forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
CuFFTPlanCache.h
532 lines (462 loc) · 18.9 KB
/
CuFFTPlanCache.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
#include <ATen/Config.h>
#include <ATen/core/DimVector.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/native/cuda/CuFFTUtils.h>
#include <ATen/native/utils/ParamsHash.h>
#include <c10/util/accumulate.h>
#include <c10/util/irange.h>
#include <cufft.h>
#include <cufftXt.h>
#include <limits>
#include <list>
#include <sstream>
#include <stdexcept>
#include <string>
#include <unordered_map>
namespace at { namespace native { namespace detail {
// Enum representing the FFT type
enum class CuFFTTransformType : int8_t {
C2C, // Complex-to-complex
R2C, // Real-to-complex
C2R, // Complex-to-real
};
// This struct is used to let us easily compute hashes of the
// parameters.
// It will be the **key** to the plan cache.
struct CuFFTParams
{
int64_t signal_ndim_; // between 1 and max_rank, i.e., 1 <= signal_ndim <= 3
// These include additional batch dimension as well.
int64_t sizes_[max_rank + 1];
int64_t input_strides_[max_rank + 1];
int64_t output_strides_[max_rank + 1];
CuFFTTransformType fft_type_;
ScalarType value_type_;
CuFFTParams() = default;
CuFFTParams(IntArrayRef in_strides, IntArrayRef out_strides,
IntArrayRef signal_sizes, CuFFTTransformType fft_type, ScalarType value_type) {
// Padding bits must be zeroed for hashing
memset(this, 0, sizeof(*this));
signal_ndim_ = signal_sizes.size() - 1;
fft_type_ = fft_type;
value_type_ = value_type;
TORCH_INTERNAL_ASSERT(in_strides.size() == signal_sizes.size());
TORCH_INTERNAL_ASSERT(out_strides.size() == signal_sizes.size());
TORCH_INTERNAL_ASSERT(1 <= signal_ndim_ && signal_ndim_ <= max_rank);
std::copy(signal_sizes.cbegin(), signal_sizes.cend(), sizes_);
std::copy(in_strides.cbegin(), in_strides.cend(), input_strides_);
std::copy(out_strides.cbegin(), out_strides.cend(), output_strides_);
}
};
static_assert(std::is_trivial<CuFFTParams>::value, "");
// Returns true if the transform type has complex input
inline bool cufft_complex_input(CuFFTTransformType type) {
switch (type) {
case CuFFTTransformType::C2C:
case CuFFTTransformType::C2R:
return true;
case CuFFTTransformType::R2C:
return false;
}
TORCH_INTERNAL_ASSERT(false);
}
// Returns true if the transform type has complex output
inline bool cufft_complex_output(CuFFTTransformType type) {
switch (type) {
case CuFFTTransformType::C2C:
case CuFFTTransformType::R2C:
return true;
case CuFFTTransformType::C2R:
return false;
}
TORCH_INTERNAL_ASSERT(false);
}
// Create transform type enum from bools representing if input and output are complex
inline CuFFTTransformType GetCuFFTTransformType(bool complex_input, bool complex_output) {
if (complex_input && complex_output) {
return CuFFTTransformType::C2C;
} else if (complex_input && !complex_output) {
return CuFFTTransformType::C2R;
} else if (!complex_input && complex_output) {
return CuFFTTransformType::R2C;
}
TORCH_INTERNAL_ASSERT(false, "Real to real FFTs are not supported");
}
class CuFFTHandle {
::cufftHandle handle_;
public:
CuFFTHandle() {
CUFFT_CHECK(cufftCreate(&handle_));
}
::cufftHandle & get() { return handle_; }
const ::cufftHandle & get() const { return handle_; }
~CuFFTHandle() {
// Not using fftDestroy() for rocFFT to work around double freeing of handles
#if !defined(USE_ROCM)
cufftDestroy(handle_);
#endif
}
};
__forceinline__
static bool is_pow_of_two(int64_t x) {
return (x & (x - 1)) == 0;
}
#if defined(USE_ROCM)
using cufft_size_type = int;
#else
using cufft_size_type = long long int;
#endif
using CuFFTDimVector = c10::SmallVector<cufft_size_type, at::kDimVectorStaticSize>;
// Struct representing a tensor in CuFFT's data layout for planning transforms
// See NOTE [ cuFFT Embedded Strides ].
struct CuFFTDataLayout {
CuFFTDimVector embed;
cufft_size_type stride, dist;
bool must_clone, simple;
};
// Returns a cufft embedding for a contiguous signal of the given size.
// e.g. if the input is cloned, this will be the resulting data layout
// See NOTE [ cuFFT Embedded Strides ].
inline CuFFTDataLayout cufft_simple_embed(IntArrayRef sizes, bool onesided) {
CuFFTDataLayout layout;
layout.simple = true;
layout.must_clone = false;
layout.embed.assign(sizes.cbegin() + 1, sizes.cend());
if (onesided) {
layout.embed.back() = sizes.back() / 2 + 1;
}
layout.stride = 1;
layout.dist = 1;
for (const auto& len : layout.embed) {
layout.dist *= len;
}
return layout;
}
// Convert strides to a CuFFT embedded representation.
// If strides cannot be embedded, returns a simple layout and sets must_clone flag
// See NOTE [ cuFFT Embedded Strides ].
inline CuFFTDataLayout as_cufft_embed(IntArrayRef strides, IntArrayRef sizes, bool onesided) {
const auto signal_ndim = strides.size() - 1;
CuFFTDataLayout layout;
auto last_stride = strides[signal_ndim];
layout.must_clone = (last_stride <= 0);
const auto last_dim_size = onesided ?
sizes[signal_ndim] / 2 + 1 : sizes[signal_ndim];
const auto signal_numel = c10::multiply_integers(sizes.slice(1, sizes.size() - 2)) * last_dim_size;
// Zero stides are not allowed, even if the batch size is one.
// If that happens just set a dummy case
if (sizes[0] == 1) {
layout.dist = signal_numel;
} else if (strides[0] == 0) {
layout.must_clone = true;
} else {
layout.dist = strides[0];
}
// Calculate the embedding shape, or set must_clone if the strides cannot be embedded
layout.embed.resize(signal_ndim);
for (auto i = signal_ndim - 1; !layout.must_clone && i > 0; i--) {
auto stride = strides[i];
if (sizes[i] == 1) {
layout.embed[i] = 1;
} else if (stride > 0 && stride % last_stride == 0) {
layout.embed[i] = stride / last_stride;
last_stride = stride;
} else {
layout.must_clone = true;
}
}
if (layout.must_clone) {
// If the input needs to be cloned, assume it will be contiguous
layout = cufft_simple_embed(sizes, onesided);
layout.must_clone = true;
} else {
layout.embed[0] = sizes[1];
layout.stride = strides[signal_ndim];
// Determine if layout represents a simple embedding (contiguous data)
layout.simple = [&] {
for (const auto i : c10::irange(1, signal_ndim - 1)) {
if (layout.embed[i] != sizes[i + 1]) {
return false;
}
}
return (layout.stride == 1 && layout.dist == signal_numel &&
layout.embed.back() == last_dim_size);
}();
}
return layout;
}
// This class contains all the information needed to execute a cuFFT plan:
// 1. the plan
// 2. whether to clone input before executing the plan
// 3. the workspace size needed
//
// This class will be the **value** in the plan cache.
// It **owns** the raw plan via a unique_ptr.
class CuFFTConfig {
public:
// Only move semantics is enought for this class. Although we already use
// unique_ptr for the plan, still remove copy constructor and assignment op so
// we don't accidentally copy and take perf hit.
CuFFTConfig(const CuFFTConfig&) = delete;
CuFFTConfig& operator=(CuFFTConfig const&) = delete;
explicit CuFFTConfig(const CuFFTParams& params):
CuFFTConfig(
IntArrayRef(params.input_strides_, params.signal_ndim_ + 1),
IntArrayRef(params.output_strides_, params.signal_ndim_ + 1),
IntArrayRef(params.sizes_, params.signal_ndim_ + 1),
params.fft_type_,
params.value_type_) {}
// For complex types, strides are in units of 2 * element_size(dtype)
// sizes are for the full signal, including batch size and always two-sided
CuFFTConfig(IntArrayRef in_strides, IntArrayRef out_strides,
IntArrayRef sizes, CuFFTTransformType fft_type, ScalarType dtype):
fft_type_(fft_type), value_type_(dtype) {
// signal sizes (excluding batch dim)
CuFFTDimVector signal_sizes(sizes.begin() + 1, sizes.end());
// input batch size
const int64_t batch = sizes[0];
const int64_t signal_ndim = sizes.size() - 1;
// Since cuFFT has limited non-unit stride support and various constraints, we
// use a flag to keep track throughout this function to see if we need to
// input = input.clone();
#if defined(USE_ROCM)
// clone input to avoid issues with hipfft clobering the input and failing tests
clone_input = true;
#else
clone_input = false;
#endif
// For half, base strides on the real part of real-to-complex and
// complex-to-real transforms are not supported. Since our output is always
// contiguous, only need to check real-to-complex case.
if (dtype == ScalarType::Half) {
// cuFFT on half requires compute capability of at least SM_53
auto dev_prop = at::cuda::getCurrentDeviceProperties();
TORCH_CHECK(dev_prop->major >= 5 && !(dev_prop->major == 5 && dev_prop->minor < 3),
"cuFFT doesn't support signals of half type with compute "
"capability less than SM_53, but the device containing input half "
"tensor only has SM_", dev_prop->major, dev_prop->minor);
for (const auto i : c10::irange(signal_ndim)) {
TORCH_CHECK(is_pow_of_two(sizes[i + 1]),
"cuFFT only supports dimensions whose sizes are powers of two when"
" computing in half precision, but got a signal size of",
sizes.slice(1));
}
clone_input |= in_strides.back() != 1;
}
CuFFTDataLayout in_layout;
if (clone_input) {
in_layout = cufft_simple_embed(sizes, fft_type == CuFFTTransformType::C2R);
} else {
in_layout = as_cufft_embed(in_strides, sizes, fft_type == CuFFTTransformType::C2R);
}
auto out_layout = as_cufft_embed(out_strides, sizes, fft_type == CuFFTTransformType::R2C);
TORCH_INTERNAL_ASSERT(!out_layout.must_clone, "Out strides cannot be represented as CuFFT embedding");
clone_input |= in_layout.must_clone;
// Check if we can take advantage of simple data layout.
//
// See NOTE [ cuFFT Embedded Strides ] in native/cuda/SpectralOps.cu.
const bool simple_layout = in_layout.simple && out_layout.simple;
#if defined(USE_ROCM)
hipfftType exec_type = [&]{
if (dtype == kFloat) {
switch (fft_type) {
case CuFFTTransformType::C2C: return HIPFFT_C2C;
case CuFFTTransformType::R2C: return HIPFFT_R2C;
case CuFFTTransformType::C2R: return HIPFFT_C2R;
}
} else if (dtype == kDouble) {
switch (fft_type) {
case CuFFTTransformType::C2C: return HIPFFT_Z2Z;
case CuFFTTransformType::R2C: return HIPFFT_D2Z;
case CuFFTTransformType::C2R: return HIPFFT_Z2D;
}
}
TORCH_CHECK(false, "hipFFT doesn't support transforms of type: ", dtype);
}();
#else
cudaDataType itype, otype, exec_type;
const auto complex_input = cufft_complex_input(fft_type);
const auto complex_output = cufft_complex_output(fft_type);
if (dtype == ScalarType::Float) {
itype = complex_input ? CUDA_C_32F : CUDA_R_32F;
otype = complex_output ? CUDA_C_32F : CUDA_R_32F;
exec_type = CUDA_C_32F;
} else if (dtype == ScalarType::Double) {
itype = complex_input ? CUDA_C_64F : CUDA_R_64F;
otype = complex_output ? CUDA_C_64F : CUDA_R_64F;
exec_type = CUDA_C_64F;
} else if (dtype == ScalarType::Half) {
itype = complex_input ? CUDA_C_16F : CUDA_R_16F;
otype = complex_output ? CUDA_C_16F : CUDA_R_16F;
exec_type = CUDA_C_16F;
} else {
TORCH_CHECK(false, "cuFFT doesn't support tensor of type: ", dtype);
}
#endif
// disable auto allocation of workspace to use THC allocator
CUFFT_CHECK(cufftSetAutoAllocation(plan(), /* autoAllocate */ 0));
size_t ws_size_t;
// make plan
if (simple_layout) {
// If with unit-stride, we tell cuFFT by setting inembed == onembed == NULL.
// In such case, cuFFT ignores istride, ostride, idist, and odist
// by assuming istride = ostride = 1.
//
// See NOTE [ cuFFT Embedded Strides ] in native/cuda/SpectralOps.cu.
#if defined(USE_ROCM)
CUFFT_CHECK(hipfftMakePlanMany(plan(), signal_ndim, signal_sizes.data(),
/* inembed */ nullptr, /* base_istride */ 1, /* idist */ 1,
/* onembed */ nullptr, /* base_ostride */ 1, /* odist */ 1,
exec_type, batch, &ws_size_t));
#else
CUFFT_CHECK(cufftXtMakePlanMany(plan(), signal_ndim, signal_sizes.data(),
/* inembed */ nullptr, /* base_istride */ 1, /* idist */ 1, itype,
/* onembed */ nullptr, /* base_ostride */ 1, /* odist */ 1, otype,
batch, &ws_size_t, exec_type));
#endif
} else {
#if defined(USE_ROCM)
CUFFT_CHECK(hipfftMakePlanMany(plan(), signal_ndim, signal_sizes.data(),
in_layout.embed.data(), in_layout.stride, in_layout.dist,
out_layout.embed.data(), out_layout.stride, out_layout.dist,
exec_type, batch, &ws_size_t));
#else
CUFFT_CHECK(cufftXtMakePlanMany(plan(), signal_ndim, signal_sizes.data(),
in_layout.embed.data(), in_layout.stride, in_layout.dist, itype,
out_layout.embed.data(), out_layout.stride, out_layout.dist, otype,
batch, &ws_size_t, exec_type));
#endif
}
ws_size = static_cast<int64_t>(ws_size_t);
}
const cufftHandle &plan() const { return plan_ptr.get(); }
CuFFTTransformType transform_type() const { return fft_type_; }
ScalarType data_type() const { return value_type_; }
bool should_clone_input() const { return clone_input; }
int64_t workspace_size() const { return ws_size; }
private:
CuFFTHandle plan_ptr;
bool clone_input;
int64_t ws_size;
CuFFTTransformType fft_type_;
ScalarType value_type_;
};
#if (defined(CUDA_VERSION) && CUDA_VERSION < 10000) || defined(USE_ROCM)
// Note that the max plan number for CUDA version < 10 has to be 1023
// due to a bug that fails on the 1024th plan
constexpr int64_t CUFFT_MAX_PLAN_NUM = 1023;
constexpr int64_t CUFFT_DEFAULT_CACHE_SIZE = CUFFT_MAX_PLAN_NUM;
#else
constexpr int64_t CUFFT_MAX_PLAN_NUM = std::numeric_limits<int64_t>::max();
// The default max cache size chosen for CUDA version > 10 is arbitrary.
// This number puts a limit on how big of a plan cache should we maintain by
// default. Users can always configure it via cufft_set_plan_cache_max_size.
constexpr int64_t CUFFT_DEFAULT_CACHE_SIZE = 4096;
#endif
static_assert(0 <= CUFFT_MAX_PLAN_NUM && CUFFT_MAX_PLAN_NUM <= std::numeric_limits<int64_t>::max(),
"CUFFT_MAX_PLAN_NUM not in size_t range");
static_assert(CUFFT_DEFAULT_CACHE_SIZE >= 0 && CUFFT_DEFAULT_CACHE_SIZE <= CUFFT_MAX_PLAN_NUM,
"CUFFT_DEFAULT_CACHE_SIZE not in [0, CUFFT_MAX_PLAN_NUM] range");
// This cache assumes that the mapping from key to value never changes.
// This is **NOT** thread-safe. Please use a mutex when using it **AND** the
// value returned from try_emplace_value.
// The contract of using this cache is that try_emplace_value should only be
// used when the max_size is positive.
class CuFFTParamsLRUCache {
public:
using kv_t = typename std::pair<CuFFTParams, CuFFTConfig>;
using map_t = typename std::unordered_map<std::reference_wrapper<CuFFTParams>,
typename std::list<kv_t>::iterator,
ParamsHash<CuFFTParams>,
ParamsEqual<CuFFTParams>>;
using map_kkv_iter_t = typename map_t::iterator;
CuFFTParamsLRUCache() : CuFFTParamsLRUCache(CUFFT_DEFAULT_CACHE_SIZE) {}
CuFFTParamsLRUCache(int64_t max_size) {
_set_max_size(max_size);
}
CuFFTParamsLRUCache(CuFFTParamsLRUCache&& other) noexcept :
_usage_list(std::move(other._usage_list)),
_cache_map(std::move(other._cache_map)),
_max_size(other._max_size) {}
CuFFTParamsLRUCache& operator=(CuFFTParamsLRUCache&& other) noexcept {
_usage_list = std::move(other._usage_list);
_cache_map = std::move(other._cache_map);
_max_size = other._max_size;
return *this;
}
// If key is in this cache, return the cached config. Otherwise, emplace the
// config in this cache and return it.
// Return const reference because CuFFTConfig shouldn't be tampered with once
// created.
const CuFFTConfig &lookup(CuFFTParams params) {
AT_ASSERT(_max_size > 0);
map_kkv_iter_t map_it = _cache_map.find(params);
// Hit, put to list front
if (map_it != _cache_map.end()) {
_usage_list.splice(_usage_list.begin(), _usage_list, map_it->second);
return map_it->second->second;
}
// Miss
// remove if needed
if (_usage_list.size() >= _max_size) {
auto last = _usage_list.end();
last--;
_cache_map.erase(last->first);
_usage_list.pop_back();
}
// construct new plan at list front, then insert into _cache_map
_usage_list.emplace_front(std::piecewise_construct,
std::forward_as_tuple(params),
std::forward_as_tuple(params));
auto kv_it = _usage_list.begin();
_cache_map.emplace(std::piecewise_construct,
std::forward_as_tuple(kv_it->first),
std::forward_as_tuple(kv_it));
return kv_it->second;
}
void clear() {
_cache_map.clear();
_usage_list.clear();
}
void resize(int64_t new_size) {
_set_max_size(new_size);
auto cur_size = _usage_list.size();
if (cur_size > _max_size) {
auto delete_it = _usage_list.end();
for (size_t i = 0; i < cur_size - _max_size; i++) {
delete_it--;
_cache_map.erase(delete_it->first);
}
_usage_list.erase(delete_it, _usage_list.end());
}
}
size_t size() const { return _cache_map.size(); }
size_t max_size() const noexcept { return _max_size; }
std::mutex mutex;
private:
// Only sets size and does value check. Does not resize the data structures.
void _set_max_size(int64_t new_size) {
// We check that 0 <= new_size <= CUFFT_MAX_PLAN_NUM here. Since
// CUFFT_MAX_PLAN_NUM is of type size_t, we need to do non-negativity check
// first.
TORCH_CHECK(new_size >= 0,
"cuFFT plan cache size must be non-negative, but got ", new_size);
TORCH_CHECK(new_size <= CUFFT_MAX_PLAN_NUM,
"cuFFT plan cache size can not be larger than ", CUFFT_MAX_PLAN_NUM, ", but got ", new_size);
_max_size = static_cast<size_t>(new_size);
}
std::list<kv_t> _usage_list;
map_t _cache_map;
size_t _max_size;
};
// Since ATen is separated into CPU build and CUDA build, we need a way to call
// these functions only when CUDA is loaded. We use CUDA hooks for this purpose
// (at cuda/detail/CUDAHooks.cpp), and call the hooked functions from the actual
// native function counterparts (at native/SpectralOps.cpp), i.e.,
// _cufft_get_plan_cache_max_size, _cufft_set_plan_cache_max_size
// _cufft_get_plan_cache_size, and _cufft_clear_plan_cache.
int64_t cufft_get_plan_cache_max_size_impl(int64_t device_index);
void cufft_set_plan_cache_max_size_impl(int64_t device_index, int64_t max_size);
int64_t cufft_get_plan_cache_size_impl(int64_t device_index);
void cufft_clear_plan_cache_impl(int64_t device_index);
}}} // namespace at::native::detail