forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
CompareEQKernel.cu
50 lines (39 loc) · 1.36 KB
/
CompareEQKernel.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
#define TORCH_ASSERT_NO_OPERATORS
#include <ATen/Dispatch.h>
#include <ATen/native/BinaryOps.h>
#include <ATen/native/DispatchStub.h>
#include <ATen/native/TensorIterator.h>
#include <ATen/native/cuda/Loops.cuh>
// NOTE: CUDA on Windows requires that the enclosing function
// of a __device__ lambda not have internal linkage.
namespace at { namespace native { namespace {
enum class EqOpType {EQ, NE};
template<typename scalar_t>
struct CompareEqFunctor{
CompareEqFunctor(EqOpType op): op_(op) {}
const EqOpType op_;
__device__ __forceinline__ bool operator() (scalar_t a, scalar_t b) const {
if (op_ == EqOpType::EQ) {
return a == b;
} else { //NE
return a != b;
}
}
};
}
C10_NOINLINE void compare_eq_ne_kernel(TensorIteratorBase &iter, EqOpType op) {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND4(kComplexHalf, kHalf, kBFloat16, kBool,
iter.common_dtype(), "compare_eq_ne_cuda", [&]() {
opmath_symmetric_gpu_kernel_with_scalars<scalar_t, bool>(
iter, CompareEqFunctor<scalar_t>(op));
});
}
void eq_kernel_cuda(TensorIteratorBase& iter) {
compare_eq_ne_kernel(iter, EqOpType::EQ);
}
void ne_kernel_cuda(TensorIteratorBase& iter) {
compare_eq_ne_kernel(iter, EqOpType::NE);
}
REGISTER_DISPATCH(eq_stub, &eq_kernel_cuda);
REGISTER_DISPATCH(ne_stub, &ne_kernel_cuda);
}} // namespace at::native