-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain2.py
115 lines (91 loc) · 3.85 KB
/
train2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
# -*- coding: utf-8 -*-
# /usr/bin/python2
from __future__ import print_function
import argparse
import os
import glob
import tensorflow as tf
from tensorpack.callbacks.saver import ModelSaver
from tensorpack.input_source.input_source import QueueInput
from tensorpack.tfutils.sessinit import ChainInit
from tensorpack.tfutils.sessinit import SaverRestore
from tensorpack.train import AutoResumeTrainConfig
from tensorpack.train.interface import launch_train_with_config
from tensorpack.train.trainers import SyncMultiGPUTrainerReplicated, AsyncMultiGPUTrainer, SimpleTrainer
from tensorpack.utils import logger
from data_load import Net2DataFlow
from hparam import hparam as hp
from models import Net2
from utils import remove_all_files
from preprocdata import preprocessing
from convert import ConvertCallback
def train(args, logdir1, logdir2):
# model
model = Net2()
preprocessing(hp.train2.data_path, logdir2)
# dataflow
df = Net2DataFlow(hp.train2.data_path, hp.train2.batch_size)
# set logger for event and model saver
logger.set_logger_dir(logdir2)
# session_conf = tf.ConfigProto(
# gpu_options=tf.GPUOptions(
# allow_growth=True,
# per_process_gpu_memory_fraction=0.6,
# ),
# )
dataset_size = len(glob.glob(hp.train2.data_path + '/wav/*.wav'))
print("Dataset Size : ", dataset_size)
print("Batch Size : ", hp.train2.batch_size)
print("Steps per epoch : ", (dataset_size // hp.train2.batch_size))
session_inits = []
ckpt2 = '{}/{}'.format(logdir2, args.ckpt) if args.ckpt else tf.train.latest_checkpoint(logdir2)
if ckpt2:
session_inits.append(SaverRestore(ckpt2))
ckpt1 = tf.train.latest_checkpoint(logdir1)
if ckpt1:
session_inits.append(SaverRestore(ckpt1, ignore=['global_step']))
train_conf = AutoResumeTrainConfig(
model=model,
data=QueueInput(df(n_prefetch=800, n_thread=8)),
callbacks=[
# TODO save on prefix net2
ModelSaver(checkpoint_dir=logdir2),
ConvertCallback(logdir2, hp.train2.test_per_epoch),
],
max_epoch=hp.train2.num_epochs,
steps_per_epoch=dataset_size//hp.train2.batch_size,
session_init=ChainInit(session_inits)
)
if args.gpu:
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
train_conf.nr_tower = len(args.gpu.split(','))
gpu_list = args.gpu.split(',')
gpu_list = list(map(int,gpu_list))
#trainer = SimpleTrainer()
trainer = SyncMultiGPUTrainerReplicated(gpu_list)
#trainer = AsyncMultiGPUTrainer(gpu_list, False)
launch_train_with_config(train_conf, trainer=trainer)
# def get_cyclic_lr(step):
# lr_margin = hp.train2.lr_cyclic_margin * math.sin(2. * math.pi / hp.train2.lr_cyclic_steps * step)
# lr = hp.train2.lr + lr_margin
# return lr
def get_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('case1', type=str, help='experiment case name of train1')
parser.add_argument('case2', type=str, help='experiment case name of train2')
parser.add_argument('-ckpt', help='checkpoint to load model.')
parser.add_argument('-gpu', help='comma separated list of GPU(s) to use.')
parser.add_argument('-r', action='store_true', help='start training from the beginning.')
arguments = parser.parse_args()
return arguments
if __name__ == '__main__':
args = get_arguments()
hp.set_hparam_yaml(args.case2)
logdir_train1 = '{}/{}/train1'.format(hp.logdir_path, args.case1)
logdir_train2 = '{}/{}/train2'.format(hp.logdir_path, args.case2)
if args.r:
remove_all_files(logdir_train2)
print('case1: {}, case2: {}, logdir1: {}, logdir2: {}'.format(args.case1, args.case2, logdir_train1, logdir_train2))
print('dataset : {}'.format(hp.train2.data_path))
train(args, logdir1=logdir_train1, logdir2=logdir_train2)
print("Done")