forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathForeachReduceOp.cu
190 lines (172 loc) · 6.79 KB
/
ForeachReduceOp.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/Dispatch.h>
#include <ATen/AccumulateType.h>
#include <ATen/OpMathType.h>
#include <ATen/cuda/DeviceUtils.cuh>
#include <ATen/native/ForeachUtils.h>
#include <ATen/native/cuda/block_reduce.cuh>
#include <ATen/native/cuda/ForeachFunctors.cuh>
#include <ATen/native/cuda/MultiTensorApply.cuh>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/_foreach_norm_native.h>
#include <ATen/ops/zeros.h>
#include <ATen/ops/empty.h>
#endif
namespace at {
namespace native {
template<typename T, int NormType, int depth=1, int r_args_depth=1, int res_arg_index=0>
struct LpNormFunctor {
static_assert(NormType == 1 || NormType == 2, "foreach_norm supports only L1 and L2 norm");
using opmath_t = typename at::opmath_type<T>;
__device__ __forceinline__ void operator() (
int chunk_size,
TensorListMetadata<depth>& tl,
opmath_t* output_per_tensor,
const int max_chunks_per_tensor
) {
int tensor_loc = tl.block_to_tensor[blockIdx.x];
int chunk_idx = tl.block_to_chunk[blockIdx.x];
int n = tl.numel_for_tensor[tensor_loc];
T* x = (T*)tl.addresses[0][tensor_loc];
x += chunk_idx * chunk_size;
n -= chunk_idx * chunk_size;
__shared__ opmath_t s_vals[512];
opmath_t vals[kILP];
T r_x[kILP];
for (int i = 0; i < kILP; i++) {
vals[i] = opmath_t(0);
r_x[i] = T(0);
}
if (n % kILP == 0 && (chunk_size & kILP) == 0 && is_aligned(x)) {
for (int i_start = threadIdx.x; i_start * kILP < n && i_start * kILP < chunk_size; i_start += blockDim.x) {
// load
load_store(r_x, x, 0, i_start);
#pragma unroll
for (int ii = 0; ii < kILP; ii++) {
opmath_t next = static_cast<opmath_t>(r_x[ii]);
vals[ii] += NormType == 1 ? ::abs(next) : next * next;
}
}
} else {
for (int i_start = 0; i_start < n && i_start < chunk_size; i_start += blockDim.x * kILP) {
#pragma unroll
for (int ii = 0; ii < kILP; ii++) {
int i = i_start + threadIdx.x + ii * blockDim.x;
if (i < n && i < chunk_size) {
opmath_t next = static_cast<opmath_t>(x[i]);
vals[ii] += NormType == 1 ? ::abs(next) : next * next;
}
}
}
}
auto val = opmath_t(0);
for (int i = 0; i < kILP; i++) {
val += vals[i];
}
auto final = at::native::cuda_utils::BlockReduceSum(val, s_vals);
if (threadIdx.x == 0) {
output_per_tensor[(tl.start_tensor_this_launch + tensor_loc) * max_chunks_per_tensor + chunk_idx] = final;
}
}
};
template<typename T, int NormType, typename opmath_t = at::opmath_type<T>>
__global__ void lpnorm_cleanup(
opmath_t* output_per_tensor,
T* ret_per_tensor,
int max_chunks_per_tensor) {
__shared__ opmath_t vals[512];
opmath_t* output_this_tensor = output_per_tensor + blockIdx.x*max_chunks_per_tensor;
opmath_t val = 0;
for (int i = threadIdx.x; i < max_chunks_per_tensor; i += blockDim.x) {
val += output_this_tensor[i];
}
opmath_t final = at::native::cuda_utils::BlockReduceSum<opmath_t>(val, vals);
if(threadIdx.x == 0) {
ret_per_tensor[blockIdx.x] = NormType == 1 ? final : ::sqrt(final);
}
}
// note(mkozuki): Why excluding Int and Complex from fast path
// - Int: at::norm does not support.
// - Complex: __shfl_down_sync does not support complex and foreach does not support functions whose inputs dtypes and output dtype are different.
std::vector<Tensor> foreach_tensor_norm_cuda(TensorList tensors, const Scalar& ord) {
double p;
if (ord.isIntegral(false)) {
p = ord.to<int64_t>();
} else if (ord.isFloatingPoint()) {
p = ord.to<double>();
} else {
AT_ERROR("foreach_tensor_norm_cuda expects ord to be integer or float");
}
check_foreach_api_restrictions(tensors);
const bool has_int_or_complex = std::any_of(tensors.begin(), tensors.end(), [](const auto & t) {
const auto scalar_type = t.scalar_type();
return at::isIntegralType(scalar_type, /*includeBool*/true) || at::isComplexType(scalar_type);
});
if (!can_use_fast_route(tensors) ||
has_int_or_complex ||
!(p == static_cast<double>(1) || p == static_cast<double>(2))) {
return foreach_tensor_norm_slow(tensors, ord);
}
const int ntensors = tensors.size();
int max_chunks_per_tensor = -1;
for (int t = 0; t < ntensors; t++) {
int max_chunks_this_tensor = (tensors[0][t].numel() + kChunkSize - 1) / kChunkSize;
if(max_chunks_this_tensor > max_chunks_per_tensor) {
max_chunks_per_tensor = max_chunks_this_tensor;
}
}
const auto options = tensors[0].options();
auto output_per_tensor = at::zeros({ntensors*max_chunks_per_tensor}, options.dtype(toOpMathType(tensors[0].scalar_type())));
auto ret_per_tensor = at::empty({ntensors}, options);
auto tensor_lists = std::vector<std::vector<Tensor>>{tensors.vec()};
if (p == static_cast<double>(1)) {
AT_DISPATCH_FLOATING_TYPES_AND2(
kHalf, kBFloat16, tensor_lists[0][0].scalar_type(), "foreach_tensor_norm_cuda", [&]() {
using opmath_t = typename at::opmath_type<scalar_t>;
multi_tensor_apply<1>(
tensor_lists,
LpNormFunctor<scalar_t, 1>(),
output_per_tensor.data_ptr<opmath_t>(),
max_chunks_per_tensor);
C10_CUDA_KERNEL_LAUNCH_CHECK();
const at::cuda::OptionalCUDAGuard device_guard(device_of(output_per_tensor));
auto stream = at::cuda::getCurrentCUDAStream();
lpnorm_cleanup<scalar_t, 1><<<ntensors, 512, 0, stream>>>(
output_per_tensor.data_ptr<opmath_t>(),
ret_per_tensor.data_ptr<scalar_t>(),
max_chunks_per_tensor);
C10_CUDA_KERNEL_LAUNCH_CHECK();
});
} else if (p == static_cast<double>(2)) {
AT_DISPATCH_FLOATING_TYPES_AND2(
kHalf, kBFloat16, tensor_lists[0][0].scalar_type(), "foreach_tensor_norm_cuda", [&]() {
using opmath_t = typename at::opmath_type<scalar_t>;
multi_tensor_apply<1>(
tensor_lists,
LpNormFunctor<scalar_t, 2>(),
output_per_tensor.data_ptr<opmath_t>(),
max_chunks_per_tensor);
C10_CUDA_KERNEL_LAUNCH_CHECK();
const at::cuda::OptionalCUDAGuard device_guard(device_of(output_per_tensor));
auto stream = at::cuda::getCurrentCUDAStream();
lpnorm_cleanup<scalar_t, 2><<<ntensors, 512, 0, stream>>>(
output_per_tensor.data_ptr<opmath_t>(),
ret_per_tensor.data_ptr<scalar_t>(),
max_chunks_per_tensor);
C10_CUDA_KERNEL_LAUNCH_CHECK();
});
} else {
AT_ERROR("foreach_tensor_norm_cuda fast path got unexpected ord value: ", p);
}
std::vector<Tensor> result;
result.reserve(ntensors);
for (const auto& i : c10::irange(ntensors)) {
result.emplace_back(ret_per_tensor[i]);
}
return result;
}
} // namespace native
} // namespace at