forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathActivationEluKernel.cu
88 lines (78 loc) · 2.56 KB
/
ActivationEluKernel.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
#define TORCH_ASSERT_NO_OPERATORS
#define _USE_MATH_DEFINES
#include <ATen/native/Activation.h>
#include <cmath>
#include <thrust/tuple.h>
#include <ATen/AccumulateType.h>
#include <ATen/Dispatch.h>
#include <ATen/core/TensorBase.h>
#include <c10/core/Scalar.h>
#include <c10/cuda/CUDAMathCompat.h>
#include <ATen/cuda/ApplyGridUtils.cuh>
#include <ATen/cuda/detail/OffsetCalculator.cuh>
#include <ATen/native/cuda/Loops.cuh>
namespace at {
namespace native {
namespace {
void elu_kernel(
TensorIteratorBase& iter,
const Scalar& alpha,
const Scalar& scale,
const Scalar& input_scale) {
AT_DISPATCH_FLOATING_TYPES_AND2(
at::ScalarType::Half,
at::ScalarType::BFloat16,
iter.dtype(),
"elu_cuda",
[&]() {
using opmath_t = at::opmath_type<scalar_t>;
auto negcoef = alpha.to<opmath_t>() * scale.to<opmath_t>();
auto poscoef = scale.to<opmath_t>();
auto negiptcoef = input_scale.to<opmath_t>();
gpu_kernel(
iter,
[negcoef, poscoef, negiptcoef] GPU_LAMBDA(scalar_t a) -> scalar_t {
opmath_t aop = static_cast<opmath_t>(a);
return aop > 0 ? aop * poscoef
: std::expm1(aop * negiptcoef) * negcoef;
});
});
}
void elu_backward_kernel(
TensorIteratorBase& iter,
const Scalar& alpha,
const Scalar& scale,
const Scalar& input_scale,
bool is_result) {
AT_DISPATCH_FLOATING_TYPES_AND2(
at::ScalarType::Half,
at::ScalarType::BFloat16,
iter.dtype(),
"elu_backward_cuda",
[&]() {
using opmath_t = at::opmath_type<scalar_t>;
auto negcoef = alpha.to<opmath_t>() * scale.to<opmath_t>();
auto poscoef = scale.to<opmath_t>();
auto negiptcoef = input_scale.to<opmath_t>();
gpu_kernel(
iter,
[negcoef, poscoef, negiptcoef, is_result] GPU_LAMBDA(
scalar_t a, scalar_t b) -> scalar_t {
opmath_t aop = static_cast<opmath_t>(a);
opmath_t bop = static_cast<opmath_t>(b);
if (is_result) {
return bop <= 0 ? aop * negiptcoef * (bop + negcoef)
: aop * poscoef;
} else {
return bop <= 0
? aop * negiptcoef * negcoef * std::exp(bop * negiptcoef)
: aop * poscoef;
}
});
});
}
} // namespace
REGISTER_DISPATCH(elu_stub, &elu_kernel);
REGISTER_DISPATCH(elu_backward_stub, &elu_backward_kernel);
} // namespace native
} // namespace at