9, {3.536303049773774*^9, 3.536303076500031*^9},
3.537755683760273*^9, 3.5378615231622543`*^9, 3.583232251407583*^9,
3.630407197568304*^9, 3.6304072535810947`*^9, 3.630407295789062*^9,
3.630408757403454*^9, {3.6848171199470167`*^9, 3.684817146936548*^9},
3.684817203979534*^9, 3.684818297483844*^9, 3.728643000018675*^9,
3.733278845733226*^9},ExpressionUUID->"07245d16-c7bb-46b5-8d71-\
77b0d2926e35"],
Cell[BoxData[
GraphicsBox[{InsetBox[
GraphicsBox[
TagBox[
TooltipBox[
{Thickness[0.005],
LineBox[{{-9.094947017729282*^-12, 15.000000000003638`}, {
9.999999999983629, 10.000000000007276`}}], InsetBox[
TagBox[
StyleBox[
TagBox["phi",
DisplayForm],
FontFamily->"Helvetica",
FontSize->9.996694214876033],
StyleForm[#, FontFamily -> "Helvetica", FontSize ->
9.996694214876033]& ], {5.0234223258500545, 11.942044651700108}, \
{1, 1}], LineBox[{{-9.094947017729282*^-12, 4.999999999996362}, {
9.999999999985448, 9.999999999989086}}], InsetBox[
TagBox[
StyleBox[
TagBox["phi",
DisplayForm],
FontFamily->"Helvetica",
FontSize->9.996694214876033],
StyleForm[#, FontFamily -> "Helvetica", FontSize ->
9.996694214876033]& ], {4.9765776741499455, 6.942044651700109}, \
{-1, 1}],
LineBox[{{20.000000000009095`, 15.000000000003638`}, {
10.000000000009095`, 10.000000000003638`}}], InsetBox[
TagBox[
StyleBox[
TagBox["phi",
DisplayForm],
FontFamily->"Helvetica",
FontSize->9.996694214876033],
StyleForm[#, FontFamily -> "Helvetica", FontSize ->
9.996694214876033]& ], {15.023422325850053, 13.057955348299892}, \
{1, -1}], LineBox[{{20., 5.}, {10., 10.}}], InsetBox[
TagBox[
StyleBox[
TagBox["phi",
DisplayForm],
FontFamily->"Helvetica",
FontSize->9.996694214876033],
StyleForm[#, FontFamily -> "Helvetica", FontSize ->
9.996694214876033]& ], {14.976577674149944, 8.057955348299892}, \
{-1, -1}],
{PointSize[0.04], PointBox[{10., 10.}]}, InsetBox[
TagBox[
StyleBox[
TagBox[
RowBox[{"T1", " ", "C1", " ", "N1"}],
DisplayForm],
FontFamily->"Helvetica",
FontSize->7.997355371900827],
StyleForm[#, FontFamily -> "Helvetica", FontSize ->
7.997355371900827]& ], {10., -0.5}, {0, -1}]},
"\"aebe/cede/0.m\"",
TooltipStyle->"TextStyling"],
Annotation[#, "aebe/cede/0.m", "Tooltip"]& ],
AspectRatio->1,
PlotRange->{{-1, 21}, {-1, 21}}], {0, 44}, {0, 0}, {22, 22}], InsetBox[
TagBox[