-
Notifications
You must be signed in to change notification settings - Fork 2
/
databaseJul2024.sql
2153 lines (1761 loc) · 597 KB
/
databaseJul2024.sql
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
--
-- PostgreSQL database dump
--
-- Dumped from database version 9.6.23
-- Dumped by pg_dump version 9.6.23
SET statement_timeout = 0;
SET lock_timeout = 0;
SET idle_in_transaction_session_timeout = 0;
SET client_encoding = 'UTF8';
SET standard_conforming_strings = on;
SELECT pg_catalog.set_config('search_path', '', false);
SET check_function_bodies = false;
SET xmloption = content;
SET client_min_messages = warning;
SET row_security = off;
--
-- Name: userdb; Type: SCHEMA; Schema: -; Owner: postgres
--
CREATE SCHEMA userdb;
ALTER SCHEMA userdb OWNER TO postgres;
--
-- Name: plpgsql; Type: EXTENSION; Schema: -; Owner:
--
CREATE EXTENSION IF NOT EXISTS plpgsql WITH SCHEMA pg_catalog;
--
-- Name: EXTENSION plpgsql; Type: COMMENT; Schema: -; Owner:
--
COMMENT ON EXTENSION plpgsql IS 'PL/pgSQL procedural language';
--
-- Name: alias_list; Type: DOMAIN; Schema: userdb; Owner: postgres
--
CREATE DOMAIN userdb.alias_list AS text NOT NULL
CONSTRAINT alias_list_check CHECK (((VALUE ~ '(^(([A-Z][a-z]*:(1|2)*),\s)*([A-Z][a-z]*:(1|2)*))$'::text) OR (VALUE ~~ ''::text)));
ALTER DOMAIN userdb.alias_list OWNER TO postgres;
SET default_tablespace = '';
SET default_with_oids = false;
--
-- Name: categoria; Type: TABLE; Schema: userdb; Owner: userdb
--
CREATE TABLE userdb.categoria (
id integer NOT NULL,
nombre text NOT NULL,
teoriaid integer DEFAULT 1
);
ALTER TABLE userdb.categoria OWNER TO userdb;
--
-- Name: categoria_id_seq; Type: SEQUENCE; Schema: userdb; Owner: userdb
--
CREATE SEQUENCE userdb.categoria_id_seq
START WITH 1
INCREMENT BY 1
NO MINVALUE
NO MAXVALUE
CACHE 1;
ALTER TABLE userdb.categoria_id_seq OWNER TO userdb;
--
-- Name: categoria_id_seq; Type: SEQUENCE OWNED BY; Schema: userdb; Owner: userdb
--
ALTER SEQUENCE userdb.categoria_id_seq OWNED BY userdb.categoria.id;
--
-- Name: dispone; Type: TABLE; Schema: userdb; Owner: userdb
--
CREATE TABLE userdb.dispone (
id integer NOT NULL,
numerometateorema text,
resuelto boolean DEFAULT false NOT NULL,
loginusuario text NOT NULL,
metateoremaid integer NOT NULL
);
ALTER TABLE userdb.dispone OWNER TO userdb;
--
-- Name: dispone_id_seq; Type: SEQUENCE; Schema: userdb; Owner: userdb
--
CREATE SEQUENCE userdb.dispone_id_seq
START WITH 1
INCREMENT BY 1
NO MINVALUE
NO MAXVALUE
CACHE 1;
ALTER TABLE userdb.dispone_id_seq OWNER TO userdb;
--
-- Name: dispone_id_seq; Type: SEQUENCE OWNED BY; Schema: userdb; Owner: userdb
--
ALTER SEQUENCE userdb.dispone_id_seq OWNED BY userdb.dispone.id;
--
-- Name: hibernate_sequence; Type: SEQUENCE; Schema: userdb; Owner: userdb
--
CREATE SEQUENCE userdb.hibernate_sequence
START WITH 1
INCREMENT BY 1
NO MINVALUE
NO MAXVALUE
CACHE 1;
ALTER TABLE userdb.hibernate_sequence OWNER TO userdb;
--
-- Name: incluye; Type: TABLE; Schema: userdb; Owner: userdb
--
CREATE TABLE userdb.incluye (
padreid integer NOT NULL,
hijoid integer NOT NULL
);
ALTER TABLE userdb.incluye OWNER TO userdb;
--
-- Name: materia; Type: TABLE; Schema: userdb; Owner: userdb
--
CREATE TABLE userdb.materia (
id integer NOT NULL,
nombre text NOT NULL
);
ALTER TABLE userdb.materia OWNER TO userdb;
--
-- Name: materia_id_seq; Type: SEQUENCE; Schema: userdb; Owner: userdb
--
CREATE SEQUENCE userdb.materia_id_seq
START WITH 1
INCREMENT BY 1
NO MINVALUE
NO MAXVALUE
CACHE 1;
ALTER TABLE userdb.materia_id_seq OWNER TO userdb;
--
-- Name: materia_id_seq; Type: SEQUENCE OWNED BY; Schema: userdb; Owner: userdb
--
ALTER SEQUENCE userdb.materia_id_seq OWNED BY userdb.materia.id;
--
-- Name: metateorema; Type: TABLE; Schema: userdb; Owner: userdb
--
CREATE TABLE userdb.metateorema (
id integer NOT NULL,
enunciado text NOT NULL,
metateoserializado bytea NOT NULL
);
ALTER TABLE userdb.metateorema OWNER TO userdb;
--
-- Name: metateorema_id_seq; Type: SEQUENCE; Schema: userdb; Owner: userdb
--
CREATE SEQUENCE userdb.metateorema_id_seq
START WITH 1
INCREMENT BY 1
NO MINVALUE
NO MAXVALUE
CACHE 1;
ALTER TABLE userdb.metateorema_id_seq OWNER TO userdb;
--
-- Name: metateorema_id_seq; Type: SEQUENCE OWNED BY; Schema: userdb; Owner: userdb
--
ALTER SEQUENCE userdb.metateorema_id_seq OWNED BY userdb.metateorema.id;
--
-- Name: mostrarcategoria; Type: TABLE; Schema: userdb; Owner: userdb
--
CREATE TABLE userdb.mostrarcategoria (
categoriaid integer NOT NULL,
usuariologin text NOT NULL
);
ALTER TABLE userdb.mostrarcategoria OWNER TO userdb;
--
-- Name: mostrarcategoria_id_seq; Type: SEQUENCE; Schema: userdb; Owner: userdb
--
CREATE SEQUENCE userdb.mostrarcategoria_id_seq
START WITH 1
INCREMENT BY 1
NO MINVALUE
NO MAXVALUE
CACHE 1;
ALTER TABLE userdb.mostrarcategoria_id_seq OWNER TO userdb;
--
-- Name: predicado; Type: TABLE; Schema: userdb; Owner: userdb
--
CREATE TABLE userdb.predicado (
predicado text NOT NULL,
alias text NOT NULL,
login text NOT NULL,
argumentos text NOT NULL,
aliases userdb.alias_list NOT NULL,
notacion text NOT NULL
);
ALTER TABLE userdb.predicado OWNER TO userdb;
--
-- Name: proof_template; Type: TABLE; Schema: userdb; Owner: userdb
--
CREATE TABLE userdb.proof_template (
id integer NOT NULL,
template text NOT NULL,
path_to_placeholders text NOT NULL
);
ALTER TABLE userdb.proof_template OWNER TO userdb;
--
-- Name: proof_template_id_seq; Type: SEQUENCE; Schema: userdb; Owner: userdb
--
CREATE SEQUENCE userdb.proof_template_id_seq
START WITH 1
INCREMENT BY 1
NO MINVALUE
NO MAXVALUE
CACHE 1;
ALTER TABLE userdb.proof_template_id_seq OWNER TO userdb;
--
-- Name: proof_template_id_seq; Type: SEQUENCE OWNED BY; Schema: userdb; Owner: userdb
--
ALTER SEQUENCE userdb.proof_template_id_seq OWNED BY userdb.proof_template.id;
--
-- Name: publicacion; Type: TABLE; Schema: userdb; Owner: userdb
--
CREATE TABLE userdb.publicacion (
alias text,
login text
);
ALTER TABLE userdb.publicacion OWNER TO userdb;
--
-- Name: purecombstheorems; Type: TABLE; Schema: userdb; Owner: userdb
--
CREATE TABLE userdb.purecombstheorems (
id integer NOT NULL,
statement text NOT NULL
);
ALTER TABLE userdb.purecombstheorems OWNER TO userdb;
--
-- Name: purecombstheorems_id_seq; Type: SEQUENCE; Schema: userdb; Owner: userdb
--
CREATE SEQUENCE userdb.purecombstheorems_id_seq
START WITH 1
INCREMENT BY 1
NO MINVALUE
NO MAXVALUE
CACHE 1;
ALTER TABLE userdb.purecombstheorems_id_seq OWNER TO userdb;
--
-- Name: purecombstheorems_id_seq; Type: SEQUENCE OWNED BY; Schema: userdb; Owner: userdb
--
ALTER SEQUENCE userdb.purecombstheorems_id_seq OWNED BY userdb.purecombstheorems.id;
--
-- Name: resuelve; Type: TABLE; Schema: userdb; Owner: userdb
--
CREATE TABLE userdb.resuelve (
id integer NOT NULL,
nombreteorema text,
numeroteorema text NOT NULL,
resuelto boolean DEFAULT false NOT NULL,
loginusuario text NOT NULL,
teoremaid integer NOT NULL,
categoriaid integer NOT NULL,
variables text,
teoriaid integer DEFAULT 1
);
ALTER TABLE userdb.resuelve OWNER TO userdb;
--
-- Name: resuelve_id_seq; Type: SEQUENCE; Schema: userdb; Owner: userdb
--
CREATE SEQUENCE userdb.resuelve_id_seq
START WITH 1
INCREMENT BY 1
NO MINVALUE
NO MAXVALUE
CACHE 1;
ALTER TABLE userdb.resuelve_id_seq OWNER TO userdb;
--
-- Name: resuelve_id_seq; Type: SEQUENCE OWNED BY; Schema: userdb; Owner: userdb
--
ALTER SEQUENCE userdb.resuelve_id_seq OWNED BY userdb.resuelve.id;
--
-- Name: simbolo; Type: TABLE; Schema: userdb; Owner: userdb
--
CREATE TABLE userdb.simbolo (
id integer NOT NULL,
notacion_latex text NOT NULL,
argumentos integer,
esinfijo boolean DEFAULT false NOT NULL,
asociatividad integer,
precedencia integer NOT NULL,
notacion text NOT NULL,
teoriaid integer NOT NULL,
tipo character varying DEFAULT ''::character varying
);
ALTER TABLE userdb.simbolo OWNER TO userdb;
--
-- Name: simbolo_id_seq; Type: SEQUENCE; Schema: userdb; Owner: userdb
--
CREATE SEQUENCE userdb.simbolo_id_seq
START WITH 1
INCREMENT BY 1
NO MINVALUE
NO MAXVALUE
CACHE 1;
ALTER TABLE userdb.simbolo_id_seq OWNER TO userdb;
--
-- Name: simbolo_id_seq; Type: SEQUENCE OWNED BY; Schema: userdb; Owner: userdb
--
ALTER SEQUENCE userdb.simbolo_id_seq OWNED BY userdb.simbolo.id;
--
-- Name: solucion; Type: TABLE; Schema: userdb; Owner: userdb
--
CREATE TABLE userdb.solucion (
id integer NOT NULL,
resuelveid integer NOT NULL,
resuelto boolean DEFAULT false NOT NULL,
demostracion text NOT NULL,
metodo text NOT NULL
);
ALTER TABLE userdb.solucion OWNER TO userdb;
--
-- Name: solucion_id_seq; Type: SEQUENCE; Schema: userdb; Owner: userdb
--
CREATE SEQUENCE userdb.solucion_id_seq
START WITH 1
INCREMENT BY 1
NO MINVALUE
NO MAXVALUE
CACHE 1;
ALTER TABLE userdb.solucion_id_seq OWNER TO userdb;
--
-- Name: solucion_id_seq; Type: SEQUENCE OWNED BY; Schema: userdb; Owner: userdb
--
ALTER SEQUENCE userdb.solucion_id_seq OWNED BY userdb.solucion.id;
--
-- Name: teorema; Type: TABLE; Schema: userdb; Owner: userdb
--
CREATE TABLE userdb.teorema (
id integer NOT NULL,
enunciado text NOT NULL,
esquema boolean NOT NULL,
aliases userdb.alias_list NOT NULL,
purecombstheoid integer NOT NULL,
constlist text
);
ALTER TABLE userdb.teorema OWNER TO userdb;
--
-- Name: teorema_id_seq; Type: SEQUENCE; Schema: userdb; Owner: userdb
--
CREATE SEQUENCE userdb.teorema_id_seq
START WITH 1
INCREMENT BY 1
NO MINVALUE
NO MAXVALUE
CACHE 1;
ALTER TABLE userdb.teorema_id_seq OWNER TO userdb;
--
-- Name: teorema_id_seq; Type: SEQUENCE OWNED BY; Schema: userdb; Owner: userdb
--
ALTER SEQUENCE userdb.teorema_id_seq OWNED BY userdb.teorema.id;
--
-- Name: teoria; Type: TABLE; Schema: userdb; Owner: userdb
--
CREATE TABLE userdb.teoria (
id integer NOT NULL,
nombre text NOT NULL
);
ALTER TABLE userdb.teoria OWNER TO userdb;
--
-- Name: teoria_id_seq; Type: SEQUENCE; Schema: userdb; Owner: userdb
--
CREATE SEQUENCE userdb.teoria_id_seq
START WITH 1
INCREMENT BY 1
NO MINVALUE
NO MAXVALUE
CACHE 1;
ALTER TABLE userdb.teoria_id_seq OWNER TO userdb;
--
-- Name: teoria_id_seq; Type: SEQUENCE OWNED BY; Schema: userdb; Owner: userdb
--
ALTER SEQUENCE userdb.teoria_id_seq OWNED BY userdb.teoria.id;
--
-- Name: termino; Type: TABLE; Schema: userdb; Owner: userdb
--
CREATE TABLE userdb.termino (
combinador text NOT NULL,
serializado bytea NOT NULL,
alias text NOT NULL,
login text NOT NULL
);
ALTER TABLE userdb.termino OWNER TO userdb;
--
-- Name: usuario; Type: TABLE; Schema: userdb; Owner: userdb
--
CREATE TABLE userdb.usuario (
login text NOT NULL,
nombre text NOT NULL,
apellido text NOT NULL,
correo text NOT NULL,
password text NOT NULL,
materiaid integer NOT NULL,
admin boolean DEFAULT false NOT NULL,
autosust boolean DEFAULT false NOT NULL,
teoriaid integer DEFAULT 1
);
ALTER TABLE userdb.usuario OWNER TO userdb;
--
-- Name: categoria id; Type: DEFAULT; Schema: userdb; Owner: userdb
--
ALTER TABLE ONLY userdb.categoria ALTER COLUMN id SET DEFAULT nextval('userdb.categoria_id_seq'::regclass);
--
-- Name: dispone id; Type: DEFAULT; Schema: userdb; Owner: userdb
--
ALTER TABLE ONLY userdb.dispone ALTER COLUMN id SET DEFAULT nextval('userdb.dispone_id_seq'::regclass);
--
-- Name: metateorema id; Type: DEFAULT; Schema: userdb; Owner: userdb
--
ALTER TABLE ONLY userdb.metateorema ALTER COLUMN id SET DEFAULT nextval('userdb.metateorema_id_seq'::regclass);
--
-- Name: purecombstheorems id; Type: DEFAULT; Schema: userdb; Owner: userdb
--
ALTER TABLE ONLY userdb.purecombstheorems ALTER COLUMN id SET DEFAULT nextval('userdb.purecombstheorems_id_seq'::regclass);
--
-- Name: resuelve id; Type: DEFAULT; Schema: userdb; Owner: userdb
--
ALTER TABLE ONLY userdb.resuelve ALTER COLUMN id SET DEFAULT nextval('userdb.resuelve_id_seq'::regclass);
--
-- Name: simbolo id; Type: DEFAULT; Schema: userdb; Owner: userdb
--
ALTER TABLE ONLY userdb.simbolo ALTER COLUMN id SET DEFAULT nextval('userdb.simbolo_id_seq'::regclass);
--
-- Name: solucion id; Type: DEFAULT; Schema: userdb; Owner: userdb
--
ALTER TABLE ONLY userdb.solucion ALTER COLUMN id SET DEFAULT nextval('userdb.solucion_id_seq'::regclass);
--
-- Name: teorema id; Type: DEFAULT; Schema: userdb; Owner: userdb
--
ALTER TABLE ONLY userdb.teorema ALTER COLUMN id SET DEFAULT nextval('userdb.teorema_id_seq'::regclass);
--
-- Name: teoria id; Type: DEFAULT; Schema: userdb; Owner: userdb
--
ALTER TABLE ONLY userdb.teoria ALTER COLUMN id SET DEFAULT nextval('userdb.teoria_id_seq'::regclass);
--
-- Data for Name: categoria; Type: TABLE DATA; Schema: userdb; Owner: userdb
--
COPY userdb.categoria (id, nombre, teoriaid) FROM stdin;
1 Equivalence and true 1
2 Negation Inequivalence and false 1
3 Disjunction 1
4 Conjunction 1
5 Implication 1
6 Leibniz as an Axiom 1
7 Universal Quantification 1
8 Existential Quantification 1
9 Axioms 2
10 Theorems 2
11 Otros 2
12 General Laws of Quantification 1
14 Aritmetic tables 2
13 Aritmetic axioms 2
\.
--
-- Name: categoria_id_seq; Type: SEQUENCE SET; Schema: userdb; Owner: userdb
--
SELECT pg_catalog.setval('userdb.categoria_id_seq', 14, true);
--
-- Data for Name: dispone; Type: TABLE DATA; Schema: userdb; Owner: userdb
--
COPY userdb.dispone (id, numerometateorema, resuelto, loginusuario, metateoremaid) FROM stdin;
\.
--
-- Name: dispone_id_seq; Type: SEQUENCE SET; Schema: userdb; Owner: userdb
--
SELECT pg_catalog.setval('userdb.dispone_id_seq', 1, false);
--
-- Name: hibernate_sequence; Type: SEQUENCE SET; Schema: userdb; Owner: userdb
--
SELECT pg_catalog.setval('userdb.hibernate_sequence', 1, false);
--
-- Data for Name: incluye; Type: TABLE DATA; Schema: userdb; Owner: userdb
--
COPY userdb.incluye (padreid, hijoid) FROM stdin;
1 2
\.
--
-- Data for Name: materia; Type: TABLE DATA; Schema: userdb; Owner: userdb
--
COPY userdb.materia (id, nombre) FROM stdin;
1 LΓö£Γöégica SimbΓö£Γöélica Ene-Mar 2018
\.
--
-- Name: materia_id_seq; Type: SEQUENCE SET; Schema: userdb; Owner: userdb
--
SELECT pg_catalog.setval('userdb.materia_id_seq', 1, true);
--
-- Data for Name: metateorema; Type: TABLE DATA; Schema: userdb; Owner: userdb
--
COPY userdb.metateorema (id, enunciado, metateoserializado) FROM stdin;
\.
--
-- Name: metateorema_id_seq; Type: SEQUENCE SET; Schema: userdb; Owner: userdb
--
SELECT pg_catalog.setval('userdb.metateorema_id_seq', 1, false);
--
-- Data for Name: mostrarcategoria; Type: TABLE DATA; Schema: userdb; Owner: userdb
--
COPY userdb.mostrarcategoria (categoriaid, usuariologin) FROM stdin;
9 AdminTeoremas
10 AdminTeoremas
9 federico
5 federico
6 federico
1 federico
7 federico
13 federico
13 AdminTeoremas
14 AdminTeoremas
\.
--
-- Name: mostrarcategoria_id_seq; Type: SEQUENCE SET; Schema: userdb; Owner: userdb
--
SELECT pg_catalog.setval('userdb.mostrarcategoria_id_seq', 12, true);
--
-- Data for Name: predicado; Type: TABLE DATA; Schema: userdb; Owner: userdb
--
COPY userdb.predicado (predicado, alias, login, argumentos, aliases, notacion) FROM stdin;
\.
--
-- Data for Name: proof_template; Type: TABLE DATA; Schema: userdb; Owner: userdb
--
COPY userdb.proof_template (id, template, path_to_placeholders) FROM stdin;
1 (I^{[x_{113} := (%T1)]} A^{c_{1} (c_{1} c_{8} x_{113}) x_{113}}) (%T2) T2:q
2 (I^{[x_{112} := c_{8}]} A^{c_{1} (c_{5} x_{112} x_{112}) x_{112}}) (L^{\\lambda x_{122}.c_{5} c_{8} x_{122}} (S (%M1P))) (L^{\\lambda x_{122}.c_{5} x_{122} (%P1)} (S (%M1Q))) A^{c_{8}} M1Q:pqqq;M1P:ppqqq
\.
--
-- Name: proof_template_id_seq; Type: SEQUENCE SET; Schema: userdb; Owner: userdb
--
SELECT pg_catalog.setval('userdb.proof_template_id_seq', 1, false);
--
-- Data for Name: publicacion; Type: TABLE DATA; Schema: userdb; Owner: userdb
--
COPY userdb.publicacion (alias, login) FROM stdin;
\.
--
-- Data for Name: purecombstheorems; Type: TABLE DATA; Schema: userdb; Owner: userdb
--
COPY userdb.purecombstheorems (id, statement) FROM stdin;
1 = (\\Phi_{bbb} \\Phi_{b} c_{1} c_{7}) (\\Phi_{cbb} c_{7} \\Phi_{bb} c_{1})
2 = \\Phi_{} (\\Phi_{bb} c_{7} c_{7})
3 = (\\Phi_{K} c_{8}) (\\Phi_{cb} c_{9} c_{2})
4 = (\\Phi_{K} (\\Phi_{K} T)) (\\Phi_{bb} (\\Phi_{(bb,)} c_{2}) c_{4})
5 = (\\Phi_{K} (\\Phi_{K} T)) (\\Phi_{c(bb,)} c_{5} \\Phi_{bcb} c_{2})
6 = (\\Phi_{K} (\\Phi_{K} T)) (\\Phi_{(bb,b)} (\\Phi_{(bb,b)} c_{2}) c_{4} c_{5})
7 = (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} T))) (\\Phi_{c(c(bbb,ccbbb),bb)} \\Phi_{b} c_{4} (\\Phi_{cc(cbbbb,)} \\Phi_{cbb} c_{4}) (c_{62} (\\Phi_{bb} \\Phi_{b} c_{4})) \\Phi_{b} c_{1} c_{2} \\Phi_{cb(bb,bccb)} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{4}) (\\Phi_{K} c_{8})) \\Phi_{b} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{4})) \\Phi_{b})
8 = (\\Phi_{K} c_{9}) (\\Phi_{cbb} (\\Phi_{K} c_{9}) (c_{62} (\\Phi_{bb} \\Phi_{b} c_{4})) \\Phi_{b})
9 = (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} T))) (\\Phi_{(cccbbb,b)} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{4})) (\\Phi_{(bbb,bb)} c_{2}) \\Phi_{b} (\\Phi_{cccbbb} \\Phi_{b}) (c_{62} (\\Phi_{bb} \\Phi_{b} c_{4})) \\Phi_{b} (\\Phi_{(bb,b)} c_{4}))
10 = (\\Phi_{K} (\\Phi_{K} T)) (\\Phi_{(bbbb,)} \\Phi_{bb} c_{2} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{4}) (\\Phi_{K} c_{8})) \\Phi_{b})
11 = (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} T))))) (\\Phi_{(cb,b)} (\\Phi_{(bbb,bcb)} c_{2}) (\\Phi_{bccc(ccb,)} \\Phi_{b} \\Phi_{b} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{4}) (\\Phi_{K} c_{8})) c_{5}) \\Phi_{c((cbbb,bbbb),)})
12 = (\\Phi_{(cb,cb)} \\Phi_{bb} \\Phi_{cbb} \\Phi_{bcb} \\Phi_{c(bbb,)}) (\\Phi_{bcb} \\Phi_{b} \\Phi_{ccb} (\\Phi_{ccbb} \\Phi_{cbb}))
13 = (\\Phi_{bb} \\Phi_{K} \\Phi_{K}) (\\Phi_{cb} \\Phi_{bc} \\Phi_{cb})
14 = (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} T))) (\\Phi_{(bcb,b)} (\\Phi_{(cb,b)} c_{5}) c_{5} (\\Phi_{b(ccccb,)} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5}) (\\Phi_{K} c_{8}))) (\\Phi_{(b(b(bb,b),b),(bb,(bb,b)))} c_{1} c_{5} c_{5}))
15 = (\\Phi_{bcb} (\\Phi_{bb} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5}) (\\Phi_{K} c_{8}))) c_{7} (\\Phi_{(bb,bb)} c_{4})) (\\Phi_{ccbb} \\Phi_{b} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5})) \\Phi_{cbb} \\Phi_{b})
16 = (\\Phi_{ccbbbb} (\\Phi_{(bb,bb)} c_{4}) c_{7} \\Phi_{bcb} \\Phi_{bb} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5})) \\Phi_{b}) (\\Phi_{cccb} \\Phi_{b} \\Phi_{cbcb} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5})) (\\Phi_{cccbb} (\\Phi_{(bb,b)} c_{5})))
17 = c_{8} (c_{7} c_{9})
18 = (\\Phi_{cbb} c_{7} \\Phi_{bb} c_{1}) (\\Phi_{bb} \\Phi_{b} c_{6})
19 = (\\Phi_{b} (c_{1} c_{9})) (\\Phi_{b} c_{7})
20 = (\\Phi_{bb} \\Phi_{b} c_{6}) (\\Phi_{cb} c_{6} \\Phi_{cb})
21 = (\\Phi_{bb} (\\Phi_{bbb} \\Phi_{b} c_{6}) c_{6}) (\\Phi_{cbbb} c_{6} \\Phi_{bb} \\Phi_{bb} c_{6})
22 = (\\Phi_{bb} (\\Phi_{bbb} \\Phi_{b} c_{6}) c_{1}) (\\Phi_{cbbb} c_{6} \\Phi_{bb} \\Phi_{bb} c_{1})
23 = (\\Phi_{bb} (\\Phi_{bbb} \\Phi_{b} c_{1}) c_{6}) (\\Phi_{cbbb} c_{6} \\Phi_{bb} \\Phi_{bb} c_{1})
24 = (\\Phi_{bb} \\Phi_{b} c_{4}) (\\Phi_{cb} c_{4} \\Phi_{cb})
25 = (\\Phi_{b} (\\Phi_{bb} \\Phi_{K})) (\\Phi_{ccbbb} c_{15} \\Phi_{b} (\\Phi_{cbbb} c_{62}) \\Phi_{ccb} \\Phi_{b})
26 = (\\Phi_{c(ccbb,b)} \\Phi_{b} \\Phi_{bb} \\Phi_{bb} \\Phi_{cbbbb} \\Phi_{(bb,b)} c_{62}) (\\Phi_{c(c(ccb,b),b)} \\Phi_{b} \\Phi_{b} (\\Phi_{ccbbbb} \\Phi_{b}) \\Phi_{bbb} (\\Phi_{c(ccbbb,bb)} \\Phi_{b}) c_{62} c_{62})
27 = (\\Phi_{bb} (\\Phi_{bbb} \\Phi_{b} c_{4}) c_{4}) (\\Phi_{cbbb} c_{4} \\Phi_{bb} \\Phi_{bb} c_{4})
28 = \\Phi_{} (\\Phi_{(b,)} c_{4})
29 = (\\Phi_{cbb} c_{7} \\Phi_{bb} c_{4}) (\\Phi_{bb} \\Phi_{b} c_{2})
30 = (\\Phi_{c(bb,)} c_{5} \\Phi_{bcb} c_{1}) (\\Phi_{cb} c_{2} \\Phi_{cb})
31 = (\\Phi_{K} T) (\\Phi_{(bb,)} c_{4} c_{7})
32 = (\\Phi_{K} c_{8}) (\\Phi_{b} (c_{4} c_{8}))
33 = \\Phi_{} (\\Phi_{b} (c_{4} c_{9}))
34 = (\\Phi_{b} (\\Phi_{bb} (\\Phi_{bb} \\Phi_{K}))) (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} \\Phi_{})))
35 = (\\Phi_{bb} (\\Phi_{c(bbb,)} c_{5} \\Phi_{bcb} c_{4}) c_{5}) (\\Phi_{ccbb} \\Phi_{cbb} c_{5} \\Phi_{ccb} c_{4})
36 = (\\Phi_{bb} (\\Phi_{c(bbb,)} c_{4} \\Phi_{bcb} c_{4}) c_{4}) (\\Phi_{ccbb} \\Phi_{cbb} c_{4} \\Phi_{ccb} c_{4})
37 = (\\Phi_{cc(bb,)} c_{7} c_{4} \\Phi_{bcbb} c_{1}) (\\Phi_{cb} c_{4} \\Phi_{cb})
38 = (\\Phi_{b} \\Phi_{K}) (\\Phi_{c(ccb,)} c_{4} c_{7} c_{4} (\\Phi_{(bcbb,cb)} c_{1}))
39 = (\\Phi_{(cb,b)} c_{1} \\Phi_{cbb} c_{4}) (\\Phi_{bb} (\\Phi_{(b,b)} c_{1}) c_{5})
40 = (\\Phi_{(bb,b)} (\\Phi_{(bb,b)} c_{1}) c_{4} c_{1}) (\\Phi_{bb} \\Phi_{b} c_{5})
41 = (\\Phi_{(cb,b)} c_{1} (\\Phi_{(bcbb,)} c_{1}) c_{4}) (\\Phi_{bb} \\Phi_{b} c_{5})
42 = (\\Phi_{bb} \\Phi_{b} c_{4}) (\\Phi_{(bb,b)} (\\Phi_{(bb,b)} c_{1}) c_{1} c_{5})
43 = (\\Phi_{bb} \\Phi_{b} c_{4}) (\\Phi_{(cbb,b)} c_{1} \\Phi_{b(b,b)} c_{1} c_{5})
44 = (\\Phi_{bb} \\Phi_{b} c_{5}) (\\Phi_{cb} c_{5} \\Phi_{cb})
45 = (\\Phi_{bb} (\\Phi_{bbb} \\Phi_{b} c_{5}) c_{5}) (\\Phi_{cbbb} c_{5} \\Phi_{bb} \\Phi_{bb} c_{5})
46 = \\Phi_{} (\\Phi_{(b,)} c_{5})
47 = \\Phi_{} (\\Phi_{b} (c_{5} c_{8}))
48 = (\\Phi_{K} c_{9}) (\\Phi_{b} (c_{5} c_{9}))
49 = (\\Phi_{K} c_{9}) (\\Phi_{(bb,)} c_{5} c_{7})
50 = (\\Phi_{b} \\Phi_{K}) (\\Phi_{c(cb,)} c_{4} c_{5} \\Phi_{cbcb})
51 = (\\Phi_{b} \\Phi_{K}) (\\Phi_{c(cb,)} c_{5} c_{4} \\Phi_{cbcb})
52 = (\\Phi_{bb} \\Phi_{b} c_{5}) (\\Phi_{cbb} c_{7} (\\Phi_{(bbb,)} c_{5}) c_{4})
53 = (\\Phi_{bb} \\Phi_{b} c_{4}) (\\Phi_{cbb} c_{7} (\\Phi_{(bbb,)} c_{4}) c_{5})
54 = (\\Phi_{bb} (\\Phi_{c(bbb,)} c_{4} \\Phi_{bcb} c_{5}) c_{4}) (\\Phi_{ccbb} \\Phi_{cbb} c_{4} \\Phi_{ccb} c_{5})
55 = (\\Phi_{cbbb} c_{7} \\Phi_{bb} c_{4} c_{7}) (\\Phi_{bb} (\\Phi_{bb} c_{7}) c_{5})
56 = (\\Phi_{cbbb} c_{7} \\Phi_{bb} c_{5} c_{7}) (\\Phi_{bb} (\\Phi_{bb} c_{7}) c_{4})
57 = (\\Phi_{cc(bbb,)} c_{7} c_{5} \\Phi_{bcbb} c_{1} c_{7}) (\\Phi_{cb} c_{5} \\Phi_{cb})
58 = (\\Phi_{bb} \\Phi_{K} c_{7}) (\\Phi_{c(ccb,)} c_{5} c_{7} c_{5} (\\Phi_{(bcbb,cb)} c_{1}))
59 = (\\Phi_{c(c(b,bb),)} c_{5} c_{1} (\\Phi_{ccbbcb} c_{5}) \\Phi_{bbcb} c_{1}) (\\Phi_{cbcb} c_{1} \\Phi_{bb} c_{5} \\Phi_{cbb})
60 = (\\Phi_{c((ccb,b),)} c_{5} c_{1} \\Phi_{bcb} (\\Phi_{ccbbbcb} c_{5}) c_{1}) (\\Phi_{cbcb} c_{1} \\Phi_{bb} c_{5} \\Phi_{cbb})
61 = (\\Phi_{bb} \\Phi_{K} \\Phi_{K}) (\\Phi_{cc(cc(cb,),)} c_{1} c_{5} c_{1} (\\Phi_{(bbcb,cbb)} c_{1}) c_{5} (\\Phi_{(ccccbbcb,b)} c_{5}))
62 = (\\Phi_{bb} \\Phi_{K} \\Phi_{K}) (\\Phi_{cc(ccc(cb,),)} c_{1} c_{5} c_{1} \\Phi_{b(bcb,cbb)} c_{1} c_{5} (\\Phi_{(cccccbbcb,b)} c_{5}))
63 = (\\Phi_{bb} \\Phi_{b} c_{5}) (\\Phi_{cb} c_{1} (\\Phi_{(bcb,)} c_{5}))
118 = (\\Phi_{b} \\Phi_{K}) (\\Phi_{(cb,b)} c_{5} \\Phi_{cbb} c_{2})
64 = (\\Phi_{(ccbb,b)} c_{5} \\Phi_{bb} \\Phi_{cbbb} c_{1} c_{1}) (\\Phi_{ccbb} (\\Phi_{(bcb,b)} c_{5}) c_{1} \\Phi_{ccb} c_{1})
65 = (\\Phi_{(cbbb,b)} c_{7} (\\Phi_{(bbb,b)} c_{4}) c_{5} c_{7} c_{5}) (\\Phi_{bb} \\Phi_{b} c_{1})
66 = (\\Phi_{c(bbb,b)} c_{7} (\\Phi_{(bb,bb)} c_{4}) c_{5} c_{7} c_{5}) (\\Phi_{bb} \\Phi_{b} c_{6})
67 = (\\Phi_{(bb,b)} \\Phi_{bb} c_{1} c_{4}) (\\Phi_{bb} \\Phi_{b} c_{2})
68 = (\\Phi_{bb} \\Phi_{b} c_{2}) (\\Phi_{cb} c_{3} \\Phi_{cb})
69 = (\\Phi_{cbbb} c_{7} \\Phi_{bb} c_{2} c_{7}) (\\Phi_{cb} c_{2} \\Phi_{cb})
70 = (\\Phi_{bb} (\\Phi_{c(bbb,)} c_{5} \\Phi_{bcb} c_{1}) c_{5}) (\\Phi_{ccbb} \\Phi_{cbb} c_{2} \\Phi_{ccb} c_{1})
71 = (\\Phi_{bb} (\\Phi_{c(bbb,)} c_{2} \\Phi_{bcb} c_{1}) c_{2}) (\\Phi_{ccbb} \\Phi_{cbb} c_{2} \\Phi_{ccb} c_{1})
72 = (\\Phi_{bb} (\\Phi_{c(bbb,)} c_{2} \\Phi_{bcb} c_{2}) c_{2}) (\\Phi_{ccbb} \\Phi_{cbb} c_{2} \\Phi_{ccb} c_{2})
73 = (\\Phi_{bb} (\\Phi_{bbb} \\Phi_{b} c_{2}) c_{2}) (\\Phi_{cbbb} c_{5} \\Phi_{bb} \\Phi_{bb} c_{2})
74 = (\\Phi_{cbb} c_{7} \\Phi_{bb} c_{1}) (\\Phi_{bb} (\\Phi_{bb} c_{7}) c_{1})
75 = (\\Phi_{bb} (\\Phi_{(bb,)} c_{1}) c_{1}) (\\Phi_{b} \\Phi_{K})
76 = (\\Phi_{b} \\Phi_{K}) (\\Phi_{ccb} c_{1} c_{1} \\Phi_{cb(b,)})
77 = \\Phi_{} (\\Phi_{cb} c_{8} c_{1})
78 = (\\Phi_{b} \\Phi_{K}) (\\Phi_{cb} c_{1} (\\Phi_{(b,cb)} c_{1}))
79 = (\\Phi_{bb} \\Phi_{b} c_{1}) (\\Phi_{cb} c_{1} \\Phi_{cb})
80 = T c_{8}
81 = (\\Phi_{(b,)} c_{1}) (\\Phi_{K} c_{8})
82 = (c_{7} c_{8}) c_{9}
83 = (\\Phi_{bb} (\\Phi_{bb} c_{7}) c_{1}) (\\Phi_{bb} \\Phi_{b} c_{6})
84 = (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} T))) (\\Phi_{cbb} c_{5} (\\Phi_{(bbb,b)} (\\Phi_{(bb,b)} c_{2}) c_{5}) c_{4})
85 = (\\Phi_{K} (\\Phi_{K} T)) (\\Phi_{(cbb,b)} c_{5} \\Phi_{b(bb,)} c_{2} c_{2})
86 = (\\Phi_{cbbb} c_{4} \\Phi_{bb} \\Phi_{bb} c_{2}) (\\Phi_{(ccbb,b)} c_{5} \\Phi_{bb} \\Phi_{cbbb} c_{2} c_{2})
87 = (\\Phi_{b} \\Phi_{K}) (\\Phi_{(cbb,b)} c_{7} (\\Phi_{(bbb,b)} c_{5}) c_{2} c_{2})
88 = (\\Phi_{bb} \\Phi_{b} c_{1}) (\\Phi_{(cb,b)} c_{2} (\\Phi_{(bcb,b)} c_{5}) c_{2})
89 = (\\Phi_{K} (\\Phi_{K} T)) (\\Phi_{(c(cbb,),b)} c_{2} c_{5} (\\Phi_{(bb,(bcb,b))} c_{2}) c_{1} c_{2})
90 = (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} T))) (\\Phi_{(cccbb,b)} c_{2} \\Phi_{b(bb,cb)} c_{5} (\\Phi_{c(ccbbb,)} c_{2}) c_{2} c_{2})
91 = (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} T))) (\\Phi_{(cccbb,b)} c_{2} \\Phi_{b(bb,cb)} c_{5} (\\Phi_{c(ccbbb,)} c_{1}) c_{2} c_{2})
92 = (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} T))) (\\Phi_{(cccbb,b)} c_{2} \\Phi_{b(bb,cb)} c_{5} (\\Phi_{c(ccbbb,)} c_{2}) c_{1} c_{2})
93 = (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} T))) (\\Phi_{c(ccb,)} c_{1} c_{1} (\\Phi_{(bbb,b)} c_{2}) \\Phi_{(cbbb,b)})
94 = (\\Phi_{cb} c_{1} (\\Phi_{(bbb,b)} \\Phi_{bb} c_{5})) (\\Phi_{cbb} c_{1} \\Phi_{bb} (\\Phi_{(bb,b)} c_{5}))
95 = (\\Phi_{cb} c_{1} (\\Phi_{(cbbbb,b)} c_{5} \\Phi_{bbb} \\Phi_{bb} c_{2})) (\\Phi_{cbcb} c_{1} \\Phi_{bb} c_{5} (\\Phi_{(bbb,bb)} \\Phi_{bb} c_{2}))
96 = (\\Phi_{bbc} \\Phi_{b} c_{2} c_{8}) (\\Phi_{b} (\\Phi_{(bb,)} c_{2}))
97 = (\\Phi_{cbbbc} c_{5} \\Phi_{bb} \\Phi_{bb} c_{2} c_{8}) (\\Phi_{cb} c_{5} (\\Phi_{(bbb,b)} \\Phi_{bb} c_{2}))
98 = (\\Phi_{cbb} c_{9} \\Phi_{bc} c_{2}) (\\Phi_{(bb,)} \\Phi_{bc} c_{2})
99 = (\\Phi_{bb} (\\Phi_{cbbb} c_{9} \\Phi_{bc} c_{2}) c_{4}) (\\Phi_{bb} (\\Phi_{(bbb,)} \\Phi_{bc} c_{2}) c_{4})
100 = (\\Phi_{bbc} \\Phi_{b} c_{5} c_{8}) (\\Phi_{b} (\\Phi_{(bb,)} c_{5}))
101 = (\\Phi_{bbc} \\Phi_{b} c_{4} c_{9}) (\\Phi_{b} (\\Phi_{(bb,)} c_{4}))
102 = (\\Phi_{(cbbc,bc)} c_{7} (\\Phi_{(bbb,b)} c_{4}) c_{5} c_{9} c_{5} c_{8}) (\\Phi_{b} \\Phi_{b})
103 = (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} T))))) (\\Phi_{bcccc(b,)} (\\Phi_{bbb} \\Phi_{b} \\Phi_{bb}) \\Phi_{b} \\Phi_{cbbb} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5})) \\Phi_{b} (\\Phi_{(b(bbb,cccbbb),b)} c_{2} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{4})) \\Phi_{b}))
104 = (\\Phi_{K} (\\Phi_{K} T)) (\\Phi_{(ccc(ccb,),)} \\Phi_{b} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{4})) (\\Phi_{(bbcb,b)} c_{1}) \\Phi_{cb} (\\Phi_{bbb} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5}) (\\Phi_{K} c_{8}))) (\\Phi_{bcbccbbbb} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{4}) (\\Phi_{K} c_{8}))))
105 = (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} T)))) (\\Phi_{bb} (\\Phi_{bcb} (\\Phi_{(b,(b,))} (\\Phi_{bcb} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{4}) (\\Phi_{K} c_{8})))) (\\Phi_{(bb(bb,),b)} c_{2})) (\\Phi_{(bb(ccbb,b),cb)} c_{5} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5}) (\\Phi_{K} c_{8}))))
106 = (\\Phi_{bb} (\\Phi_{bb} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5}) (\\Phi_{K} c_{8}))) (\\Phi_{(bb,b)} c_{2})) (\\Phi_{ccbb} \\Phi_{b} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5})) \\Phi_{cbb} \\Phi_{b})
107 = (\\Phi_{cb} c_{15} (\\Phi_{(bbb,b)} \\Phi_{bb} c_{2})) (\\Phi_{cbb} c_{15} \\Phi_{bb} (\\Phi_{(bb,b)} c_{2}))
108 = (\\Phi_{(b,cb)} (\\Phi_{bcb} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5}) (\\Phi_{K} c_{8}))) c_{5} (\\Phi_{(bb,(bb,b))} c_{1})) (\\Phi_{cbbb} \\Phi_{b} \\Phi_{bb} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5})) \\Phi_{b})
109 = (\\Phi_{b(cb,)} (\\Phi_{bb} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5}) (\\Phi_{K} c_{8}))) c_{4} (\\Phi_{(bb,(bb,b))} c_{1})) (\\Phi_{ccbb} \\Phi_{b} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5})) \\Phi_{cbb} \\Phi_{b})
110 = (\\Phi_{ccbbbb} (\\Phi_{(bb,(bb,b))} c_{1}) c_{5} \\Phi_{(b,cb)} \\Phi_{bcb} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5})) \\Phi_{b}) (\\Phi_{cb} (\\Phi_{(bb,b)} c_{5}) (\\Phi_{cbbcb} \\Phi_{b} \\Phi_{bb} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5}))))
111 = (\\Phi_{ccbbbb} (\\Phi_{(bb,(bb,b))} c_{1}) c_{4} \\Phi_{b(cb,)} \\Phi_{bb} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5})) \\Phi_{b}) (\\Phi_{cccb} \\Phi_{b} \\Phi_{cbcb} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5})) (\\Phi_{cccbb} (\\Phi_{(bb,b)} c_{5})))
112 = (\\Phi_{bbbb} (\\Phi_{ccb} \\Phi_{cbb} c_{4}) \\Phi_{bccb} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5})) \\Phi_{b}) (\\Phi_{cbbb} \\Phi_{b} (\\Phi_{bbbb} \\Phi_{b} c_{4}) (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5})) \\Phi_{b})
113 = (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} T))) (\\Phi_{cc(cc(cbbb,bb),bb)} (\\Phi_{(bb,b)} c_{1}) \\Phi_{b} c_{1} (\\Phi_{(bbbb,bb)} c_{2}) \\Phi_{b} \\Phi_{(cccbbbb,b)} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5})) \\Phi_{b} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5})) \\Phi_{b} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5})) \\Phi_{b})
114 = (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} T))) (\\Phi_{cc(cccb,bb)} \\Phi_{b} \\Phi_{b} c_{2} \\Phi_{bcbcb} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5})) (\\Phi_{ccc(bbbb,b)} (\\Phi_{(bb,b)} c_{4})) (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5})) \\Phi_{b})
115 = (\\Phi_{K} T) (\\Phi_{bb} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{4}) (\\Phi_{K} c_{8})) (\\Phi_{bbb} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5}) (\\Phi_{K} c_{8})) (\\Phi_{bb} c_{7})))
116 = (\\Phi_{K} c_{8}) (\\Phi_{cbb} (\\Phi_{K} c_{8}) (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5})) \\Phi_{b})
117 = (\\Phi_{K} T) (\\Phi_{(b,)} c_{1})
119 = (\\Phi_{K} (\\Phi_{K} c_{8})) (\\Phi_{bb} (\\Phi_{(bb,)} c_{4}) c_{2})
120 = (\\Phi_{bb} \\Phi_{b} c_{2}) (\\Phi_{(cb,b)} c_{4} \\Phi_{cbb} c_{2})
121 = (\\Phi_{bb} \\Phi_{b} c_{1}) (\\Phi_{(bb,b)} (\\Phi_{(bb,b)} c_{2}) c_{5} c_{4})
122 = (\\Phi_{K} c_{8}) (\\Phi_{(b,)} c_{2})
123 = (\\Phi_{K} c_{8}) (\\Phi_{b} (c_{2} c_{8}))
124 = \\Phi_{} (\\Phi_{cb} c_{8} c_{2})
125 = (\\Phi_{b} c_{7}) (\\Phi_{b} (c_{2} c_{9}))
126 = (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} T))) (\\Phi_{c(bbb,bbb)} (\\Phi_{(bb,b)} c_{4}) (\\Phi_{ccbb} \\Phi_{b}) (c_{62} (\\Phi_{bb} \\Phi_{b} c_{4})) \\Phi_{b} (\\Phi_{(bbb,bb)} c_{2}) (c_{62} (\\Phi_{bb} \\Phi_{b} c_{4})) \\Phi_{b})
127 = (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} T))) (\\Phi_{cc(cc(cbbb,bb),bb)} (\\Phi_{(bb,b)} c_{2}) \\Phi_{b} c_{2} (\\Phi_{(bbbb,bb)} c_{2}) \\Phi_{b} \\Phi_{(cccbbbb,b)} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5})) \\Phi_{b} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{4})) \\Phi_{b} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{4})) \\Phi_{b})
128 = (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} T))) (\\Phi_{ccccc(bcbbb,cbbb)} \\Phi_{b} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{4})) \\Phi_{b} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{4})) \\Phi_{bcb} \\Phi_{c(bbbb,bb)} \\Phi_{b} \\Phi_{bbb} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5})) \\Phi_{b} \\Phi_{cb} (\\Phi_{(bbcb,bb)} c_{2}) (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5})) \\Phi_{b})
129 = (\\Phi_{b(cccb,)} \\Phi_{K} \\Phi_{b} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{4})) \\Phi_{bcb} (\\Phi_{ccbbbb} \\Phi_{cb})) (\\Phi_{bb} \\Phi_{b} (\\Phi_{bbb} \\Phi_{b}))
130 = (\\Phi_{bb} \\Phi_{K} (\\Phi_{bb} (\\Phi_{bb} c_{7}))) (\\Phi_{K} (\\Phi_{b} (\\Phi_{bb} \\Phi_{b})))
131 = (\\Phi_{K} (\\Phi_{K} (\\Phi_{bb} \\Phi_{b} c_{15}))) (\\Phi_{bb} \\Phi_{b} (\\Phi_{bbb} \\Phi_{b}))
132 = (\\Phi_{bb(bccb,)} \\Phi_{K} \\Phi_{K} \\Phi_{bb} c_{4} \\Phi_{bcb} \\Phi_{c(bbb,)}) (\\Phi_{bb} (\\Phi_{bcb} \\Phi_{b} \\Phi_{cccb}) (\\Phi_{cccbb} \\Phi_{cbbb}))
133 = (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} T))) (\\Phi_{b} (\\Phi_{bb} \\Phi_{b}))
134 = (\\Phi_{bb} (\\Phi_{bbb} (\\Phi_{bb} \\Phi_{K}) \\Phi_{bb}) \\Phi_{bbb}) (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} (\\Phi_{b} (\\Phi_{bb} \\Phi_{b})))))
135 = (\\Phi_{c(cb,b)} \\Phi_{(bbb,bb)} (\\Phi_{(bb,b)} c_{5}) (\\Phi_{bccbb} (\\Phi_{bb} \\Phi_{K})) (\\Phi_{(ccbbb,b)} \\Phi_{K})) (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} (\\Phi_{b} (\\Phi_{bb} \\Phi_{b})))))
136 = (\\Phi_{cbb} \\Phi_{(bbb,b)} (\\Phi_{bcbb} (\\Phi_{bb} \\Phi_{K}) (\\Phi_{(bb,b)} c_{5})) (\\Phi_{ccbbb} \\Phi_{K})) (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} (\\Phi_{b} (\\Phi_{bb} \\Phi_{b})))))
137 = (\\Phi_{K} T) (\\Phi_{bb} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5}) (\\Phi_{K} c_{8})) (\\Phi_{bbb} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{4}) (\\Phi_{K} c_{8})) \\Phi_{b}))
138 = (\\Phi_{bb} \\Phi_{K} (\\Phi_{bb} \\Phi_{b})) (\\Phi_{K} (\\Phi_{cb} \\Phi_{cb} \\Phi_{cb}))
139 = (\\Phi_{bb} (\\Phi_{bb} \\Phi_{K}) (\\Phi_{(bb,b)} (\\Phi_{(bb,b)} c_{5}))) (\\Phi_{K} (\\Phi_{K} (\\Phi_{b} (\\Phi_{bb} \\Phi_{b}))))
140 = (\\Phi_{((bb,),b)} (\\Phi_{b(bcb,)} \\Phi_{K}) \\Phi_{cbb} \\Phi_{b(bbb,b)}) (\\Phi_{K} (\\Phi_{K} (\\Phi_{b} (\\Phi_{bb} \\Phi_{b}))))
141 = (\\Phi_{bbb} \\Phi_{K} \\Phi_{K} (\\Phi_{bb} \\Phi_{b})) (\\Phi_{K} (\\Phi_{bb} \\Phi_{b} (\\Phi_{bbb} \\Phi_{b})))
142 = (\\Phi_{bb} (\\Phi_{bb} \\Phi_{K}) \\Phi_{(bb,)}) (\\Phi_{K} (\\Phi_{K} (\\Phi_{b} \\Phi_{b})))
143 = (\\Phi_{bb} (\\Phi_{(bb,)} c_{2}) c_{5}) (\\Phi_{bb} \\Phi_{b} c_{2})
144 = (\\Phi_{bbcb} \\Phi_{K} \\Phi_{b} (\\Phi_{(bb,cb)} c_{5}) \\Phi_{c(bb,)}) (\\Phi_{bb} (\\Phi_{cb} (\\Phi_{cccccb} \\Phi_{K} \\Phi_{cb})) (\\Phi_{cccb} \\Phi_{cb(bcb,b)}))
145 = (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} T))) (\\Phi_{cc(cc(cbbb,bb),bb)} (\\Phi_{(bb,b)} c_{2}) \\Phi_{b} c_{2} (\\Phi_{(bbbb,bb)} c_{2}) \\Phi_{b} \\Phi_{(cccbbbb,b)} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5})) \\Phi_{b} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5})) \\Phi_{b} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5})) \\Phi_{b})
146 = (\\Phi_{cbbb} (\\Phi_{bb} c_{7}) (\\Phi_{bbb} c_{7}) (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5})) \\Phi_{b}) (\\Phi_{cbbb} \\Phi_{b} \\Phi_{bb} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{4})) \\Phi_{b})
147 = (\\Phi_{K} c_{9}) (\\Phi_{(b,b)} c_{1} c_{7})
148 = (\\Phi_{bcb} (\\Phi_{bc(cccb,)} (\\Phi_{bb} \\Phi_{K}) \\Phi_{K} \\Phi_{b} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5})) \\Phi_{bcb}) \\Phi_{cb} \\Phi_{(bccbbbb,bb)}) (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} (\\Phi_{b} \\Phi_{b}))))
149 = (\\Phi_{cbbb} \\Phi_{b} \\Phi_{bb} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5})) \\Phi_{b}) (\\Phi_{cbbb} (\\Phi_{bb} c_{7}) (\\Phi_{bbb} c_{7}) (c_{62} (\\Phi_{bb} \\Phi_{b} c_{4})) \\Phi_{b})
150 = (\\Phi_{cbbb} (\\Phi_{bb} c_{7}) \\Phi_{bb} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5})) \\Phi_{b}) (\\Phi_{cbbb} \\Phi_{b} (\\Phi_{bbb} c_{7}) (c_{62} (\\Phi_{bb} \\Phi_{b} c_{4})) \\Phi_{b})
151 = (\\Phi_{cbbb} \\Phi_{b} (\\Phi_{bbb} c_{7}) (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5})) \\Phi_{b}) (\\Phi_{cbbb} (\\Phi_{bb} c_{7}) \\Phi_{bb} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{4})) \\Phi_{b})
152 = (\\Phi_{bb} (\\Phi_{bb} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{4}) (\\Phi_{K} c_{8}))) (\\Phi_{(bb,b)} c_{5})) (\\Phi_{ccbb} \\Phi_{b} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{4})) \\Phi_{cbb} \\Phi_{b})
153 = (\\Phi_{cbbbb} (\\Phi_{(bb,b)} c_{5}) \\Phi_{bb} \\Phi_{bb} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{4})) \\Phi_{b}) (\\Phi_{cccb} \\Phi_{b} \\Phi_{cbcb} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{4})) (\\Phi_{cccbb} (\\Phi_{(bb,b)} c_{5})))
154 = (\\Phi_{bbbb} (\\Phi_{ccb} \\Phi_{cbb} c_{5}) \\Phi_{bccb} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{4})) \\Phi_{b}) (\\Phi_{cbbb} \\Phi_{b} (\\Phi_{bbbb} \\Phi_{b} c_{5}) (c_{62} (\\Phi_{bb} \\Phi_{b} c_{4})) \\Phi_{b})
155 = (\\Phi_{bbbb} \\Phi_{b} c_{5} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{4}) (\\Phi_{K} c_{8})) \\Phi_{b}) (\\Phi_{cbbb} \\Phi_{K} \\Phi_{bb} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{4})) \\Phi_{b})
156 = (\\Phi_{K} (\\Phi_{K} T)) (\\Phi_{(cbbb,)} c_{2} \\Phi_{cbb} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5}) (\\Phi_{K} c_{8})) \\Phi_{b})
157 = (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} T))))) (\\Phi_{(b,)} (\\Phi_{b(cccbb,b)} \\Phi_{b} c_{2} \\Phi_{b(bb,b)} c_{5} \\Phi_{(ccbbb,b)}))
158 = (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} T)))))) (\\Phi_{(ccbb,cb)} c_{5} c_{5} \\Phi_{(cccb,)} \\Phi_{c(cc(ccbbb,b),)} \\Phi_{c(ccb,)} (\\Phi_{(ccbb,ccbb)} (\\Phi_{(bbb,(bcbb,cb))} c_{2})))
159 = (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} T))))) (\\Phi_{b} (\\Phi_{bbb} \\Phi_{b} (\\Phi_{(bbb,b)} \\Phi_{bb} c_{2})))
160 = (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} T))))))) (\\Phi_{bb} (\\Phi_{ccbb} c_{15} c_{15} (\\Phi_{bc(cccbb,b)} \\Phi_{(b,)} \\Phi_{(cccbbbbb,b)} c_{5} \\Phi_{b(bbb,b)} c_{2})) \\Phi_{cc(cccccbb,b)})
161 = (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} T)))))) (\\Phi_{b} (\\Phi_{bbb} (\\Phi_{bbb} \\Phi_{b} \\Phi_{bb}) \\Phi_{bbb}))
162 = (\\Phi_{bbbb} \\Phi_{K} \\Phi_{K} \\Phi_{K} (\\Phi_{bb} \\Phi_{b})) (\\Phi_{K} (\\Phi_{bb} (\\Phi_{bbb} \\Phi_{b} \\Phi_{bb}) \\Phi_{bbb}))
163 = (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} T)))) (\\Phi_{b} (\\Phi_{bbb} \\Phi_{b} \\Phi_{bb}))
164 = (\\Phi_{K} (\\Phi_{K} \\Phi_{})) (\\Phi_{bb} \\Phi_{b} \\Phi_{bb})
165 = (\\Phi_{K} (\\Phi_{K} T)) (\\Phi_{b} \\Phi_{(b,)})
166 = (\\Phi_{bbb} (\\Phi_{bbb} \\Phi_{K} \\Phi_{K}) \\Phi_{bb} \\Phi_{bb}) (\\Phi_{K} (\\Phi_{K} (\\Phi_{bbb} \\Phi_{b} \\Phi_{bb} \\Phi_{bb})))
167 = (\\Phi_{bbb} \\Phi_{K} \\Phi_{K} (\\Phi_{bb} \\Phi_{K})) (\\Phi_{K} (\\Phi_{cbb} \\Phi_{bcb} \\Phi_{bb} \\Phi_{cb}))
168 = (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} T)))) (\\Phi_{(bb,b)} \\Phi_{(cb,)} (\\Phi_{(b(bb,cb),cb)} c_{2}) \\Phi_{c(c(bb,),)})
169 = (\\Phi_{K} (\\Phi_{bb} \\Phi_{b} c_{15})) (\\Phi_{(ccb,)} c_{15} \\Phi_{bb} \\Phi_{cbbb})
170 = (\\Phi_{K} (\\Phi_{bb} (\\Phi_{cbbbb} c_{15} \\Phi_{bb} \\Phi_{bb} c_{5}) c_{15})) (\\Phi_{(ccccb,)} \\Phi_{cccbb} c_{15} \\Phi_{bb} \\Phi_{cbbb} \\Phi_{ccccbb})
171 = (\\Phi_{bb(bcccb,)} \\Phi_{K} \\Phi_{K} \\Phi_{bb} c_{5} \\Phi_{bb} \\Phi_{bb} \\Phi_{cbbbb}) (\\Phi_{cccb} \\Phi_{ccccbb} \\Phi_{cbbb} \\Phi_{bb} (\\Phi_{bccccb} \\Phi_{b} \\Phi_{cccbb}))
172 = (\\Phi_{b(ccbb,b)} \\Phi_{K} c_{4} \\Phi_{bb} \\Phi_{cbbb} c_{15} c_{15}) (\\Phi_{bbbb} \\Phi_{b} \\Phi_{bb} \\Phi_{bb} c_{15})
173 = (\\Phi_{b(cccbb,b)} \\Phi_{K} c_{4} c_{15} (\\Phi_{(bb,bb)} c_{4}) \\Phi_{c(bb,bb)} c_{15} c_{15}) (\\Phi_{K} (\\Phi_{(cb,)} (\\Phi_{(bcb,b)} c_{15}) \\Phi_{(cb,b)}))
174 = (\\Phi_{bcbb} (\\Phi_{bb} \\Phi_{K}) \\Phi_{bcb} \\Phi_{bbb} (\\Phi_{bcb} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{4}) (\\Phi_{K} c_{8})))) (\\Phi_{K} (\\Phi_{bb} \\Phi_{b} (\\Phi_{bbb} \\Phi_{b})))
175 = (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} T))))))) (\\Phi_{(bb,b)} (\\Phi_{bb(b,)} (\\Phi_{bb} \\Phi_{b})) \\Phi_{(cbb,b)} (\\Phi_{(bbbbb,bb)} (\\Phi_{(bb,b)} c_{2})))
176 = (\\Phi_{bccb} (\\Phi_{bb} \\Phi_{K}) \\Phi_{bb} (\\Phi_{bbb} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{4}) (\\Phi_{K} c_{8}))) \\Phi_{cbbb}) (\\Phi_{K} (\\Phi_{bb} \\Phi_{b} (\\Phi_{bbb} \\Phi_{b})))
177 = (\\Phi_{bccb} \\Phi_{(b,)} \\Phi_{cbbb} \\Phi_{bb} \\Phi_{(ccbb,b)}) (\\Phi_{bccb} \\Phi_{b} \\Phi_{bb} \\Phi_{bb} \\Phi_{cbbb})
178 = (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} T))) (\\Phi_{(cccb,)} c_{15} (\\Phi_{(bb,(bcb,b))} c_{2}) c_{5} \\Phi_{(c(cbb,),b)})
179 = (\\Phi_{b} (\\Phi_{b(b,)} \\Phi_{K})) (\\Phi_{K} (\\Phi_{K} \\Phi_{}))
180 = (\\Phi_{bb} (\\Phi_{c(bbb,)} c_{5} \\Phi_{bcb} c_{5}) c_{5}) (\\Phi_{ccbb} \\Phi_{cbb} c_{5} \\Phi_{ccb} c_{5})
181 = (\\Phi_{cbbbb} (\\Phi_{(bb,b)} c_{2}) \\Phi_{bb} (\\Phi_{bbb} \\Phi_{K}) (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5})) \\Phi_{b}) (\\Phi_{ccb} \\Phi_{cccb} \\Phi_{K} (\\Phi_{cccb} (\\Phi_{(bb(bb,b),bb)} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5})) \\Phi_{K} c_{5})))
182 = (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} T))) (\\Phi_{c(ccbbb,bb)} \\Phi_{b} c_{2} \\Phi_{bbcb} (\\Phi_{c(cbbbb,)} (\\Phi_{(bb,b)} c_{5})) (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5})) \\Phi_{b} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5})) \\Phi_{b})
183 = (\\Phi_{bb} (\\Phi_{bccb} (\\Phi_{bcb} (\\Phi_{b(b,)} \\Phi_{K}) \\Phi_{K}) \\Phi_{bb} (\\Phi_{bbb} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{4}) (\\Phi_{K} c_{8})))) \\Phi_{(bcbbb,bbb)}) (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} (\\Phi_{b} \\Phi_{b})))))
184 = (\\Phi_{bb} \\Phi_{b} c_{5}) (\\Phi_{bb} (\\Phi_{(bb,)} c_{5}) c_{2})
185 = (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} T))) (\\Phi_{(cccb,b)} c_{2} \\Phi_{bcbcb} c_{4} (\\Phi_{ccc(bbb,)} c_{5}) c_{4})
186 = (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} T)))))) (\\Phi_{b(cc(b,),cccb)} \\Phi_{b} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5})) \\Phi_{b} (\\Phi_{bccccbb} \\Phi_{b}) \\Phi_{cb(bbcb,b)} c_{2} c_{1} (\\Phi_{(cc(ccbb,bbb),bb)} \\Phi_{cb}))
187 = (\\Phi_{b(bccb,)} \\Phi_{K} \\Phi_{bb} c_{4} \\Phi_{bcb} \\Phi_{c(bbb,)}) (\\Phi_{bcb} \\Phi_{b} \\Phi_{ccb} (\\Phi_{ccbb} \\Phi_{cbb}))
188 = (\\Phi_{(b,)} c_{15}) (\\Phi_{K} c_{8})
189 = (\\Phi_{b(bccb,)} \\Phi_{K} \\Phi_{bb} c_{5} \\Phi_{bcb} \\Phi_{c(bbb,)}) (\\Phi_{bcb} \\Phi_{b} \\Phi_{ccb} (\\Phi_{ccbb} \\Phi_{cbb}))
190 = (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} c_{9}))) (\\Phi_{b} (\\Phi_{bb} \\Phi_{b}))
191 = (\\Phi_{bbb} \\Phi_{K} \\Phi_{K} (\\Phi_{bbb} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{4}) (\\Phi_{K} c_{8})) \\Phi_{b})) (\\Phi_{K} (\\Phi_{b} (\\Phi_{bb} \\Phi_{b})))
192 = (\\Phi_{bbccb} (\\Phi_{bb} \\Phi_{K}) \\Phi_{bb} c_{5} \\Phi_{bcb} \\Phi_{c(bbb,)}) (\\Phi_{bbcb} \\Phi_{K} \\Phi_{b} \\Phi_{ccb} (\\Phi_{ccbb} \\Phi_{cbb}))
193 = (\\Phi_{b} \\Phi_{K}) (\\Phi_{b} \\Phi_{c})
194 = (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} T))))) (\\Phi_{c(bb,(b,))} \\Phi_{(bbb,bb)} \\Phi_{bbb} \\Phi_{(cb,)} \\Phi_{(ccbbb,b)})
195 = (\\Phi_{b} (\\Phi_{bb} \\Phi_{b})) (\\Phi_{cb} \\Phi_{cb} \\Phi_{cb})
196 = (\\Phi_{bbbb} \\Phi_{b} c_{4} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5}) (\\Phi_{K} c_{8})) (\\Phi_{bb} c_{7})) (\\Phi_{cbbb} \\Phi_{K} \\Phi_{bb} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5})) \\Phi_{b})
197 = (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} T))) (\\Phi_{c(c(bbb,ccbbbb),bb)} \\Phi_{b} c_{5} (\\Phi_{cc(cbbbb,)} \\Phi_{cbb} c_{5}) (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5})) \\Phi_{b} c_{1} c_{2} \\Phi_{cb(bb,bccb)} c_{7} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5}) (\\Phi_{K} c_{8})) (\\Phi_{bb} c_{7}) (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5})) \\Phi_{b})
198 = (\\Phi_{ccbb} \\Phi_{b} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{4}) (\\Phi_{K} c_{8})) \\Phi_{bbb} c_{2}) (\\Phi_{bbb} (\\Phi_{bb} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5}) (\\Phi_{K} c_{8}))) \\Phi_{bb} c_{2})
199 = (\\Phi_{K} (\\Phi_{K} T)) (\\Phi_{cccbb(b,)} c_{15} \\Phi_{b} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{4}) (\\Phi_{K} c_{8})) \\Phi_{bbbb} c_{2} c_{15})
200 = (\\Phi_{bc(b,)} (\\Phi_{cb(cb,ccb)} \\Phi_{(bcccbb,bbbb)} (\\Phi_{ccbb} (\\Phi_{bc(ccbbb,)} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{4}) (\\Phi_{K} c_{8}))) c_{15}) (\\Phi_{(bb,bcbcb)} c_{5}) (\\Phi_{bccbbcb} (\\Phi_{bb} \\Phi_{K})) c_{5} (\\Phi_{bcccb} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{4}) (\\Phi_{K} c_{8})))) \\Phi_{K} \\Phi_{(ccccccbbb,b)}) (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} (\\Phi_{b} (\\Phi_{bb} \\Phi_{b})))))))
201 = (\\Phi_{cbb} (\\Phi_{bcb} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{4}) (\\Phi_{K} c_{8}))) (\\Phi_{bcbb} (\\Phi_{bcb} (\\Phi_{b(b,)} \\Phi_{K}) \\Phi_{K}) \\Phi_{bcb}) \\Phi_{(bbbb,bbb)}) (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} (\\Phi_{b} \\Phi_{b})))))
202 = (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} T))) (\\Phi_{cbbbb} (\\Phi_{(b(bb,b),(bb,b))} c_{1} c_{5}) (\\Phi_{(cb,b)} c_{5}) \\Phi_{bc(cb,)} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5})) \\Phi_{b})
203 = (\\Phi_{ccc(b,cccb)} (\\Phi_{bc(ccccbb,)} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{4}) (\\Phi_{K} c_{8}))) c_{15} \\Phi_{ccccbb} (\\Phi_{bcbbcb} \\Phi_{K}) c_{5} (\\Phi_{(bcbb,cbcb)} c_{5}) (\\Phi_{bccccb} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{4}) (\\Phi_{K} c_{8}))) \\Phi_{ccccbb}) (\\Phi_{bbbb} \\Phi_{K} \\Phi_{b} \\Phi_{bb} (\\Phi_{bbb} \\Phi_{b}))
204 = (\\Phi_{K} T) (\\Phi_{b(ccc(c(ccc(c(cccccb,b),),),),)} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5}) (\\Phi_{K} c_{8})) \\Phi_{b} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{4})) (\\Phi_{(bbcb,b)} c_{1}) \\Phi_{cb} \\Phi_{b} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{4})) (\\Phi_{(bbcb,b)} c_{1}) \\Phi_{cb} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5}) (\\Phi_{K} c_{8})) c_{5} c_{15} (\\Phi_{(bcb,cbbbb)} c_{2}) (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5}) (\\Phi_{K} c_{8})) (\\Phi_{bc(cccccbccbbbb,ccbbbb)} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5}) (\\Phi_{K} c_{8}))) (\\Phi_{bcccc(cb,bbb)} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5}) (\\Phi_{K} c_{8}))))
205 = (\\Phi_{K} (\\Phi_{K} T)) (\\Phi_{bc(cccccb,b)} (\\Phi_{b(cb,)} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5}) (\\Phi_{K} c_{8})) (\\Phi_{(bb,b)} c_{1})) (\\Phi_{(bb,b)} c_{1}) (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5}) (\\Phi_{K} c_{8})) c_{5} c_{15} (\\Phi_{(bcb,cbbbb)} c_{2}) (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5}) (\\Phi_{K} c_{8})) (\\Phi_{bc(cccccbbb,bb)} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5}) (\\Phi_{K} c_{8}))) (\\Phi_{bcccc(cb,bbb)} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5}) (\\Phi_{K} c_{8}))))
206 = (\\Phi_{bb} \\Phi_{K} \\Phi_{K}) (\\Phi_{c(ccbb,b)} c_{4} c_{5} (\\Phi_{(bbb,b)} c_{5}) \\Phi_{(cbbb,b)} c_{2} c_{2})
207 = (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} T))) (\\Phi_{(ccb,)} c_{2} (\\Phi_{(bbb,cb)} c_{2}) (\\Phi_{c(cbbb,)} c_{1}))
208 = (\\Phi_{K} (\\Phi_{K} \\Phi_{})) (\\Phi_{bb} \\Phi_{b} \\Phi_{cb})
209 = (\\Phi_{K} (\\Phi_{K} \\Phi_{})) (\\Phi_{b} (\\Phi_{bb} \\Phi_{b}))
210 = (\\Phi_{(bb,)} \\Phi_{bb} (\\Phi_{bbb} \\Phi_{b})) (\\Phi_{(ccb,)} \\Phi_{bb} \\Phi_{bb} \\Phi_{cbbb})
211 = (\\Phi_{bbb} \\Phi_{K} \\Phi_{K} \\Phi_{K}) (\\Phi_{K} (\\Phi_{bb} \\Phi_{b} \\Phi_{(bb,)}))
212 = (\\Phi_{cbb} c_{1} \\Phi_{b(b,)} c_{1}) (\\Phi_{b} \\Phi_{K})
213 = (\\Phi_{b(ccb,)} \\Phi_{K} (\\Phi_{(bb,b)} c_{2}) (\\Phi_{bbb} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5}) (\\Phi_{K} c_{8}))) \\Phi_{cbbb}) (\\Phi_{K} (\\Phi_{b} (\\Phi_{bb} \\Phi_{b})))
214 = (\\Phi_{K} (\\Phi_{K} T)) (\\Phi_{cccccbb(b,)} c_{15} \\Phi_{b} \\Phi_{cb} c_{15} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{4})) \\Phi_{b(bcb,bb)} c_{2} c_{15})
215 = (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} T))) (\\Phi_{ccbcb} c_{15} (\\Phi_{(b(bb,b),b)} c_{1} c_{4}) (\\Phi_{cbbb} c_{15}) (\\Phi_{bbb} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5}) (\\Phi_{K} c_{8}))) (\\Phi_{bcbbb} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{4}) (\\Phi_{K} c_{8}))))
216 = (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} T))) (\\Phi_{bccb} \\Phi_{b} (\\Phi_{(bb,b)} c_{1}) (\\Phi_{bbb} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5}) (\\Phi_{K} c_{8}))) (\\Phi_{bcbbb} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{4}) (\\Phi_{K} c_{8}))))
217 = (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} T))) (\\Phi_{(ccccb,)} (\\Phi_{(bb,b)} c_{1}) c_{15} (\\Phi_{(bb,bbb)} c_{2}) (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5}) (\\Phi_{K} c_{8})) \\Phi_{c(cbb,bb)})
218 = (\\Phi_{K} (\\Phi_{bb} \\Phi_{b} c_{15})) (\\Phi_{(ccb,)} (\\Phi_{(bb,b)} c_{1}) (\\Phi_{bbb} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5}) (\\Phi_{K} c_{8}))) \\Phi_{cbbb})
219 = (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} T)))))) (\\Phi_{bcb} (\\Phi_{cbcccb} (\\Phi_{bcb} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{4}) (\\Phi_{K} c_{8}))) (\\Phi_{ccbb} \\Phi_{cbcb} c_{15}) (c_{62} (\\Phi_{bb} \\Phi_{b} c_{4}) (\\Phi_{K} c_{8})) c_{2} \\Phi_{bcbb}) \\Phi_{bb} \\Phi_{cbc(bbbbcb,)})
220 = (\\Phi_{b} \\Phi_{K}) (\\Phi_{bb} (\\Phi_{(bb,)} c_{5}) c_{2})
221 = (\\Phi_{b} (\\Phi_{bb} (\\Phi_{bbb} \\Phi_{K} \\Phi_{K}))) (\\Phi_{K} (\\Phi_{bb} \\Phi_{K} (\\Phi_{bc} \\Phi_{b})))
222 = (\\Phi_{K} (\\Phi_{K} (\\Phi_{K} T))) (\\Phi_{(cb,cb)} (\\Phi_{(b(bcb,b),b)} c_{1} c_{5}) \\Phi_{ccb} (\\Phi_{bbb} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5}) (\\Phi_{K} c_{8}))) (\\Phi_{bcb(cb,b)} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{4}) (\\Phi_{K} c_{8}))))
223 = (\\Phi_{K} T) (\\Phi_{bccb(cccccb,b)} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5}) (\\Phi_{K} c_{8})) c_{15} c_{15} (\\Phi_{bcc(ccbb,b)} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5}) (\\Phi_{K} c_{8})) c_{15} (\\Phi_{(b(bb,b),b)} c_{1} c_{4}) c_{15} (\\Phi_{(b(bb,b),b)} c_{1} c_{4})) (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5}) (\\Phi_{K} c_{8})) c_{5} c_{15} (\\Phi_{(bcb,cbbbb)} c_{2}) (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5}) (\\Phi_{K} c_{8})) (\\Phi_{bc(cccccbcbb,cbb)} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5}) (\\Phi_{K} c_{8}))) (\\Phi_{bcccc(cb,bbb)} (c_{62} (\\Phi_{bb} \\Phi_{b} c_{5}) (\\Phi_{K} c_{8}))))
224 = (\\Phi_{bbbb} \\Phi_{b} \\Phi_{bb} (\\Phi_{bcbb} \\Phi_{b} \\Phi_{bcb}) \\Phi_{ccbb}) (\\Phi_{K} (\\Phi_{bbbcb} \\Phi_{K} \\Phi_{K} \\Phi_{K} \\Phi_{cb} \\Phi_{cb}))
225 = (\\Phi_{bb} \\Phi_{K} \\Phi_{K}) (\\Phi_{b} (\\Phi_{bc} \\Phi_{b}))