From 0ec435bc3aa977ece6b259762f620e3b9a0e2f71 Mon Sep 17 00:00:00 2001 From: "pierre.delaunay" Date: Thu, 8 Feb 2024 09:17:53 -0500 Subject: [PATCH 1/6] Add timers --- .../accelerate_opt/requirements.cuda.txt | 327 - benchmarks/dlrm/requirements.cuda.txt | 318 - benchmarks/flops/requirements.cuda.txt | 153 - benchmarks/huggingface/requirements.cuda.txt | 179 - benchmarks/llama/requirements.cuda.txt | 181 - benchmarks/rwkv/requirements.cuda.txt | 232 - benchmarks/stargan/requirements.cuda.txt | 151 - benchmarks/super-slomo/requirements.cuda.txt | 156 - benchmarks/timm/requirements.cuda.txt | 168 - benchmarks/torchvision/main.py | 34 +- benchmarks/torchvision/requirements.cuda.txt | 182 +- commands.sh | 27 + milabench/_version.py | 6 +- milabench/multi.py | 6 +- milabench/pack.py | 3 +- milabench/utils.py | 11 +- scripts/barebone.out | 9922 ++++++++ scripts/barebone_voir.out | 7434 ++++++ scripts/interactive.sh | 40 + scripts/run.sh | 2 +- scripts/slurm.sh | 1 + scripts/slurm_barebone.sh | 9 +- test.out | 21141 ++++++++++++++++ 23 files changed, 38694 insertions(+), 1989 deletions(-) delete mode 100644 benchmarks/accelerate_opt/requirements.cuda.txt delete mode 100644 benchmarks/dlrm/requirements.cuda.txt delete mode 100644 benchmarks/flops/requirements.cuda.txt delete mode 100644 benchmarks/huggingface/requirements.cuda.txt delete mode 100644 benchmarks/llama/requirements.cuda.txt delete mode 100644 benchmarks/rwkv/requirements.cuda.txt delete mode 100644 benchmarks/stargan/requirements.cuda.txt delete mode 100644 benchmarks/super-slomo/requirements.cuda.txt delete mode 100644 benchmarks/timm/requirements.cuda.txt create mode 100644 commands.sh create mode 100644 scripts/barebone.out create mode 100644 scripts/barebone_voir.out create mode 100644 scripts/interactive.sh create mode 100644 test.out diff --git a/benchmarks/accelerate_opt/requirements.cuda.txt b/benchmarks/accelerate_opt/requirements.cuda.txt deleted file mode 100644 index 75fa45e59..000000000 --- a/benchmarks/accelerate_opt/requirements.cuda.txt +++ /dev/null @@ -1,327 +0,0 @@ -# -# This file is autogenerated by pip-compile with Python 3.11 -# by the following command: -# -# pip-compile --config=pyproject.toml --output-file=benchmarks/accelerate_opt/requirements.cuda.txt --resolver=backtracking .pin/tmp-constraints-cuda-opt.txt benchmarks/accelerate_opt/requirements.in -# ---extra-index-url https://download.pytorch.org/whl/cu118 - -accelerate==0.24.1 - # via -r benchmarks/accelerate_opt/requirements.in -aiohttp==3.8.6 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # datasets - # fsspec -aiosignal==1.3.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # aiohttp -antlr4-python3-runtime==4.9.3 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # omegaconf -asttokens==2.4.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # giving -async-timeout==4.0.3 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # aiohttp -attrs==23.1.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # aiohttp -certifi==2023.7.22 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # requests -charset-normalizer==3.3.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # aiohttp - # requests -codefind==0.1.3 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # ptera -datasets==2.14.6 - # via - # -r benchmarks/accelerate_opt/requirements.in - # evaluate -deepspeed==0.12.2 - # via -r benchmarks/accelerate_opt/requirements.in -dill==0.3.7 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # datasets - # evaluate - # multiprocess -evaluate==0.4.1 - # via -r benchmarks/accelerate_opt/requirements.in -executing==1.2.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # varname -filelock==3.13.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # huggingface-hub - # torch - # transformers - # triton -frozenlist==1.4.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # aiohttp - # aiosignal -fsspec[http]==2023.10.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # datasets - # evaluate - # huggingface-hub - # torch -giving==0.4.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # ptera - # voir -hjson==3.1.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # deepspeed -huggingface-hub==0.17.3 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # accelerate - # datasets - # evaluate - # tokenizers - # transformers -idna==3.4 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # requests - # yarl -jinja2==3.1.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torch -markdown-it-py==3.0.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # rich -markupsafe==2.1.3 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # jinja2 -mdurl==0.1.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # markdown-it-py -mpmath==1.3.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # sympy -multidict==6.0.4 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # aiohttp - # yarl -multiprocess==0.70.15 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # datasets - # evaluate -networkx==3.2.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torch -ninja==1.11.1.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # deepspeed -numpy==1.26.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # accelerate - # datasets - # deepspeed - # evaluate - # pandas - # pyarrow - # torchvision - # transformers -omegaconf==2.3.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # voir -ovld==0.3.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # voir -packaging==23.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # accelerate - # datasets - # deepspeed - # evaluate - # huggingface-hub - # transformers -pandas==2.1.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # datasets - # evaluate -pillow==10.1.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torchvision -psutil==5.9.6 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # accelerate - # deepspeed -ptera==1.4.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # voir -py-cpuinfo==9.0.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # deepspeed -pyarrow==14.0.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # datasets -pydantic==1.10.13 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # deepspeed -pygments==2.16.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # rich -pynvml==11.5.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # deepspeed - # voir -python-dateutil==2.8.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # pandas -pytz==2023.3.post1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # pandas -pyyaml==6.0.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # accelerate - # datasets - # huggingface-hub - # omegaconf - # transformers -reactivex==4.0.4 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # giving -regex==2023.10.3 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # transformers -requests==2.31.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # datasets - # evaluate - # fsspec - # huggingface-hub - # responses - # torchvision - # transformers -responses==0.18.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # evaluate -rich==13.6.0 - # via - # -r benchmarks/accelerate_opt/requirements.in - # voir -safetensors==0.4.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # transformers -six==1.16.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # asttokens - # python-dateutil -sympy==1.12 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torch -tokenizers==0.14.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # transformers -torch==2.1.0+cu118 - # via - # -r benchmarks/accelerate_opt/requirements.in - # accelerate - # deepspeed - # torchaudio - # torchvision -torchaudio==2.1.0+cu118 - # via -r benchmarks/accelerate_opt/requirements.in -torchvision==0.16.0+cu118 - # via -r benchmarks/accelerate_opt/requirements.in -tqdm==4.66.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # datasets - # deepspeed - # evaluate - # huggingface-hub - # transformers -transformers==4.35.0 - # via -r benchmarks/accelerate_opt/requirements.in -triton==2.1.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torch -typing-extensions==4.8.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # huggingface-hub - # pydantic - # reactivex - # torch -tzdata==2023.3 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # pandas -urllib3==1.26.18 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # requests - # responses -varname==0.10.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # giving -voir==0.2.11 - # via -r benchmarks/accelerate_opt/requirements.in -xxhash==3.4.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # datasets - # evaluate -yarl==1.9.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # aiohttp diff --git a/benchmarks/dlrm/requirements.cuda.txt b/benchmarks/dlrm/requirements.cuda.txt deleted file mode 100644 index a6b3e0719..000000000 --- a/benchmarks/dlrm/requirements.cuda.txt +++ /dev/null @@ -1,318 +0,0 @@ -# -# This file is autogenerated by pip-compile with Python 3.11 -# by the following command: -# -# pip-compile --config=pyproject.toml --output-file=benchmarks/dlrm/requirements.cuda.txt --resolver=backtracking .pin/tmp-constraints-cuda-dlrm.txt benchmarks/dlrm/requirements.in -# ---extra-index-url https://download.pytorch.org/whl/cu118 - -absl-py==2.0.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # tensorboard -antlr4-python3-runtime==4.9.3 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # omegaconf -asttokens==2.4.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # giving -cachetools==5.3.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # google-auth -certifi==2023.7.22 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # requests -charset-normalizer==3.3.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # requests -codefind==0.1.3 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # ptera -docker==6.1.3 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torchx -docstring-parser==0.8.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torchx -executing==1.2.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # varname -fbgemm-gpu==0.5.0+cu118 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torchrec -filelock==3.13.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torch - # torchx - # triton -fsspec==2023.10.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torch - # torchx -future==0.18.3 - # via -r benchmarks/dlrm/requirements.in -giving==0.4.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # ptera - # voir -google-auth==2.23.4 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # google-auth-oauthlib - # tensorboard -google-auth-oauthlib==1.1.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # tensorboard -graphviz==0.20.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torchviz -grpcio==1.59.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # tensorboard -idna==3.4 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # requests -importlib-metadata==6.8.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torchx -jinja2==3.1.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torch -joblib==1.3.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # scikit-learn -lightning-utilities==0.9.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torchmetrics -markdown==3.5.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # tensorboard -markdown-it-py==3.0.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # rich -markupsafe==2.1.3 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # jinja2 - # werkzeug -mdurl==0.1.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # markdown-it-py -mpmath==1.3.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # sympy -mypy-extensions==1.0.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # typing-inspect -networkx==3.2.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torch -numpy==1.26.1 - # via - # -r benchmarks/dlrm/requirements.in - # onnx - # scikit-learn - # scipy - # tensorboard - # torchmetrics -oauthlib==3.2.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # requests-oauthlib -omegaconf==2.3.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # voir -onnx==1.15.0 - # via -r benchmarks/dlrm/requirements.in -ovld==0.3.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # voir -packaging==23.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # docker - # lightning-utilities - # torchmetrics -protobuf==4.23.4 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # onnx - # tensorboard -ptera==1.4.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # voir -pyasn1==0.5.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # pyasn1-modules - # rsa -pyasn1-modules==0.3.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # google-auth -pydot==1.4.2 - # via -r benchmarks/dlrm/requirements.in -pygments==2.16.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # rich -pynvml==11.5.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # voir -pyparsing==3.1.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # pydot -pyre-extensions==0.0.30 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torchx -pyyaml==6.0.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # omegaconf - # torchx -reactivex==4.0.4 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # giving -requests==2.31.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # docker - # requests-oauthlib - # tensorboard -requests-oauthlib==1.3.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # google-auth-oauthlib -rich==13.6.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # voir -rsa==4.9 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # google-auth -scikit-learn==1.3.2 - # via -r benchmarks/dlrm/requirements.in -scipy==1.11.3 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # scikit-learn -six==1.16.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # asttokens - # tensorboard -sympy==1.12 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torch -tabulate==0.9.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torchx -tensorboard==2.15.1 - # via -r benchmarks/dlrm/requirements.in -tensorboard-data-server==0.7.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # tensorboard -threadpoolctl==3.2.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # scikit-learn -torch==2.1.0+cu118 - # via - # -r benchmarks/dlrm/requirements.in - # torchmetrics - # torchviz -torchmetrics==1.0.3 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torchrec -torchrec==0.5.0+cu118 - # via -r benchmarks/dlrm/requirements.in -torchviz==0.0.2 - # via -r benchmarks/dlrm/requirements.in -torchx==0.5.0 - # via -r benchmarks/dlrm/requirements.in -tqdm==4.66.1 - # via - # -r benchmarks/dlrm/requirements.in - # torchrec -triton==2.1.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torch -typing-extensions==4.8.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # lightning-utilities - # pyre-extensions - # reactivex - # torch - # typing-inspect -typing-inspect==0.9.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # pyre-extensions -urllib3==1.26.18 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # docker - # requests - # torchx -varname==0.10.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # giving -voir==0.2.11 - # via -r benchmarks/dlrm/requirements.in -websocket-client==1.6.4 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # docker -werkzeug==3.0.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # tensorboard -zipp==3.17.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # importlib-metadata - -# The following packages are considered to be unsafe in a requirements file: -# setuptools diff --git a/benchmarks/flops/requirements.cuda.txt b/benchmarks/flops/requirements.cuda.txt deleted file mode 100644 index b10f89449..000000000 --- a/benchmarks/flops/requirements.cuda.txt +++ /dev/null @@ -1,153 +0,0 @@ -# -# This file is autogenerated by pip-compile with Python 3.11 -# by the following command: -# -# pip-compile --config=pyproject.toml --output-file=benchmarks/flops/requirements.cuda.txt --resolver=backtracking .pin/tmp-constraints-cuda-flops.txt benchmarks/flops/requirements.in -# ---extra-index-url https://download.pytorch.org/whl/cu118 - -antlr4-python3-runtime==4.9.3 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # omegaconf -asttokens==2.4.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # giving -certifi==2023.7.22 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # requests -charset-normalizer==3.3.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # requests -codefind==0.1.3 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # ptera -executing==1.2.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # varname -filelock==3.13.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torch - # triton -fsspec==2023.10.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torch -giving==0.4.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # ptera - # voir -idna==3.4 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # requests -jinja2==3.1.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torch -markdown-it-py==3.0.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # rich -markupsafe==2.1.3 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # jinja2 -mdurl==0.1.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # markdown-it-py -mpmath==1.3.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # sympy -networkx==3.2.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torch -numpy==1.26.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torchvision -omegaconf==2.3.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # voir -ovld==0.3.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # voir -pillow==10.1.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torchvision -ptera==1.4.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # voir -pygments==2.16.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # rich -pynvml==11.5.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # voir -pyyaml==6.0.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # omegaconf -reactivex==4.0.4 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # giving -requests==2.31.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torchvision -rich==13.6.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # voir -six==1.16.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # asttokens -sympy==1.12 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torch -torch==2.1.0+cu118 - # via - # -r benchmarks/flops/requirements.in - # torchvision -torchvision==0.16.0+cu118 - # via -r benchmarks/flops/requirements.in -tqdm==4.66.1 - # via -r benchmarks/flops/requirements.in -triton==2.1.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torch -typing-extensions==4.8.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # reactivex - # torch -urllib3==1.26.18 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # requests -varname==0.10.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # giving -voir==0.2.11 - # via -r benchmarks/flops/requirements.in diff --git a/benchmarks/huggingface/requirements.cuda.txt b/benchmarks/huggingface/requirements.cuda.txt deleted file mode 100644 index bb24e6654..000000000 --- a/benchmarks/huggingface/requirements.cuda.txt +++ /dev/null @@ -1,179 +0,0 @@ -# -# This file is autogenerated by pip-compile with Python 3.11 -# by the following command: -# -# pip-compile --config=pyproject.toml --output-file=benchmarks/huggingface/requirements.cuda.txt --resolver=backtracking .pin/tmp-constraints-cuda-hf.txt benchmarks/huggingface/requirements.in -# ---extra-index-url https://download.pytorch.org/whl/cu118 - -antlr4-python3-runtime==4.9.3 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # omegaconf -asttokens==2.4.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # giving -certifi==2023.7.22 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # requests -charset-normalizer==3.3.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # requests -codefind==0.1.3 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # ptera -executing==1.2.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # varname -filelock==3.13.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # huggingface-hub - # torch - # transformers - # triton -fsspec==2023.10.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # huggingface-hub - # torch -giving==0.4.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # ptera - # voir -huggingface-hub==0.17.3 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # tokenizers - # transformers -idna==3.4 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # requests -jinja2==3.1.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torch -markdown-it-py==3.0.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # rich -markupsafe==2.1.3 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # jinja2 -mdurl==0.1.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # markdown-it-py -mpmath==1.3.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # sympy -networkx==3.2.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torch -numpy==1.26.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # transformers -omegaconf==2.3.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # voir -ovld==0.3.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # voir -packaging==23.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # huggingface-hub - # transformers -ptera==1.4.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # voir -pygments==2.16.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # rich -pynvml==11.5.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # voir -pyyaml==6.0.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # huggingface-hub - # omegaconf - # transformers -reactivex==4.0.4 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # giving -regex==2023.10.3 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # transformers -requests==2.31.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # huggingface-hub - # transformers -rich==13.6.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # voir -safetensors==0.4.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # transformers -six==1.16.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # asttokens -sympy==1.12 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torch -tokenizers==0.14.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # transformers -torch==2.1.0+cu118 - # via -r benchmarks/huggingface/requirements.in -tqdm==4.66.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # huggingface-hub - # transformers -transformers==4.35.0 - # via -r benchmarks/huggingface/requirements.in -triton==2.1.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torch -typing-extensions==4.8.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # huggingface-hub - # reactivex - # torch -urllib3==1.26.18 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # requests -varname==0.10.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # giving -voir==0.2.11 - # via -r benchmarks/huggingface/requirements.in diff --git a/benchmarks/llama/requirements.cuda.txt b/benchmarks/llama/requirements.cuda.txt deleted file mode 100644 index 58f88112e..000000000 --- a/benchmarks/llama/requirements.cuda.txt +++ /dev/null @@ -1,181 +0,0 @@ -# -# This file is autogenerated by pip-compile with Python 3.11 -# by the following command: -# -# pip-compile --config=pyproject.toml --output-file=benchmarks/llama/requirements.cuda.txt --resolver=backtracking .pin/tmp-constraints-cuda-llm.txt benchmarks/llama/requirements.in -# ---extra-index-url https://download.pytorch.org/whl/cu118 - -aiohttp==3.8.6 - # via - # datasets - # fsspec -aiosignal==1.3.1 - # via aiohttp -antlr4-python3-runtime==4.9.3 - # via omegaconf -asttokens==2.4.1 - # via giving -async-timeout==4.0.3 - # via aiohttp -attrs==23.1.0 - # via aiohttp -certifi==2023.7.22 - # via requests -charset-normalizer==3.3.2 - # via - # aiohttp - # requests -codefind==0.1.3 - # via ptera -datasets==2.14.6 - # via -r benchmarks/llama/requirements.in -dill==0.3.7 - # via - # datasets - # multiprocess -executing==1.2.0 - # via varname -fairscale==0.4.13 - # via -r benchmarks/llama/requirements.in -filelock==3.13.1 - # via - # huggingface-hub - # torch - # transformers - # triton -fire==0.5.0 - # via -r benchmarks/llama/requirements.in -frozenlist==1.4.0 - # via - # aiohttp - # aiosignal -fsspec[http]==2023.10.0 - # via - # datasets - # huggingface-hub - # torch -giving==0.4.2 - # via - # ptera - # voir -huggingface-hub==0.17.3 - # via - # datasets - # tokenizers - # transformers -idna==3.4 - # via - # requests - # yarl -jinja2==3.1.2 - # via torch -markdown-it-py==3.0.0 - # via rich -markupsafe==2.1.3 - # via jinja2 -mdurl==0.1.2 - # via markdown-it-py -mpmath==1.3.0 - # via sympy -multidict==6.0.4 - # via - # aiohttp - # yarl -multiprocess==0.70.15 - # via datasets -networkx==3.2.1 - # via torch -numpy==1.26.1 - # via - # datasets - # fairscale - # pandas - # pyarrow - # transformers -omegaconf==2.3.0 - # via voir -ovld==0.3.2 - # via voir -packaging==23.2 - # via - # datasets - # huggingface-hub - # transformers -pandas==2.1.2 - # via datasets -ptera==1.4.1 - # via voir -pyarrow==14.0.0 - # via datasets -pygments==2.16.1 - # via rich -pynvml==11.5.0 - # via voir -python-dateutil==2.8.2 - # via pandas -pytz==2023.3.post1 - # via pandas -pyyaml==6.0.1 - # via - # datasets - # huggingface-hub - # omegaconf - # transformers -reactivex==4.0.4 - # via giving -regex==2023.10.3 - # via transformers -requests==2.31.0 - # via - # datasets - # fsspec - # huggingface-hub - # transformers -rich==13.6.0 - # via voir -safetensors==0.4.0 - # via transformers -sentencepiece==0.1.99 - # via -r benchmarks/llama/requirements.in -six==1.16.0 - # via - # asttokens - # fire - # python-dateutil -sympy==1.12 - # via torch -termcolor==2.3.0 - # via fire -tokenizers==0.14.1 - # via transformers -torch==2.1.0+cu118 - # via - # -r benchmarks/llama/requirements.in - # fairscale -tqdm==4.66.1 - # via - # datasets - # huggingface-hub - # transformers -transformers==4.35.0 - # via -r benchmarks/llama/requirements.in -triton==2.1.0 - # via torch -typing-extensions==4.8.0 - # via - # huggingface-hub - # reactivex - # torch -tzdata==2023.3 - # via pandas -urllib3==2.0.7 - # via requests -varname==0.10.0 - # via giving -voir==0.2.11 - # via -r benchmarks/llama/requirements.in -xxhash==3.4.1 - # via datasets -yarl==1.9.2 - # via aiohttp diff --git a/benchmarks/rwkv/requirements.cuda.txt b/benchmarks/rwkv/requirements.cuda.txt deleted file mode 100644 index 830a0a40a..000000000 --- a/benchmarks/rwkv/requirements.cuda.txt +++ /dev/null @@ -1,232 +0,0 @@ -# -# This file is autogenerated by pip-compile with Python 3.11 -# by the following command: -# -# pip-compile --config=pyproject.toml --output-file=benchmarks/rwkv/requirements.cuda.txt --resolver=backtracking .pin/tmp-constraints-cuda-rwkv.txt benchmarks/rwkv/requirements.in -# ---extra-index-url https://download.pytorch.org/whl/cu118 - -aiohttp==3.8.6 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # fsspec -aiosignal==1.3.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # aiohttp -antlr4-python3-runtime==4.9.3 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # omegaconf -asttokens==2.4.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # giving -async-timeout==4.0.3 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # aiohttp -attrs==23.1.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # aiohttp -certifi==2023.7.22 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # requests -charset-normalizer==3.3.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # aiohttp - # requests -codefind==0.1.3 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # ptera -deepspeed==0.12.2 - # via -r benchmarks/rwkv/requirements.in -executing==1.2.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # varname -filelock==3.13.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torch - # triton -frozenlist==1.4.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # aiohttp - # aiosignal -fsspec[http]==2023.10.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # pytorch-lightning - # torch -giving==0.4.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # ptera - # voir -hjson==3.1.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # deepspeed -idna==3.4 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # requests - # yarl -jinja2==3.1.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torch -lightning-utilities==0.9.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # pytorch-lightning - # torchmetrics -markdown-it-py==3.0.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # rich -markupsafe==2.1.3 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # jinja2 -mdurl==0.1.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # markdown-it-py -mpmath==1.3.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # sympy -multidict==6.0.4 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # aiohttp - # yarl -networkx==3.2.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torch -ninja==1.11.1.1 - # via - # -r benchmarks/rwkv/requirements.in - # deepspeed -numpy==1.26.1 - # via - # -r benchmarks/rwkv/requirements.in - # deepspeed - # pytorch-lightning - # torchmetrics -omegaconf==2.3.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # voir -ovld==0.3.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # voir -packaging==23.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # deepspeed - # lightning-utilities - # pytorch-lightning - # torchmetrics -psutil==5.9.6 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # deepspeed -ptera==1.4.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # voir -py-cpuinfo==9.0.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # deepspeed -pydantic==1.10.13 - # via - # -r benchmarks/rwkv/requirements.in - # deepspeed -pygments==2.16.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # rich -pynvml==11.5.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # deepspeed - # voir -pytorch-lightning==1.9.5 - # via -r benchmarks/rwkv/requirements.in -pyyaml==6.0.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # omegaconf - # pytorch-lightning -reactivex==4.0.4 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # giving -requests==2.31.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # fsspec -rich==13.6.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # voir -six==1.16.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # asttokens -sympy==1.12 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torch -torch==2.1.0+cu118 - # via - # -r benchmarks/rwkv/requirements.in - # deepspeed - # pytorch-lightning - # torchmetrics -torchmetrics==1.0.3 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # pytorch-lightning -tqdm==4.66.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # deepspeed - # pytorch-lightning -triton==2.1.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torch -typing-extensions==4.8.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # lightning-utilities - # pydantic - # pytorch-lightning - # reactivex - # torch -urllib3==1.26.18 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # requests -varname==0.10.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # giving -voir==0.2.11 - # via -r benchmarks/rwkv/requirements.in -yarl==1.9.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # aiohttp diff --git a/benchmarks/stargan/requirements.cuda.txt b/benchmarks/stargan/requirements.cuda.txt deleted file mode 100644 index 8a8cea8eb..000000000 --- a/benchmarks/stargan/requirements.cuda.txt +++ /dev/null @@ -1,151 +0,0 @@ -# -# This file is autogenerated by pip-compile with Python 3.11 -# by the following command: -# -# pip-compile --config=pyproject.toml --output-file=benchmarks/stargan/requirements.cuda.txt --resolver=backtracking .pin/tmp-constraints-cuda-stargan.txt benchmarks/stargan/requirements.in -# ---extra-index-url https://download.pytorch.org/whl/cu118 - -antlr4-python3-runtime==4.9.3 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # omegaconf -asttokens==2.4.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # giving -certifi==2023.7.22 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # requests -charset-normalizer==3.3.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # requests -codefind==0.1.3 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # ptera -executing==1.2.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # varname -filelock==3.13.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torch - # triton -fsspec==2023.10.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torch -giving==0.4.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # ptera - # voir -idna==3.4 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # requests -jinja2==3.1.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torch -markdown-it-py==3.0.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # rich -markupsafe==2.1.3 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # jinja2 -mdurl==0.1.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # markdown-it-py -mpmath==1.3.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # sympy -networkx==3.2.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torch -numpy==1.26.1 - # via - # -r benchmarks/stargan/requirements.in - # torchvision -omegaconf==2.3.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # voir -ovld==0.3.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # voir -pillow==10.1.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torchvision -ptera==1.4.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # voir -pygments==2.16.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # rich -pynvml==11.5.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # voir -pyyaml==6.0.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # omegaconf -reactivex==4.0.4 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # giving -requests==2.31.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torchvision -rich==13.6.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # voir -six==1.16.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # asttokens -sympy==1.12 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torch -torch==2.1.0+cu118 - # via - # -r benchmarks/stargan/requirements.in - # torchvision -torchvision==0.16.0+cu118 - # via -r benchmarks/stargan/requirements.in -triton==2.1.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torch -typing-extensions==4.8.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # reactivex - # torch -urllib3==1.26.18 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # requests -varname==0.10.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # giving -voir==0.2.11 - # via -r benchmarks/stargan/requirements.in diff --git a/benchmarks/super-slomo/requirements.cuda.txt b/benchmarks/super-slomo/requirements.cuda.txt deleted file mode 100644 index 9613eeb92..000000000 --- a/benchmarks/super-slomo/requirements.cuda.txt +++ /dev/null @@ -1,156 +0,0 @@ -# -# This file is autogenerated by pip-compile with Python 3.11 -# by the following command: -# -# pip-compile --config=pyproject.toml --output-file=benchmarks/super-slomo/requirements.cuda.txt --resolver=backtracking .pin/tmp-constraints-cuda-super-slomo.txt benchmarks/super-slomo/requirements.in -# ---extra-index-url https://download.pytorch.org/whl/cu118 - -antlr4-python3-runtime==4.9.3 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # omegaconf -asttokens==2.4.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # giving -certifi==2023.7.22 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # requests -charset-normalizer==3.3.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # requests -codefind==0.1.3 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # ptera -executing==1.2.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # varname -filelock==3.13.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torch - # triton -fsspec==2023.10.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torch -giving==0.4.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # ptera - # voir -idna==3.4 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # requests -jinja2==3.1.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torch -markdown-it-py==3.0.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # rich -markupsafe==2.1.3 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # jinja2 -mdurl==0.1.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # markdown-it-py -mpmath==1.3.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # sympy -networkx==3.2.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torch -numpy==1.26.1 - # via - # -r benchmarks/super-slomo/requirements.in - # opencv-python - # torchvision -omegaconf==2.3.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # voir -opencv-python==4.8.1.78 - # via -r benchmarks/super-slomo/requirements.in -ovld==0.3.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # voir -pillow==10.1.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torchvision -ptera==1.4.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # voir -pygments==2.16.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # rich -pynvml==11.5.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # voir -pyyaml==6.0.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # omegaconf -reactivex==4.0.4 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # giving -requests==2.31.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torchvision -rich==13.6.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # voir -six==1.16.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # asttokens -sympy==1.12 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torch -torch==2.1.0+cu118 - # via - # -r benchmarks/super-slomo/requirements.in - # torchvision -torchvision==0.16.0+cu118 - # via -r benchmarks/super-slomo/requirements.in -tqdm==4.66.1 - # via -r benchmarks/super-slomo/requirements.in -triton==2.1.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torch -typing-extensions==4.8.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # reactivex - # torch -urllib3==1.26.18 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # requests -varname==0.10.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # giving -voir==0.2.11 - # via -r benchmarks/super-slomo/requirements.in diff --git a/benchmarks/timm/requirements.cuda.txt b/benchmarks/timm/requirements.cuda.txt deleted file mode 100644 index 5ff47f552..000000000 --- a/benchmarks/timm/requirements.cuda.txt +++ /dev/null @@ -1,168 +0,0 @@ -# -# This file is autogenerated by pip-compile with Python 3.11 -# by the following command: -# -# pip-compile --config=pyproject.toml --output-file=benchmarks/timm/requirements.cuda.txt --resolver=backtracking .pin/tmp-constraints-cuda-timm.txt benchmarks/timm/requirements.in -# ---extra-index-url https://download.pytorch.org/whl/cu118 - -antlr4-python3-runtime==4.9.3 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # omegaconf -asttokens==2.4.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # giving -certifi==2023.7.22 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # requests -charset-normalizer==3.3.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # requests -codefind==0.1.3 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # ptera -executing==1.2.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # varname -filelock==3.13.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # huggingface-hub - # torch - # triton -fsspec==2023.10.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # huggingface-hub - # torch -giving==0.4.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # ptera - # voir -huggingface-hub==0.17.3 - # via -r benchmarks/timm/requirements.in -idna==3.4 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # requests -jinja2==3.1.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torch -markdown-it-py==3.0.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # rich -markupsafe==2.1.3 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # jinja2 -mdurl==0.1.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # markdown-it-py -mpmath==1.3.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # sympy -networkx==3.2.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torch -numpy==1.26.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torchvision -omegaconf==2.3.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # voir -ovld==0.3.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # voir -packaging==23.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # huggingface-hub -pillow==10.1.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torchvision -ptera==1.4.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # voir -pygments==2.16.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # rich -pynvml==11.5.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # voir -pyyaml==6.0.1 - # via - # -r benchmarks/timm/requirements.in - # huggingface-hub - # omegaconf -reactivex==4.0.4 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # giving -requests==2.31.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # huggingface-hub - # torchvision -rich==13.6.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # voir -safetensors==0.4.0 - # via -r benchmarks/timm/requirements.in -six==1.16.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # asttokens -sympy==1.12 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torch -torch==2.1.0+cu118 - # via - # -r benchmarks/timm/requirements.in - # torchvision -torchvision==0.16.0+cu118 - # via -r benchmarks/timm/requirements.in -tqdm==4.66.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # huggingface-hub -triton==2.1.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torch -typing-extensions==4.8.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # huggingface-hub - # reactivex - # torch -urllib3==1.26.18 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # requests -varname==0.10.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # giving -voir==0.2.11 - # via -r benchmarks/timm/requirements.in diff --git a/benchmarks/torchvision/main.py b/benchmarks/torchvision/main.py index 843f2246a..baf351601 100644 --- a/benchmarks/torchvision/main.py +++ b/benchmarks/torchvision/main.py @@ -1,6 +1,7 @@ import argparse import contextlib import os +import time import torch import torch.cuda.amp @@ -14,6 +15,23 @@ normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) +class Stats: + def __init__(self): + self.count = 0 + self.epoch_count = 0 + + def newbatch(self, bs): + self.count += bs.shape[0] + self.epoch_count += bs.shape[0] + + def newepoch(self): + self.epoch_count = 0 + + + +stats = Stats() + + def is_tf32_allowed(args): return "tf32" in args.precision @@ -42,11 +60,15 @@ def scaling(enable): def train_epoch(model, criterion, optimizer, loader, device, scaler=None): + global stats + + stats.newepoch() model.train() for inp, target in voir.iterate("train", loader, True): inp = inp.to(device) target = target.to(device) optimizer.zero_grad() + with scaling(scaler is not None): output = model(inp) loss = criterion(output, target) @@ -59,6 +81,8 @@ def train_epoch(model, criterion, optimizer, loader, device, scaler=None): else: loss.backward() optimizer.step() + + stats.newbatch(inp) class SyntheticData: @@ -208,17 +232,25 @@ def main(): else: scaler = None + s = time.time() with given() as gv: if not args.no_stdout: gv.where("loss").display() for epoch in voir.iterate("main", range(args.epochs)): + es = time.time() + if not args.no_stdout: print(f"Begin training epoch {epoch}/{args.epochs}") train_epoch( model, criterion, optimizer, train_loader, device, scaler=scaler ) - + + ee = time.time() + print(f" Epoch: {stats.epoch_count / (ee - es)}") + + e = time.time() + print(f"Train speed: {stats.count / (e - s)}") if __name__ == "__main__": main() diff --git a/benchmarks/torchvision/requirements.cuda.txt b/benchmarks/torchvision/requirements.cuda.txt index 6bacdaea2..d35abd90a 100644 --- a/benchmarks/torchvision/requirements.cuda.txt +++ b/benchmarks/torchvision/requirements.cuda.txt @@ -1,153 +1,113 @@ # -# This file is autogenerated by pip-compile with Python 3.11 +# This file is autogenerated by pip-compile with Python 3.12 # by the following command: # -# pip-compile --config=pyproject.toml --output-file=benchmarks/torchvision/requirements.cuda.txt --resolver=backtracking .pin/tmp-constraints-cuda-torchvision.txt benchmarks/torchvision/requirements.in +# pip-compile --output-file=benchmarks/torchvision/requirements.cuda.txt .pin/tmp-constraints-cuda-torchvision.txt benchmarks/torchvision/requirements.in # --extra-index-url https://download.pytorch.org/whl/cu118 antlr4-python3-runtime==4.9.3 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # omegaconf + # via omegaconf asttokens==2.4.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # giving -certifi==2023.7.22 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # requests + # via giving +certifi==2024.2.2 + # via requests charset-normalizer==3.3.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # requests + # via requests codefind==0.1.3 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # ptera + # via ptera executing==1.2.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # varname + # via varname filelock==3.13.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torch - # triton -fsspec==2023.10.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torch + # via torch +fsspec==2024.2.0 + # via torch giving==0.4.2 # via - # -c .pin/../.pin/constraints-cuda-torch.txt # ptera # voir -idna==3.4 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # requests -jinja2==3.1.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torch +idna==3.6 + # via requests +jinja2==3.1.3 + # via torch markdown-it-py==3.0.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # rich -markupsafe==2.1.3 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # jinja2 + # via rich +markupsafe==2.1.5 + # via jinja2 mdurl==0.1.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # markdown-it-py + # via markdown-it-py mpmath==1.3.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # sympy + # via sympy networkx==3.2.1 + # via torch +numpy==1.26.4 + # via torchvision +nvidia-cublas-cu11==11.11.3.6 # via - # -c .pin/../.pin/constraints-cuda-torch.txt + # nvidia-cudnn-cu11 + # nvidia-cusolver-cu11 # torch -numpy==1.26.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torchvision +nvidia-cuda-cupti-cu11==11.8.87 + # via torch +nvidia-cuda-nvrtc-cu11==11.8.89 + # via torch +nvidia-cuda-runtime-cu11==11.8.89 + # via torch +nvidia-cudnn-cu11==8.7.0.84 + # via torch +nvidia-cufft-cu11==10.9.0.58 + # via torch +nvidia-curand-cu11==10.3.0.86 + # via torch +nvidia-cusolver-cu11==11.4.1.48 + # via torch +nvidia-cusparse-cu11==11.7.5.86 + # via torch +nvidia-nccl-cu11==2.19.3 + # via torch +nvidia-nvtx-cu11==11.8.86 + # via torch omegaconf==2.3.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # voir + # via voir ovld==0.3.2 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # voir -pillow==10.1.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torchvision + # via voir +pillow==10.2.0 + # via torchvision ptera==1.4.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # voir -pygments==2.16.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # rich + # via voir +pygments==2.17.2 + # via rich pynvml==11.5.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # voir + # via voir pyyaml==6.0.1 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # omegaconf + # via omegaconf reactivex==4.0.4 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # giving + # via giving requests==2.31.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torchvision -rich==13.6.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # voir + # via torchvision +rich==13.7.0 + # via voir six==1.16.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # asttokens + # via asttokens sympy==1.12 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torch -torch==2.1.0+cu118 + # via torch +torch==2.2.0+cu118 # via # -r benchmarks/torchvision/requirements.in # torchvision -torchvision==0.16.0+cu118 +torchvision==0.17.0+cu118 # via -r benchmarks/torchvision/requirements.in tqdm==4.66.1 # via -r benchmarks/torchvision/requirements.in -triton==2.1.0 +typing-extensions==4.9.0 # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # torch -typing-extensions==4.8.0 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt # reactivex # torch -urllib3==1.26.18 - # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # requests +urllib3==2.2.0 + # via requests varname==0.10.0 + # via giving +voir==0.2.12 # via - # -c .pin/../.pin/constraints-cuda-torch.txt - # giving -voir==0.2.11 - # via -r benchmarks/torchvision/requirements.in + # -c .pin/../constraints/cuda.txt + # -r benchmarks/torchvision/requirements.in diff --git a/commands.sh b/commands.sh new file mode 100644 index 000000000..5c2ee955a --- /dev/null +++ b/commands.sh @@ -0,0 +1,27 @@ +# --- +# Virtual Env +# =========== +export VIRTUAL_ENV="/Tmp/slurm.4123709.0/base/venv/torch" + + +# --- +# Milabench +# ========= +export MILABENCH_DIR_BASE="/Tmp/slurm.4123709.0/base" +export MILABENCH_DIR_VENV="/Tmp/slurm.4123709.0/base/venv/torch" +export MILABENCH_DIR_DATA="/Tmp/slurm.4123709.0/base/data" +export MILABENCH_DIR_RUNS="/Tmp/slurm.4123709.0/base/runs" +export MILABENCH_DIR_EXTRA="/Tmp/slurm.4123709.0/base/extra/torchvision" +export MILABENCH_DIR_CACHE="/Tmp/slurm.4123709.0/base/cache" +export MILABENCH_CONFIG='{"system": {"arch": "cuda", "sshkey": null, "nodes": [{"ip": "127.0.0.1", "main": true, "name": "0", "port": 22, "user": "username", "hostname": "localhost", "aliaslist": [], "ipaddrlist": ["70:b5:e8:f0:5a:08", "fe80::1270:fd03:cd:a394%ibp161s0", "::1", "172.16.9.28", "fe80::72b5:e8ff:fef0:5a08%eno8303", "00:00:00:00:00:00", "00:00:02:5d:fe:80:00:00:00:00:00:00:10:70:fd:03:00:cd:a3:94", "10.20.9.28", "00:00:00:bf:fe:80:00:00:00:00:00:00:10:70:fd:03:00:e6:1b:38", "fe80::1270:fd03:e6:1b38%ibp37s0", "127.0.0.1", "10.20.137.28"], "local": true}], "gpu": {"capacity": "0 MiB"}, "self": {"ip": "127.0.0.1", "main": true, "name": "0", "port": 22, "user": "username", "hostname": "localhost", "aliaslist": [], "ipaddrlist": ["70:b5:e8:f0:5a:08", "fe80::1270:fd03:cd:a394%ibp161s0", "::1", "172.16.9.28", "fe80::72b5:e8ff:fef0:5a08%eno8303", "00:00:00:00:00:00", "00:00:02:5d:fe:80:00:00:00:00:00:00:10:70:fd:03:00:cd:a3:94", "10.20.9.28", "00:00:00:bf:fe:80:00:00:00:00:00:00:10:70:fd:03:00:e6:1b:38", "fe80::1270:fd03:e6:1b38%ibp37s0", "127.0.0.1", "10.20.137.28"], "local": true}}, "dirs": {"base": "/Tmp/slurm.4123709.0/base", "venv": "/Tmp/slurm.4123709.0/base/venv/torch", "data": "/Tmp/slurm.4123709.0/base/data", "runs": "/Tmp/slurm.4123709.0/base/runs", "extra": "/Tmp/slurm.4123709.0/base/extra/torchvision", "cache": "/Tmp/slurm.4123709.0/base/cache"}, "group": "torchvision", "install_group": "torch", "install_variant": "cuda", "run_name": "dev", "enabled": true, "capabilities": {"nodes": 1}, "max_duration": 600, "voir": {"options": {"stop": 60, "interval": "1s"}}, "validation": {"usage": {"gpu_load_threshold": 0.5, "gpu_mem_threshold": 0.5}}, "config_base": "/home/mila/d/delaunap/milabench/config", "config_file": "/home/mila/d/delaunap/milabench/config/standard.yaml", "definition": "/home/mila/d/delaunap/milabench/benchmarks/torchvision", "plan": {"method": "per_gpu"}, "argv": {"--precision": "tf32-fp16", "--lr": 0.01, "--no-stdout": true, "--epochs": 50, "--model": "resnet50", "--batch-size": 64}, "tags": ["classification", "convnet", "resnet", "vision"], "weight": 1.0, "name": "resnet50", "tag": ["resnet50"]}' + +source $VIRTUAL_ENV/bin/activate + +# --- +# resnet50 +# ======== +( + CUDA_VISIBLE_DEVICES=0 voir --config /Tmp/slurm.4123709.0/base/extra/torchvision/voirconf-resnet50.D0-0efae956f1553a76c1e03985181900f5.json /home/mila/d/delaunap/milabench/benchmarks/torchvision/main.py --precision tf32-fp16 --lr 0.01 --no-stdout --epochs 50 --model resnet50 --batch-size 64 & + wait +) + diff --git a/milabench/_version.py b/milabench/_version.py index 119a89dff..3b9311daf 100644 --- a/milabench/_version.py +++ b/milabench/_version.py @@ -1,5 +1,5 @@ """This file is generated, do not modify""" -__tag__ = "v0.0.6-41-g932e30e" -__commit__ = "932e30e79513fdd2448cedaf98a003bb4b5b9148" -__date__ = "2024-01-17 14:33:14 -0500" +__tag__ = "v0.0.6-45-gac2ebf69" +__commit__ = "ac2ebf69ce2d44242a726b81531894f5b3049522" +__date__ = "2024-02-05 12:05:56 -0500" diff --git a/milabench/multi.py b/milabench/multi.py index 9946a3642..8c5e4c941 100644 --- a/milabench/multi.py +++ b/milabench/multi.py @@ -17,7 +17,7 @@ milabench_remote_prepare, milabench_remote_run, ) -from .utils import make_constraints_file +from .utils import make_constraints_file, pin_dir here = XPath(__file__).parent @@ -225,8 +225,8 @@ async def do_pin( pack0 = packs[0] ivar = pack0.config["install_variant"] - pindir = XPath(".pin") - + # + pindir = pin_dir() constraint_path = pindir / "tmp-constraints.txt" constraint_files = make_constraints_file(constraint_path, constraints) diff --git a/milabench/pack.py b/milabench/pack.py index 46c4459db..b4599bd09 100644 --- a/milabench/pack.py +++ b/milabench/pack.py @@ -24,6 +24,7 @@ class defines good default behavior. deprecated, make_constraints_file, relativize, + pin_dir, ) @@ -390,7 +391,7 @@ async def pin( reqs.rm() grp = self.config["group"] - constraint_path = XPath(".pin") / f"tmp-constraints-{ivar}-{grp}.txt" + constraint_path = pin_dir() / f"tmp-constraints-{ivar}-{grp}.txt" constraint_files = make_constraints_file(constraint_path, constraints) current_input_files = constraint_files + (base_reqs, *input_files) diff --git a/milabench/utils.py b/milabench/utils.py index 575795361..63cba6b2d 100644 --- a/milabench/utils.py +++ b/milabench/utils.py @@ -17,6 +17,14 @@ from milabench.fs import XPath from milabench.validation.validation import Summary +here = XPath(__file__).parent + + +def pin_dir(): + pin = (here.parent / ".pin").absolute() + print(str(pin)) + return pin + def deprecated(func): @functools.wraps(func) @@ -108,8 +116,9 @@ def assemble_options(options: dict): def relativize(pth): pth = XPath(pth) + if pth.is_absolute(): - return pth.relative_to(XPath(".").absolute()) + return pth.relative_to(XPath(here.parent).absolute()) else: return pth diff --git a/scripts/barebone.out b/scripts/barebone.out new file mode 100644 index 000000000..37e7037a3 --- /dev/null +++ b/scripts/barebone.out @@ -0,0 +1,9922 @@ + PYTHON: 3.9 + branch: overhead + origin: https://github.com/mila-iqia/milabench.git + config: /Tmp/slurm.4115007.0/milabench/config/standard.yaml + env: ./env + args: +Collecting package metadata (current_repodata.json): ...working... done +Solving environment: ...working... done + + +==> WARNING: A newer version of conda exists. <== + current version: 23.5.2 + latest version: 24.1.0 + +Please update conda by running + + $ conda update -n base -c defaults conda + +Or to minimize the number of packages updated during conda update use + + conda install conda=24.1.0 + + + +## Package Plan ## + + environment location: /Tmp/slurm.4115007.0/env + + added / updated specs: + - python=3.9 + + +The following NEW packages will be INSTALLED: + + _libgcc_mutex pkgs/main/linux-64::_libgcc_mutex-0.1-main + _openmp_mutex pkgs/main/linux-64::_openmp_mutex-5.1-1_gnu + ca-certificates pkgs/main/linux-64::ca-certificates-2023.12.12-h06a4308_0 + ld_impl_linux-64 pkgs/main/linux-64::ld_impl_linux-64-2.38-h1181459_1 + libffi pkgs/main/linux-64::libffi-3.4.4-h6a678d5_0 + libgcc-ng pkgs/main/linux-64::libgcc-ng-11.2.0-h1234567_1 + libgomp pkgs/main/linux-64::libgomp-11.2.0-h1234567_1 + libstdcxx-ng pkgs/main/linux-64::libstdcxx-ng-11.2.0-h1234567_1 + ncurses pkgs/main/linux-64::ncurses-6.4-h6a678d5_0 + openssl pkgs/main/linux-64::openssl-3.0.13-h7f8727e_0 + pip pkgs/main/linux-64::pip-23.3.1-py39h06a4308_0 + python pkgs/main/linux-64::python-3.9.18-h955ad1f_0 + readline pkgs/main/linux-64::readline-8.2-h5eee18b_0 + setuptools pkgs/main/linux-64::setuptools-68.2.2-py39h06a4308_0 + sqlite pkgs/main/linux-64::sqlite-3.41.2-h5eee18b_0 + tk pkgs/main/linux-64::tk-8.6.12-h1ccaba5_0 + tzdata pkgs/main/noarch::tzdata-2023d-h04d1e81_0 + wheel pkgs/main/linux-64::wheel-0.41.2-py39h06a4308_0 + xz pkgs/main/linux-64::xz-5.4.5-h5eee18b_0 + zlib pkgs/main/linux-64::zlib-1.2.13-h5eee18b_0 + + + +Downloading and Extracting Packages + +Preparing transaction: ...working... done +Verifying transaction: ...working... done +Executing transaction: ...working... done +# +# To activate this environment, use +# +# $ conda activate /Tmp/slurm.4115007.0/env +# +# To deactivate an active environment, use +# +# $ conda deactivate + +Cloning into 'milabench'... +Obtaining file:///Tmp/slurm.4115007.0/milabench + Installing build dependencies: started + Installing build dependencies: finished with status 'done' + Checking if build backend supports build_editable: started + Checking if build backend supports build_editable: finished with status 'done' + Getting requirements to build editable: started + Getting requirements to build editable: finished with status 'done' + Preparing editable metadata (pyproject.toml): started + Preparing editable metadata (pyproject.toml): finished with status 'done' +Collecting voir@ git+https://github.com/breuleux/voir@master (from milabench==0.1.0) + Cloning https://github.com/breuleux/voir (to revision master) to /tmp/pip-install-ffz5ww1z/voir_fe72015123d94a7cba9f364de1b17923 + Running command git clone --filter=blob:none --quiet https://github.com/breuleux/voir /tmp/pip-install-ffz5ww1z/voir_fe72015123d94a7cba9f364de1b17923 + Resolved https://github.com/breuleux/voir to commit 08b19eb9bce3a38cbf38bb59ee117c0cb6f116da + Installing build dependencies: started + Installing build dependencies: finished with status 'done' + Getting requirements to build wheel: started + Getting requirements to build wheel: finished with status 'done' + Preparing metadata (pyproject.toml): started + Preparing metadata (pyproject.toml): finished with status 'done' +Collecting GitPython<4.0.0,>=3.1.24 (from milabench==0.1.0) + Downloading GitPython-3.1.41-py3-none-any.whl.metadata (14 kB) +Collecting PyYAML<7.0,>=6.0 (from milabench==0.1.0) + Downloading PyYAML-6.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (2.1 kB) +Collecting blessed<2.0.0,>=1.19.1 (from milabench==0.1.0) + Downloading blessed-1.20.0-py2.py3-none-any.whl (58 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58.4/58.4 kB 4.6 MB/s eta 0:00:00 +Collecting coleo<0.4.0,>=0.3.0 (from milabench==0.1.0) + Downloading coleo-0.3.3-py3-none-any.whl.metadata (13 kB) +Collecting cp-template<0.4.0,>=0.3.0 (from milabench==0.1.0) + Downloading cp_template-0.3.0-py3-none-any.whl (3.3 kB) +Collecting giving<0.5.0,>=0.4.0 (from milabench==0.1.0) + Downloading giving-0.4.2-py3-none-any.whl (28 kB) +Collecting hrepr<0.5.0,>=0.4.0 (from milabench==0.1.0) + Downloading hrepr-0.4.1-py3-none-any.whl (21 kB) +Collecting importlib-resources<7.0.0,>=6.1.0 (from milabench==0.1.0) + Downloading importlib_resources-6.1.1-py3-none-any.whl.metadata (4.1 kB) +Collecting nox<2022.0.0,>=2021.10.1 (from milabench==0.1.0) + Downloading nox-2021.10.1-py3-none-any.whl (49 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 49.7/49.7 kB 30.8 MB/s eta 0:00:00 +Collecting numpy>=1.23.0 (from milabench==0.1.0) + Downloading numpy-1.26.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (61 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 61.0/61.0 kB 33.5 MB/s eta 0:00:00 +Collecting omegaconf<3.0.0,>=2.3.0 (from milabench==0.1.0) + Downloading omegaconf-2.3.0-py3-none-any.whl (79 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 79.5/79.5 kB 44.0 MB/s eta 0:00:00 +Collecting ovld<0.4.0,>=0.3.2 (from milabench==0.1.0) + Downloading ovld-0.3.2-py3-none-any.whl (16 kB) +Collecting pandas<2.0.0,>=1.4.2 (from milabench==0.1.0) + Downloading pandas-1.5.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.2 MB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 12.2/12.2 MB 104.6 MB/s eta 0:00:00 +Collecting pathspec<0.10.0,>=0.9.0 (from milabench==0.1.0) + Downloading pathspec-0.9.0-py2.py3-none-any.whl (31 kB) +Collecting pip-tools<7.0.0,>=6.12.3 (from milabench==0.1.0) + Downloading pip_tools-6.14.0-py3-none-any.whl.metadata (23 kB) +Collecting psutil<6.0.0,>=5.9.5 (from milabench==0.1.0) + Downloading psutil-5.9.8-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (21 kB) +Collecting psycopg2-binary<3.0.0,>=2.9.6 (from milabench==0.1.0) + Downloading psycopg2_binary-2.9.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (4.4 kB) +Collecting ptera<2.0.0,>=1.2.0 (from milabench==0.1.0) + Downloading ptera-1.4.1-py3-none-any.whl (39 kB) +Collecting py-cpuinfo<10.0.0,>=9.0.0 (from milabench==0.1.0) + Downloading py_cpuinfo-9.0.0-py3-none-any.whl (22 kB) +Collecting pymongo<5.0.0,>=4.3.3 (from milabench==0.1.0) + Downloading pymongo-4.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (22 kB) +Collecting pynvml<12.0.0,>=11.4.1 (from milabench==0.1.0) + Downloading pynvml-11.5.0-py3-none-any.whl (53 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 53.1/53.1 kB 34.7 MB/s eta 0:00:00 +Collecting requests<3.0.0,>=2.26.0 (from milabench==0.1.0) + Downloading requests-2.31.0-py3-none-any.whl.metadata (4.6 kB) +Collecting rich<14.0.0,>=13.3.2 (from milabench==0.1.0) + Downloading rich-13.7.0-py3-none-any.whl.metadata (18 kB) +Collecting sqlalchemy<3.0.0,>=2.0.15 (from milabench==0.1.0) + Downloading SQLAlchemy-2.0.25-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (9.6 kB) +Collecting tqdm<5.0.0,>=4.64.1 (from milabench==0.1.0) + Downloading tqdm-4.66.1-py3-none-any.whl.metadata (57 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 57.6/57.6 kB 37.2 MB/s eta 0:00:00 +Collecting wcwidth>=0.1.4 (from blessed<2.0.0,>=1.19.1->milabench==0.1.0) + Downloading wcwidth-0.2.13-py2.py3-none-any.whl.metadata (14 kB) +Collecting six>=1.9.0 (from blessed<2.0.0,>=1.19.1->milabench==0.1.0) + Downloading six-1.16.0-py2.py3-none-any.whl (11 kB) +Collecting pystache<0.7.0,>=0.6.0 (from cp-template<0.4.0,>=0.3.0->milabench==0.1.0) + Downloading pystache-0.6.5-py3-none-any.whl.metadata (14 kB) +Collecting gitdb<5,>=4.0.1 (from GitPython<4.0.0,>=3.1.24->milabench==0.1.0) + Downloading gitdb-4.0.11-py3-none-any.whl.metadata (1.2 kB) +Collecting asttokens<3.0.0,>=2.2.1 (from giving<0.5.0,>=0.4.0->milabench==0.1.0) + Downloading asttokens-2.4.1-py2.py3-none-any.whl.metadata (5.2 kB) +Collecting reactivex<5.0.0,>=4.0.0 (from giving<0.5.0,>=0.4.0->milabench==0.1.0) + Downloading reactivex-4.0.4-py3-none-any.whl (217 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 217.8/217.8 kB 102.4 MB/s eta 0:00:00 +Collecting varname<0.11.0,>=0.10.0 (from giving<0.5.0,>=0.4.0->milabench==0.1.0) + Downloading varname-0.10.0-py3-none-any.whl (22 kB) +Collecting zipp>=3.1.0 (from importlib-resources<7.0.0,>=6.1.0->milabench==0.1.0) + Downloading zipp-3.17.0-py3-none-any.whl.metadata (3.7 kB) +Collecting argcomplete<2.0,>=1.9.4 (from nox<2022.0.0,>=2021.10.1->milabench==0.1.0) + Downloading argcomplete-1.12.3-py2.py3-none-any.whl (38 kB) +Collecting colorlog<7.0.0,>=2.6.1 (from nox<2022.0.0,>=2021.10.1->milabench==0.1.0) + Downloading colorlog-6.8.2-py3-none-any.whl.metadata (10 kB) +Collecting packaging>=20.9 (from nox<2022.0.0,>=2021.10.1->milabench==0.1.0) + Downloading packaging-23.2-py3-none-any.whl.metadata (3.2 kB) +Collecting py<2.0.0,>=1.4.0 (from nox<2022.0.0,>=2021.10.1->milabench==0.1.0) + Downloading py-1.11.0-py2.py3-none-any.whl (98 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 98.7/98.7 kB 63.4 MB/s eta 0:00:00 +Collecting virtualenv>=14.0.0 (from nox<2022.0.0,>=2021.10.1->milabench==0.1.0) + Downloading virtualenv-20.25.0-py3-none-any.whl.metadata (4.5 kB) +Collecting antlr4-python3-runtime==4.9.* (from omegaconf<3.0.0,>=2.3.0->milabench==0.1.0) + Downloading antlr4-python3-runtime-4.9.3.tar.gz (117 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 117.0/117.0 kB 68.9 MB/s eta 0:00:00 + Preparing metadata (setup.py): started + Preparing metadata (setup.py): finished with status 'done' +Collecting python-dateutil>=2.8.1 (from pandas<2.0.0,>=1.4.2->milabench==0.1.0) + Downloading python_dateutil-2.8.2-py2.py3-none-any.whl (247 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 247.7/247.7 kB 108.5 MB/s eta 0:00:00 +Collecting pytz>=2020.1 (from pandas<2.0.0,>=1.4.2->milabench==0.1.0) + Downloading pytz-2024.1-py2.py3-none-any.whl.metadata (22 kB) +Collecting build (from pip-tools<7.0.0,>=6.12.3->milabench==0.1.0) + Downloading build-1.0.3-py3-none-any.whl.metadata (4.2 kB) +Collecting click>=8 (from pip-tools<7.0.0,>=6.12.3->milabench==0.1.0) + Downloading click-8.1.7-py3-none-any.whl.metadata (3.0 kB) +Requirement already satisfied: pip>=22.2 in ./env/lib/python3.9/site-packages (from pip-tools<7.0.0,>=6.12.3->milabench==0.1.0) (23.3.1) +Requirement already satisfied: setuptools in ./env/lib/python3.9/site-packages (from pip-tools<7.0.0,>=6.12.3->milabench==0.1.0) (68.2.2) +Requirement already satisfied: wheel in ./env/lib/python3.9/site-packages (from pip-tools<7.0.0,>=6.12.3->milabench==0.1.0) (0.41.2) +Collecting tomli (from pip-tools<7.0.0,>=6.12.3->milabench==0.1.0) + Downloading tomli-2.0.1-py3-none-any.whl (12 kB) +Collecting codefind<0.2.0,>=0.1.2 (from ptera<2.0.0,>=1.2.0->milabench==0.1.0) + Downloading codefind-0.1.3-py3-none-any.whl (3.1 kB) +Collecting dnspython<3.0.0,>=1.16.0 (from pymongo<5.0.0,>=4.3.3->milabench==0.1.0) + Downloading dnspython-2.5.0-py3-none-any.whl.metadata (5.8 kB) +Collecting charset-normalizer<4,>=2 (from requests<3.0.0,>=2.26.0->milabench==0.1.0) + Downloading charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (33 kB) +Collecting idna<4,>=2.5 (from requests<3.0.0,>=2.26.0->milabench==0.1.0) + Downloading idna-3.6-py3-none-any.whl.metadata (9.9 kB) +Collecting urllib3<3,>=1.21.1 (from requests<3.0.0,>=2.26.0->milabench==0.1.0) + Downloading urllib3-2.2.0-py3-none-any.whl.metadata (6.4 kB) +Collecting certifi>=2017.4.17 (from requests<3.0.0,>=2.26.0->milabench==0.1.0) + Downloading certifi-2024.2.2-py3-none-any.whl.metadata (2.2 kB) +Collecting markdown-it-py>=2.2.0 (from rich<14.0.0,>=13.3.2->milabench==0.1.0) + Downloading markdown_it_py-3.0.0-py3-none-any.whl.metadata (6.9 kB) +Collecting pygments<3.0.0,>=2.13.0 (from rich<14.0.0,>=13.3.2->milabench==0.1.0) + Downloading pygments-2.17.2-py3-none-any.whl.metadata (2.6 kB) +Collecting typing-extensions>=4.6.0 (from sqlalchemy<3.0.0,>=2.0.15->milabench==0.1.0) + Downloading typing_extensions-4.9.0-py3-none-any.whl.metadata (3.0 kB) +Collecting greenlet!=0.4.17 (from sqlalchemy<3.0.0,>=2.0.15->milabench==0.1.0) + Downloading greenlet-3.0.3-cp39-cp39-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.metadata (3.8 kB) +Collecting smmap<6,>=3.0.1 (from gitdb<5,>=4.0.1->GitPython<4.0.0,>=3.1.24->milabench==0.1.0) + Downloading smmap-5.0.1-py3-none-any.whl.metadata (4.3 kB) +Collecting mdurl~=0.1 (from markdown-it-py>=2.2.0->rich<14.0.0,>=13.3.2->milabench==0.1.0) + Downloading mdurl-0.1.2-py3-none-any.whl (10.0 kB) +Collecting importlib-metadata>=4.6 (from pystache<0.7.0,>=0.6.0->cp-template<0.4.0,>=0.3.0->milabench==0.1.0) + Downloading importlib_metadata-7.0.1-py3-none-any.whl.metadata (4.9 kB) +Collecting executing<2.0,>=1.1 (from varname<0.11.0,>=0.10.0->giving<0.5.0,>=0.4.0->milabench==0.1.0) + Downloading executing-1.2.0-py2.py3-none-any.whl (24 kB) +Collecting distlib<1,>=0.3.7 (from virtualenv>=14.0.0->nox<2022.0.0,>=2021.10.1->milabench==0.1.0) + Downloading distlib-0.3.8-py2.py3-none-any.whl.metadata (5.1 kB) +Collecting filelock<4,>=3.12.2 (from virtualenv>=14.0.0->nox<2022.0.0,>=2021.10.1->milabench==0.1.0) + Downloading filelock-3.13.1-py3-none-any.whl.metadata (2.8 kB) +Collecting platformdirs<5,>=3.9.1 (from virtualenv>=14.0.0->nox<2022.0.0,>=2021.10.1->milabench==0.1.0) + Downloading platformdirs-4.2.0-py3-none-any.whl.metadata (11 kB) +Collecting pyproject_hooks (from build->pip-tools<7.0.0,>=6.12.3->milabench==0.1.0) + Downloading pyproject_hooks-1.0.0-py3-none-any.whl (9.3 kB) +Downloading coleo-0.3.3-py3-none-any.whl (12 kB) +Downloading GitPython-3.1.41-py3-none-any.whl (196 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 196.4/196.4 kB 93.2 MB/s eta 0:00:00 +Downloading importlib_resources-6.1.1-py3-none-any.whl (33 kB) +Downloading numpy-1.26.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.2 MB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 18.2/18.2 MB 101.1 MB/s eta 0:00:00 +Downloading pip_tools-6.14.0-py3-none-any.whl (55 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 55.9/55.9 kB 36.0 MB/s eta 0:00:00 +Downloading psutil-5.9.8-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (288 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 288.2/288.2 kB 116.4 MB/s eta 0:00:00 +Downloading psycopg2_binary-2.9.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 3.0/3.0 MB 95.9 MB/s eta 0:00:00 +Downloading pymongo-4.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (676 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 676.3/676.3 kB 105.1 MB/s eta 0:00:00 +Downloading PyYAML-6.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (738 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 738.9/738.9 kB 111.7 MB/s eta 0:00:00 +Downloading requests-2.31.0-py3-none-any.whl (62 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 62.6/62.6 kB 44.3 MB/s eta 0:00:00 +Downloading rich-13.7.0-py3-none-any.whl (240 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 240.6/240.6 kB 97.2 MB/s eta 0:00:00 +Downloading SQLAlchemy-2.0.25-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 3.1/3.1 MB 66.5 MB/s eta 0:00:00 +Downloading tqdm-4.66.1-py3-none-any.whl (78 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 78.3/78.3 kB 51.2 MB/s eta 0:00:00 +Downloading asttokens-2.4.1-py2.py3-none-any.whl (27 kB) +Downloading certifi-2024.2.2-py3-none-any.whl (163 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 163.8/163.8 kB 89.7 MB/s eta 0:00:00 +Downloading charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (142 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 142.3/142.3 kB 82.4 MB/s eta 0:00:00 +Downloading click-8.1.7-py3-none-any.whl (97 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 97.9/97.9 kB 64.4 MB/s eta 0:00:00 +Downloading colorlog-6.8.2-py3-none-any.whl (11 kB) +Downloading dnspython-2.5.0-py3-none-any.whl (305 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 305.4/305.4 kB 120.4 MB/s eta 0:00:00 +Downloading gitdb-4.0.11-py3-none-any.whl (62 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 62.7/62.7 kB 44.3 MB/s eta 0:00:00 +Downloading greenlet-3.0.3-cp39-cp39-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (614 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 614.3/614.3 kB 110.7 MB/s eta 0:00:00 +Downloading idna-3.6-py3-none-any.whl (61 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 61.6/61.6 kB 1.1 MB/s eta 0:00:00 +Downloading markdown_it_py-3.0.0-py3-none-any.whl (87 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 87.5/87.5 kB 58.2 MB/s eta 0:00:00 +Downloading packaging-23.2-py3-none-any.whl (53 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 53.0/53.0 kB 37.5 MB/s eta 0:00:00 +Downloading pygments-2.17.2-py3-none-any.whl (1.2 MB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.2/1.2 MB 95.1 MB/s eta 0:00:00 +Downloading pystache-0.6.5-py3-none-any.whl (81 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 81.3/81.3 kB 53.4 MB/s eta 0:00:00 +Downloading pytz-2024.1-py2.py3-none-any.whl (505 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 505.5/505.5 kB 114.2 MB/s eta 0:00:00 +Downloading typing_extensions-4.9.0-py3-none-any.whl (32 kB) +Downloading urllib3-2.2.0-py3-none-any.whl (120 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 120.9/120.9 kB 75.0 MB/s eta 0:00:00 +Downloading virtualenv-20.25.0-py3-none-any.whl (3.8 MB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 3.8/3.8 MB 108.6 MB/s eta 0:00:00 +Downloading wcwidth-0.2.13-py2.py3-none-any.whl (34 kB) +Downloading zipp-3.17.0-py3-none-any.whl (7.4 kB) +Downloading build-1.0.3-py3-none-any.whl (18 kB) +Downloading distlib-0.3.8-py2.py3-none-any.whl (468 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 468.9/468.9 kB 104.6 MB/s eta 0:00:00 +Downloading filelock-3.13.1-py3-none-any.whl (11 kB) +Downloading importlib_metadata-7.0.1-py3-none-any.whl (23 kB) +Downloading platformdirs-4.2.0-py3-none-any.whl (17 kB) +Downloading smmap-5.0.1-py3-none-any.whl (24 kB) +Building wheels for collected packages: milabench, antlr4-python3-runtime, voir + Building editable for milabench (pyproject.toml): started + Building editable for milabench (pyproject.toml): finished with status 'done' + Created wheel for milabench: filename=milabench-0.1.0-cp39-cp39-manylinux_2_27_x86_64.whl size=2539 sha256=5bf02acc3cb540bac8830b107ee0a169216a6d50ef8530c6a49d67e867a405fa + Stored in directory: /tmp/pip-ephem-wheel-cache-4p412th1/wheels/5a/1b/03/0a97f52f3b0b1608d01d1c9f7f3de6ebbbc3ed0c24f6716d7e + Building wheel for antlr4-python3-runtime (setup.py): started + Building wheel for antlr4-python3-runtime (setup.py): finished with status 'done' + Created wheel for antlr4-python3-runtime: filename=antlr4_python3_runtime-4.9.3-py3-none-any.whl size=144554 sha256=8263bfa9d3498ee2680ff6958cb448dcdc015831456ce1bde5a9e56d0053ad97 + Stored in directory: /Tmp/slurm.4115007.0/base/cache/pip/wheels/23/cf/80/f3efa822e6ab23277902ee9165fe772eeb1dfb8014f359020a + Building wheel for voir (pyproject.toml): started + Building wheel for voir (pyproject.toml): finished with status 'done' + Created wheel for voir: filename=voir-0.2.12-py3-none-any.whl size=35680 sha256=a328d0b6870c176ef1902b308f705c1564ba35107cfca2b30b9449414c8b6602 + Stored in directory: /tmp/pip-ephem-wheel-cache-4p412th1/wheels/84/84/4a/c80daeea0e92bba98cd19cb2fd7d2e9cc6075cef2dedbd09df +Successfully built milabench antlr4-python3-runtime voir +Installing collected packages: wcwidth, pytz, py-cpuinfo, executing, distlib, argcomplete, antlr4-python3-runtime, zipp, varname, urllib3, typing-extensions, tqdm, tomli, smmap, six, PyYAML, pynvml, pygments, py, psycopg2-binary, psutil, platformdirs, pathspec, packaging, ovld, numpy, mdurl, idna, greenlet, filelock, dnspython, colorlog, codefind, click, charset-normalizer, certifi, virtualenv, sqlalchemy, requests, reactivex, python-dateutil, pyproject_hooks, pymongo, omegaconf, markdown-it-py, importlib-resources, importlib-metadata, hrepr, gitdb, blessed, asttokens, rich, pystache, pandas, nox, giving, GitPython, build, ptera, pip-tools, voir, coleo, cp-template, milabench +Successfully installed GitPython-3.1.41 PyYAML-6.0.1 antlr4-python3-runtime-4.9.3 argcomplete-1.12.3 asttokens-2.4.1 blessed-1.20.0 build-1.0.3 certifi-2024.2.2 charset-normalizer-3.3.2 click-8.1.7 codefind-0.1.3 coleo-0.3.3 colorlog-6.8.2 cp-template-0.3.0 distlib-0.3.8 dnspython-2.5.0 executing-1.2.0 filelock-3.13.1 gitdb-4.0.11 giving-0.4.2 greenlet-3.0.3 hrepr-0.4.1 idna-3.6 importlib-metadata-7.0.1 importlib-resources-6.1.1 markdown-it-py-3.0.0 mdurl-0.1.2 milabench-0.1.0 nox-2021.10.1 numpy-1.26.4 omegaconf-2.3.0 ovld-0.3.2 packaging-23.2 pandas-1.5.3 pathspec-0.9.0 pip-tools-6.14.0 platformdirs-4.2.0 psutil-5.9.8 psycopg2-binary-2.9.9 ptera-1.4.1 py-1.11.0 py-cpuinfo-9.0.0 pygments-2.17.2 pymongo-4.6.1 pynvml-11.5.0 pyproject_hooks-1.0.0 pystache-0.6.5 python-dateutil-2.8.2 pytz-2024.1 reactivex-4.0.4 requests-2.31.0 rich-13.7.0 six-1.16.0 smmap-5.0.1 sqlalchemy-2.0.25 tomli-2.0.1 tqdm-4.66.1 typing-extensions-4.9.0 urllib3-2.2.0 varname-0.10.0 virtualenv-20.25.0 voir-0.2.12 wcwidth-0.2.13 zipp-3.17.0 + +The following have been reloaded with a version change: + 1) gcc/7.4.0 => gcc/9.3.0 + +[=== Module cudatoolkit/11.8 loaded ===] + +Install +------- +llama [start] pip install -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt [at 2024-02-06 11:54:50.388340] +llama [stdout] Looking in indexes: https://pypi.org/simple, https://download.pytorch.org/whl/cu118 +llama [stdout] Collecting aiohttp==3.8.6 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 9)) +llama [stdout] Downloading aiohttp-3.8.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (7.7 kB) +llama [stdout] Collecting aiosignal==1.3.1 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 13)) +llama [stdout] Downloading aiosignal-1.3.1-py3-none-any.whl (7.6 kB) +llama [stdout] Collecting antlr4-python3-runtime==4.9.3 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 15)) +llama [stdout] Using cached antlr4_python3_runtime-4.9.3-py3-none-any.whl +llama [stdout] Collecting asttokens==2.4.1 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 17)) +llama [stdout] Using cached asttokens-2.4.1-py2.py3-none-any.whl.metadata (5.2 kB) +llama [stdout] Collecting async-timeout==4.0.3 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 19)) +llama [stdout] Downloading async_timeout-4.0.3-py3-none-any.whl.metadata (4.2 kB) +llama [stdout] Collecting attrs==23.1.0 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 21)) +llama [stdout] Downloading attrs-23.1.0-py3-none-any.whl (61 kB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 61.2/61.2 kB 5.6 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Collecting certifi==2023.7.22 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 23)) +llama [stdout] Downloading certifi-2023.7.22-py3-none-any.whl.metadata (2.2 kB) +llama [stdout] Collecting charset-normalizer==3.3.2 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 25)) +llama [stdout] Using cached charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (33 kB) +llama [stdout] Collecting codefind==0.1.3 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 29)) +llama [stdout] Using cached codefind-0.1.3-py3-none-any.whl (3.1 kB) +llama [stdout] Collecting datasets==2.14.6 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 31)) +llama [stdout] Downloading datasets-2.14.6-py3-none-any.whl.metadata (19 kB) +llama [stdout] Collecting dill==0.3.7 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 33)) +llama [stdout] Downloading dill-0.3.7-py3-none-any.whl.metadata (9.9 kB) +llama [stdout] Collecting executing==1.2.0 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 37)) +llama [stdout] Using cached executing-1.2.0-py2.py3-none-any.whl (24 kB) +llama [stdout] Collecting fairscale==0.4.13 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 39)) +llama [stdout] Downloading fairscale-0.4.13.tar.gz (266 kB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 266.3/266.3 kB 23.6 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Installing build dependencies: started +llama [stdout] Installing build dependencies: finished with status 'done' +llama [stdout] Getting requirements to build wheel: started +llama [stdout] Getting requirements to build wheel: finished with status 'done' +llama [stdout] Installing backend dependencies: started +llama [stdout] Installing backend dependencies: finished with status 'done' +llama [stdout] Preparing metadata (pyproject.toml): started +llama [stdout] Preparing metadata (pyproject.toml): finished with status 'done' +llama [stdout] Collecting filelock==3.13.1 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 41)) +llama [stdout] Using cached filelock-3.13.1-py3-none-any.whl.metadata (2.8 kB) +llama [stdout] Collecting fire==0.5.0 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 47)) +llama [stdout] Downloading fire-0.5.0.tar.gz (88 kB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 88.3/88.3 kB 53.5 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Preparing metadata (setup.py): started +llama [stdout] Preparing metadata (setup.py): finished with status 'done' +llama [stdout] Collecting frozenlist==1.4.0 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 49)) +llama [stdout] Downloading frozenlist-1.4.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (5.2 kB) +llama [stdout] Collecting fsspec==2023.10.0 (from fsspec[http]==2023.10.0->-r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 53)) +llama [stdout] Downloading fsspec-2023.10.0-py3-none-any.whl.metadata (6.8 kB) +llama [stdout] Collecting giving==0.4.2 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 58)) +llama [stdout] Using cached giving-0.4.2-py3-none-any.whl (28 kB) +llama [stdout] Collecting huggingface-hub==0.17.3 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 62)) +llama [stdout] Downloading huggingface_hub-0.17.3-py3-none-any.whl.metadata (13 kB) +llama [stdout] Collecting idna==3.4 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 67)) +llama [stdout] Downloading https://download.pytorch.org/whl/idna-3.4-py3-none-any.whl (61 kB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 61.5/61.5 kB 6.0 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Collecting jinja2==3.1.2 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 71)) +llama [stdout] Downloading https://download.pytorch.org/whl/Jinja2-3.1.2-py3-none-any.whl (133 kB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 133.1/133.1 kB 11.6 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Collecting markdown-it-py==3.0.0 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 73)) +llama [stdout] Using cached markdown_it_py-3.0.0-py3-none-any.whl.metadata (6.9 kB) +llama [stdout] Collecting markupsafe==2.1.3 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 75)) +llama [stdout] Downloading https://download.pytorch.org/whl/MarkupSafe-2.1.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (25 kB) +llama [stdout] Collecting mdurl==0.1.2 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 77)) +llama [stdout] Using cached mdurl-0.1.2-py3-none-any.whl (10.0 kB) +llama [stdout] Collecting mpmath==1.3.0 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 79)) +llama [stdout] Downloading https://download.pytorch.org/whl/mpmath-1.3.0-py3-none-any.whl (536 kB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 536.2/536.2 kB 32.6 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Collecting multidict==6.0.4 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 81)) +llama [stdout] Downloading multidict-6.0.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (114 kB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 114.2/114.2 kB 61.9 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Collecting multiprocess==0.70.15 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 85)) +llama [stdout] Downloading multiprocess-0.70.15-py39-none-any.whl.metadata (7.2 kB) +llama [stdout] Collecting networkx==3.2.1 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 87)) +llama [stdout] Downloading https://download.pytorch.org/whl/networkx-3.2.1-py3-none-any.whl (1.6 MB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.6/1.6 MB 92.1 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Collecting numpy==1.26.1 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 89)) +llama [stdout] Downloading numpy-1.26.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (61 kB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 61.2/61.2 kB 38.6 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Collecting omegaconf==2.3.0 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 96)) +llama [stdout] Using cached omegaconf-2.3.0-py3-none-any.whl (79 kB) +llama [stdout] Collecting ovld==0.3.2 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 98)) +llama [stdout] Using cached ovld-0.3.2-py3-none-any.whl (16 kB) +llama [stdout] Collecting packaging==23.2 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 100)) +llama [stdout] Using cached packaging-23.2-py3-none-any.whl.metadata (3.2 kB) +llama [stdout] Collecting pandas==2.1.2 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 105)) +llama [stdout] Downloading pandas-2.1.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (18 kB) +llama [stdout] Collecting ptera==1.4.1 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 107)) +llama [stdout] Using cached ptera-1.4.1-py3-none-any.whl (39 kB) +llama [stdout] Collecting pyarrow==14.0.0 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 109)) +llama [stdout] Downloading pyarrow-14.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (3.0 kB) +llama [stdout] Collecting pygments==2.16.1 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 111)) +llama [stdout] Downloading Pygments-2.16.1-py3-none-any.whl.metadata (2.5 kB) +llama [stdout] Collecting pynvml==11.5.0 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 113)) +llama [stdout] Using cached pynvml-11.5.0-py3-none-any.whl (53 kB) +llama [stdout] Collecting python-dateutil==2.8.2 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 115)) +llama [stdout] Using cached python_dateutil-2.8.2-py2.py3-none-any.whl (247 kB) +llama [stdout] Collecting pytz==2023.3.post1 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 117)) +llama [stdout] Downloading pytz-2023.3.post1-py2.py3-none-any.whl.metadata (22 kB) +llama [stdout] Collecting pyyaml==6.0.1 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 119)) +llama [stdout] Using cached PyYAML-6.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (2.1 kB) +llama [stdout] Collecting reactivex==4.0.4 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 125)) +llama [stdout] Using cached reactivex-4.0.4-py3-none-any.whl (217 kB) +llama [stdout] Collecting regex==2023.10.3 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 127)) +llama [stdout] Downloading regex-2023.10.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (40 kB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 40.9/40.9 kB 24.1 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Collecting requests==2.31.0 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 129)) +llama [stdout] Using cached requests-2.31.0-py3-none-any.whl.metadata (4.6 kB) +llama [stdout] Collecting rich==13.6.0 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 135)) +llama [stdout] Downloading rich-13.6.0-py3-none-any.whl.metadata (18 kB) +llama [stdout] Collecting safetensors==0.4.0 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 137)) +llama [stdout] Downloading safetensors-0.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (3.8 kB) +llama [stdout] Collecting sentencepiece==0.1.99 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 139)) +llama [stdout] Downloading sentencepiece-0.1.99-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.3/1.3 MB 68.6 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Collecting six==1.16.0 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 141)) +llama [stdout] Using cached six-1.16.0-py2.py3-none-any.whl (11 kB) +llama [stdout] Collecting sympy==1.12 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 146)) +llama [stdout] Downloading https://download.pytorch.org/whl/sympy-1.12-py3-none-any.whl (5.7 MB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 5.7/5.7 MB 101.7 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Collecting termcolor==2.3.0 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 148)) +llama [stdout] Downloading termcolor-2.3.0-py3-none-any.whl (6.9 kB) +llama [stdout] Collecting tokenizers==0.14.1 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 150)) +llama [stdout] Downloading tokenizers-0.14.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (6.7 kB) +llama [stdout] Collecting torch==2.1.0+cu118 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 152)) +llama [stdout] Downloading https://download.pytorch.org/whl/cu118/torch-2.1.0%2Bcu118-cp39-cp39-linux_x86_64.whl (2325.9 MB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2.3/2.3 GB 5.8 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Collecting tqdm==4.66.1 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 156)) +llama [stdout] Using cached tqdm-4.66.1-py3-none-any.whl.metadata (57 kB) +llama [stdout] Collecting transformers==4.35.0 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 161)) +llama [stdout] Downloading transformers-4.35.0-py3-none-any.whl.metadata (123 kB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 123.1/123.1 kB 64.6 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Collecting triton==2.1.0 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 163)) +llama [stdout] Downloading https://download.pytorch.org/whl/triton-2.1.0-0-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (89.3 MB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 89.3/89.3 MB 60.7 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Collecting typing-extensions==4.8.0 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 165)) +llama [stdout] Downloading https://download.pytorch.org/whl/typing_extensions-4.8.0-py3-none-any.whl (31 kB) +llama [stdout] Collecting tzdata==2023.3 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 170)) +llama [stdout] Downloading tzdata-2023.3-py2.py3-none-any.whl (341 kB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 341.8/341.8 kB 112.0 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Collecting urllib3==2.0.7 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 172)) +llama [stdout] Downloading urllib3-2.0.7-py3-none-any.whl.metadata (6.6 kB) +llama [stdout] Collecting varname==0.10.0 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 174)) +llama [stdout] Using cached varname-0.10.0-py3-none-any.whl (22 kB) +llama [stdout] Collecting voir==0.2.11 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 176)) +llama [stdout] Downloading voir-0.2.11-py3-none-any.whl.metadata (791 bytes) +llama [stdout] Collecting xxhash==3.4.1 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 178)) +llama [stdout] Downloading xxhash-3.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (12 kB) +llama [stdout] Collecting yarl==1.9.2 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt (line 180)) +llama [stdout] Downloading yarl-1.9.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (269 kB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 269.4/269.4 kB 61.5 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Downloading aiohttp-3.8.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.1/1.1 MB 8.7 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Using cached asttokens-2.4.1-py2.py3-none-any.whl (27 kB) +llama [stdout] Downloading async_timeout-4.0.3-py3-none-any.whl (5.7 kB) +llama [stdout] Downloading certifi-2023.7.22-py3-none-any.whl (158 kB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 158.3/158.3 kB 81.8 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Using cached charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (142 kB) +llama [stdout] Downloading datasets-2.14.6-py3-none-any.whl (493 kB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 493.7/493.7 kB 101.8 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Downloading dill-0.3.7-py3-none-any.whl (115 kB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 115.3/115.3 kB 68.2 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Using cached filelock-3.13.1-py3-none-any.whl (11 kB) +llama [stdout] Downloading frozenlist-1.4.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (228 kB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 228.0/228.0 kB 95.9 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Downloading fsspec-2023.10.0-py3-none-any.whl (166 kB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 166.4/166.4 kB 83.6 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Downloading huggingface_hub-0.17.3-py3-none-any.whl (295 kB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 295.0/295.0 kB 102.7 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Using cached markdown_it_py-3.0.0-py3-none-any.whl (87 kB) +llama [stdout] Downloading multiprocess-0.70.15-py39-none-any.whl (133 kB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 133.3/133.3 kB 5.6 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Downloading numpy-1.26.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.2 MB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 18.2/18.2 MB 101.0 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Using cached packaging-23.2-py3-none-any.whl (53 kB) +llama [stdout] Downloading pandas-2.1.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.3 MB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 12.3/12.3 MB 105.9 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Downloading pyarrow-14.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (38.1 MB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 38.1/38.1 MB 34.0 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Downloading Pygments-2.16.1-py3-none-any.whl (1.2 MB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.2/1.2 MB 111.1 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Downloading pytz-2023.3.post1-py2.py3-none-any.whl (502 kB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 502.5/502.5 kB 106.7 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Using cached PyYAML-6.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (738 kB) +llama [stdout] Downloading regex-2023.10.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (773 kB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 773.3/773.3 kB 106.8 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Using cached requests-2.31.0-py3-none-any.whl (62 kB) +llama [stdout] Downloading rich-13.6.0-py3-none-any.whl (239 kB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 239.8/239.8 kB 104.0 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Downloading safetensors-0.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.3/1.3 MB 107.9 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Downloading tokenizers-0.14.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.8 MB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 3.8/3.8 MB 108.5 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Using cached tqdm-4.66.1-py3-none-any.whl (78 kB) +llama [stdout] Downloading transformers-4.35.0-py3-none-any.whl (7.9 MB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 7.9/7.9 MB 84.9 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Downloading urllib3-2.0.7-py3-none-any.whl (124 kB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 124.2/124.2 kB 74.0 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Downloading voir-0.2.11-py3-none-any.whl (35 kB) +llama [stdout] Downloading xxhash-3.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (193 kB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 193.8/193.8 kB 95.3 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Building wheels for collected packages: fairscale, fire +llama [stdout] Building wheel for fairscale (pyproject.toml): started +llama [stdout] Building wheel for fairscale (pyproject.toml): finished with status 'done' +llama [stdout] Created wheel for fairscale: filename=fairscale-0.4.13-py3-none-any.whl size=332104 sha256=ffeec670dace0f0301897a77d1fab227d313a78e190b421ba7eed818716c629a +llama [stdout] Stored in directory: /Tmp/slurm.4115007.0/base/cache/pip/wheels/10/ea/7f/8f35af83599829bb4790bdc16949dd99aeeb62e9a1faf47d47 +llama [stdout] Building wheel for fire (setup.py): started +llama [stdout] Building wheel for fire (setup.py): finished with status 'done' +llama [stdout] Created wheel for fire: filename=fire-0.5.0-py2.py3-none-any.whl size=116934 sha256=1a25765c0a4877d6fd3f7dcb85274a38c5e87f280747f9ee22b0769c17d4d0fe +llama [stdout] Stored in directory: /Tmp/slurm.4115007.0/base/cache/pip/wheels/f7/f1/89/b9ea2bf8f80ec027a88fef1d354b3816b4d3d29530988972f6 +llama [stdout] Successfully built fairscale fire +llama [stdout] Installing collected packages: sentencepiece, pytz, mpmath, executing, antlr4-python3-runtime, xxhash, varname, urllib3, tzdata, typing-extensions, tqdm, termcolor, sympy, six, safetensors, regex, pyyaml, pynvml, pygments, packaging, ovld, numpy, networkx, multidict, mdurl, markupsafe, idna, fsspec, frozenlist, filelock, dill, codefind, charset-normalizer, certifi, attrs, async-timeout, yarl, triton, requests, reactivex, python-dateutil, pyarrow, omegaconf, multiprocess, markdown-it-py, jinja2, fire, asttokens, aiosignal, torch, rich, pandas, huggingface-hub, giving, aiohttp, tokenizers, ptera, fairscale, voir, transformers, datasets +llama [stdout] Successfully installed aiohttp-3.8.6 aiosignal-1.3.1 antlr4-python3-runtime-4.9.3 asttokens-2.4.1 async-timeout-4.0.3 attrs-23.1.0 certifi-2023.7.22 charset-normalizer-3.3.2 codefind-0.1.3 datasets-2.14.6 dill-0.3.7 executing-1.2.0 fairscale-0.4.13 filelock-3.13.1 fire-0.5.0 frozenlist-1.4.0 fsspec-2023.10.0 giving-0.4.2 huggingface-hub-0.17.3 idna-3.4 jinja2-3.1.2 markdown-it-py-3.0.0 markupsafe-2.1.3 mdurl-0.1.2 mpmath-1.3.0 multidict-6.0.4 multiprocess-0.70.15 networkx-3.2.1 numpy-1.26.1 omegaconf-2.3.0 ovld-0.3.2 packaging-23.2 pandas-2.1.2 ptera-1.4.1 pyarrow-14.0.0 pygments-2.16.1 pynvml-11.5.0 python-dateutil-2.8.2 pytz-2023.3.post1 pyyaml-6.0.1 reactivex-4.0.4 regex-2023.10.3 requests-2.31.0 rich-13.6.0 safetensors-0.4.0 sentencepiece-0.1.99 six-1.16.0 sympy-1.12 termcolor-2.3.0 tokenizers-0.14.1 torch-2.1.0+cu118 tqdm-4.66.1 transformers-4.35.0 triton-2.1.0 typing-extensions-4.8.0 tzdata-2023.3 urllib3-2.0.7 varname-0.10.0 voir-0.2.11 xxhash-3.4.1 yarl-1.9.2 +llama [stderr] +llama [stderr] [notice] A new release of pip is available: 23.3.2 -> 24.0 +llama [stderr] [notice] To update, run: pip install --upgrade pip +llama [end] pip install -r /Tmp/slurm.4115007.0/milabench/benchmarks/llama/requirements.cuda.txt [at 2024-02-06 11:56:10.813603] +fp16 [start] pip install -r /Tmp/slurm.4115007.0/milabench/benchmarks/flops/requirements.cuda.txt [at 2024-02-06 11:56:10.818186] +fp16 [stdout] Looking in indexes: https://pypi.org/simple, https://download.pytorch.org/whl/cu118 +fp16 [stdout] Requirement already satisfied: antlr4-python3-runtime==4.9.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/flops/requirements.cuda.txt (line 9)) (4.9.3) +fp16 [stdout] Requirement already satisfied: asttokens==2.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/flops/requirements.cuda.txt (line 13)) (2.4.1) +fp16 [stdout] Requirement already satisfied: certifi==2023.7.22 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/flops/requirements.cuda.txt (line 17)) (2023.7.22) +fp16 [stdout] Requirement already satisfied: charset-normalizer==3.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/flops/requirements.cuda.txt (line 21)) (3.3.2) +fp16 [stdout] Requirement already satisfied: codefind==0.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/flops/requirements.cuda.txt (line 25)) (0.1.3) +fp16 [stdout] Requirement already satisfied: executing==1.2.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/flops/requirements.cuda.txt (line 29)) (1.2.0) +fp16 [stdout] Requirement already satisfied: filelock==3.13.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/flops/requirements.cuda.txt (line 33)) (3.13.1) +fp16 [stdout] Requirement already satisfied: fsspec==2023.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/flops/requirements.cuda.txt (line 38)) (2023.10.0) +fp16 [stdout] Requirement already satisfied: giving==0.4.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/flops/requirements.cuda.txt (line 42)) (0.4.2) +fp16 [stdout] Requirement already satisfied: idna==3.4 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/flops/requirements.cuda.txt (line 47)) (3.4) +fp16 [stdout] Requirement already satisfied: jinja2==3.1.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/flops/requirements.cuda.txt (line 51)) (3.1.2) +fp16 [stdout] Requirement already satisfied: markdown-it-py==3.0.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/flops/requirements.cuda.txt (line 55)) (3.0.0) +fp16 [stdout] Requirement already satisfied: markupsafe==2.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/flops/requirements.cuda.txt (line 59)) (2.1.3) +fp16 [stdout] Requirement already satisfied: mdurl==0.1.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/flops/requirements.cuda.txt (line 63)) (0.1.2) +fp16 [stdout] Requirement already satisfied: mpmath==1.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/flops/requirements.cuda.txt (line 67)) (1.3.0) +fp16 [stdout] Requirement already satisfied: networkx==3.2.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/flops/requirements.cuda.txt (line 71)) (3.2.1) +fp16 [stdout] Requirement already satisfied: numpy==1.26.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/flops/requirements.cuda.txt (line 75)) (1.26.1) +fp16 [stdout] Requirement already satisfied: omegaconf==2.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/flops/requirements.cuda.txt (line 79)) (2.3.0) +fp16 [stdout] Requirement already satisfied: ovld==0.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/flops/requirements.cuda.txt (line 83)) (0.3.2) +fp16 [stdout] Collecting pillow==10.1.0 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/flops/requirements.cuda.txt (line 87)) +fp16 [stdout] Downloading Pillow-10.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (9.5 kB) +fp16 [stdout] Requirement already satisfied: ptera==1.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/flops/requirements.cuda.txt (line 91)) (1.4.1) +fp16 [stdout] Requirement already satisfied: pygments==2.16.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/flops/requirements.cuda.txt (line 95)) (2.16.1) +fp16 [stdout] Requirement already satisfied: pynvml==11.5.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/flops/requirements.cuda.txt (line 99)) (11.5.0) +fp16 [stdout] Requirement already satisfied: pyyaml==6.0.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/flops/requirements.cuda.txt (line 103)) (6.0.1) +fp16 [stdout] Requirement already satisfied: reactivex==4.0.4 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/flops/requirements.cuda.txt (line 107)) (4.0.4) +fp16 [stdout] Requirement already satisfied: requests==2.31.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/flops/requirements.cuda.txt (line 111)) (2.31.0) +fp16 [stdout] Requirement already satisfied: rich==13.6.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/flops/requirements.cuda.txt (line 115)) (13.6.0) +fp16 [stdout] Requirement already satisfied: six==1.16.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/flops/requirements.cuda.txt (line 119)) (1.16.0) +fp16 [stdout] Requirement already satisfied: sympy==1.12 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/flops/requirements.cuda.txt (line 123)) (1.12) +fp16 [stdout] Requirement already satisfied: torch==2.1.0+cu118 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/flops/requirements.cuda.txt (line 127)) (2.1.0+cu118) +fp16 [stdout] Collecting torchvision==0.16.0+cu118 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/flops/requirements.cuda.txt (line 131)) +fp16 [stdout] Downloading https://download.pytorch.org/whl/cu118/torchvision-0.16.0%2Bcu118-cp39-cp39-linux_x86_64.whl (6.2 MB) +fp16 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 6.2/6.2 MB 35.0 MB/s eta 0:00:00 +fp16 [stdout] +fp16 [stdout] Requirement already satisfied: tqdm==4.66.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/flops/requirements.cuda.txt (line 133)) (4.66.1) +fp16 [stdout] Requirement already satisfied: triton==2.1.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/flops/requirements.cuda.txt (line 135)) (2.1.0) +fp16 [stdout] Requirement already satisfied: typing-extensions==4.8.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/flops/requirements.cuda.txt (line 139)) (4.8.0) +fp16 [stdout] Collecting urllib3==1.26.18 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/flops/requirements.cuda.txt (line 144)) +fp16 [stdout] Downloading urllib3-1.26.18-py2.py3-none-any.whl.metadata (48 kB) +fp16 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 48.9/48.9 kB 4.6 MB/s eta 0:00:00 +fp16 [stdout] +fp16 [stdout] Requirement already satisfied: varname==0.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/flops/requirements.cuda.txt (line 148)) (0.10.0) +fp16 [stdout] Requirement already satisfied: voir==0.2.11 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/flops/requirements.cuda.txt (line 152)) (0.2.11) +fp16 [stdout] Downloading Pillow-10.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.5 MB) +fp16 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 3.5/3.5 MB 36.7 MB/s eta 0:00:00 +fp16 [stdout] +fp16 [stdout] Downloading urllib3-1.26.18-py2.py3-none-any.whl (143 kB) +fp16 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 143.8/143.8 kB 84.6 MB/s eta 0:00:00 +fp16 [stdout] +fp16 [stdout] Installing collected packages: urllib3, pillow, torchvision +fp16 [stdout] Attempting uninstall: urllib3 +fp16 [stdout] Found existing installation: urllib3 2.0.7 +fp16 [stdout] Uninstalling urllib3-2.0.7: +fp16 [stdout] Successfully uninstalled urllib3-2.0.7 +fp16 [stdout] Successfully installed pillow-10.1.0 torchvision-0.16.0+cu118 urllib3-1.26.18 +fp16 [stderr] +fp16 [stderr] [notice] A new release of pip is available: 23.3.2 -> 24.0 +fp16 [stderr] [notice] To update, run: pip install --upgrade pip +fp16 [end] pip install -r /Tmp/slurm.4115007.0/milabench/benchmarks/flops/requirements.cuda.txt [at 2024-02-06 11:56:13.787749] +bf16 [message] Benchmark bf16 is already installed +tf32 [message] Benchmark tf32 is already installed +fp32 [message] Benchmark fp32 is already installed +resnet50 [start] pip install -r /Tmp/slurm.4115007.0/milabench/benchmarks/torchvision/requirements.cuda.txt [at 2024-02-06 11:56:13.792377] +resnet50 [stdout] Looking in indexes: https://pypi.org/simple, https://download.pytorch.org/whl/cu118 +resnet50 [stdout] Requirement already satisfied: antlr4-python3-runtime==4.9.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 9)) (4.9.3) +resnet50 [stdout] Requirement already satisfied: asttokens==2.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 13)) (2.4.1) +resnet50 [stdout] Requirement already satisfied: certifi==2023.7.22 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 17)) (2023.7.22) +resnet50 [stdout] Requirement already satisfied: charset-normalizer==3.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 21)) (3.3.2) +resnet50 [stdout] Requirement already satisfied: codefind==0.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 25)) (0.1.3) +resnet50 [stdout] Requirement already satisfied: executing==1.2.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 29)) (1.2.0) +resnet50 [stdout] Requirement already satisfied: filelock==3.13.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 33)) (3.13.1) +resnet50 [stdout] Requirement already satisfied: fsspec==2023.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 38)) (2023.10.0) +resnet50 [stdout] Requirement already satisfied: giving==0.4.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 42)) (0.4.2) +resnet50 [stdout] Requirement already satisfied: idna==3.4 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 47)) (3.4) +resnet50 [stdout] Requirement already satisfied: jinja2==3.1.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 51)) (3.1.2) +resnet50 [stdout] Requirement already satisfied: markdown-it-py==3.0.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 55)) (3.0.0) +resnet50 [stdout] Requirement already satisfied: markupsafe==2.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 59)) (2.1.3) +resnet50 [stdout] Requirement already satisfied: mdurl==0.1.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 63)) (0.1.2) +resnet50 [stdout] Requirement already satisfied: mpmath==1.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 67)) (1.3.0) +resnet50 [stdout] Requirement already satisfied: networkx==3.2.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 71)) (3.2.1) +resnet50 [stdout] Requirement already satisfied: numpy==1.26.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 75)) (1.26.1) +resnet50 [stdout] Requirement already satisfied: omegaconf==2.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 79)) (2.3.0) +resnet50 [stdout] Requirement already satisfied: ovld==0.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 83)) (0.3.2) +resnet50 [stdout] Requirement already satisfied: pillow==10.1.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 87)) (10.1.0) +resnet50 [stdout] Requirement already satisfied: ptera==1.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 91)) (1.4.1) +resnet50 [stdout] Requirement already satisfied: pygments==2.16.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 95)) (2.16.1) +resnet50 [stdout] Requirement already satisfied: pynvml==11.5.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 99)) (11.5.0) +resnet50 [stdout] Requirement already satisfied: pyyaml==6.0.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 103)) (6.0.1) +resnet50 [stdout] Requirement already satisfied: reactivex==4.0.4 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 107)) (4.0.4) +resnet50 [stdout] Requirement already satisfied: requests==2.31.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 111)) (2.31.0) +resnet50 [stdout] Requirement already satisfied: rich==13.6.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 115)) (13.6.0) +resnet50 [stdout] Requirement already satisfied: six==1.16.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 119)) (1.16.0) +resnet50 [stdout] Requirement already satisfied: sympy==1.12 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 123)) (1.12) +resnet50 [stdout] Requirement already satisfied: torch==2.1.0+cu118 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 127)) (2.1.0+cu118) +resnet50 [stdout] Requirement already satisfied: torchvision==0.16.0+cu118 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 131)) (0.16.0+cu118) +resnet50 [stdout] Requirement already satisfied: tqdm==4.66.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 133)) (4.66.1) +resnet50 [stdout] Requirement already satisfied: triton==2.1.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 135)) (2.1.0) +resnet50 [stdout] Requirement already satisfied: typing-extensions==4.8.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 139)) (4.8.0) +resnet50 [stdout] Requirement already satisfied: urllib3==1.26.18 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 144)) (1.26.18) +resnet50 [stdout] Requirement already satisfied: varname==0.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 148)) (0.10.0) +resnet50 [stdout] Requirement already satisfied: voir==0.2.11 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 152)) (0.2.11) +resnet50 [stderr] +resnet50 [stderr] [notice] A new release of pip is available: 23.3.2 -> 24.0 +resnet50 [stderr] [notice] To update, run: pip install --upgrade pip +resnet50 [end] pip install -r /Tmp/slurm.4115007.0/milabench/benchmarks/torchvision/requirements.cuda.txt [at 2024-02-06 11:56:14.964456] +convnext_large-fp32 [message] Benchmark convnext_large-fp32 is already installed +convnext_large-fp16 [message] Benchmark convnext_large-fp16 is already installed +convnext_large-tf32 [message] Benchmark convnext_large-tf32 is already installed +convnext_large-tf32-fp16 [message] Benchmark convnext_large-tf32-fp16 is already installed +regnet_y_128gf [message] Benchmark regnet_y_128gf is already installed +bert-fp32 [start] pip install -r /Tmp/slurm.4115007.0/milabench/benchmarks/huggingface/requirements.cuda.txt [at 2024-02-06 11:56:14.969425] +bert-fp32 [stdout] Looking in indexes: https://pypi.org/simple, https://download.pytorch.org/whl/cu118 +bert-fp32 [stdout] Requirement already satisfied: antlr4-python3-runtime==4.9.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 9)) (4.9.3) +bert-fp32 [stdout] Requirement already satisfied: asttokens==2.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 13)) (2.4.1) +bert-fp32 [stdout] Requirement already satisfied: certifi==2023.7.22 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 17)) (2023.7.22) +bert-fp32 [stdout] Requirement already satisfied: charset-normalizer==3.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 21)) (3.3.2) +bert-fp32 [stdout] Requirement already satisfied: codefind==0.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 25)) (0.1.3) +bert-fp32 [stdout] Requirement already satisfied: executing==1.2.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 29)) (1.2.0) +bert-fp32 [stdout] Requirement already satisfied: filelock==3.13.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 33)) (3.13.1) +bert-fp32 [stdout] Requirement already satisfied: fsspec==2023.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 40)) (2023.10.0) +bert-fp32 [stdout] Requirement already satisfied: giving==0.4.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 45)) (0.4.2) +bert-fp32 [stdout] Requirement already satisfied: huggingface-hub==0.17.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 50)) (0.17.3) +bert-fp32 [stdout] Requirement already satisfied: idna==3.4 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 55)) (3.4) +bert-fp32 [stdout] Requirement already satisfied: jinja2==3.1.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 59)) (3.1.2) +bert-fp32 [stdout] Requirement already satisfied: markdown-it-py==3.0.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 63)) (3.0.0) +bert-fp32 [stdout] Requirement already satisfied: markupsafe==2.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 67)) (2.1.3) +bert-fp32 [stdout] Requirement already satisfied: mdurl==0.1.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 71)) (0.1.2) +bert-fp32 [stdout] Requirement already satisfied: mpmath==1.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 75)) (1.3.0) +bert-fp32 [stdout] Requirement already satisfied: networkx==3.2.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 79)) (3.2.1) +bert-fp32 [stdout] Requirement already satisfied: numpy==1.26.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 83)) (1.26.1) +bert-fp32 [stdout] Requirement already satisfied: omegaconf==2.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 87)) (2.3.0) +bert-fp32 [stdout] Requirement already satisfied: ovld==0.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 91)) (0.3.2) +bert-fp32 [stdout] Requirement already satisfied: packaging==23.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 95)) (23.2) +bert-fp32 [stdout] Requirement already satisfied: ptera==1.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 100)) (1.4.1) +bert-fp32 [stdout] Requirement already satisfied: pygments==2.16.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 104)) (2.16.1) +bert-fp32 [stdout] Requirement already satisfied: pynvml==11.5.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 108)) (11.5.0) +bert-fp32 [stdout] Requirement already satisfied: pyyaml==6.0.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 112)) (6.0.1) +bert-fp32 [stdout] Requirement already satisfied: reactivex==4.0.4 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 118)) (4.0.4) +bert-fp32 [stdout] Requirement already satisfied: regex==2023.10.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 122)) (2023.10.3) +bert-fp32 [stdout] Requirement already satisfied: requests==2.31.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 126)) (2.31.0) +bert-fp32 [stdout] Requirement already satisfied: rich==13.6.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 131)) (13.6.0) +bert-fp32 [stdout] Requirement already satisfied: safetensors==0.4.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 135)) (0.4.0) +bert-fp32 [stdout] Requirement already satisfied: six==1.16.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 139)) (1.16.0) +bert-fp32 [stdout] Requirement already satisfied: sympy==1.12 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 143)) (1.12) +bert-fp32 [stdout] Requirement already satisfied: tokenizers==0.14.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 147)) (0.14.1) +bert-fp32 [stdout] Requirement already satisfied: torch==2.1.0+cu118 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 151)) (2.1.0+cu118) +bert-fp32 [stdout] Requirement already satisfied: tqdm==4.66.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 153)) (4.66.1) +bert-fp32 [stdout] Requirement already satisfied: transformers==4.35.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 158)) (4.35.0) +bert-fp32 [stdout] Requirement already satisfied: triton==2.1.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 160)) (2.1.0) +bert-fp32 [stdout] Requirement already satisfied: typing-extensions==4.8.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 164)) (4.8.0) +bert-fp32 [stdout] Requirement already satisfied: urllib3==1.26.18 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 170)) (1.26.18) +bert-fp32 [stdout] Requirement already satisfied: varname==0.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 174)) (0.10.0) +bert-fp32 [stdout] Requirement already satisfied: voir==0.2.11 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 178)) (0.2.11) +bert-fp32 [stderr] +bert-fp32 [stderr] [notice] A new release of pip is available: 23.3.2 -> 24.0 +bert-fp32 [stderr] [notice] To update, run: pip install --upgrade pip +bert-fp32 [end] pip install -r /Tmp/slurm.4115007.0/milabench/benchmarks/huggingface/requirements.cuda.txt [at 2024-02-06 11:56:16.159376] +bert-fp16 [message] Benchmark bert-fp16 is already installed +bert-tf32 [message] Benchmark bert-tf32 is already installed +bert-tf32-fp16 [message] Benchmark bert-tf32-fp16 is already installed +t5 [message] Benchmark t5 is already installed +reformer [message] Benchmark reformer is already installed +whisper [message] Benchmark whisper is already installed +resnet152 [start] pip install -r /Tmp/slurm.4115007.0/milabench/benchmarks/timm/requirements.cuda.txt [at 2024-02-06 11:56:16.165208] +resnet152 [stdout] Looking in indexes: https://pypi.org/simple, https://download.pytorch.org/whl/cu118 +resnet152 [stdout] Requirement already satisfied: antlr4-python3-runtime==4.9.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/timm/requirements.cuda.txt (line 9)) (4.9.3) +resnet152 [stdout] Requirement already satisfied: asttokens==2.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/timm/requirements.cuda.txt (line 13)) (2.4.1) +resnet152 [stdout] Requirement already satisfied: certifi==2023.7.22 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/timm/requirements.cuda.txt (line 17)) (2023.7.22) +resnet152 [stdout] Requirement already satisfied: charset-normalizer==3.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/timm/requirements.cuda.txt (line 21)) (3.3.2) +resnet152 [stdout] Requirement already satisfied: codefind==0.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/timm/requirements.cuda.txt (line 25)) (0.1.3) +resnet152 [stdout] Requirement already satisfied: executing==1.2.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/timm/requirements.cuda.txt (line 29)) (1.2.0) +resnet152 [stdout] Requirement already satisfied: filelock==3.13.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/timm/requirements.cuda.txt (line 33)) (3.13.1) +resnet152 [stdout] Requirement already satisfied: fsspec==2023.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/timm/requirements.cuda.txt (line 39)) (2023.10.0) +resnet152 [stdout] Requirement already satisfied: giving==0.4.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/timm/requirements.cuda.txt (line 44)) (0.4.2) +resnet152 [stdout] Requirement already satisfied: huggingface-hub==0.17.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/timm/requirements.cuda.txt (line 49)) (0.17.3) +resnet152 [stdout] Requirement already satisfied: idna==3.4 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/timm/requirements.cuda.txt (line 51)) (3.4) +resnet152 [stdout] Requirement already satisfied: jinja2==3.1.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/timm/requirements.cuda.txt (line 55)) (3.1.2) +resnet152 [stdout] Requirement already satisfied: markdown-it-py==3.0.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/timm/requirements.cuda.txt (line 59)) (3.0.0) +resnet152 [stdout] Requirement already satisfied: markupsafe==2.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/timm/requirements.cuda.txt (line 63)) (2.1.3) +resnet152 [stdout] Requirement already satisfied: mdurl==0.1.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/timm/requirements.cuda.txt (line 67)) (0.1.2) +resnet152 [stdout] Requirement already satisfied: mpmath==1.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/timm/requirements.cuda.txt (line 71)) (1.3.0) +resnet152 [stdout] Requirement already satisfied: networkx==3.2.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/timm/requirements.cuda.txt (line 75)) (3.2.1) +resnet152 [stdout] Requirement already satisfied: numpy==1.26.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/timm/requirements.cuda.txt (line 79)) (1.26.1) +resnet152 [stdout] Requirement already satisfied: omegaconf==2.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/timm/requirements.cuda.txt (line 83)) (2.3.0) +resnet152 [stdout] Requirement already satisfied: ovld==0.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/timm/requirements.cuda.txt (line 87)) (0.3.2) +resnet152 [stdout] Requirement already satisfied: packaging==23.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/timm/requirements.cuda.txt (line 91)) (23.2) +resnet152 [stdout] Requirement already satisfied: pillow==10.1.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/timm/requirements.cuda.txt (line 95)) (10.1.0) +resnet152 [stdout] Requirement already satisfied: ptera==1.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/timm/requirements.cuda.txt (line 99)) (1.4.1) +resnet152 [stdout] Requirement already satisfied: pygments==2.16.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/timm/requirements.cuda.txt (line 103)) (2.16.1) +resnet152 [stdout] Requirement already satisfied: pynvml==11.5.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/timm/requirements.cuda.txt (line 107)) (11.5.0) +resnet152 [stdout] Requirement already satisfied: pyyaml==6.0.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/timm/requirements.cuda.txt (line 111)) (6.0.1) +resnet152 [stdout] Requirement already satisfied: reactivex==4.0.4 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/timm/requirements.cuda.txt (line 116)) (4.0.4) +resnet152 [stdout] Requirement already satisfied: requests==2.31.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/timm/requirements.cuda.txt (line 120)) (2.31.0) +resnet152 [stdout] Requirement already satisfied: rich==13.6.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/timm/requirements.cuda.txt (line 125)) (13.6.0) +resnet152 [stdout] Requirement already satisfied: safetensors==0.4.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/timm/requirements.cuda.txt (line 129)) (0.4.0) +resnet152 [stdout] Requirement already satisfied: six==1.16.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/timm/requirements.cuda.txt (line 131)) (1.16.0) +resnet152 [stdout] Requirement already satisfied: sympy==1.12 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/timm/requirements.cuda.txt (line 135)) (1.12) +resnet152 [stdout] Requirement already satisfied: torch==2.1.0+cu118 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/timm/requirements.cuda.txt (line 139)) (2.1.0+cu118) +resnet152 [stdout] Requirement already satisfied: torchvision==0.16.0+cu118 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/timm/requirements.cuda.txt (line 143)) (0.16.0+cu118) +resnet152 [stdout] Requirement already satisfied: tqdm==4.66.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/timm/requirements.cuda.txt (line 145)) (4.66.1) +resnet152 [stdout] Requirement already satisfied: triton==2.1.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/timm/requirements.cuda.txt (line 149)) (2.1.0) +resnet152 [stdout] Requirement already satisfied: typing-extensions==4.8.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/timm/requirements.cuda.txt (line 153)) (4.8.0) +resnet152 [stdout] Requirement already satisfied: urllib3==1.26.18 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/timm/requirements.cuda.txt (line 159)) (1.26.18) +resnet152 [stdout] Requirement already satisfied: varname==0.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/timm/requirements.cuda.txt (line 163)) (0.10.0) +resnet152 [stdout] Requirement already satisfied: voir==0.2.11 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/timm/requirements.cuda.txt (line 167)) (0.2.11) +resnet152 [stderr] +resnet152 [stderr] [notice] A new release of pip is available: 23.3.2 -> 24.0 +resnet152 [stderr] [notice] To update, run: pip install --upgrade pip +resnet152 [end] pip install -r /Tmp/slurm.4115007.0/milabench/benchmarks/timm/requirements.cuda.txt [at 2024-02-06 11:56:17.355173] +resnet152-multi [message] Benchmark resnet152-multi is already installed +davit_large [message] Benchmark davit_large is already installed +davit_large-multi [message] Benchmark davit_large-multi is already installed +focalnet [message] Benchmark focalnet is already installed +opt-1_3b [start] pip install -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt [at 2024-02-06 11:56:18.043974] +opt-1_3b [stdout] Looking in indexes: https://pypi.org/simple, https://download.pytorch.org/whl/cu118 +opt-1_3b [stdout] Collecting accelerate==0.24.1 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 9)) +opt-1_3b [stdout] Downloading accelerate-0.24.1-py3-none-any.whl.metadata (18 kB) +opt-1_3b [stdout] Requirement already satisfied: aiohttp==3.8.6 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 11)) (3.8.6) +opt-1_3b [stdout] Requirement already satisfied: aiosignal==1.3.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 16)) (1.3.1) +opt-1_3b [stdout] Requirement already satisfied: antlr4-python3-runtime==4.9.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 20)) (4.9.3) +opt-1_3b [stdout] Requirement already satisfied: asttokens==2.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 24)) (2.4.1) +opt-1_3b [stdout] Requirement already satisfied: async-timeout==4.0.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 28)) (4.0.3) +opt-1_3b [stdout] Requirement already satisfied: attrs==23.1.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 32)) (23.1.0) +opt-1_3b [stdout] Requirement already satisfied: certifi==2023.7.22 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 36)) (2023.7.22) +opt-1_3b [stdout] Requirement already satisfied: charset-normalizer==3.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 40)) (3.3.2) +opt-1_3b [stdout] Requirement already satisfied: codefind==0.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 45)) (0.1.3) +opt-1_3b [stdout] Requirement already satisfied: datasets==2.14.6 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 49)) (2.14.6) +opt-1_3b [stdout] Collecting deepspeed==0.12.2 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 53)) +opt-1_3b [stdout] Downloading deepspeed-0.12.2.tar.gz (1.2 MB) +opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.2/1.2 MB 30.3 MB/s eta 0:00:00 +opt-1_3b [stdout] +opt-1_3b [stdout] Preparing metadata (setup.py): started +opt-1_3b [stdout] Preparing metadata (setup.py): finished with status 'done' +opt-1_3b [stdout] Requirement already satisfied: dill==0.3.7 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 55)) (0.3.7) +opt-1_3b [stdout] Collecting evaluate==0.4.1 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 61)) +opt-1_3b [stdout] Downloading evaluate-0.4.1-py3-none-any.whl.metadata (9.4 kB) +opt-1_3b [stdout] Requirement already satisfied: executing==1.2.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 63)) (1.2.0) +opt-1_3b [stdout] Requirement already satisfied: filelock==3.13.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 67)) (3.13.1) +opt-1_3b [stdout] Requirement already satisfied: frozenlist==1.4.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 74)) (1.4.0) +opt-1_3b [stdout] Requirement already satisfied: fsspec==2023.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from fsspec[http]==2023.10.0->-r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 79)) (2023.10.0) +opt-1_3b [stdout] Requirement already satisfied: giving==0.4.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 86)) (0.4.2) +opt-1_3b [stdout] Collecting hjson==3.1.0 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 91)) +opt-1_3b [stdout] Downloading hjson-3.1.0-py3-none-any.whl (54 kB) +opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54.0/54.0 kB 34.9 MB/s eta 0:00:00 +opt-1_3b [stdout] +opt-1_3b [stdout] Requirement already satisfied: huggingface-hub==0.17.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 95)) (0.17.3) +opt-1_3b [stdout] Requirement already satisfied: idna==3.4 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 103)) (3.4) +opt-1_3b [stdout] Requirement already satisfied: jinja2==3.1.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 108)) (3.1.2) +opt-1_3b [stdout] Requirement already satisfied: markdown-it-py==3.0.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 112)) (3.0.0) +opt-1_3b [stdout] Requirement already satisfied: markupsafe==2.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 116)) (2.1.3) +opt-1_3b [stdout] Requirement already satisfied: mdurl==0.1.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 120)) (0.1.2) +opt-1_3b [stdout] Requirement already satisfied: mpmath==1.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 124)) (1.3.0) +opt-1_3b [stdout] Requirement already satisfied: multidict==6.0.4 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 128)) (6.0.4) +opt-1_3b [stdout] Requirement already satisfied: multiprocess==0.70.15 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 133)) (0.70.15) +opt-1_3b [stdout] Requirement already satisfied: networkx==3.2.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 138)) (3.2.1) +opt-1_3b [stdout] Collecting ninja==1.11.1.1 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 142)) +opt-1_3b [stdout] Using cached ninja-1.11.1.1-py2.py3-none-manylinux1_x86_64.manylinux_2_5_x86_64.whl.metadata (5.3 kB) +opt-1_3b [stdout] Requirement already satisfied: numpy==1.26.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 146)) (1.26.1) +opt-1_3b [stdout] Requirement already satisfied: omegaconf==2.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 157)) (2.3.0) +opt-1_3b [stdout] Requirement already satisfied: ovld==0.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 161)) (0.3.2) +opt-1_3b [stdout] Requirement already satisfied: packaging==23.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 165)) (23.2) +opt-1_3b [stdout] Requirement already satisfied: pandas==2.1.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 174)) (2.1.2) +opt-1_3b [stdout] Requirement already satisfied: pillow==10.1.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 179)) (10.1.0) +opt-1_3b [stdout] Collecting psutil==5.9.6 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 183)) +opt-1_3b [stdout] Downloading psutil-5.9.6-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (21 kB) +opt-1_3b [stdout] Requirement already satisfied: ptera==1.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 188)) (1.4.1) +opt-1_3b [stdout] Collecting py-cpuinfo==9.0.0 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 192)) +opt-1_3b [stdout] Using cached py_cpuinfo-9.0.0-py3-none-any.whl (22 kB) +opt-1_3b [stdout] Requirement already satisfied: pyarrow==14.0.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 196)) (14.0.0) +opt-1_3b [stdout] Collecting pydantic==1.10.13 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 200)) +opt-1_3b [stdout] Downloading pydantic-1.10.13-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (149 kB) +opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 149.6/149.6 kB 79.8 MB/s eta 0:00:00 +opt-1_3b [stdout] +opt-1_3b [stdout] Requirement already satisfied: pygments==2.16.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 204)) (2.16.1) +opt-1_3b [stdout] Requirement already satisfied: pynvml==11.5.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 208)) (11.5.0) +opt-1_3b [stdout] Requirement already satisfied: python-dateutil==2.8.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 213)) (2.8.2) +opt-1_3b [stdout] Requirement already satisfied: pytz==2023.3.post1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 217)) (2023.3.post1) +opt-1_3b [stdout] Requirement already satisfied: pyyaml==6.0.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 221)) (6.0.1) +opt-1_3b [stdout] Requirement already satisfied: reactivex==4.0.4 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 229)) (4.0.4) +opt-1_3b [stdout] Requirement already satisfied: regex==2023.10.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 233)) (2023.10.3) +opt-1_3b [stdout] Requirement already satisfied: requests==2.31.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 237)) (2.31.0) +opt-1_3b [stdout] Collecting responses==0.18.0 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 247)) +opt-1_3b [stdout] Downloading responses-0.18.0-py3-none-any.whl (38 kB) +opt-1_3b [stdout] Requirement already satisfied: rich==13.6.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 251)) (13.6.0) +opt-1_3b [stdout] Requirement already satisfied: safetensors==0.4.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 255)) (0.4.0) +opt-1_3b [stdout] Requirement already satisfied: six==1.16.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 259)) (1.16.0) +opt-1_3b [stdout] Requirement already satisfied: sympy==1.12 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 264)) (1.12) +opt-1_3b [stdout] Requirement already satisfied: tokenizers==0.14.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 268)) (0.14.1) +opt-1_3b [stdout] Requirement already satisfied: torch==2.1.0+cu118 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 272)) (2.1.0+cu118) +opt-1_3b [stdout] Collecting torchaudio==2.1.0+cu118 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 279)) +opt-1_3b [stdout] Downloading https://download.pytorch.org/whl/cu118/torchaudio-2.1.0%2Bcu118-cp39-cp39-linux_x86_64.whl (3.2 MB) +opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 3.2/3.2 MB 46.8 MB/s eta 0:00:00 +opt-1_3b [stdout] +opt-1_3b [stdout] Requirement already satisfied: torchvision==0.16.0+cu118 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 281)) (0.16.0+cu118) +opt-1_3b [stdout] Requirement already satisfied: tqdm==4.66.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 283)) (4.66.1) +opt-1_3b [stdout] Requirement already satisfied: transformers==4.35.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 291)) (4.35.0) +opt-1_3b [stdout] Requirement already satisfied: triton==2.1.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 293)) (2.1.0) +opt-1_3b [stdout] Requirement already satisfied: typing-extensions==4.8.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 297)) (4.8.0) +opt-1_3b [stdout] Requirement already satisfied: tzdata==2023.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 304)) (2023.3) +opt-1_3b [stdout] Requirement already satisfied: urllib3==1.26.18 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 308)) (1.26.18) +opt-1_3b [stdout] Requirement already satisfied: varname==0.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 313)) (0.10.0) +opt-1_3b [stdout] Requirement already satisfied: voir==0.2.11 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 317)) (0.2.11) +opt-1_3b [stdout] Requirement already satisfied: xxhash==3.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 319)) (3.4.1) +opt-1_3b [stdout] Requirement already satisfied: yarl==1.9.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 324)) (1.9.2) +opt-1_3b [stdout] Downloading accelerate-0.24.1-py3-none-any.whl (261 kB) +opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 261.4/261.4 kB 98.7 MB/s eta 0:00:00 +opt-1_3b [stdout] +opt-1_3b [stdout] Downloading evaluate-0.4.1-py3-none-any.whl (84 kB) +opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 84.1/84.1 kB 51.0 MB/s eta 0:00:00 +opt-1_3b [stdout] +opt-1_3b [stdout] Using cached ninja-1.11.1.1-py2.py3-none-manylinux1_x86_64.manylinux_2_5_x86_64.whl (307 kB) +opt-1_3b [stdout] Downloading psutil-5.9.6-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (283 kB) +opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 283.6/283.6 kB 105.5 MB/s eta 0:00:00 +opt-1_3b [stdout] +opt-1_3b [stdout] Downloading pydantic-1.10.13-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB) +opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 3.2/3.2 MB 83.9 MB/s eta 0:00:00 +opt-1_3b [stdout] +opt-1_3b [stdout] Building wheels for collected packages: deepspeed +opt-1_3b [stdout] Building wheel for deepspeed (setup.py): started +opt-1_3b [stdout] Building wheel for deepspeed (setup.py): finished with status 'done' +opt-1_3b [stdout] Created wheel for deepspeed: filename=deepspeed-0.12.2-py3-none-any.whl size=1265673 sha256=1c681f2c37d490f8903f054b1ed2fb2869c649db519438b66fad9653ee98f345 +opt-1_3b [stdout] Stored in directory: /Tmp/slurm.4115007.0/base/cache/pip/wheels/e1/19/3c/919d17396974990105fee67fb8161f89374c2bafde85e3113c +opt-1_3b [stdout] Successfully built deepspeed +opt-1_3b [stdout] Installing collected packages: py-cpuinfo, ninja, hjson, pydantic, psutil, responses, torchaudio, deepspeed, accelerate, evaluate +opt-1_3b [stdout] Successfully installed accelerate-0.24.1 deepspeed-0.12.2 evaluate-0.4.1 hjson-3.1.0 ninja-1.11.1.1 psutil-5.9.6 py-cpuinfo-9.0.0 pydantic-1.10.13 responses-0.18.0 torchaudio-2.1.0+cu118 +opt-1_3b [stderr] +opt-1_3b [stderr] [notice] A new release of pip is available: 23.3.2 -> 24.0 +opt-1_3b [stderr] [notice] To update, run: pip install --upgrade pip +opt-1_3b [end] pip install -r /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt [at 2024-02-06 11:56:28.359262] +opt-1_3b-multinode [message] Benchmark opt-1_3b-multinode is already installed +opt-6_7b [message] Benchmark opt-6_7b is already installed +opt-6_7b-multinode [message] Benchmark opt-6_7b-multinode is already installed +stargan [start] pip install -r /Tmp/slurm.4115007.0/milabench/benchmarks/stargan/requirements.cuda.txt [at 2024-02-06 11:56:28.364804] +stargan [stdout] Looking in indexes: https://pypi.org/simple, https://download.pytorch.org/whl/cu118 +stargan [stdout] Requirement already satisfied: antlr4-python3-runtime==4.9.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 9)) (4.9.3) +stargan [stdout] Requirement already satisfied: asttokens==2.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 13)) (2.4.1) +stargan [stdout] Requirement already satisfied: certifi==2023.7.22 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 17)) (2023.7.22) +stargan [stdout] Requirement already satisfied: charset-normalizer==3.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 21)) (3.3.2) +stargan [stdout] Requirement already satisfied: codefind==0.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 25)) (0.1.3) +stargan [stdout] Requirement already satisfied: executing==1.2.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 29)) (1.2.0) +stargan [stdout] Requirement already satisfied: filelock==3.13.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 33)) (3.13.1) +stargan [stdout] Requirement already satisfied: fsspec==2023.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 38)) (2023.10.0) +stargan [stdout] Requirement already satisfied: giving==0.4.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 42)) (0.4.2) +stargan [stdout] Requirement already satisfied: idna==3.4 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 47)) (3.4) +stargan [stdout] Requirement already satisfied: jinja2==3.1.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 51)) (3.1.2) +stargan [stdout] Requirement already satisfied: markdown-it-py==3.0.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 55)) (3.0.0) +stargan [stdout] Requirement already satisfied: markupsafe==2.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 59)) (2.1.3) +stargan [stdout] Requirement already satisfied: mdurl==0.1.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 63)) (0.1.2) +stargan [stdout] Requirement already satisfied: mpmath==1.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 67)) (1.3.0) +stargan [stdout] Requirement already satisfied: networkx==3.2.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 71)) (3.2.1) +stargan [stdout] Requirement already satisfied: numpy==1.26.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 75)) (1.26.1) +stargan [stdout] Requirement already satisfied: omegaconf==2.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 79)) (2.3.0) +stargan [stdout] Requirement already satisfied: ovld==0.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 83)) (0.3.2) +stargan [stdout] Requirement already satisfied: pillow==10.1.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 87)) (10.1.0) +stargan [stdout] Requirement already satisfied: ptera==1.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 91)) (1.4.1) +stargan [stdout] Requirement already satisfied: pygments==2.16.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 95)) (2.16.1) +stargan [stdout] Requirement already satisfied: pynvml==11.5.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 99)) (11.5.0) +stargan [stdout] Requirement already satisfied: pyyaml==6.0.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 103)) (6.0.1) +stargan [stdout] Requirement already satisfied: reactivex==4.0.4 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 107)) (4.0.4) +stargan [stdout] Requirement already satisfied: requests==2.31.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 111)) (2.31.0) +stargan [stdout] Requirement already satisfied: rich==13.6.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 115)) (13.6.0) +stargan [stdout] Requirement already satisfied: six==1.16.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 119)) (1.16.0) +stargan [stdout] Requirement already satisfied: sympy==1.12 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 123)) (1.12) +stargan [stdout] Requirement already satisfied: torch==2.1.0+cu118 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 127)) (2.1.0+cu118) +stargan [stdout] Requirement already satisfied: torchvision==0.16.0+cu118 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 131)) (0.16.0+cu118) +stargan [stdout] Requirement already satisfied: triton==2.1.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 133)) (2.1.0) +stargan [stdout] Requirement already satisfied: typing-extensions==4.8.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 137)) (4.8.0) +stargan [stdout] Requirement already satisfied: urllib3==1.26.18 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 142)) (1.26.18) +stargan [stdout] Requirement already satisfied: varname==0.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 146)) (0.10.0) +stargan [stdout] Requirement already satisfied: voir==0.2.11 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 150)) (0.2.11) +stargan [stderr] +stargan [stderr] [notice] A new release of pip is available: 23.3.2 -> 24.0 +stargan [stderr] [notice] To update, run: pip install --upgrade pip +stargan [end] pip install -r /Tmp/slurm.4115007.0/milabench/benchmarks/stargan/requirements.cuda.txt [at 2024-02-06 11:56:29.676399] +super-slomo [start] pip install -r /Tmp/slurm.4115007.0/milabench/benchmarks/super-slomo/requirements.cuda.txt [at 2024-02-06 11:56:29.681273] +super-slomo [stdout] Looking in indexes: https://pypi.org/simple, https://download.pytorch.org/whl/cu118 +super-slomo [stdout] Requirement already satisfied: antlr4-python3-runtime==4.9.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 9)) (4.9.3) +super-slomo [stdout] Requirement already satisfied: asttokens==2.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 13)) (2.4.1) +super-slomo [stdout] Requirement already satisfied: certifi==2023.7.22 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 17)) (2023.7.22) +super-slomo [stdout] Requirement already satisfied: charset-normalizer==3.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 21)) (3.3.2) +super-slomo [stdout] Requirement already satisfied: codefind==0.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 25)) (0.1.3) +super-slomo [stdout] Requirement already satisfied: executing==1.2.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 29)) (1.2.0) +super-slomo [stdout] Requirement already satisfied: filelock==3.13.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 33)) (3.13.1) +super-slomo [stdout] Requirement already satisfied: fsspec==2023.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 38)) (2023.10.0) +super-slomo [stdout] Requirement already satisfied: giving==0.4.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 42)) (0.4.2) +super-slomo [stdout] Requirement already satisfied: idna==3.4 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 47)) (3.4) +super-slomo [stdout] Requirement already satisfied: jinja2==3.1.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 51)) (3.1.2) +super-slomo [stdout] Requirement already satisfied: markdown-it-py==3.0.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 55)) (3.0.0) +super-slomo [stdout] Requirement already satisfied: markupsafe==2.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 59)) (2.1.3) +super-slomo [stdout] Requirement already satisfied: mdurl==0.1.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 63)) (0.1.2) +super-slomo [stdout] Requirement already satisfied: mpmath==1.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 67)) (1.3.0) +super-slomo [stdout] Requirement already satisfied: networkx==3.2.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 71)) (3.2.1) +super-slomo [stdout] Requirement already satisfied: numpy==1.26.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 75)) (1.26.1) +super-slomo [stdout] Requirement already satisfied: omegaconf==2.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 80)) (2.3.0) +super-slomo [stdout] Collecting opencv-python==4.8.1.78 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 84)) +super-slomo [stdout] Downloading opencv_python-4.8.1.78-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (19 kB) +super-slomo [stdout] Requirement already satisfied: ovld==0.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 86)) (0.3.2) +super-slomo [stdout] Requirement already satisfied: pillow==10.1.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 90)) (10.1.0) +super-slomo [stdout] Requirement already satisfied: ptera==1.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 94)) (1.4.1) +super-slomo [stdout] Requirement already satisfied: pygments==2.16.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 98)) (2.16.1) +super-slomo [stdout] Requirement already satisfied: pynvml==11.5.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 102)) (11.5.0) +super-slomo [stdout] Requirement already satisfied: pyyaml==6.0.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 106)) (6.0.1) +super-slomo [stdout] Requirement already satisfied: reactivex==4.0.4 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 110)) (4.0.4) +super-slomo [stdout] Requirement already satisfied: requests==2.31.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 114)) (2.31.0) +super-slomo [stdout] Requirement already satisfied: rich==13.6.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 118)) (13.6.0) +super-slomo [stdout] Requirement already satisfied: six==1.16.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 122)) (1.16.0) +super-slomo [stdout] Requirement already satisfied: sympy==1.12 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 126)) (1.12) +super-slomo [stdout] Requirement already satisfied: torch==2.1.0+cu118 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 130)) (2.1.0+cu118) +super-slomo [stdout] Requirement already satisfied: torchvision==0.16.0+cu118 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 134)) (0.16.0+cu118) +super-slomo [stdout] Requirement already satisfied: tqdm==4.66.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 136)) (4.66.1) +super-slomo [stdout] Requirement already satisfied: triton==2.1.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 138)) (2.1.0) +super-slomo [stdout] Requirement already satisfied: typing-extensions==4.8.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 142)) (4.8.0) +super-slomo [stdout] Requirement already satisfied: urllib3==1.26.18 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 147)) (1.26.18) +super-slomo [stdout] Requirement already satisfied: varname==0.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 151)) (0.10.0) +super-slomo [stdout] Requirement already satisfied: voir==0.2.11 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 155)) (0.2.11) +super-slomo [stdout] Downloading opencv_python-4.8.1.78-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (61.7 MB) +super-slomo [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 61.7/61.7 MB 75.6 MB/s eta 0:00:00 +super-slomo [stdout] +super-slomo [stdout] Installing collected packages: opencv-python +super-slomo [stdout] Successfully installed opencv-python-4.8.1.78 +super-slomo [stderr] +super-slomo [stderr] [notice] A new release of pip is available: 23.3.2 -> 24.0 +super-slomo [stderr] [notice] To update, run: pip install --upgrade pip +super-slomo [end] pip install -r /Tmp/slurm.4115007.0/milabench/benchmarks/super-slomo/requirements.cuda.txt [at 2024-02-06 11:56:32.726715] +dlrm [start] pip install -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt [at 2024-02-06 11:56:33.186199] +dlrm [stdout] Looking in indexes: https://pypi.org/simple, https://download.pytorch.org/whl/cu118 +dlrm [stdout] Collecting absl-py==2.0.0 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 9)) +dlrm [stdout] Downloading absl_py-2.0.0-py3-none-any.whl.metadata (2.3 kB) +dlrm [stdout] Requirement already satisfied: antlr4-python3-runtime==4.9.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 13)) (4.9.3) +dlrm [stdout] Requirement already satisfied: asttokens==2.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 17)) (2.4.1) +dlrm [stdout] Collecting cachetools==5.3.2 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 21)) +dlrm [stdout] Downloading cachetools-5.3.2-py3-none-any.whl.metadata (5.2 kB) +dlrm [stdout] Requirement already satisfied: certifi==2023.7.22 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 25)) (2023.7.22) +dlrm [stdout] Requirement already satisfied: charset-normalizer==3.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 29)) (3.3.2) +dlrm [stdout] Requirement already satisfied: codefind==0.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 33)) (0.1.3) +dlrm [stdout] Collecting docker==6.1.3 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 37)) +dlrm [stdout] Downloading docker-6.1.3-py3-none-any.whl.metadata (3.5 kB) +dlrm [stdout] Collecting docstring-parser==0.8.1 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 41)) +dlrm [stdout] Downloading docstring_parser-0.8.1.tar.gz (14 kB) +dlrm [stdout] Installing build dependencies: started +dlrm [stdout] Installing build dependencies: finished with status 'done' +dlrm [stdout] Getting requirements to build wheel: started +dlrm [stdout] Getting requirements to build wheel: finished with status 'done' +dlrm [stdout] Preparing metadata (pyproject.toml): started +dlrm [stdout] Preparing metadata (pyproject.toml): finished with status 'done' +dlrm [stdout] Requirement already satisfied: executing==1.2.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 45)) (1.2.0) +dlrm [stdout] Collecting fbgemm-gpu==0.5.0+cu118 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 49)) +dlrm [stdout] Downloading https://download.pytorch.org/whl/cu118/fbgemm_gpu-0.5.0%2Bcu118-cp39-cp39-manylinux2014_x86_64.whl (227.0 MB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 227.0/227.0 MB 35.2 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Requirement already satisfied: filelock==3.13.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 53)) (3.13.1) +dlrm [stdout] Requirement already satisfied: fsspec==2023.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 59)) (2023.10.0) +dlrm [stdout] Collecting future==0.18.3 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 64)) +dlrm [stdout] Downloading future-0.18.3.tar.gz (840 kB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 840.9/840.9 kB 20.0 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Preparing metadata (setup.py): started +dlrm [stdout] Preparing metadata (setup.py): finished with status 'done' +dlrm [stdout] Requirement already satisfied: giving==0.4.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 66)) (0.4.2) +dlrm [stdout] Collecting google-auth==2.23.4 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 71)) +dlrm [stdout] Downloading google_auth-2.23.4-py2.py3-none-any.whl.metadata (4.7 kB) +dlrm [stdout] Collecting google-auth-oauthlib==1.1.0 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 76)) +dlrm [stdout] Downloading google_auth_oauthlib-1.1.0-py2.py3-none-any.whl.metadata (2.7 kB) +dlrm [stdout] Collecting graphviz==0.20.1 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 80)) +dlrm [stdout] Downloading graphviz-0.20.1-py3-none-any.whl (47 kB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 47.0/47.0 kB 30.4 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Collecting grpcio==1.59.2 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 84)) +dlrm [stdout] Downloading grpcio-1.59.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (4.0 kB) +dlrm [stdout] Requirement already satisfied: idna==3.4 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 88)) (3.4) +dlrm [stdout] Collecting importlib-metadata==6.8.0 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 92)) +dlrm [stdout] Downloading importlib_metadata-6.8.0-py3-none-any.whl.metadata (5.1 kB) +dlrm [stdout] Requirement already satisfied: jinja2==3.1.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 96)) (3.1.2) +dlrm [stdout] Collecting joblib==1.3.2 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 100)) +dlrm [stdout] Downloading joblib-1.3.2-py3-none-any.whl.metadata (5.4 kB) +dlrm [stdout] Collecting lightning-utilities==0.9.0 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 104)) +dlrm [stdout] Downloading lightning_utilities-0.9.0-py3-none-any.whl.metadata (4.6 kB) +dlrm [stdout] Collecting markdown==3.5.1 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 108)) +dlrm [stdout] Downloading Markdown-3.5.1-py3-none-any.whl.metadata (7.1 kB) +dlrm [stdout] Requirement already satisfied: markdown-it-py==3.0.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 112)) (3.0.0) +dlrm [stdout] Requirement already satisfied: markupsafe==2.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 116)) (2.1.3) +dlrm [stdout] Requirement already satisfied: mdurl==0.1.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 121)) (0.1.2) +dlrm [stdout] Requirement already satisfied: mpmath==1.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 125)) (1.3.0) +dlrm [stdout] Collecting mypy-extensions==1.0.0 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 129)) +dlrm [stdout] Downloading mypy_extensions-1.0.0-py3-none-any.whl (4.7 kB) +dlrm [stdout] Requirement already satisfied: networkx==3.2.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 133)) (3.2.1) +dlrm [stdout] Requirement already satisfied: numpy==1.26.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 137)) (1.26.1) +dlrm [stdout] Collecting oauthlib==3.2.2 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 145)) +dlrm [stdout] Downloading oauthlib-3.2.2-py3-none-any.whl (151 kB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 151.7/151.7 kB 79.1 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Requirement already satisfied: omegaconf==2.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 149)) (2.3.0) +dlrm [stdout] Collecting onnx==1.15.0 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 153)) +dlrm [stdout] Downloading onnx-1.15.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (15 kB) +dlrm [stdout] Requirement already satisfied: ovld==0.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 155)) (0.3.2) +dlrm [stdout] Requirement already satisfied: packaging==23.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 159)) (23.2) +dlrm [stdout] Collecting protobuf==4.23.4 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 165)) +dlrm [stdout] Downloading protobuf-4.23.4-cp37-abi3-manylinux2014_x86_64.whl.metadata (540 bytes) +dlrm [stdout] Requirement already satisfied: ptera==1.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 170)) (1.4.1) +dlrm [stdout] Collecting pyasn1==0.5.0 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 174)) +dlrm [stdout] Downloading pyasn1-0.5.0-py2.py3-none-any.whl (83 kB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 83.9/83.9 kB 50.4 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Collecting pyasn1-modules==0.3.0 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 179)) +dlrm [stdout] Downloading pyasn1_modules-0.3.0-py2.py3-none-any.whl (181 kB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 181.3/181.3 kB 90.3 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Collecting pydot==1.4.2 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 183)) +dlrm [stdout] Downloading pydot-1.4.2-py2.py3-none-any.whl (21 kB) +dlrm [stdout] Requirement already satisfied: pygments==2.16.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 185)) (2.16.1) +dlrm [stdout] Requirement already satisfied: pynvml==11.5.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 189)) (11.5.0) +dlrm [stdout] Collecting pyparsing==3.1.1 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 193)) +dlrm [stdout] Downloading pyparsing-3.1.1-py3-none-any.whl.metadata (5.1 kB) +dlrm [stdout] Collecting pyre-extensions==0.0.30 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 197)) +dlrm [stdout] Downloading pyre_extensions-0.0.30-py3-none-any.whl (12 kB) +dlrm [stdout] Requirement already satisfied: pyyaml==6.0.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 201)) (6.0.1) +dlrm [stdout] Requirement already satisfied: reactivex==4.0.4 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 206)) (4.0.4) +dlrm [stdout] Requirement already satisfied: requests==2.31.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 210)) (2.31.0) +dlrm [stdout] Collecting requests-oauthlib==1.3.1 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 216)) +dlrm [stdout] Downloading requests_oauthlib-1.3.1-py2.py3-none-any.whl (23 kB) +dlrm [stdout] Requirement already satisfied: rich==13.6.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 220)) (13.6.0) +dlrm [stdout] Collecting rsa==4.9 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 224)) +dlrm [stdout] Downloading rsa-4.9-py3-none-any.whl (34 kB) +dlrm [stdout] Collecting scikit-learn==1.3.2 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 228)) +dlrm [stdout] Downloading scikit_learn-1.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (11 kB) +dlrm [stdout] Collecting scipy==1.11.3 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 230)) +dlrm [stdout] Downloading scipy-1.11.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (60 kB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 60.4/60.4 kB 38.6 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Requirement already satisfied: six==1.16.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 234)) (1.16.0) +dlrm [stdout] Requirement already satisfied: sympy==1.12 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 239)) (1.12) +dlrm [stdout] Collecting tabulate==0.9.0 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 243)) +dlrm [stdout] Downloading tabulate-0.9.0-py3-none-any.whl (35 kB) +dlrm [stdout] Collecting tensorboard==2.15.1 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 247)) +dlrm [stdout] Downloading tensorboard-2.15.1-py3-none-any.whl.metadata (1.7 kB) +dlrm [stdout] Collecting tensorboard-data-server==0.7.2 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 249)) +dlrm [stdout] Downloading tensorboard_data_server-0.7.2-py3-none-any.whl.metadata (1.1 kB) +dlrm [stdout] Collecting threadpoolctl==3.2.0 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 253)) +dlrm [stdout] Downloading threadpoolctl-3.2.0-py3-none-any.whl.metadata (10.0 kB) +dlrm [stdout] Requirement already satisfied: torch==2.1.0+cu118 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 257)) (2.1.0+cu118) +dlrm [stdout] Collecting torchmetrics==1.0.3 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 262)) +dlrm [stdout] Downloading https://download.pytorch.org/whl/torchmetrics-1.0.3-py3-none-any.whl (731 kB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 731.6/731.6 kB 83.7 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Collecting torchrec==0.5.0+cu118 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 266)) +dlrm [stdout] Downloading https://download.pytorch.org/whl/cu118/torchrec-0.5.0%2Bcu118-py3-none-any.whl (393 kB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 393.8/393.8 kB 75.2 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Collecting torchviz==0.0.2 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 268)) +dlrm [stdout] Downloading torchviz-0.0.2.tar.gz (4.9 kB) +dlrm [stdout] Preparing metadata (setup.py): started +dlrm [stdout] Preparing metadata (setup.py): finished with status 'done' +dlrm [stdout] Collecting torchx==0.5.0 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 270)) +dlrm [stdout] Downloading torchx-0.5.0-py3-none-any.whl (251 kB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 251.2/251.2 kB 108.6 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Requirement already satisfied: tqdm==4.66.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 272)) (4.66.1) +dlrm [stdout] Requirement already satisfied: triton==2.1.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 276)) (2.1.0) +dlrm [stdout] Requirement already satisfied: typing-extensions==4.8.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 280)) (4.8.0) +dlrm [stdout] Collecting typing-inspect==0.9.0 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 288)) +dlrm [stdout] Downloading typing_inspect-0.9.0-py3-none-any.whl.metadata (1.5 kB) +dlrm [stdout] Requirement already satisfied: urllib3==1.26.18 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 292)) (1.26.18) +dlrm [stdout] Requirement already satisfied: varname==0.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 298)) (0.10.0) +dlrm [stdout] Requirement already satisfied: voir==0.2.11 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 302)) (0.2.11) +dlrm [stdout] Collecting websocket-client==1.6.4 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 304)) +dlrm [stdout] Downloading websocket_client-1.6.4-py3-none-any.whl.metadata (7.7 kB) +dlrm [stdout] Collecting werkzeug==3.0.1 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 308)) +dlrm [stdout] Downloading werkzeug-3.0.1-py3-none-any.whl.metadata (4.1 kB) +dlrm [stdout] Collecting zipp==3.17.0 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 312)) +dlrm [stdout] Using cached zipp-3.17.0-py3-none-any.whl.metadata (3.7 kB) +dlrm [stdout] Requirement already satisfied: setuptools>=41.0.0 in ./base/venv/torch/lib/python3.9/site-packages (from tensorboard==2.15.1->-r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 247)) (69.0.3) +dlrm [stdout] Downloading absl_py-2.0.0-py3-none-any.whl (130 kB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 130.2/130.2 kB 67.1 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Downloading cachetools-5.3.2-py3-none-any.whl (9.3 kB) +dlrm [stdout] Downloading docker-6.1.3-py3-none-any.whl (148 kB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 148.1/148.1 kB 74.8 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Downloading google_auth-2.23.4-py2.py3-none-any.whl (183 kB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 183.3/183.3 kB 90.8 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Downloading google_auth_oauthlib-1.1.0-py2.py3-none-any.whl (19 kB) +dlrm [stdout] Downloading grpcio-1.59.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.3 MB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 5.3/5.3 MB 93.5 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Downloading importlib_metadata-6.8.0-py3-none-any.whl (22 kB) +dlrm [stdout] Downloading joblib-1.3.2-py3-none-any.whl (302 kB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 302.2/302.2 kB 119.8 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Downloading lightning_utilities-0.9.0-py3-none-any.whl (23 kB) +dlrm [stdout] Downloading Markdown-3.5.1-py3-none-any.whl (102 kB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 102.2/102.2 kB 63.2 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Downloading onnx-1.15.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.7 MB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 15.7/15.7 MB 103.3 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Downloading protobuf-4.23.4-cp37-abi3-manylinux2014_x86_64.whl (304 kB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 304.5/304.5 kB 120.2 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Downloading pyparsing-3.1.1-py3-none-any.whl (103 kB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 103.1/103.1 kB 63.8 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Downloading scikit_learn-1.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.9 MB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 10.9/10.9 MB 95.5 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Downloading scipy-1.11.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.6 MB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 36.6/36.6 MB 88.8 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Downloading tensorboard-2.15.1-py3-none-any.whl (5.5 MB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 5.5/5.5 MB 100.2 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Downloading tensorboard_data_server-0.7.2-py3-none-any.whl (2.4 kB) +dlrm [stdout] Downloading threadpoolctl-3.2.0-py3-none-any.whl (15 kB) +dlrm [stdout] Downloading typing_inspect-0.9.0-py3-none-any.whl (8.8 kB) +dlrm [stdout] Downloading websocket_client-1.6.4-py3-none-any.whl (57 kB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 57.3/57.3 kB 691.7 kB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Downloading werkzeug-3.0.1-py3-none-any.whl (226 kB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 226.7/226.7 kB 83.3 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Using cached zipp-3.17.0-py3-none-any.whl (7.4 kB) +dlrm [stdout] Building wheels for collected packages: docstring-parser, future, torchviz +dlrm [stdout] Building wheel for docstring-parser (pyproject.toml): started +dlrm [stdout] Building wheel for docstring-parser (pyproject.toml): finished with status 'done' +dlrm [stdout] Created wheel for docstring-parser: filename=docstring_parser-0.8.1-py3-none-any.whl size=19661 sha256=09092d818ebc394de99a17e7c0618091ec67ba4e3ba16fc3f224ad6e69c3104d +dlrm [stdout] Stored in directory: /Tmp/slurm.4115007.0/base/cache/pip/wheels/35/b6/65/eda0a6497d7e3275201108c17e12c945989eb0d6e9dcc8eca2 +dlrm [stdout] Building wheel for future (setup.py): started +dlrm [stdout] Building wheel for future (setup.py): finished with status 'done' +dlrm [stdout] Created wheel for future: filename=future-0.18.3-py3-none-any.whl size=492024 sha256=4335641b7b0ac92afc98fc3a977cbf4e5777ec560b8b0f08308b0bce4084e312 +dlrm [stdout] Stored in directory: /Tmp/slurm.4115007.0/base/cache/pip/wheels/bf/5d/6a/2e53874f7ec4e2bede522385439531fafec8fafe005b5c3d1b +dlrm [stdout] Building wheel for torchviz (setup.py): started +dlrm [stdout] Building wheel for torchviz (setup.py): finished with status 'done' +dlrm [stdout] Created wheel for torchviz: filename=torchviz-0.0.2-py3-none-any.whl size=4131 sha256=51af479bce7d9b5e2a7cb378a7af768e46d79d8feaf6390216d5fafc4a9e7a6e +dlrm [stdout] Stored in directory: /Tmp/slurm.4115007.0/base/cache/pip/wheels/29/65/6e/db2515eb1dc760fecd36b40d54df65c1e18534013f1c037e2e +dlrm [stdout] Successfully built docstring-parser future torchviz +dlrm [stdout] Installing collected packages: fbgemm-gpu, zipp, werkzeug, websocket-client, threadpoolctl, tensorboard-data-server, tabulate, scipy, pyparsing, pyasn1, protobuf, oauthlib, mypy-extensions, lightning-utilities, joblib, grpcio, graphviz, future, docstring-parser, cachetools, absl-py, typing-inspect, scikit-learn, rsa, requests-oauthlib, pydot, pyasn1-modules, onnx, importlib-metadata, docker, torchviz, torchmetrics, pyre-extensions, markdown, google-auth, torchx, torchrec, google-auth-oauthlib, tensorboard +dlrm [stdout] Successfully installed absl-py-2.0.0 cachetools-5.3.2 docker-6.1.3 docstring-parser-0.8.1 fbgemm-gpu-0.5.0+cu118 future-0.18.3 google-auth-2.23.4 google-auth-oauthlib-1.1.0 graphviz-0.20.1 grpcio-1.59.2 importlib-metadata-6.8.0 joblib-1.3.2 lightning-utilities-0.9.0 markdown-3.5.1 mypy-extensions-1.0.0 oauthlib-3.2.2 onnx-1.15.0 protobuf-4.23.4 pyasn1-0.5.0 pyasn1-modules-0.3.0 pydot-1.4.2 pyparsing-3.1.1 pyre-extensions-0.0.30 requests-oauthlib-1.3.1 rsa-4.9 scikit-learn-1.3.2 scipy-1.11.3 tabulate-0.9.0 tensorboard-2.15.1 tensorboard-data-server-0.7.2 threadpoolctl-3.2.0 torchmetrics-1.0.3 torchrec-0.5.0+cu118 torchviz-0.0.2 torchx-0.5.0 typing-inspect-0.9.0 websocket-client-1.6.4 werkzeug-3.0.1 zipp-3.17.0 +dlrm [stderr] +dlrm [stderr] [notice] A new release of pip is available: 23.3.2 -> 24.0 +dlrm [stderr] [notice] To update, run: pip install --upgrade pip +dlrm [end] pip install -r /Tmp/slurm.4115007.0/milabench/benchmarks/dlrm/requirements.cuda.txt [at 2024-02-06 11:56:57.838117] +rwkv [start] pip install -r /Tmp/slurm.4115007.0/milabench/benchmarks/rwkv/requirements.cuda.txt [at 2024-02-06 11:56:57.842270] +rwkv [stdout] Looking in indexes: https://pypi.org/simple, https://download.pytorch.org/whl/cu118 +rwkv [stdout] Requirement already satisfied: aiohttp==3.8.6 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 9)) (3.8.6) +rwkv [stdout] Requirement already satisfied: aiosignal==1.3.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 13)) (1.3.1) +rwkv [stdout] Requirement already satisfied: antlr4-python3-runtime==4.9.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 17)) (4.9.3) +rwkv [stdout] Requirement already satisfied: asttokens==2.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 21)) (2.4.1) +rwkv [stdout] Requirement already satisfied: async-timeout==4.0.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 25)) (4.0.3) +rwkv [stdout] Requirement already satisfied: attrs==23.1.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 29)) (23.1.0) +rwkv [stdout] Requirement already satisfied: certifi==2023.7.22 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 33)) (2023.7.22) +rwkv [stdout] Requirement already satisfied: charset-normalizer==3.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 37)) (3.3.2) +rwkv [stdout] Requirement already satisfied: codefind==0.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 42)) (0.1.3) +rwkv [stdout] Requirement already satisfied: deepspeed==0.12.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 46)) (0.12.2) +rwkv [stdout] Requirement already satisfied: executing==1.2.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 48)) (1.2.0) +rwkv [stdout] Requirement already satisfied: filelock==3.13.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 52)) (3.13.1) +rwkv [stdout] Requirement already satisfied: frozenlist==1.4.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 57)) (1.4.0) +rwkv [stdout] Requirement already satisfied: fsspec==2023.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from fsspec[http]==2023.10.0->-r /Tmp/slurm.4115007.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 62)) (2023.10.0) +rwkv [stdout] Requirement already satisfied: giving==0.4.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 67)) (0.4.2) +rwkv [stdout] Requirement already satisfied: hjson==3.1.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 72)) (3.1.0) +rwkv [stdout] Requirement already satisfied: idna==3.4 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 76)) (3.4) +rwkv [stdout] Requirement already satisfied: jinja2==3.1.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 81)) (3.1.2) +rwkv [stdout] Requirement already satisfied: lightning-utilities==0.9.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 85)) (0.9.0) +rwkv [stdout] Requirement already satisfied: markdown-it-py==3.0.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 90)) (3.0.0) +rwkv [stdout] Requirement already satisfied: markupsafe==2.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 94)) (2.1.3) +rwkv [stdout] Requirement already satisfied: mdurl==0.1.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 98)) (0.1.2) +rwkv [stdout] Requirement already satisfied: mpmath==1.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 102)) (1.3.0) +rwkv [stdout] Requirement already satisfied: multidict==6.0.4 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 106)) (6.0.4) +rwkv [stdout] Requirement already satisfied: networkx==3.2.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 111)) (3.2.1) +rwkv [stdout] Requirement already satisfied: ninja==1.11.1.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 115)) (1.11.1.1) +rwkv [stdout] Requirement already satisfied: numpy==1.26.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 119)) (1.26.1) +rwkv [stdout] Requirement already satisfied: omegaconf==2.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 125)) (2.3.0) +rwkv [stdout] Requirement already satisfied: ovld==0.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 129)) (0.3.2) +rwkv [stdout] Requirement already satisfied: packaging==23.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 133)) (23.2) +rwkv [stdout] Requirement already satisfied: psutil==5.9.6 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 140)) (5.9.6) +rwkv [stdout] Requirement already satisfied: ptera==1.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 144)) (1.4.1) +rwkv [stdout] Requirement already satisfied: py-cpuinfo==9.0.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 148)) (9.0.0) +rwkv [stdout] Requirement already satisfied: pydantic==1.10.13 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 152)) (1.10.13) +rwkv [stdout] Requirement already satisfied: pygments==2.16.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 156)) (2.16.1) +rwkv [stdout] Requirement already satisfied: pynvml==11.5.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 160)) (11.5.0) +rwkv [stdout] Collecting pytorch-lightning==1.9.5 (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 165)) +rwkv [stdout] Downloading pytorch_lightning-1.9.5-py3-none-any.whl (829 kB) +rwkv [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 829.5/829.5 kB 21.1 MB/s eta 0:00:00 +rwkv [stdout] +rwkv [stdout] Requirement already satisfied: pyyaml==6.0.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 167)) (6.0.1) +rwkv [stdout] Requirement already satisfied: reactivex==4.0.4 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 172)) (4.0.4) +rwkv [stdout] Requirement already satisfied: requests==2.31.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 176)) (2.31.0) +rwkv [stdout] Requirement already satisfied: rich==13.6.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 180)) (13.6.0) +rwkv [stdout] Requirement already satisfied: six==1.16.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 184)) (1.16.0) +rwkv [stdout] Requirement already satisfied: sympy==1.12 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 188)) (1.12) +rwkv [stdout] Requirement already satisfied: torch==2.1.0+cu118 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 192)) (2.1.0+cu118) +rwkv [stdout] Requirement already satisfied: torchmetrics==1.0.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 198)) (1.0.3) +rwkv [stdout] Requirement already satisfied: tqdm==4.66.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 202)) (4.66.1) +rwkv [stdout] Requirement already satisfied: triton==2.1.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 207)) (2.1.0) +rwkv [stdout] Requirement already satisfied: typing-extensions==4.8.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 211)) (4.8.0) +rwkv [stdout] Requirement already satisfied: urllib3==1.26.18 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 219)) (1.26.18) +rwkv [stdout] Requirement already satisfied: varname==0.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 223)) (0.10.0) +rwkv [stdout] Requirement already satisfied: voir==0.2.11 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 227)) (0.2.11) +rwkv [stdout] Requirement already satisfied: yarl==1.9.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115007.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 229)) (1.9.2) +rwkv [stdout] Installing collected packages: pytorch-lightning +rwkv [stdout] Successfully installed pytorch-lightning-1.9.5 +rwkv [stderr] +rwkv [stderr] [notice] A new release of pip is available: 23.3.2 -> 24.0 +rwkv [stderr] [notice] To update, run: pip install --upgrade pip +rwkv [end] pip install -r /Tmp/slurm.4115007.0/milabench/benchmarks/rwkv/requirements.cuda.txt [at 2024-02-06 11:57:00.202729] +[DONE] Reports directory: /Tmp/slurm.4115007.0/base/runs/install.2024-02-06_11:54:49.283031 + +Prepare +------- +llama [config.system.arch] cuda +llama [config.system.sshkey] None +llama [config.system.nodes] [{'aliaslist': [], + 'hostname': 'localhost', + 'ip': '127.0.0.1', + 'ipaddrlist': ['fe80::ce48:3aff:fe1c:9c24%eno8303', + 'fe80::1270:fd03:ee:7a3a%ib1', + '10.20.9.34', + '00:00:00:00:00:00', + '00:00:10:29:fe:80:00:00:00:00:00:00:10:70:fd:03:00:ee:7b:02', + 'cc:48:3a:1c:9c:24', + '::1', + '10.20.137.34', + '00:00:10:29:fe:80:00:00:00:00:00:00:10:70:fd:03:00:ee:7a:3a', + '127.0.0.1', + '172.16.9.34', + 'fe80::1270:fd03:ee:7b02%ib0'], + 'local': True, + 'main': True, + 'name': 'local', + 'port': 8123, + 'user': 'root'}] +llama [config.system.gpu.capacity] 81920 MiB +llama [config.system.self.name] local +llama [config.system.self.ip] 127.0.0.1 +llama [config.system.self.port] 8123 +llama [config.system.self.user] root +llama [config.system.self.main] True +llama [config.system.self.hostname] localhost +llama [config.system.self.aliaslist] [] +llama [config.system.self.ipaddrlist] ['fe80::ce48:3aff:fe1c:9c24%eno8303', + 'fe80::1270:fd03:ee:7a3a%ib1', + '10.20.9.34', + '00:00:00:00:00:00', + '00:00:10:29:fe:80:00:00:00:00:00:00:10:70:fd:03:00:ee:7b:02', + 'cc:48:3a:1c:9c:24', + '::1', + '10.20.137.34', + '00:00:10:29:fe:80:00:00:00:00:00:00:10:70:fd:03:00:ee:7a:3a', + '127.0.0.1', + '172.16.9.34', + 'fe80::1270:fd03:ee:7b02%ib0'] +llama [config.system.self.local] True +llama [config.dirs.base] /Tmp/slurm.4115007.0/base +llama [config.dirs.venv] /Tmp/slurm.4115007.0/base/venv/torch +llama [config.dirs.data] /Tmp/slurm.4115007.0/base/data +llama [config.dirs.runs] /Tmp/slurm.4115007.0/base/runs +llama [config.dirs.extra] /Tmp/slurm.4115007.0/base/extra/llm +llama [config.dirs.cache] /Tmp/slurm.4115007.0/base/cache +llama [config.group] llm +llama [config.install_group] torch +llama [config.install_variant] cuda +llama [config.run_name] prepare.2024-02-06_11:57:01.236402 +llama [config.enabled] True +llama [config.capabilities.nodes] 1 +llama [config.max_duration] 800 +llama [config.voir.options.stop] 30 +llama [config.voir.options.interval] 1s +llama [config.validation.usage.gpu_load_threshold] 0.5 +llama [config.validation.usage.gpu_mem_threshold] 0.5 +llama [config.config_base] /Tmp/slurm.4115007.0/milabench/config +llama [config.config_file] /Tmp/slurm.4115007.0/milabench/config/standard.yaml +llama [config.definition] /Tmp/slurm.4115007.0/milabench/benchmarks/llama +llama [config.plan.method] per_gpu +llama [config.tags] ['llm', 'nlp'] +llama [config.weight] 1.0 +llama [config.name] llama +llama [config.tag] ['llama'] +llama [meta] {'accelerators': {'arch': 'cuda', + 'gpus': {'GPU-80d2dc6e-14f7-798e-5ce0-647e33324ef0': {'device': '0', + 'memory': {'total': 81920.0, 'used': 693.5625}, + 'power': 61.895, + 'product': 'NVIDIA A100-SXM4-80GB', + 'selection_variable': 'CUDA_VISIBLE_DEVICES', + 'temperature': 26, + 'utilization': {'compute': 0, + 'memory': 0.008466339111328125}}, + 'GPU-8b2c653d-fcd1-4ab5-7b87-4ac3d77d309a': {'device': '1', + 'memory': {'total': 81920.0, 'used': 693.5625}, + 'power': 58.78, + 'product': 'NVIDIA A100-SXM4-80GB', + 'selection_variable': 'CUDA_VISIBLE_DEVICES', + 'temperature': 25, + 'utilization': {'compute': 0, + 'memory': 0.008466339111328125}}}}, + 'cpu': {'brand': 'AMD EPYC 7543 32-Core Processor', 'count': 64}, + 'date': 1707256624.092656, + 'milabench': {'commit': '4c8961898aa0dc59a9227c32d562c7a0be37ea03', + 'date': '2024-02-06 11:53:56 -0500', + 'tag': '4c89618'}, + 'os': {'machine': 'x86_64', + 'nodename': 'cn-g024.server.mila.quebec', + 'release': '4.15.0-213-generic', + 'sysname': 'Linux', + 'version': '#224-Ubuntu SMP Mon Jun 19 13:30:12 UTC 2023'}, + 'pytorch': {'build_settings': {'BLAS_INFO': 'mkl', + 'BUILD_TYPE': 'Release', + 'CUDA_VERSION': '11.8', + 'CUDNN_VERSION': '8.7.0', + 'CXX_COMPILER': '/opt/rh/devtoolset-9/root/usr/bin/c++', + 'CXX_FLAGS': '-D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -fvisibility-inlines-hidden ' + '-DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER ' + '-DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK ' + '-DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra ' + '-Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation ' + '-Wnarrowing -Wno-missing-field-initializers -Wno-type-limits ' + '-Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter ' + '-Wno-unused-function -Wno-unused-result -Wno-strict-overflow ' + '-Wno-strict-aliasing -Wno-stringop-overflow -Wno-psabi ' + '-Wno-error=pedantic -Wno-error=old-style-cast ' + '-Wno-invalid-partial-specialization -Wno-unused-private-field ' + '-Wno-aligned-allocation-unavailable -Wno-missing-braces ' + '-fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable ' + '-Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math ' + '-Werror=format -Werror=cast-function-type -Wno-stringop-overflow', + 'LAPACK_INFO': 'mkl', + 'PERF_WITH_AVX': '1', + 'PERF_WITH_AVX2': '1', + 'PERF_WITH_AVX512': '1', + 'TORCH_DISABLE_GPU_ASSERTS': 'ON', + 'TORCH_VERSION': '2.1.0', + 'USE_CUDA': 'ON', + 'USE_CUDNN': 'ON', + 'USE_EXCEPTION_PTR': '1', + 'USE_GFLAGS': 'OFF', + 'USE_GLOG': 'OFF', + 'USE_MKL': 'ON', + 'USE_MKLDNN': 'ON', + 'USE_MPI': 'OFF', + 'USE_NCCL': '1', + 'USE_NNPACK': 'ON', + 'USE_OPENMP': 'ON', + 'USE_ROCM': 'OFF'}, + 'compiler': 'GCC 9.3', + 'cpp': 'C++ Version: 201703', + 'cpu': 'CPU capability usage: AVX2', + 'intel': 'Intel(R) oneAPI Math Kernel Library Version 2022.2-Product Build 20220804 for Intel(R) 64 ' + 'architecture applications', + 'lapack': 'LAPACK is enabled (usually provided by MKL)', + 'mkl': 'OpenMP 201511 (a.k.a. OpenMP 4.5)', + 'nnpack': 'NNPACK is enabled', + 'openmp': 'OpenMP 201511 (a.k.a. OpenMP 4.5)', + 'torch': '2.1.0+cu118'}} +llama [start] python /Tmp/slurm.4115007.0/milabench/benchmarks/llama/main.py --prepare --cache /Tmp/slurm.4115007.0/base/cache [at 2024-02-06 11:57:04.111442] +llama [stderr] Dataset +llama [stderr] Downloading readme: 0%| | 0.00/10.5k [00:00", +opt-1_3b [stderr] "torch_dtype": "float16", +opt-1_3b [stderr] "transformers_version": "4.35.0", +opt-1_3b [stderr] "use_cache": true, +opt-1_3b [stderr] "vocab_size": 50272, +opt-1_3b [stderr] "word_embed_proj_dim": 2048 +opt-1_3b [stderr] } +opt-1_3b [stderr] +opt-1_3b [stderr] Downloading tokenizer_config.json: 0%| | 0.00/685 [00:00", +opt-1_3b [stderr] "torch_dtype": "float16", +opt-1_3b [stderr] "transformers_version": "4.35.0", +opt-1_3b [stderr] "use_cache": true, +opt-1_3b [stderr] "vocab_size": 50272, +opt-1_3b [stderr] "word_embed_proj_dim": 2048 +opt-1_3b [stderr] } +opt-1_3b [stderr] +opt-1_3b [stderr] Downloading vocab.json: 0%| | 0.00/899k [00:00", +opt-1_3b [stderr] "torch_dtype": "float16", +opt-1_3b [stderr] "transformers_version": "4.35.0", +opt-1_3b [stderr] "use_cache": true, +opt-1_3b [stderr] "vocab_size": 50272, +opt-1_3b [stderr] "word_embed_proj_dim": 2048 +opt-1_3b [stderr] } +opt-1_3b [stderr] +opt-1_3b [stderr] loading configuration file config.json from cache at /Tmp/slurm.4115007.0/base/cache/hub/models--facebook--opt-1.3b/snapshots/3f5c25d0bc631cb57ac65913f76e22c2dfb61d62/config.json +opt-1_3b [stderr] Model config OPTConfig { +opt-1_3b [stderr] "_name_or_path": "facebook/opt-1.3b", +opt-1_3b [stderr] "_remove_final_layer_norm": false, +opt-1_3b [stderr] "activation_dropout": 0.0, +opt-1_3b [stderr] "activation_function": "relu", +opt-1_3b [stderr] "architectures": [ +opt-1_3b [stderr] "OPTForCausalLM" +opt-1_3b [stderr] ], +opt-1_3b [stderr] "attention_dropout": 0.0, +opt-1_3b [stderr] "bos_token_id": 2, +opt-1_3b [stderr] "do_layer_norm_before": true, +opt-1_3b [stderr] "dropout": 0.1, +opt-1_3b [stderr] "enable_bias": true, +opt-1_3b [stderr] "eos_token_id": 2, +opt-1_3b [stderr] "ffn_dim": 8192, +opt-1_3b [stderr] "hidden_size": 2048, +opt-1_3b [stderr] "init_std": 0.02, +opt-1_3b [stderr] "layer_norm_elementwise_affine": true, +opt-1_3b [stderr] "layerdrop": 0.0, +opt-1_3b [stderr] "max_position_embeddings": 2048, +opt-1_3b [stderr] "model_type": "opt", +opt-1_3b [stderr] "num_attention_heads": 32, +opt-1_3b [stderr] "num_hidden_layers": 24, +opt-1_3b [stderr] "pad_token_id": 1, +opt-1_3b [stderr] "prefix": "", +opt-1_3b [stderr] "torch_dtype": "float16", +opt-1_3b [stderr] "transformers_version": "4.35.0", +opt-1_3b [stderr] "use_cache": true, +opt-1_3b [stderr] "vocab_size": 50272, +opt-1_3b [stderr] "word_embed_proj_dim": 2048 +opt-1_3b [stderr] } +opt-1_3b [stderr] +opt-1_3b [stderr] Running tokenizer on dataset (num_proc=8): 0%| | 0/4358 [00:00= 2'] +opt-1_3b-multinode [config.docker_image] ghcr.io/mila-iqia/milabench:cuda-nightly +opt-1_3b-multinode [config.name] opt-1_3b-multinode +opt-1_3b-multinode [config.tag] ['opt-1_3b-multinode'] +opt-1_3b-multinode [meta] {'accelerators': {'arch': 'cuda', + 'gpus': {'GPU-80d2dc6e-14f7-798e-5ce0-647e33324ef0': {'device': '0', + 'memory': {'total': 81920.0, 'used': 693.5625}, + 'power': 82.05, + 'product': 'NVIDIA A100-SXM4-80GB', + 'selection_variable': 'CUDA_VISIBLE_DEVICES', + 'temperature': 35, + 'utilization': {'compute': 0, + 'memory': 0.008466339111328125}}, + 'GPU-8b2c653d-fcd1-4ab5-7b87-4ac3d77d309a': {'device': '1', + 'memory': {'total': 81920.0, 'used': 693.5625}, + 'power': 58.371, + 'product': 'NVIDIA A100-SXM4-80GB', + 'selection_variable': 'CUDA_VISIBLE_DEVICES', + 'temperature': 25, + 'utilization': {'compute': 0, + 'memory': 0.008466339111328125}}}}, + 'cpu': {'brand': 'AMD EPYC 7543 32-Core Processor', 'count': 64}, + 'date': 1707256893.611088, + 'milabench': {'commit': '4c8961898aa0dc59a9227c32d562c7a0be37ea03', + 'date': '2024-02-06 11:53:56 -0500', + 'tag': '4c89618'}, + 'os': {'machine': 'x86_64', + 'nodename': 'cn-g024.server.mila.quebec', + 'release': '4.15.0-213-generic', + 'sysname': 'Linux', + 'version': '#224-Ubuntu SMP Mon Jun 19 13:30:12 UTC 2023'}, + 'pytorch': {'build_settings': {'BLAS_INFO': 'mkl', + 'BUILD_TYPE': 'Release', + 'CUDA_VERSION': '11.8', + 'CUDNN_VERSION': '8.7.0', + 'CXX_COMPILER': '/opt/rh/devtoolset-9/root/usr/bin/c++', + 'CXX_FLAGS': '-D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -fvisibility-inlines-hidden ' + '-DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER ' + '-DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK ' + '-DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra ' + '-Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation ' + '-Wnarrowing -Wno-missing-field-initializers -Wno-type-limits ' + '-Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter ' + '-Wno-unused-function -Wno-unused-result -Wno-strict-overflow ' + '-Wno-strict-aliasing -Wno-stringop-overflow -Wno-psabi ' + '-Wno-error=pedantic -Wno-error=old-style-cast ' + '-Wno-invalid-partial-specialization -Wno-unused-private-field ' + '-Wno-aligned-allocation-unavailable -Wno-missing-braces ' + '-fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable ' + '-Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math ' + '-Werror=format -Werror=cast-function-type -Wno-stringop-overflow', + 'LAPACK_INFO': 'mkl', + 'PERF_WITH_AVX': '1', + 'PERF_WITH_AVX2': '1', + 'PERF_WITH_AVX512': '1', + 'TORCH_DISABLE_GPU_ASSERTS': 'ON', + 'TORCH_VERSION': '2.1.0', + 'USE_CUDA': 'ON', + 'USE_CUDNN': 'ON', + 'USE_EXCEPTION_PTR': '1', + 'USE_GFLAGS': 'OFF', + 'USE_GLOG': 'OFF', + 'USE_MKL': 'ON', + 'USE_MKLDNN': 'ON', + 'USE_MPI': 'OFF', + 'USE_NCCL': '1', + 'USE_NNPACK': 'ON', + 'USE_OPENMP': 'ON', + 'USE_ROCM': 'OFF'}, + 'compiler': 'GCC 9.3', + 'cpp': 'C++ Version: 201703', + 'cpu': 'CPU capability usage: AVX2', + 'intel': 'Intel(R) oneAPI Math Kernel Library Version 2022.2-Product Build 20220804 for Intel(R) 64 ' + 'architecture applications', + 'lapack': 'LAPACK is enabled (usually provided by MKL)', + 'mkl': 'OpenMP 201511 (a.k.a. OpenMP 4.5)', + 'nnpack': 'NNPACK is enabled', + 'openmp': 'OpenMP 201511 (a.k.a. OpenMP 4.5)', + 'torch': '2.1.0+cu118'}} +opt-1_3b-multinode [start] accelerate launch --mixed_precision=fp16 --num_machines=1 --dynamo_backend=no --num_processes=1 --num_cpu_threads_per_process=8 /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/main.py --max_train_steps 100 --dataset_name wikitext --dataset_config_name wikitext-103-v1 --dataset_rev b08601e --validation_split_percentage 5 --per_gpu_batch_size 1 --cpus_per_gpu 8 --model_name facebook/opt-1.3b --prepare_only --cache /Tmp/slurm.4115007.0/base/cache [at 2024-02-06 12:01:33.630289] +opt-1_3b-multinode [stderr] The following values were not passed to `accelerate launch` and had defaults used instead: +opt-1_3b-multinode [stderr] More than one GPU was found, enabling multi-GPU training. +opt-1_3b-multinode [stderr] If this was unintended please pass in `--num_processes=1`. +opt-1_3b-multinode [stderr] To avoid this warning pass in values for each of the problematic parameters or run `accelerate config`. +opt-1_3b-multinode [stderr] Detected kernel version 4.15.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher. +opt-1_3b-multinode [stdout] [02/06/24 12:01:37] INFO [0/1] __main__ - Distributed logging.py:60 +opt-1_3b-multinode [stdout] environment: MULTI_GPU Backend: nccl +opt-1_3b-multinode [stdout] Num processes: 1 +opt-1_3b-multinode [stdout] Process index: 0 +opt-1_3b-multinode [stdout] Local process index: 0 +opt-1_3b-multinode [stdout] Device: cuda:0 +opt-1_3b-multinode [stdout] +opt-1_3b-multinode [stdout] Mixed precision type: fp16 +opt-1_3b-multinode [stdout] +opt-1_3b-multinode [stderr] /Tmp/slurm.4115007.0/base/venv/torch/lib/python3.9/site-packages/datasets/table.py:1421: FutureWarning: promote has been superseded by mode='default'. +opt-1_3b-multinode [stderr] table = cls._concat_blocks(blocks, axis=0) +opt-1_3b-multinode [stderr] loading configuration file config.json from cache at /Tmp/slurm.4115007.0/base/cache/hub/models--facebook--opt-1.3b/snapshots/3f5c25d0bc631cb57ac65913f76e22c2dfb61d62/config.json +opt-1_3b-multinode [stderr] Model config OPTConfig { +opt-1_3b-multinode [stderr] "_name_or_path": "facebook/opt-1.3b", +opt-1_3b-multinode [stderr] "_remove_final_layer_norm": false, +opt-1_3b-multinode [stderr] "activation_dropout": 0.0, +opt-1_3b-multinode [stderr] "activation_function": "relu", +opt-1_3b-multinode [stderr] "architectures": [ +opt-1_3b-multinode [stderr] "OPTForCausalLM" +opt-1_3b-multinode [stderr] ], +opt-1_3b-multinode [stderr] "attention_dropout": 0.0, +opt-1_3b-multinode [stderr] "bos_token_id": 2, +opt-1_3b-multinode [stderr] "do_layer_norm_before": true, +opt-1_3b-multinode [stderr] "dropout": 0.1, +opt-1_3b-multinode [stderr] "enable_bias": true, +opt-1_3b-multinode [stderr] "eos_token_id": 2, +opt-1_3b-multinode [stderr] "ffn_dim": 8192, +opt-1_3b-multinode [stderr] "hidden_size": 2048, +opt-1_3b-multinode [stderr] "init_std": 0.02, +opt-1_3b-multinode [stderr] "layer_norm_elementwise_affine": true, +opt-1_3b-multinode [stderr] "layerdrop": 0.0, +opt-1_3b-multinode [stderr] "max_position_embeddings": 2048, +opt-1_3b-multinode [stderr] "model_type": "opt", +opt-1_3b-multinode [stderr] "num_attention_heads": 32, +opt-1_3b-multinode [stderr] "num_hidden_layers": 24, +opt-1_3b-multinode [stderr] "pad_token_id": 1, +opt-1_3b-multinode [stderr] "prefix": "", +opt-1_3b-multinode [stderr] "torch_dtype": "float16", +opt-1_3b-multinode [stderr] "transformers_version": "4.35.0", +opt-1_3b-multinode [stderr] "use_cache": true, +opt-1_3b-multinode [stderr] "vocab_size": 50272, +opt-1_3b-multinode [stderr] "word_embed_proj_dim": 2048 +opt-1_3b-multinode [stderr] } +opt-1_3b-multinode [stderr] +opt-1_3b-multinode [stderr] loading configuration file config.json from cache at /Tmp/slurm.4115007.0/base/cache/hub/models--facebook--opt-1.3b/snapshots/3f5c25d0bc631cb57ac65913f76e22c2dfb61d62/config.json +opt-1_3b-multinode [stderr] Model config OPTConfig { +opt-1_3b-multinode [stderr] "_name_or_path": "facebook/opt-1.3b", +opt-1_3b-multinode [stderr] "_remove_final_layer_norm": false, +opt-1_3b-multinode [stderr] "activation_dropout": 0.0, +opt-1_3b-multinode [stderr] "activation_function": "relu", +opt-1_3b-multinode [stderr] "architectures": [ +opt-1_3b-multinode [stderr] "OPTForCausalLM" +opt-1_3b-multinode [stderr] ], +opt-1_3b-multinode [stderr] "attention_dropout": 0.0, +opt-1_3b-multinode [stderr] "bos_token_id": 2, +opt-1_3b-multinode [stderr] "do_layer_norm_before": true, +opt-1_3b-multinode [stderr] "dropout": 0.1, +opt-1_3b-multinode [stderr] "enable_bias": true, +opt-1_3b-multinode [stderr] "eos_token_id": 2, +opt-1_3b-multinode [stderr] "ffn_dim": 8192, +opt-1_3b-multinode [stderr] "hidden_size": 2048, +opt-1_3b-multinode [stderr] "init_std": 0.02, +opt-1_3b-multinode [stderr] "layer_norm_elementwise_affine": true, +opt-1_3b-multinode [stderr] "layerdrop": 0.0, +opt-1_3b-multinode [stderr] "max_position_embeddings": 2048, +opt-1_3b-multinode [stderr] "model_type": "opt", +opt-1_3b-multinode [stderr] "num_attention_heads": 32, +opt-1_3b-multinode [stderr] "num_hidden_layers": 24, +opt-1_3b-multinode [stderr] "pad_token_id": 1, +opt-1_3b-multinode [stderr] "prefix": "", +opt-1_3b-multinode [stderr] "torch_dtype": "float16", +opt-1_3b-multinode [stderr] "transformers_version": "4.35.0", +opt-1_3b-multinode [stderr] "use_cache": true, +opt-1_3b-multinode [stderr] "vocab_size": 50272, +opt-1_3b-multinode [stderr] "word_embed_proj_dim": 2048 +opt-1_3b-multinode [stderr] } +opt-1_3b-multinode [stderr] +opt-1_3b-multinode [stderr] loading file vocab.json from cache at /Tmp/slurm.4115007.0/base/cache/hub/models--facebook--opt-1.3b/snapshots/3f5c25d0bc631cb57ac65913f76e22c2dfb61d62/vocab.json +opt-1_3b-multinode [stderr] loading file merges.txt from cache at /Tmp/slurm.4115007.0/base/cache/hub/models--facebook--opt-1.3b/snapshots/3f5c25d0bc631cb57ac65913f76e22c2dfb61d62/merges.txt +opt-1_3b-multinode [stderr] loading file tokenizer.json from cache at None +opt-1_3b-multinode [stderr] loading file added_tokens.json from cache at None +opt-1_3b-multinode [stderr] loading file special_tokens_map.json from cache at /Tmp/slurm.4115007.0/base/cache/hub/models--facebook--opt-1.3b/snapshots/3f5c25d0bc631cb57ac65913f76e22c2dfb61d62/special_tokens_map.json +opt-1_3b-multinode [stderr] loading file tokenizer_config.json from cache at /Tmp/slurm.4115007.0/base/cache/hub/models--facebook--opt-1.3b/snapshots/3f5c25d0bc631cb57ac65913f76e22c2dfb61d62/tokenizer_config.json +opt-1_3b-multinode [stderr] loading configuration file config.json from cache at /Tmp/slurm.4115007.0/base/cache/hub/models--facebook--opt-1.3b/snapshots/3f5c25d0bc631cb57ac65913f76e22c2dfb61d62/config.json +opt-1_3b-multinode [stderr] Model config OPTConfig { +opt-1_3b-multinode [stderr] "_name_or_path": "facebook/opt-1.3b", +opt-1_3b-multinode [stderr] "_remove_final_layer_norm": false, +opt-1_3b-multinode [stderr] "activation_dropout": 0.0, +opt-1_3b-multinode [stderr] "activation_function": "relu", +opt-1_3b-multinode [stderr] "architectures": [ +opt-1_3b-multinode [stderr] "OPTForCausalLM" +opt-1_3b-multinode [stderr] ], +opt-1_3b-multinode [stderr] "attention_dropout": 0.0, +opt-1_3b-multinode [stderr] "bos_token_id": 2, +opt-1_3b-multinode [stderr] "do_layer_norm_before": true, +opt-1_3b-multinode [stderr] "dropout": 0.1, +opt-1_3b-multinode [stderr] "enable_bias": true, +opt-1_3b-multinode [stderr] "eos_token_id": 2, +opt-1_3b-multinode [stderr] "ffn_dim": 8192, +opt-1_3b-multinode [stderr] "hidden_size": 2048, +opt-1_3b-multinode [stderr] "init_std": 0.02, +opt-1_3b-multinode [stderr] "layer_norm_elementwise_affine": true, +opt-1_3b-multinode [stderr] "layerdrop": 0.0, +opt-1_3b-multinode [stderr] "max_position_embeddings": 2048, +opt-1_3b-multinode [stderr] "model_type": "opt", +opt-1_3b-multinode [stderr] "num_attention_heads": 32, +opt-1_3b-multinode [stderr] "num_hidden_layers": 24, +opt-1_3b-multinode [stderr] "pad_token_id": 1, +opt-1_3b-multinode [stderr] "prefix": "", +opt-1_3b-multinode [stderr] "torch_dtype": "float16", +opt-1_3b-multinode [stderr] "transformers_version": "4.35.0", +opt-1_3b-multinode [stderr] "use_cache": true, +opt-1_3b-multinode [stderr] "vocab_size": 50272, +opt-1_3b-multinode [stderr] "word_embed_proj_dim": 2048 +opt-1_3b-multinode [stderr] } +opt-1_3b-multinode [stderr] +opt-1_3b-multinode [stderr] loading configuration file config.json from cache at /Tmp/slurm.4115007.0/base/cache/hub/models--facebook--opt-1.3b/snapshots/3f5c25d0bc631cb57ac65913f76e22c2dfb61d62/config.json +opt-1_3b-multinode [stderr] Model config OPTConfig { +opt-1_3b-multinode [stderr] "_name_or_path": "facebook/opt-1.3b", +opt-1_3b-multinode [stderr] "_remove_final_layer_norm": false, +opt-1_3b-multinode [stderr] "activation_dropout": 0.0, +opt-1_3b-multinode [stderr] "activation_function": "relu", +opt-1_3b-multinode [stderr] "architectures": [ +opt-1_3b-multinode [stderr] "OPTForCausalLM" +opt-1_3b-multinode [stderr] ], +opt-1_3b-multinode [stderr] "attention_dropout": 0.0, +opt-1_3b-multinode [stderr] "bos_token_id": 2, +opt-1_3b-multinode [stderr] "do_layer_norm_before": true, +opt-1_3b-multinode [stderr] "dropout": 0.1, +opt-1_3b-multinode [stderr] "enable_bias": true, +opt-1_3b-multinode [stderr] "eos_token_id": 2, +opt-1_3b-multinode [stderr] "ffn_dim": 8192, +opt-1_3b-multinode [stderr] "hidden_size": 2048, +opt-1_3b-multinode [stderr] "init_std": 0.02, +opt-1_3b-multinode [stderr] "layer_norm_elementwise_affine": true, +opt-1_3b-multinode [stderr] "layerdrop": 0.0, +opt-1_3b-multinode [stderr] "max_position_embeddings": 2048, +opt-1_3b-multinode [stderr] "model_type": "opt", +opt-1_3b-multinode [stderr] "num_attention_heads": 32, +opt-1_3b-multinode [stderr] "num_hidden_layers": 24, +opt-1_3b-multinode [stderr] "pad_token_id": 1, +opt-1_3b-multinode [stderr] "prefix": "", +opt-1_3b-multinode [stderr] "torch_dtype": "float16", +opt-1_3b-multinode [stderr] "transformers_version": "4.35.0", +opt-1_3b-multinode [stderr] "use_cache": true, +opt-1_3b-multinode [stderr] "vocab_size": 50272, +opt-1_3b-multinode [stderr] "word_embed_proj_dim": 2048 +opt-1_3b-multinode [stderr] } +opt-1_3b-multinode [stderr] +opt-1_3b-multinode [stderr] libibverbs: Warning: couldn't load driver 'libipathverbs-rdmav34.so': libipathverbs-rdmav34.so: cannot open shared object file: No such file or directory +opt-1_3b-multinode [stderr] libibverbs: Warning: couldn't load driver 'libcxgb4-rdmav34.so': libcxgb4-rdmav34.so: cannot open shared object file: No such file or directory +opt-1_3b-multinode [stderr] libibverbs: Warning: couldn't load driver 'libhfi1verbs-rdmav34.so': libhfi1verbs-rdmav34.so: cannot open shared object file: No such file or directory +opt-1_3b-multinode [stderr] libibverbs: Warning: couldn't load driver 'libvmw_pvrdma-rdmav34.so': libvmw_pvrdma-rdmav34.so: cannot open shared object file: No such file or directory +opt-1_3b-multinode [stderr] libibverbs: Warning: couldn't load driver 'libmlx4-rdmav34.so': libmlx4-rdmav34.so: cannot open shared object file: No such file or directory +opt-1_3b-multinode [stderr] libibverbs: Warning: couldn't load driver 'libmthca-rdmav34.so': libmthca-rdmav34.so: cannot open shared object file: No such file or directory +opt-1_3b-multinode [stderr] libibverbs: Warning: couldn't load driver 'libocrdma-rdmav34.so': libocrdma-rdmav34.so: cannot open shared object file: No such file or directory +opt-1_3b-multinode [stderr] libibverbs: Warning: couldn't load driver 'libqedr-rdmav34.so': libqedr-rdmav34.so: cannot open shared object file: No such file or directory +opt-1_3b-multinode [stderr] libibverbs: Warning: couldn't load driver 'librxe-rdmav34.so': librxe-rdmav34.so: cannot open shared object file: No such file or directory +opt-1_3b-multinode [stderr] libibverbs: Warning: couldn't load driver 'libhns-rdmav34.so': libhns-rdmav34.so: cannot open shared object file: No such file or directory +opt-1_3b-multinode [stderr] libibverbs: Warning: couldn't load driver 'libbnxt_re-rdmav34.so': libbnxt_re-rdmav34.so: cannot open shared object file: No such file or directory +opt-1_3b-multinode [stderr] libibverbs: Warning: couldn't load driver 'libi40iw-rdmav34.so': libi40iw-rdmav34.so: cannot open shared object file: No such file or directory +opt-1_3b-multinode [stdout] [02/06/24 12:01:38] WARNING [0/1] __main__ - The tokenizer picked logging.py:60 +opt-1_3b-multinode [stdout] seems to have a very large +opt-1_3b-multinode [stdout] `model_max_length` +opt-1_3b-multinode [stdout] (1000000000000000019884624838656). +opt-1_3b-multinode [stdout] Picking 1024 instead. You can change +opt-1_3b-multinode [stdout] that default value by passing +opt-1_3b-multinode [stdout] --block_size xxx. +opt-1_3b-multinode [end] accelerate launch --mixed_precision=fp16 --num_machines=1 --dynamo_backend=no --num_processes=1 --num_cpu_threads_per_process=8 /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/main.py --max_train_steps 100 --dataset_name wikitext --dataset_config_name wikitext-103-v1 --dataset_rev b08601e --validation_split_percentage 5 --per_gpu_batch_size 1 --cpus_per_gpu 8 --model_name facebook/opt-1.3b --prepare_only --cache /Tmp/slurm.4115007.0/base/cache [at 2024-02-06 12:01:40.406792] +opt-6_7b [config.system.arch] cuda +opt-6_7b [config.system.sshkey] None +opt-6_7b [config.system.nodes] [{'aliaslist': [], + 'hostname': 'localhost', + 'ip': '127.0.0.1', + 'ipaddrlist': ['fe80::ce48:3aff:fe1c:9c24%eno8303', + 'fe80::1270:fd03:ee:7a3a%ib1', + '10.20.9.34', + '00:00:00:00:00:00', + '00:00:10:29:fe:80:00:00:00:00:00:00:10:70:fd:03:00:ee:7b:02', + 'cc:48:3a:1c:9c:24', + '::1', + '10.20.137.34', + '00:00:10:29:fe:80:00:00:00:00:00:00:10:70:fd:03:00:ee:7a:3a', + '127.0.0.1', + '172.16.9.34', + 'fe80::1270:fd03:ee:7b02%ib0'], + 'local': True, + 'main': True, + 'name': 'local', + 'port': 8123, + 'user': 'root'}] +opt-6_7b [config.system.gpu.capacity] 81920 MiB +opt-6_7b [config.system.self.name] local +opt-6_7b [config.system.self.ip] 127.0.0.1 +opt-6_7b [config.system.self.port] 8123 +opt-6_7b [config.system.self.user] root +opt-6_7b [config.system.self.main] True +opt-6_7b [config.system.self.hostname] localhost +opt-6_7b [config.system.self.aliaslist] [] +opt-6_7b [config.system.self.ipaddrlist] ['fe80::ce48:3aff:fe1c:9c24%eno8303', + 'fe80::1270:fd03:ee:7a3a%ib1', + '10.20.9.34', + '00:00:00:00:00:00', + '00:00:10:29:fe:80:00:00:00:00:00:00:10:70:fd:03:00:ee:7b:02', + 'cc:48:3a:1c:9c:24', + '::1', + '10.20.137.34', + '00:00:10:29:fe:80:00:00:00:00:00:00:10:70:fd:03:00:ee:7a:3a', + '127.0.0.1', + '172.16.9.34', + 'fe80::1270:fd03:ee:7b02%ib0'] +opt-6_7b [config.system.self.local] True +opt-6_7b [config.dirs.base] /Tmp/slurm.4115007.0/base +opt-6_7b [config.dirs.venv] /Tmp/slurm.4115007.0/base/venv/torch +opt-6_7b [config.dirs.data] /Tmp/slurm.4115007.0/base/data +opt-6_7b [config.dirs.runs] /Tmp/slurm.4115007.0/base/runs +opt-6_7b [config.dirs.extra] /Tmp/slurm.4115007.0/base/extra/opt +opt-6_7b [config.dirs.cache] /Tmp/slurm.4115007.0/base/cache +opt-6_7b [config.group] opt +opt-6_7b [config.install_group] torch +opt-6_7b [config.install_variant] cuda +opt-6_7b [config.run_name] prepare.2024-02-06_11:57:01.236402 +opt-6_7b [config.enabled] True +opt-6_7b [config.capabilities.nodes] 1 +opt-6_7b [config.max_duration] 600 +opt-6_7b [config.voir.options.stop] 60 +opt-6_7b [config.voir.options.interval] 1s +opt-6_7b [config.validation.usage.gpu_load_threshold] 0.5 +opt-6_7b [config.validation.usage.gpu_mem_threshold] 0.5 +opt-6_7b [config.config_base] /Tmp/slurm.4115007.0/milabench/config +opt-6_7b [config.config_file] /Tmp/slurm.4115007.0/milabench/config/standard.yaml +opt-6_7b [config.tags] ['huggingface', 'language-modeling', 'llm', 'multigpu', 'nlp', 'transformer'] +opt-6_7b [config.definition] /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt +opt-6_7b [config.plan.method] njobs +opt-6_7b [config.plan.n] 1 +opt-6_7b [config.argv.--max_train_steps] 100 +opt-6_7b [config.argv.--dataset_name] wikitext +opt-6_7b [config.argv.--dataset_config_name] wikitext-103-v1 +opt-6_7b [config.argv.--dataset_rev] b08601e +opt-6_7b [config.argv.--validation_split_percentage] 5 +opt-6_7b [config.argv.--per_gpu_batch_size] 1 +opt-6_7b [config.argv.--cpus_per_gpu] 8 +opt-6_7b [config.argv.--model_name] facebook/opt-6.7b +opt-6_7b [config.gradient_accumulation_steps] 1 +opt-6_7b [config.use_deepspeed] True +opt-6_7b [config.num_machines] 1 +opt-6_7b [config.weight] 5.0 +opt-6_7b [config.name] opt-6_7b +opt-6_7b [config.tag] ['opt-6_7b'] +opt-6_7b [meta] {'accelerators': {'arch': 'cuda', + 'gpus': {'GPU-80d2dc6e-14f7-798e-5ce0-647e33324ef0': {'device': '0', + 'memory': {'total': 81920.0, 'used': 693.5625}, + 'power': 81.177, + 'product': 'NVIDIA A100-SXM4-80GB', + 'selection_variable': 'CUDA_VISIBLE_DEVICES', + 'temperature': 34, + 'utilization': {'compute': 0, + 'memory': 0.008466339111328125}}, + 'GPU-8b2c653d-fcd1-4ab5-7b87-4ac3d77d309a': {'device': '1', + 'memory': {'total': 81920.0, 'used': 693.5625}, + 'power': 58.687, + 'product': 'NVIDIA A100-SXM4-80GB', + 'selection_variable': 'CUDA_VISIBLE_DEVICES', + 'temperature': 25, + 'utilization': {'compute': 0, + 'memory': 0.008466339111328125}}}}, + 'cpu': {'brand': 'AMD EPYC 7543 32-Core Processor', 'count': 64}, + 'date': 1707256902.78669, + 'milabench': {'commit': '4c8961898aa0dc59a9227c32d562c7a0be37ea03', + 'date': '2024-02-06 11:53:56 -0500', + 'tag': '4c89618'}, + 'os': {'machine': 'x86_64', + 'nodename': 'cn-g024.server.mila.quebec', + 'release': '4.15.0-213-generic', + 'sysname': 'Linux', + 'version': '#224-Ubuntu SMP Mon Jun 19 13:30:12 UTC 2023'}, + 'pytorch': {'build_settings': {'BLAS_INFO': 'mkl', + 'BUILD_TYPE': 'Release', + 'CUDA_VERSION': '11.8', + 'CUDNN_VERSION': '8.7.0', + 'CXX_COMPILER': '/opt/rh/devtoolset-9/root/usr/bin/c++', + 'CXX_FLAGS': '-D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -fvisibility-inlines-hidden ' + '-DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER ' + '-DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK ' + '-DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra ' + '-Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation ' + '-Wnarrowing -Wno-missing-field-initializers -Wno-type-limits ' + '-Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter ' + '-Wno-unused-function -Wno-unused-result -Wno-strict-overflow ' + '-Wno-strict-aliasing -Wno-stringop-overflow -Wno-psabi ' + '-Wno-error=pedantic -Wno-error=old-style-cast ' + '-Wno-invalid-partial-specialization -Wno-unused-private-field ' + '-Wno-aligned-allocation-unavailable -Wno-missing-braces ' + '-fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable ' + '-Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math ' + '-Werror=format -Werror=cast-function-type -Wno-stringop-overflow', + 'LAPACK_INFO': 'mkl', + 'PERF_WITH_AVX': '1', + 'PERF_WITH_AVX2': '1', + 'PERF_WITH_AVX512': '1', + 'TORCH_DISABLE_GPU_ASSERTS': 'ON', + 'TORCH_VERSION': '2.1.0', + 'USE_CUDA': 'ON', + 'USE_CUDNN': 'ON', + 'USE_EXCEPTION_PTR': '1', + 'USE_GFLAGS': 'OFF', + 'USE_GLOG': 'OFF', + 'USE_MKL': 'ON', + 'USE_MKLDNN': 'ON', + 'USE_MPI': 'OFF', + 'USE_NCCL': '1', + 'USE_NNPACK': 'ON', + 'USE_OPENMP': 'ON', + 'USE_ROCM': 'OFF'}, + 'compiler': 'GCC 9.3', + 'cpp': 'C++ Version: 201703', + 'cpu': 'CPU capability usage: AVX2', + 'intel': 'Intel(R) oneAPI Math Kernel Library Version 2022.2-Product Build 20220804 for Intel(R) 64 ' + 'architecture applications', + 'lapack': 'LAPACK is enabled (usually provided by MKL)', + 'mkl': 'OpenMP 201511 (a.k.a. OpenMP 4.5)', + 'nnpack': 'NNPACK is enabled', + 'openmp': 'OpenMP 201511 (a.k.a. OpenMP 4.5)', + 'torch': '2.1.0+cu118'}} +opt-6_7b [start] accelerate launch --mixed_precision=fp16 --num_machines=1 --dynamo_backend=no --num_processes=1 --num_cpu_threads_per_process=8 /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/main.py --max_train_steps 100 --dataset_name wikitext --dataset_config_name wikitext-103-v1 --dataset_rev b08601e --validation_split_percentage 5 --per_gpu_batch_size 1 --cpus_per_gpu 8 --model_name facebook/opt-6.7b --prepare_only --cache /Tmp/slurm.4115007.0/base/cache [at 2024-02-06 12:01:42.805103] +opt-6_7b [stderr] The following values were not passed to `accelerate launch` and had defaults used instead: +opt-6_7b [stderr] More than one GPU was found, enabling multi-GPU training. +opt-6_7b [stderr] If this was unintended please pass in `--num_processes=1`. +opt-6_7b [stderr] To avoid this warning pass in values for each of the problematic parameters or run `accelerate config`. +opt-6_7b [stderr] Detected kernel version 4.15.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher. +opt-6_7b [stdout] [02/06/24 12:01:46] INFO [0/1] __main__ - Distributed logging.py:60 +opt-6_7b [stdout] environment: MULTI_GPU Backend: nccl +opt-6_7b [stdout] Num processes: 1 +opt-6_7b [stdout] Process index: 0 +opt-6_7b [stdout] Local process index: 0 +opt-6_7b [stdout] Device: cuda:0 +opt-6_7b [stdout] +opt-6_7b [stdout] Mixed precision type: fp16 +opt-6_7b [stdout] +opt-6_7b [stderr] /Tmp/slurm.4115007.0/base/venv/torch/lib/python3.9/site-packages/datasets/table.py:1421: FutureWarning: promote has been superseded by mode='default'. +opt-6_7b [stderr] table = cls._concat_blocks(blocks, axis=0) +opt-6_7b [stderr] Downloading config.json: 0%| | 0.00/651 [00:00", +opt-6_7b [stderr] "torch_dtype": "float16", +opt-6_7b [stderr] "transformers_version": "4.35.0", +opt-6_7b [stderr] "use_cache": true, +opt-6_7b [stderr] "vocab_size": 50272, +opt-6_7b [stderr] "word_embed_proj_dim": 4096 +opt-6_7b [stderr] } +opt-6_7b [stderr] +opt-6_7b [stderr] Downloading tokenizer_config.json: 0%| | 0.00/685 [00:00", +opt-6_7b [stderr] "torch_dtype": "float16", +opt-6_7b [stderr] "transformers_version": "4.35.0", +opt-6_7b [stderr] "use_cache": true, +opt-6_7b [stderr] "vocab_size": 50272, +opt-6_7b [stderr] "word_embed_proj_dim": 4096 +opt-6_7b [stderr] } +opt-6_7b [stderr] +opt-6_7b [stderr] Downloading vocab.json: 0%| | 0.00/899k [00:00", +opt-6_7b [stderr] "torch_dtype": "float16", +opt-6_7b [stderr] "transformers_version": "4.35.0", +opt-6_7b [stderr] "use_cache": true, +opt-6_7b [stderr] "vocab_size": 50272, +opt-6_7b [stderr] "word_embed_proj_dim": 4096 +opt-6_7b [stderr] } +opt-6_7b [stderr] +opt-6_7b [stderr] loading configuration file config.json from cache at /Tmp/slurm.4115007.0/base/cache/hub/models--facebook--opt-6.7b/snapshots/a45aa65bbeb77c1558bc99bedc6779195462dab0/config.json +opt-6_7b [stderr] Model config OPTConfig { +opt-6_7b [stderr] "_name_or_path": "facebook/opt-6.7b", +opt-6_7b [stderr] "_remove_final_layer_norm": false, +opt-6_7b [stderr] "activation_dropout": 0.0, +opt-6_7b [stderr] "activation_function": "relu", +opt-6_7b [stderr] "architectures": [ +opt-6_7b [stderr] "OPTForCausalLM" +opt-6_7b [stderr] ], +opt-6_7b [stderr] "attention_dropout": 0.0, +opt-6_7b [stderr] "bos_token_id": 2, +opt-6_7b [stderr] "do_layer_norm_before": true, +opt-6_7b [stderr] "dropout": 0.1, +opt-6_7b [stderr] "enable_bias": true, +opt-6_7b [stderr] "eos_token_id": 2, +opt-6_7b [stderr] "ffn_dim": 16384, +opt-6_7b [stderr] "hidden_size": 4096, +opt-6_7b [stderr] "init_std": 0.02, +opt-6_7b [stderr] "layer_norm_elementwise_affine": true, +opt-6_7b [stderr] "layerdrop": 0.0, +opt-6_7b [stderr] "max_position_embeddings": 2048, +opt-6_7b [stderr] "model_type": "opt", +opt-6_7b [stderr] "num_attention_heads": 32, +opt-6_7b [stderr] "num_hidden_layers": 32, +opt-6_7b [stderr] "pad_token_id": 1, +opt-6_7b [stderr] "prefix": "", +opt-6_7b [stderr] "torch_dtype": "float16", +opt-6_7b [stderr] "transformers_version": "4.35.0", +opt-6_7b [stderr] "use_cache": true, +opt-6_7b [stderr] "vocab_size": 50272, +opt-6_7b [stderr] "word_embed_proj_dim": 4096 +opt-6_7b [stderr] } +opt-6_7b [stderr] +opt-6_7b [stderr] Running tokenizer on dataset (num_proc=8): 0%| | 0/4358 [00:00= 2'] +opt-6_7b-multinode [config.docker_image] ghcr.io/mila-iqia/milabench:cuda-nightly +opt-6_7b-multinode [config.name] opt-6_7b-multinode +opt-6_7b-multinode [config.tag] ['opt-6_7b-multinode'] +opt-6_7b-multinode [meta] {'accelerators': {'arch': 'cuda', + 'gpus': {'GPU-80d2dc6e-14f7-798e-5ce0-647e33324ef0': {'device': '0', + 'memory': {'total': 81920.0, 'used': 693.5625}, + 'power': 81.714, + 'product': 'NVIDIA A100-SXM4-80GB', + 'selection_variable': 'CUDA_VISIBLE_DEVICES', + 'temperature': 35, + 'utilization': {'compute': 0, + 'memory': 0.008466339111328125}}, + 'GPU-8b2c653d-fcd1-4ab5-7b87-4ac3d77d309a': {'device': '1', + 'memory': {'total': 81920.0, 'used': 693.5625}, + 'power': 58.687, + 'product': 'NVIDIA A100-SXM4-80GB', + 'selection_variable': 'CUDA_VISIBLE_DEVICES', + 'temperature': 25, + 'utilization': {'compute': 0, + 'memory': 0.008466339111328125}}}}, + 'cpu': {'brand': 'AMD EPYC 7543 32-Core Processor', 'count': 64}, + 'date': 1707257012.062557, + 'milabench': {'commit': '4c8961898aa0dc59a9227c32d562c7a0be37ea03', + 'date': '2024-02-06 11:53:56 -0500', + 'tag': '4c89618'}, + 'os': {'machine': 'x86_64', + 'nodename': 'cn-g024.server.mila.quebec', + 'release': '4.15.0-213-generic', + 'sysname': 'Linux', + 'version': '#224-Ubuntu SMP Mon Jun 19 13:30:12 UTC 2023'}, + 'pytorch': {'build_settings': {'BLAS_INFO': 'mkl', + 'BUILD_TYPE': 'Release', + 'CUDA_VERSION': '11.8', + 'CUDNN_VERSION': '8.7.0', + 'CXX_COMPILER': '/opt/rh/devtoolset-9/root/usr/bin/c++', + 'CXX_FLAGS': '-D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -fvisibility-inlines-hidden ' + '-DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER ' + '-DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK ' + '-DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra ' + '-Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation ' + '-Wnarrowing -Wno-missing-field-initializers -Wno-type-limits ' + '-Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter ' + '-Wno-unused-function -Wno-unused-result -Wno-strict-overflow ' + '-Wno-strict-aliasing -Wno-stringop-overflow -Wno-psabi ' + '-Wno-error=pedantic -Wno-error=old-style-cast ' + '-Wno-invalid-partial-specialization -Wno-unused-private-field ' + '-Wno-aligned-allocation-unavailable -Wno-missing-braces ' + '-fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable ' + '-Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math ' + '-Werror=format -Werror=cast-function-type -Wno-stringop-overflow', + 'LAPACK_INFO': 'mkl', + 'PERF_WITH_AVX': '1', + 'PERF_WITH_AVX2': '1', + 'PERF_WITH_AVX512': '1', + 'TORCH_DISABLE_GPU_ASSERTS': 'ON', + 'TORCH_VERSION': '2.1.0', + 'USE_CUDA': 'ON', + 'USE_CUDNN': 'ON', + 'USE_EXCEPTION_PTR': '1', + 'USE_GFLAGS': 'OFF', + 'USE_GLOG': 'OFF', + 'USE_MKL': 'ON', + 'USE_MKLDNN': 'ON', + 'USE_MPI': 'OFF', + 'USE_NCCL': '1', + 'USE_NNPACK': 'ON', + 'USE_OPENMP': 'ON', + 'USE_ROCM': 'OFF'}, + 'compiler': 'GCC 9.3', + 'cpp': 'C++ Version: 201703', + 'cpu': 'CPU capability usage: AVX2', + 'intel': 'Intel(R) oneAPI Math Kernel Library Version 2022.2-Product Build 20220804 for Intel(R) 64 ' + 'architecture applications', + 'lapack': 'LAPACK is enabled (usually provided by MKL)', + 'mkl': 'OpenMP 201511 (a.k.a. OpenMP 4.5)', + 'nnpack': 'NNPACK is enabled', + 'openmp': 'OpenMP 201511 (a.k.a. OpenMP 4.5)', + 'torch': '2.1.0+cu118'}} +opt-6_7b-multinode [start] accelerate launch --mixed_precision=fp16 --num_machines=1 --dynamo_backend=no --num_processes=1 --num_cpu_threads_per_process=8 /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/main.py --max_train_steps 100 --dataset_name wikitext --dataset_config_name wikitext-103-v1 --dataset_rev b08601e --validation_split_percentage 5 --per_gpu_batch_size 1 --cpus_per_gpu 8 --model_name facebook/opt-6.7b --prepare_only --cache /Tmp/slurm.4115007.0/base/cache [at 2024-02-06 12:03:32.081712] +opt-6_7b-multinode [stderr] The following values were not passed to `accelerate launch` and had defaults used instead: +opt-6_7b-multinode [stderr] More than one GPU was found, enabling multi-GPU training. +opt-6_7b-multinode [stderr] If this was unintended please pass in `--num_processes=1`. +opt-6_7b-multinode [stderr] To avoid this warning pass in values for each of the problematic parameters or run `accelerate config`. +opt-6_7b-multinode [stderr] Detected kernel version 4.15.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher. +opt-6_7b-multinode [stdout] [02/06/24 12:03:35] INFO [0/1] __main__ - Distributed logging.py:60 +opt-6_7b-multinode [stdout] environment: MULTI_GPU Backend: nccl +opt-6_7b-multinode [stdout] Num processes: 1 +opt-6_7b-multinode [stdout] Process index: 0 +opt-6_7b-multinode [stdout] Local process index: 0 +opt-6_7b-multinode [stdout] Device: cuda:0 +opt-6_7b-multinode [stdout] +opt-6_7b-multinode [stdout] Mixed precision type: fp16 +opt-6_7b-multinode [stdout] +opt-6_7b-multinode [stderr] /Tmp/slurm.4115007.0/base/venv/torch/lib/python3.9/site-packages/datasets/table.py:1421: FutureWarning: promote has been superseded by mode='default'. +opt-6_7b-multinode [stderr] table = cls._concat_blocks(blocks, axis=0) +opt-6_7b-multinode [stderr] loading configuration file config.json from cache at /Tmp/slurm.4115007.0/base/cache/hub/models--facebook--opt-6.7b/snapshots/a45aa65bbeb77c1558bc99bedc6779195462dab0/config.json +opt-6_7b-multinode [stderr] Model config OPTConfig { +opt-6_7b-multinode [stderr] "_name_or_path": "facebook/opt-6.7b", +opt-6_7b-multinode [stderr] "_remove_final_layer_norm": false, +opt-6_7b-multinode [stderr] "activation_dropout": 0.0, +opt-6_7b-multinode [stderr] "activation_function": "relu", +opt-6_7b-multinode [stderr] "architectures": [ +opt-6_7b-multinode [stderr] "OPTForCausalLM" +opt-6_7b-multinode [stderr] ], +opt-6_7b-multinode [stderr] "attention_dropout": 0.0, +opt-6_7b-multinode [stderr] "bos_token_id": 2, +opt-6_7b-multinode [stderr] "do_layer_norm_before": true, +opt-6_7b-multinode [stderr] "dropout": 0.1, +opt-6_7b-multinode [stderr] "enable_bias": true, +opt-6_7b-multinode [stderr] "eos_token_id": 2, +opt-6_7b-multinode [stderr] "ffn_dim": 16384, +opt-6_7b-multinode [stderr] "hidden_size": 4096, +opt-6_7b-multinode [stderr] "init_std": 0.02, +opt-6_7b-multinode [stderr] "layer_norm_elementwise_affine": true, +opt-6_7b-multinode [stderr] "layerdrop": 0.0, +opt-6_7b-multinode [stderr] "max_position_embeddings": 2048, +opt-6_7b-multinode [stderr] "model_type": "opt", +opt-6_7b-multinode [stderr] "num_attention_heads": 32, +opt-6_7b-multinode [stderr] "num_hidden_layers": 32, +opt-6_7b-multinode [stderr] "pad_token_id": 1, +opt-6_7b-multinode [stderr] "prefix": "", +opt-6_7b-multinode [stderr] "torch_dtype": "float16", +opt-6_7b-multinode [stderr] "transformers_version": "4.35.0", +opt-6_7b-multinode [stderr] "use_cache": true, +opt-6_7b-multinode [stderr] "vocab_size": 50272, +opt-6_7b-multinode [stderr] "word_embed_proj_dim": 4096 +opt-6_7b-multinode [stderr] } +opt-6_7b-multinode [stderr] +opt-6_7b-multinode [stderr] loading configuration file config.json from cache at /Tmp/slurm.4115007.0/base/cache/hub/models--facebook--opt-6.7b/snapshots/a45aa65bbeb77c1558bc99bedc6779195462dab0/config.json +opt-6_7b-multinode [stderr] Model config OPTConfig { +opt-6_7b-multinode [stderr] "_name_or_path": "facebook/opt-6.7b", +opt-6_7b-multinode [stderr] "_remove_final_layer_norm": false, +opt-6_7b-multinode [stderr] "activation_dropout": 0.0, +opt-6_7b-multinode [stderr] "activation_function": "relu", +opt-6_7b-multinode [stderr] "architectures": [ +opt-6_7b-multinode [stderr] "OPTForCausalLM" +opt-6_7b-multinode [stderr] ], +opt-6_7b-multinode [stderr] "attention_dropout": 0.0, +opt-6_7b-multinode [stderr] "bos_token_id": 2, +opt-6_7b-multinode [stderr] "do_layer_norm_before": true, +opt-6_7b-multinode [stderr] "dropout": 0.1, +opt-6_7b-multinode [stderr] "enable_bias": true, +opt-6_7b-multinode [stderr] "eos_token_id": 2, +opt-6_7b-multinode [stderr] "ffn_dim": 16384, +opt-6_7b-multinode [stderr] "hidden_size": 4096, +opt-6_7b-multinode [stderr] "init_std": 0.02, +opt-6_7b-multinode [stderr] "layer_norm_elementwise_affine": true, +opt-6_7b-multinode [stderr] "layerdrop": 0.0, +opt-6_7b-multinode [stderr] "max_position_embeddings": 2048, +opt-6_7b-multinode [stderr] "model_type": "opt", +opt-6_7b-multinode [stderr] "num_attention_heads": 32, +opt-6_7b-multinode [stderr] "num_hidden_layers": 32, +opt-6_7b-multinode [stderr] "pad_token_id": 1, +opt-6_7b-multinode [stderr] "prefix": "", +opt-6_7b-multinode [stderr] "torch_dtype": "float16", +opt-6_7b-multinode [stderr] "transformers_version": "4.35.0", +opt-6_7b-multinode [stderr] "use_cache": true, +opt-6_7b-multinode [stderr] "vocab_size": 50272, +opt-6_7b-multinode [stderr] "word_embed_proj_dim": 4096 +opt-6_7b-multinode [stderr] } +opt-6_7b-multinode [stderr] +opt-6_7b-multinode [stderr] loading file vocab.json from cache at /Tmp/slurm.4115007.0/base/cache/hub/models--facebook--opt-6.7b/snapshots/a45aa65bbeb77c1558bc99bedc6779195462dab0/vocab.json +opt-6_7b-multinode [stderr] loading file merges.txt from cache at /Tmp/slurm.4115007.0/base/cache/hub/models--facebook--opt-6.7b/snapshots/a45aa65bbeb77c1558bc99bedc6779195462dab0/merges.txt +opt-6_7b-multinode [stderr] loading file tokenizer.json from cache at None +opt-6_7b-multinode [stderr] loading file added_tokens.json from cache at None +opt-6_7b-multinode [stderr] loading file special_tokens_map.json from cache at /Tmp/slurm.4115007.0/base/cache/hub/models--facebook--opt-6.7b/snapshots/a45aa65bbeb77c1558bc99bedc6779195462dab0/special_tokens_map.json +opt-6_7b-multinode [stderr] loading file tokenizer_config.json from cache at /Tmp/slurm.4115007.0/base/cache/hub/models--facebook--opt-6.7b/snapshots/a45aa65bbeb77c1558bc99bedc6779195462dab0/tokenizer_config.json +opt-6_7b-multinode [stderr] loading configuration file config.json from cache at /Tmp/slurm.4115007.0/base/cache/hub/models--facebook--opt-6.7b/snapshots/a45aa65bbeb77c1558bc99bedc6779195462dab0/config.json +opt-6_7b-multinode [stderr] Model config OPTConfig { +opt-6_7b-multinode [stderr] "_name_or_path": "facebook/opt-6.7b", +opt-6_7b-multinode [stderr] "_remove_final_layer_norm": false, +opt-6_7b-multinode [stderr] "activation_dropout": 0.0, +opt-6_7b-multinode [stderr] "activation_function": "relu", +opt-6_7b-multinode [stderr] "architectures": [ +opt-6_7b-multinode [stderr] "OPTForCausalLM" +opt-6_7b-multinode [stderr] ], +opt-6_7b-multinode [stderr] "attention_dropout": 0.0, +opt-6_7b-multinode [stderr] "bos_token_id": 2, +opt-6_7b-multinode [stderr] "do_layer_norm_before": true, +opt-6_7b-multinode [stderr] "dropout": 0.1, +opt-6_7b-multinode [stderr] "enable_bias": true, +opt-6_7b-multinode [stderr] "eos_token_id": 2, +opt-6_7b-multinode [stderr] "ffn_dim": 16384, +opt-6_7b-multinode [stderr] "hidden_size": 4096, +opt-6_7b-multinode [stderr] "init_std": 0.02, +opt-6_7b-multinode [stderr] "layer_norm_elementwise_affine": true, +opt-6_7b-multinode [stderr] "layerdrop": 0.0, +opt-6_7b-multinode [stderr] "max_position_embeddings": 2048, +opt-6_7b-multinode [stderr] "model_type": "opt", +opt-6_7b-multinode [stderr] "num_attention_heads": 32, +opt-6_7b-multinode [stderr] "num_hidden_layers": 32, +opt-6_7b-multinode [stderr] "pad_token_id": 1, +opt-6_7b-multinode [stderr] "prefix": "", +opt-6_7b-multinode [stderr] "torch_dtype": "float16", +opt-6_7b-multinode [stderr] "transformers_version": "4.35.0", +opt-6_7b-multinode [stderr] "use_cache": true, +opt-6_7b-multinode [stderr] "vocab_size": 50272, +opt-6_7b-multinode [stderr] "word_embed_proj_dim": 4096 +opt-6_7b-multinode [stderr] } +opt-6_7b-multinode [stderr] +opt-6_7b-multinode [stderr] loading configuration file config.json from cache at /Tmp/slurm.4115007.0/base/cache/hub/models--facebook--opt-6.7b/snapshots/a45aa65bbeb77c1558bc99bedc6779195462dab0/config.json +opt-6_7b-multinode [stderr] Model config OPTConfig { +opt-6_7b-multinode [stderr] "_name_or_path": "facebook/opt-6.7b", +opt-6_7b-multinode [stderr] "_remove_final_layer_norm": false, +opt-6_7b-multinode [stderr] "activation_dropout": 0.0, +opt-6_7b-multinode [stderr] "activation_function": "relu", +opt-6_7b-multinode [stderr] "architectures": [ +opt-6_7b-multinode [stderr] "OPTForCausalLM" +opt-6_7b-multinode [stderr] ], +opt-6_7b-multinode [stderr] "attention_dropout": 0.0, +opt-6_7b-multinode [stderr] "bos_token_id": 2, +opt-6_7b-multinode [stderr] "do_layer_norm_before": true, +opt-6_7b-multinode [stderr] "dropout": 0.1, +opt-6_7b-multinode [stderr] "enable_bias": true, +opt-6_7b-multinode [stderr] "eos_token_id": 2, +opt-6_7b-multinode [stderr] "ffn_dim": 16384, +opt-6_7b-multinode [stderr] "hidden_size": 4096, +opt-6_7b-multinode [stderr] "init_std": 0.02, +opt-6_7b-multinode [stderr] "layer_norm_elementwise_affine": true, +opt-6_7b-multinode [stderr] "layerdrop": 0.0, +opt-6_7b-multinode [stderr] "max_position_embeddings": 2048, +opt-6_7b-multinode [stderr] "model_type": "opt", +opt-6_7b-multinode [stderr] "num_attention_heads": 32, +opt-6_7b-multinode [stderr] "num_hidden_layers": 32, +opt-6_7b-multinode [stderr] "pad_token_id": 1, +opt-6_7b-multinode [stderr] "prefix": "", +opt-6_7b-multinode [stderr] "torch_dtype": "float16", +opt-6_7b-multinode [stderr] "transformers_version": "4.35.0", +opt-6_7b-multinode [stderr] "use_cache": true, +opt-6_7b-multinode [stderr] "vocab_size": 50272, +opt-6_7b-multinode [stderr] "word_embed_proj_dim": 4096 +opt-6_7b-multinode [stderr] } +opt-6_7b-multinode [stderr] +opt-6_7b-multinode [stderr] libibverbs: Warning: couldn't load driver 'libipathverbs-rdmav34.so': libipathverbs-rdmav34.so: cannot open shared object file: No such file or directory +opt-6_7b-multinode [stderr] libibverbs: Warning: couldn't load driver 'libcxgb4-rdmav34.so': libcxgb4-rdmav34.so: cannot open shared object file: No such file or directory +opt-6_7b-multinode [stderr] libibverbs: Warning: couldn't load driver 'libhfi1verbs-rdmav34.so': libhfi1verbs-rdmav34.so: cannot open shared object file: No such file or directory +opt-6_7b-multinode [stderr] libibverbs: Warning: couldn't load driver 'libvmw_pvrdma-rdmav34.so': libvmw_pvrdma-rdmav34.so: cannot open shared object file: No such file or directory +opt-6_7b-multinode [stderr] libibverbs: Warning: couldn't load driver 'libmlx4-rdmav34.so': libmlx4-rdmav34.so: cannot open shared object file: No such file or directory +opt-6_7b-multinode [stderr] libibverbs: Warning: couldn't load driver 'libmthca-rdmav34.so': libmthca-rdmav34.so: cannot open shared object file: No such file or directory +opt-6_7b-multinode [stderr] libibverbs: Warning: couldn't load driver 'libocrdma-rdmav34.so': libocrdma-rdmav34.so: cannot open shared object file: No such file or directory +opt-6_7b-multinode [stderr] libibverbs: Warning: couldn't load driver 'libqedr-rdmav34.so': libqedr-rdmav34.so: cannot open shared object file: No such file or directory +opt-6_7b-multinode [stderr] libibverbs: Warning: couldn't load driver 'librxe-rdmav34.so': librxe-rdmav34.so: cannot open shared object file: No such file or directory +opt-6_7b-multinode [stderr] libibverbs: Warning: couldn't load driver 'libhns-rdmav34.so': libhns-rdmav34.so: cannot open shared object file: No such file or directory +opt-6_7b-multinode [stderr] libibverbs: Warning: couldn't load driver 'libbnxt_re-rdmav34.so': libbnxt_re-rdmav34.so: cannot open shared object file: No such file or directory +opt-6_7b-multinode [stderr] libibverbs: Warning: couldn't load driver 'libi40iw-rdmav34.so': libi40iw-rdmav34.so: cannot open shared object file: No such file or directory +opt-6_7b-multinode [stdout] [02/06/24 12:03:37] WARNING [0/1] __main__ - The tokenizer picked logging.py:60 +opt-6_7b-multinode [stdout] seems to have a very large +opt-6_7b-multinode [stdout] `model_max_length` +opt-6_7b-multinode [stdout] (1000000000000000019884624838656). +opt-6_7b-multinode [stdout] Picking 1024 instead. You can change +opt-6_7b-multinode [stdout] that default value by passing +opt-6_7b-multinode [stdout] --block_size xxx. +opt-6_7b-multinode [end] accelerate launch --mixed_precision=fp16 --num_machines=1 --dynamo_backend=no --num_processes=1 --num_cpu_threads_per_process=8 /Tmp/slurm.4115007.0/milabench/benchmarks/accelerate_opt/main.py --max_train_steps 100 --dataset_name wikitext --dataset_config_name wikitext-103-v1 --dataset_rev b08601e --validation_split_percentage 5 --per_gpu_batch_size 1 --cpus_per_gpu 8 --model_name facebook/opt-6.7b --prepare_only --cache /Tmp/slurm.4115007.0/base/cache [at 2024-02-06 12:03:38.845481] +stargan [config.system.arch] cuda +stargan [config.system.sshkey] None +stargan [config.system.nodes] [{'aliaslist': [], + 'hostname': 'localhost', + 'ip': '127.0.0.1', + 'ipaddrlist': ['fe80::ce48:3aff:fe1c:9c24%eno8303', + 'fe80::1270:fd03:ee:7a3a%ib1', + '10.20.9.34', + '00:00:00:00:00:00', + '00:00:10:29:fe:80:00:00:00:00:00:00:10:70:fd:03:00:ee:7b:02', + 'cc:48:3a:1c:9c:24', + '::1', + '10.20.137.34', + '00:00:10:29:fe:80:00:00:00:00:00:00:10:70:fd:03:00:ee:7a:3a', + '127.0.0.1', + '172.16.9.34', + 'fe80::1270:fd03:ee:7b02%ib0'], + 'local': True, + 'main': True, + 'name': 'local', + 'port': 8123, + 'user': 'root'}] +stargan [config.system.gpu.capacity] 81920 MiB +stargan [config.system.self.name] local +stargan [config.system.self.ip] 127.0.0.1 +stargan [config.system.self.port] 8123 +stargan [config.system.self.user] root +stargan [config.system.self.main] True +stargan [config.system.self.hostname] localhost +stargan [config.system.self.aliaslist] [] +stargan [config.system.self.ipaddrlist] ['fe80::ce48:3aff:fe1c:9c24%eno8303', + 'fe80::1270:fd03:ee:7a3a%ib1', + '10.20.9.34', + '00:00:00:00:00:00', + '00:00:10:29:fe:80:00:00:00:00:00:00:10:70:fd:03:00:ee:7b:02', + 'cc:48:3a:1c:9c:24', + '::1', + '10.20.137.34', + '00:00:10:29:fe:80:00:00:00:00:00:00:10:70:fd:03:00:ee:7a:3a', + '127.0.0.1', + '172.16.9.34', + 'fe80::1270:fd03:ee:7b02%ib0'] +stargan [config.system.self.local] True +stargan [config.dirs.base] /Tmp/slurm.4115007.0/base +stargan [config.dirs.venv] /Tmp/slurm.4115007.0/base/venv/torch +stargan [config.dirs.data] /Tmp/slurm.4115007.0/base/data +stargan [config.dirs.runs] /Tmp/slurm.4115007.0/base/runs +stargan [config.dirs.extra] /Tmp/slurm.4115007.0/base/extra/stargan +stargan [config.dirs.cache] /Tmp/slurm.4115007.0/base/cache +stargan [config.group] stargan +stargan [config.install_group] torch +stargan [config.install_variant] cuda +stargan [config.run_name] prepare.2024-02-06_11:57:01.236402 +stargan [config.enabled] True +stargan [config.capabilities.nodes] 1 +stargan [config.max_duration] 600 +stargan [config.voir.options.stop] 60 +stargan [config.voir.options.interval] 1s +stargan [config.validation.usage.gpu_load_threshold] 0.5 +stargan [config.validation.usage.gpu_mem_threshold] 0.5 +stargan [config.config_base] /Tmp/slurm.4115007.0/milabench/config +stargan [config.config_file] /Tmp/slurm.4115007.0/milabench/config/standard.yaml +stargan [config.tags] ['gan', 'resnet', 'vision'] +stargan [config.definition] /Tmp/slurm.4115007.0/milabench/benchmarks/stargan +stargan [config.plan.method] per_gpu +stargan [config.argv.--image_size] 512 +stargan [config.argv.--c_dim] 5 +stargan [config.argv.--batch_size] 16 +stargan [config.weight] 1.0 +stargan [config.name] stargan +stargan [config.tag] ['stargan'] +stargan [meta] {'accelerators': {'arch': 'cuda', + 'gpus': {'GPU-80d2dc6e-14f7-798e-5ce0-647e33324ef0': {'device': '0', + 'memory': {'total': 81920.0, 'used': 693.5625}, + 'power': 81.714, + 'product': 'NVIDIA A100-SXM4-80GB', + 'selection_variable': 'CUDA_VISIBLE_DEVICES', + 'temperature': 35, + 'utilization': {'compute': 0, + 'memory': 0.008466339111328125}}, + 'GPU-8b2c653d-fcd1-4ab5-7b87-4ac3d77d309a': {'device': '1', + 'memory': {'total': 81920.0, 'used': 693.5625}, + 'power': 58.619, + 'product': 'NVIDIA A100-SXM4-80GB', + 'selection_variable': 'CUDA_VISIBLE_DEVICES', + 'temperature': 25, + 'utilization': {'compute': 0, + 'memory': 0.008466339111328125}}}}, + 'cpu': {'brand': 'AMD EPYC 7543 32-Core Processor', 'count': 64}, + 'date': 1707257021.258754, + 'milabench': {'commit': '4c8961898aa0dc59a9227c32d562c7a0be37ea03', + 'date': '2024-02-06 11:53:56 -0500', + 'tag': '4c89618'}, + 'os': {'machine': 'x86_64', + 'nodename': 'cn-g024.server.mila.quebec', + 'release': '4.15.0-213-generic', + 'sysname': 'Linux', + 'version': '#224-Ubuntu SMP Mon Jun 19 13:30:12 UTC 2023'}, + 'pytorch': {'build_settings': {'BLAS_INFO': 'mkl', + 'BUILD_TYPE': 'Release', + 'CUDA_VERSION': '11.8', + 'CUDNN_VERSION': '8.7.0', + 'CXX_COMPILER': '/opt/rh/devtoolset-9/root/usr/bin/c++', + 'CXX_FLAGS': '-D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -fvisibility-inlines-hidden ' + '-DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER ' + '-DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK ' + '-DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra ' + '-Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation ' + '-Wnarrowing -Wno-missing-field-initializers -Wno-type-limits ' + '-Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter ' + '-Wno-unused-function -Wno-unused-result -Wno-strict-overflow ' + '-Wno-strict-aliasing -Wno-stringop-overflow -Wno-psabi ' + '-Wno-error=pedantic -Wno-error=old-style-cast ' + '-Wno-invalid-partial-specialization -Wno-unused-private-field ' + '-Wno-aligned-allocation-unavailable -Wno-missing-braces ' + '-fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable ' + '-Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math ' + '-Werror=format -Werror=cast-function-type -Wno-stringop-overflow', + 'LAPACK_INFO': 'mkl', + 'PERF_WITH_AVX': '1', + 'PERF_WITH_AVX2': '1', + 'PERF_WITH_AVX512': '1', + 'TORCH_DISABLE_GPU_ASSERTS': 'ON', + 'TORCH_VERSION': '2.1.0', + 'USE_CUDA': 'ON', + 'USE_CUDNN': 'ON', + 'USE_EXCEPTION_PTR': '1', + 'USE_GFLAGS': 'OFF', + 'USE_GLOG': 'OFF', + 'USE_MKL': 'ON', + 'USE_MKLDNN': 'ON', + 'USE_MPI': 'OFF', + 'USE_NCCL': '1', + 'USE_NNPACK': 'ON', + 'USE_OPENMP': 'ON', + 'USE_ROCM': 'OFF'}, + 'compiler': 'GCC 9.3', + 'cpp': 'C++ Version: 201703', + 'cpu': 'CPU capability usage: AVX2', + 'intel': 'Intel(R) oneAPI Math Kernel Library Version 2022.2-Product Build 20220804 for Intel(R) 64 ' + 'architecture applications', + 'lapack': 'LAPACK is enabled (usually provided by MKL)', + 'mkl': 'OpenMP 201511 (a.k.a. OpenMP 4.5)', + 'nnpack': 'NNPACK is enabled', + 'openmp': 'OpenMP 201511 (a.k.a. OpenMP 4.5)', + 'torch': '2.1.0+cu118'}} +stargan [start] true [at 2024-02-06 12:03:41.278657] +stargan [end] true [at 2024-02-06 12:03:41.279431] +super-slomo [config.system.arch] cuda +super-slomo [config.system.sshkey] None +super-slomo [config.system.nodes] [{'aliaslist': [], + 'hostname': 'localhost', + 'ip': '127.0.0.1', + 'ipaddrlist': ['fe80::ce48:3aff:fe1c:9c24%eno8303', + 'fe80::1270:fd03:ee:7a3a%ib1', + '10.20.9.34', + '00:00:00:00:00:00', + '00:00:10:29:fe:80:00:00:00:00:00:00:10:70:fd:03:00:ee:7b:02', + 'cc:48:3a:1c:9c:24', + '::1', + '10.20.137.34', + '00:00:10:29:fe:80:00:00:00:00:00:00:10:70:fd:03:00:ee:7a:3a', + '127.0.0.1', + '172.16.9.34', + 'fe80::1270:fd03:ee:7b02%ib0'], + 'local': True, + 'main': True, + 'name': 'local', + 'port': 8123, + 'user': 'root'}] +super-slomo [config.system.gpu.capacity] 81920 MiB +super-slomo [config.system.self.name] local +super-slomo [config.system.self.ip] 127.0.0.1 +super-slomo [config.system.self.port] 8123 +super-slomo [config.system.self.user] root +super-slomo [config.system.self.main] True +super-slomo [config.system.self.hostname] localhost +super-slomo [config.system.self.aliaslist] [] +super-slomo [config.system.self.ipaddrlist] ['fe80::ce48:3aff:fe1c:9c24%eno8303', + 'fe80::1270:fd03:ee:7a3a%ib1', + '10.20.9.34', + '00:00:00:00:00:00', + '00:00:10:29:fe:80:00:00:00:00:00:00:10:70:fd:03:00:ee:7b:02', + 'cc:48:3a:1c:9c:24', + '::1', + '10.20.137.34', + '00:00:10:29:fe:80:00:00:00:00:00:00:10:70:fd:03:00:ee:7a:3a', + '127.0.0.1', + '172.16.9.34', + 'fe80::1270:fd03:ee:7b02%ib0'] +super-slomo [config.system.self.local] True +super-slomo [config.dirs.base] /Tmp/slurm.4115007.0/base +super-slomo [config.dirs.venv] /Tmp/slurm.4115007.0/base/venv/torch +super-slomo [config.dirs.data] /Tmp/slurm.4115007.0/base/data +super-slomo [config.dirs.runs] /Tmp/slurm.4115007.0/base/runs +super-slomo [config.dirs.extra] /Tmp/slurm.4115007.0/base/extra/super-slomo +super-slomo [config.dirs.cache] /Tmp/slurm.4115007.0/base/cache +super-slomo [config.group] super-slomo +super-slomo [config.install_group] torch +super-slomo [config.install_variant] cuda +super-slomo [config.run_name] prepare.2024-02-06_11:57:01.236402 +super-slomo [config.enabled] True +super-slomo [config.capabilities.nodes] 1 +super-slomo [config.max_duration] 600 +super-slomo [config.voir.options.stop] 60 +super-slomo [config.voir.options.interval] 1s +super-slomo [config.validation.usage.gpu_load_threshold] 0.5 +super-slomo [config.validation.usage.gpu_mem_threshold] 0.5 +super-slomo [config.config_base] /Tmp/slurm.4115007.0/milabench/config +super-slomo [config.config_file] /Tmp/slurm.4115007.0/milabench/config/standard.yaml +super-slomo [config.tags] ['convnet', 'unet', 'video-interpolation', 'vision'] +super-slomo [config.definition] /Tmp/slurm.4115007.0/milabench/benchmarks/super-slomo +super-slomo [config.plan.method] per_gpu +super-slomo [config.argv.--train_batch_size] 32 +super-slomo [config.weight] 1.0 +super-slomo [config.name] super-slomo +super-slomo [config.tag] ['super-slomo'] +super-slomo [meta] {'accelerators': {'arch': 'cuda', + 'gpus': {'GPU-80d2dc6e-14f7-798e-5ce0-647e33324ef0': {'device': '0', + 'memory': {'total': 81920.0, 'used': 693.5625}, + 'power': 64.782, + 'product': 'NVIDIA A100-SXM4-80GB', + 'selection_variable': 'CUDA_VISIBLE_DEVICES', + 'temperature': 34, + 'utilization': {'compute': 0, + 'memory': 0.008466339111328125}}, + 'GPU-8b2c653d-fcd1-4ab5-7b87-4ac3d77d309a': {'device': '1', + 'memory': {'total': 81920.0, 'used': 693.5625}, + 'power': 58.687, + 'product': 'NVIDIA A100-SXM4-80GB', + 'selection_variable': 'CUDA_VISIBLE_DEVICES', + 'temperature': 25, + 'utilization': {'compute': 0, + 'memory': 0.008466339111328125}}}}, + 'cpu': {'brand': 'AMD EPYC 7543 32-Core Processor', 'count': 64}, + 'date': 1707257023.6471, + 'milabench': {'commit': '4c8961898aa0dc59a9227c32d562c7a0be37ea03', + 'date': '2024-02-06 11:53:56 -0500', + 'tag': '4c89618'}, + 'os': {'machine': 'x86_64', + 'nodename': 'cn-g024.server.mila.quebec', + 'release': '4.15.0-213-generic', + 'sysname': 'Linux', + 'version': '#224-Ubuntu SMP Mon Jun 19 13:30:12 UTC 2023'}, + 'pytorch': {'build_settings': {'BLAS_INFO': 'mkl', + 'BUILD_TYPE': 'Release', + 'CUDA_VERSION': '11.8', + 'CUDNN_VERSION': '8.7.0', + 'CXX_COMPILER': '/opt/rh/devtoolset-9/root/usr/bin/c++', + 'CXX_FLAGS': '-D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -fvisibility-inlines-hidden ' + '-DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER ' + '-DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK ' + '-DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra ' + '-Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation ' + '-Wnarrowing -Wno-missing-field-initializers -Wno-type-limits ' + '-Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter ' + '-Wno-unused-function -Wno-unused-result -Wno-strict-overflow ' + '-Wno-strict-aliasing -Wno-stringop-overflow -Wno-psabi ' + '-Wno-error=pedantic -Wno-error=old-style-cast ' + '-Wno-invalid-partial-specialization -Wno-unused-private-field ' + '-Wno-aligned-allocation-unavailable -Wno-missing-braces ' + '-fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable ' + '-Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math ' + '-Werror=format -Werror=cast-function-type -Wno-stringop-overflow', + 'LAPACK_INFO': 'mkl', + 'PERF_WITH_AVX': '1', + 'PERF_WITH_AVX2': '1', + 'PERF_WITH_AVX512': '1', + 'TORCH_DISABLE_GPU_ASSERTS': 'ON', + 'TORCH_VERSION': '2.1.0', + 'USE_CUDA': 'ON', + 'USE_CUDNN': 'ON', + 'USE_EXCEPTION_PTR': '1', + 'USE_GFLAGS': 'OFF', + 'USE_GLOG': 'OFF', + 'USE_MKL': 'ON', + 'USE_MKLDNN': 'ON', + 'USE_MPI': 'OFF', + 'USE_NCCL': '1', + 'USE_NNPACK': 'ON', + 'USE_OPENMP': 'ON', + 'USE_ROCM': 'OFF'}, + 'compiler': 'GCC 9.3', + 'cpp': 'C++ Version: 201703', + 'cpu': 'CPU capability usage: AVX2', + 'intel': 'Intel(R) oneAPI Math Kernel Library Version 2022.2-Product Build 20220804 for Intel(R) 64 ' + 'architecture applications', + 'lapack': 'LAPACK is enabled (usually provided by MKL)', + 'mkl': 'OpenMP 201511 (a.k.a. OpenMP 4.5)', + 'nnpack': 'NNPACK is enabled', + 'openmp': 'OpenMP 201511 (a.k.a. OpenMP 4.5)', + 'torch': '2.1.0+cu118'}} +super-slomo [start] /Tmp/slurm.4115007.0/milabench/benchmarks/super-slomo/prepare.py --train_batch_size 32 [at 2024-02-06 12:03:43.665775] +super-slomo [stderr] /Tmp/slurm.4115007.0/base/venv/torch/lib/python3.9/site-packages/torchvision/models/_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead. +super-slomo [stderr] warnings.warn( +super-slomo [stderr] /Tmp/slurm.4115007.0/base/venv/torch/lib/python3.9/site-packages/torchvision/models/_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing `weights=VGG16_Weights.IMAGENET1K_V1`. You can also use `weights=VGG16_Weights.DEFAULT` to get the most up-to-date weights. +super-slomo [stderr] warnings.warn(msg) +super-slomo [stderr] Downloading: "https://download.pytorch.org/models/vgg16-397923af.pth" to /Tmp/slurm.4115007.0/base/cache/hub/checkpoints/vgg16-397923af.pth +super-slomo [stderr] 0%| | 0.00/528M [00:00222<202272617465223:203230342>36323134393337353231383337372<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393136302>3038383434357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32373033372>343337352<2038313932302>305=2<20226<6?6164223:20302<202274656=7065726174757265223:2032372<2022706?776572223:2038372>3431337=7=2<202274223:20313730373233393135302>34333135317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32373035392>343337352<2038313932302>305=2<20226<6?6164223:20302<202274656=7065726174757265223:2032372<2022706?776572223:2038362>3335367=7=2<202274223:20313730373233393135302>393434313837397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32373039352>343337352<2038313932302>305=2<20226<6?6164223:20302>37372<202274656=7065726174757265223:2033312<2022706?776572223:203236352>3932397=7=2<202274223:20313730373233393135312>3435373135347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32373137352>343337352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2033322<2022706?776572223:203131372>3239337=7=2<202274223:20313730373233393135312>393639363232347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32373332312>343337352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2033342<2022706?776572223:203236362>3436327=7=2<202274223:20313730373233393135322>343832383535387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32373338312>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2033342<2022706?776572223:203236382>3031397=7=2<202274223:20313730373233393135322>393935333437357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32373434312>343337352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2033352<2022706?776572223:203236342>3538337=7=2<202274223:20313730373233393135332>353039333036347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32373438312>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2033352<2022706?776572223:203237302>3733387=7=2<202274223:20313730373233393135342>3032313638367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32373532312>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2033362<2022706?776572223:203236352>3932397=7=2<202274223:20313730373233393135342>3533333733347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32373536312>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2033362<2022706?776572223:203236362>3938387=7=2<202274223:20313730373233393135352>303438363331327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32373632312>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2033362<2022706?776572223:203235382>3432377=7=2<202274223:20313730373233393135352>353630383632337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32373732312>343337352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2033372<2022706?776572223:203236392>36387=7=2<202274223:20313730373233393135362>303736363733337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32373732312>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2033372<2022706?776572223:203236392>3932357=7=2<202274223:20313730373233393135362>353838373533327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32373834312>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2033372<2022706?776572223:203237302>3231327=7=2<202274223:20313730373233393135372>313137313936387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32373834312>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2033372<2022706?776572223:203236382>3836377=7=2<202274223:20313730373233393135372>363239373134337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32373834312>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2033382<2022706?776572223:203237302>3733387=7=2<202274223:20313730373233393135382>313432363938337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383036312>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2033382<2022706?776572223:203236392>3037377=7=2<202274223:20313730373233393135382>363536393537347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383036312>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2033382<2022706?776572223:203236392>3135337=7=2<202274223:20313730373233393135392>313639333333377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383036312>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2033382<2022706?776572223:203236372>3830387=7=2<202274223:20313730373233393135392>373133323138327=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =9.656087875366211, total / elapsed =210.8514365526923 in_token_count =9 out_token_count =2027 +[7;227461736;223:2022747261696>222<202272617465223:203231302>383531343336353532363932332<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393136302>313338373131377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32373033372>343337352<2038313932302>305=2<20226<6?6164223:20302<202274656=7065726174757265223:2033362<2022706?776572223:2039332>3034357=7=2<202274223:20313730373233393135302>3536333339337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32373035392>343337352<2038313932302>305=2<20226<6?6164223:20302<202274656=7065726174757265223:2033362<2022706?776572223:2039332>3034357=7=2<202274223:20313730373233393135312>303739373538327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32373039392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034312<2022706?776572223:203236362>3836337=7=2<202274223:20313730373233393135312>353932313037337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32373138312>343337352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034322<2022706?776572223:203235342>3231317=7=2<202274223:20313730373233393135322>313037383430357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32373334312>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034332<2022706?776572223:203236392>3230397=7=2<202274223:20313730373233393135322>363230303439357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32373430312>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034332<2022706?776572223:203230362>3338367=7=2<202274223:20313730373233393135332>313630363236347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32373434312>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034342<2022706?776572223:203237312>3636377=7=2<202274223:20313730373233393135332>3637333438327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32373438312>343337352<2038313932302>305=2<20226<6?6164223:20302>39362<202274656=7065726174757265223:2034352<2022706?776572223:203237332>3235367=7=2<202274223:20313730373233393135342>313837313537397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32373536312>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203237312>3636377=7=2<202274223:20313730373233393135342>373035393635357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32373632312>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203237352>3432377=7=2<202274223:20313730373233393135352>323138363731387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32373632312>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203237372>3833377=7=2<202274223:20313730373233393135352>373432363833367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32373732312>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203237362>3732387=7=2<202274223:20313730373233393135362>323538303237367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32373732312>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034372<2022706?776572223:203237362>3732387=7=2<202274223:20313730373233393135362>373732373531367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32373834312>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034372<2022706?776572223:203237312>3930377=7=2<202274223:20313730373233393135372>323835333539317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32373834312>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034372<2022706?776572223:203236382>3634387=7=2<202274223:20313730373233393135372>373937343139337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32373934312>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034372<2022706?776572223:203236382>3433357=7=2<202274223:20313730373233393135382>333433323334357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383036312>343337352<2038313932302>305=2<20226<6?6164223:20302>39362<202274656=7065726174757265223:2034372<2022706?776572223:203237372>3031357=7=2<202274223:20313730373233393135382>3835353435347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383036312>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034382<2022706?776572223:203237352>3432377=7=2<202274223:20313730373233393135392>3336393835377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383036312>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034382<2022706?776572223:203237332>3235367=7=2<202274223:20313730373233393135392>383832323832377=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =5.084743499755859, total / elapsed =386.8435054972673 in_token_count =185 out_token_count =1782 +[7;227461736;223:2022747261696>222<202272617465223:203338362>383433353035343937323637332<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393136352>313734313434357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034342<2022706?776572223:203339362>3033357=7=2<202274223:20313730373233393136302>323330343430397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2033392<2022706?776572223:203236352>3131367=7=2<202274223:20313730373233393136302>373433343430327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2033392<2022706?776572223:203235392>3438367=7=2<202274223:20313730373233393136312>323538373330347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2033392<2022706?776572223:203236302>3534357=7=2<202274223:20313730373233393136312>3737353031387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2033392<2022706?776572223:203236352>3039327=7=2<202274223:20313730373233393136322>333139353338367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2033392<2022706?776572223:203236372>3532317=7=2<202274223:20313730373233393136322>3833313730337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2033392<2022706?776572223:203236362>3938387=7=2<202274223:20313730373233393136332>3334353138357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2033392<2022706?776572223:203236322>3431377=7=2<202274223:20313730373233393136332>383537343435357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2033392<2022706?776572223:203236372>3532317=7=2<202274223:20313730373233393136342>333731363837347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034302<2022706?776572223:203236352>3131367=7=2<202274223:20313730373233393136342>393231393731367=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =5.077516078948975, total / elapsed =396.6506395420199 in_token_count =185 out_token_count =1829 +[7;227461736;223:2022747261696>222<202272617465223:203339362>363530363339353432303139392<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393136352>323136323837397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2035312<2022706?776572223:203238362>3431387=7=2<202274223:20313730373233393136302>343033363037387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034392<2022706?776572223:203237382>3033397=7=2<202274223:20313730373233393136302>393432303936377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034392<2022706?776572223:203237322>3139347=7=2<202274223:20313730373233393136312>343534363136357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034392<2022706?776572223:203237352>3133397=7=2<202274223:20313730373233393136312>393638393438317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034392<2022706?776572223:203237342>3834347=7=2<202274223:20313730373233393136322>34383134317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034392<2022706?776572223:203237342>3834347=7=2<202274223:20313730373233393136322>393938343131347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034392<2022706?776572223:203237372>3031357=7=2<202274223:20313730373233393136332>353433383934387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034392<2022706?776572223:203237382>3336347=7=2<202274223:20313730373233393136342>303535383634387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035302<2022706?776572223:203238322>3839387=7=2<202274223:20313730373233393136342>353638323630347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035302<2022706?776572223:203238312>3236387=7=2<202274223:20313730373233393136352>3038313338387=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =6.479267597198486, total / elapsed =308.98554041287434 in_token_count =121 out_token_count =1881 +[7;227461736;223:2022747261696>222<202272617465223:203330382>39383535343034313238373433342<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393137312>363534343434327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39382<202274656=7065726174757265223:2034312<2022706?776572223:203236382>3031397=7=2<202274223:20313730373233393136352>343333393631367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034302<2022706?776572223:203237302>3432317=7=2<202274223:20313730373233393136352>393436383034387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034302<2022706?776572223:203236322>3431377=7=2<202274223:20313730373233393136362>3435383834337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034302<2022706?776572223:203236352>3631377=7=2<202274223:20313730373233393136362>393738383038327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034302<2022706?776572223:203236392>36387=7=2<202274223:20313730373233393136372>353036333634337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034302<2022706?776572223:203236382>3034377=7=2<202274223:20313730373233393136382>303230303735337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034312<2022706?776572223:203236392>3932357=7=2<202274223:20313730373233393136382>353332383532367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034312<2022706?776572223:203236352>3430337=7=2<202274223:20313730373233393136392>303436383331317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034312<2022706?776572223:203237302>3432317=7=2<202274223:20313730373233393136392>353630333832317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034312<2022706?776572223:203236382>35387=7=2<202274223:20313730373233393137302>313032343631337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034312<2022706?776572223:203236372>3230377=7=2<202274223:20313730373233393137302>363235323034387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034312<2022706?776572223:203236322>3939387=7=2<202274223:20313730373233393137312>313339313131387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034312<2022706?776572223:203237302>3231327=7=2<202274223:20313730373233393137312>3635323034327=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =6.465346574783325, total / elapsed =312.8989260823651 in_token_count =121 out_token_count =1902 +[7;227461736;223:2022747261696>222<202272617465223:203331322>383938393236303832333635312<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393137312>363831373232327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035302<2022706?776572223:203237392>3432367=7=2<202274223:20313730373233393136352>353933383839327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035302<2022706?776572223:203238332>3437337=7=2<202274223:20313730373233393136362>313331323831367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035302<2022706?776572223:203238312>3330397=7=2<202274223:20313730373233393136362>363438383431347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035302<2022706?776572223:203238322>33377=7=2<202274223:20313730373233393136372>313632373538387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035302<2022706?776572223:203237382>3037377=7=2<202274223:20313730373233393136372>363734383430327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035312<2022706?776572223:203237382>3336347=7=2<202274223:20313730373233393136382>313839333539327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035312<2022706?776572223:203237372>3833377=7=2<202274223:20313730373233393136382>373334323539347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035312<2022706?776572223:203237372>3833377=7=2<202274223:20313730373233393136392>323437353539337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035312<2022706?776572223:203238332>3637357=7=2<202274223:20313730373233393136392>373631303237367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035312<2022706?776572223:203237392>39367=7=2<202274223:20313730373233393137302>323737313433327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035312<2022706?776572223:203237342>3630357=7=2<202274223:20313730373233393137302>373931393231367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035312<2022706?776572223:203238342>3738317=7=2<202274223:20313730373233393137312>3333343933377=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =6.343978404998779, total / elapsed =324.55974288588334 in_token_count =127 out_token_count =1932 +[7;227461736;223:2022747261696>222<202272617465223:203332342>35353937343238383538383333342<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393137372>393939353230357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034322<2022706?776572223:203236342>3538337=7=2<202274223:20313730373233393137322>313635333739357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034312<2022706?776572223:203236382>35387=7=2<202274223:20313730373233393137322>373036333839377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034312<2022706?776572223:203236392>3135337=7=2<202274223:20313730373233393137332>323238383236357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034312<2022706?776572223:203236372>3532317=7=2<202274223:20313730373233393137332>373431343138317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034322<2022706?776572223:203236392>3630397=7=2<202274223:20313730373233393137342>323535333631367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034322<2022706?776572223:203236312>3839317=7=2<202274223:20313730373233393137342>373637343539327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034322<2022706?776572223:203236352>3131367=7=2<202274223:20313730373233393137352>333036383536327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034322<2022706?776572223:203236352>3430337=7=2<202274223:20313730373233393137352>383230393832327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034322<2022706?776572223:203236322>3932397=7=2<202274223:20313730373233393137362>3333333232337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034322<2022706?776572223:203235392>3438367=7=2<202274223:20313730373233393137362>383435363532337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034322<2022706?776572223:203237312>3535387=7=2<202274223:20313730373233393137372>333538343332337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034322<2022706?776572223:203236392>3336347=7=2<202274223:20313730373233393137372>393034353835317=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =6.330975770950317, total / elapsed =323.48883870275546 in_token_count =127 out_token_count =1921 +[7;227461736;223:2022747261696>222<202272617465223:203332332>34383838333837303237353534362<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393137382>3031323735387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39362<202274656=7065726174757265223:2035342<2022706?776572223:203335312>3036327=7=2<202274223:20313730373233393137312>38343639357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035322<2022706?776572223:203238332>3134327=7=2<202274223:20313730373233393137322>3336313337357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035322<2022706?776572223:203238332>3731397=7=2<202274223:20313730373233393137322>383734313939397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035322<2022706?776572223:203238302>3638367=7=2<202274223:20313730373233393137332>333837303235387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035322<2022706?776572223:203238352>3032337=7=2<202274223:20313730373233393137332>3934323034357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035322<2022706?776572223:203238352>3036397=7=2<202274223:20313730373233393137342>343536393532367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035322<2022706?776572223:203238352>3036397=7=2<202274223:20313730373233393137342>393639313439367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035322<2022706?776572223:203237392>39327=7=2<202274223:20313730373233393137352>343831353738387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035322<2022706?776572223:203238302>31367=7=2<202274223:20313730373233393137352>393934383230387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035322<2022706?776572223:203237382>3630347=7=2<202274223:20313730373233393137362>353334303133357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035322<2022706?776572223:203237372>3833377=7=2<202274223:20313730373233393137372>3034363237367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035322<2022706?776572223:203238362>3635377=7=2<202274223:20313730373233393137372>353638363932377=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =8.949285745620728, total / elapsed =214.76574272315727 in_token_count =6 out_token_count =1916 +[7;227461736;223:2022747261696>222<202272617465223:203231342>37363537343237323331353732372<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393138362>393633303532357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2035332<2022706?776572223:203238342>3234377=7=2<202274223:20313730373233393137382>3038333137357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035322<2022706?776572223:203237392>3432367=7=2<202274223:20313730373233393137382>3630303937347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035322<2022706?776572223:203238302>3737357=7=2<202274223:20313730373233393137392>3133323138397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035332<2022706?776572223:203238372>3233397=7=2<202274223:20313730373233393137392>363437383236347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035332<2022706?776572223:203238342>3434387=7=2<202274223:20313730373233393138302>313539393737377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035332<2022706?776572223:203238372>36377=7=2<202274223:20313730373233393138302>363735363434367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035332<2022706?776572223:203237392>3432367=7=2<202274223:20313730373233393138312>313837363837327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035332<2022706?776572223:203238362>31337=7=2<202274223:20313730373233393138312>373237343630397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035332<2022706?776572223:203238342>3533347=7=2<202274223:20313730373233393138322>323339363836337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035332<2022706?776572223:203238352>3335367=7=2<202274223:20313730373233393138322>373534343034387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035332<2022706?776572223:203238362>3635377=7=2<202274223:20313730373233393138332>323639383331347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035332<2022706?776572223:203238362>3934357=7=2<202274223:20313730373233393138332>373832333637327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035332<2022706?776572223:203238362>3934357=7=2<202274223:20313730373233393138342>3330383632387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035332<2022706?776572223:203238362>36317=7=2<202274223:20313730373233393138342>383232373339347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035332<2022706?776572223:203238372>34337=7=2<202274223:20313730373233393138352>333334373734337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035342<2022706?776572223:203238342>3738317=7=2<202274223:20313730373233393138352>383439313731367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035342<2022706?776572223:203238362>3635377=7=2<202274223:20313730373233393138362>333632303134357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035342<2022706?776572223:203238312>3031357=7=2<202274223:20313730373233393138362>393033343734337=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =8.969506740570068, total / elapsed =222.6432353261243 in_token_count =6 out_token_count =1991 +[7;227461736;223:2022747261696>222<202272617465223:203232322>363433323335333236313234332<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393138362>393639303936377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034322<2022706?776572223:203235362>3439347=7=2<202274223:20313730373233393137382>343139313333327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034322<2022706?776572223:203237302>3435327=7=2<202274223:20313730373233393137382>393331313635327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034322<2022706?776572223:203236342>3830357=7=2<202274223:20313730373233393137392>343436343838397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034322<2022706?776572223:203237312>3739377=7=2<202274223:20313730373233393137392>393538363238347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034322<2022706?776572223:203236362>3137357=7=2<202274223:20313730373233393138302>343934343130357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034322<2022706?776572223:203236392>3630397=7=2<202274223:20313730373233393138312>303036343839337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034322<2022706?776572223:203236302>32347=7=2<202274223:20313730373233393138312>353138363330377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034332<2022706?776572223:203236382>3034377=7=2<202274223:20313730373233393138322>303330363737387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034332<2022706?776572223:203237312>3739377=7=2<202274223:20313730373233393138322>353437333337337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034332<2022706?776572223:203236362>3137357=7=2<202274223:20313730373233393138332>303833393034357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034332<2022706?776572223:203236362>3637357=7=2<202274223:20313730373233393138332>363034323035317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034332<2022706?776572223:203236302>3031327=7=2<202274223:20313730373233393138342>3131383634357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034332<2022706?776572223:203236362>3730317=7=2<202274223:20313730373233393138342>3633303831367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034332<2022706?776572223:203237302>3435327=7=2<202274223:20313730373233393138352>313434393332377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034332<2022706?776572223:203236312>3538347=7=2<202274223:20313730373233393138352>3637373038347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034332<2022706?776572223:203237302>3733387=7=2<202274223:20313730373233393138362>313931323338367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383038352>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034332<2022706?776572223:203236392>3037377=7=2<202274223:20313730373233393138362>373033343837327=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =3.5116212368011475, total / elapsed =621.0806499127865 in_token_count =256 out_token_count =1925 +[7;227461736;223:2022747261696>222<202272617465223:203632312>303830363439393132373836352<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393139302>343735363739327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383131372>343337352<2038313932302>305=2<20226<6?6164223:20302>39382<202274656=7065726174757265223:2035352<2022706?776572223:203238372>34337=7=2<202274223:20313730373233393138372>3431373234387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383131372>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035342<2022706?776572223:203238352>3739367=7=2<202274223:20313730373233393138372>3933313138337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383131372>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035342<2022706?776572223:203238362>3930347=7=2<202274223:20313730373233393138382>343433333732357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383131372>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035342<2022706?776572223:203238342>3533347=7=2<202274223:20313730373233393138382>3935353435367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383131372>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035342<2022706?776572223:203238372>3233397=7=2<202274223:20313730373233393138392>343939373634327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383131372>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035342<2022706?776572223:203238332>3437337=7=2<202274223:20313730373233393139302>3031323637357=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =3.5189626216888428, total / elapsed =634.2778369520744 in_token_count =256 out_token_count =1976 +[7;227461736;223:2022747261696>222<202272617465223:203633342>323737383336393532303734342<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393139302>343838313139317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383131372>343337352<2038313932302>305=2<20226<6?6164223:20302>39362<202274656=7065726174757265223:2034382<2022706?776572223:203336362>3934347=7=2<202274223:20313730373233393138372>323136323139377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383131372>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034342<2022706?776572223:203237312>3737337=7=2<202274223:20313730373233393138372>373239383930367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383131372>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034332<2022706?776572223:203236372>3230377=7=2<202274223:20313730373233393138382>323637353436327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383131372>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034332<2022706?776572223:203236332>37377=7=2<202274223:20313730373233393138382>373831303335377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383131372>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034332<2022706?776572223:203236392>36387=7=2<202274223:20313730373233393138392>3239367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383131372>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034332<2022706?776572223:203236372>3237357=7=2<202274223:20313730373233393138392>383038313832377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383131372>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034332<2022706?776572223:203236362>31357=7=2<202274223:20313730373233393139302>333232343130337=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =1.6794850826263428, total / elapsed =1348.627637977017 in_token_count =340 out_token_count =1925 +[7;227461736;223:2022747261696>222<202272617465223:20313334382>3632373633373937373031372<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393139322>313536313733377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383131372>343337352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2035362<2022706?776572223:203235352>3237337=7=2<202274223:20313730373233393139302>353234373837347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39382<202274656=7065726174757265223:2035362<2022706?776572223:203238362>3332327=7=2<202274223:20313730373233393139312>3036373339357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035352<2022706?776572223:203238312>3330397=7=2<202274223:20313730373233393139312>353831373130387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035342<2022706?776572223:203238302>3638367=7=2<202274223:20313730373233393139322>303934303631317=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =1.6830041408538818, total / elapsed =1325.0115943675555 in_token_count =340 out_token_count =1890 +[7;227461736;223:2022747261696>222<202272617465223:20313332352>303131353934333637353535352<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393139322>3137313138327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2034372<2022706?776572223:203334332>3639357=7=2<202274223:20313730373233393139302>383631383231347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034342<2022706?776572223:203236392>3839367=7=2<202274223:20313730373233393139312>3430383434327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034342<2022706?776572223:203236302>3532377=7=2<202274223:20313730373233393139312>3932323435337=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =7.021060466766357, total / elapsed =300.52440225910607 in_token_count =95 out_token_count =2015 +[7;227461736;223:2022747261696>222<202272617465223:203330302>35323434303232353931303630372<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393139392>313738313730377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035352<2022706?776572223:203238312>3833367=7=2<202274223:20313730373233393139322>363131333035357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035352<2022706?776572223:203238372>34337=7=2<202274223:20313730373233393139332>313235333233337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035342<2022706?776572223:203237372>3833377=7=2<202274223:20313730373233393139332>363633303731367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035352<2022706?776572223:203238342>3030377=7=2<202274223:20313730373233393139342>313737313432367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035352<2022706?776572223:203238372>3437397=7=2<202274223:20313730373233393139342>3639303433377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035352<2022706?776572223:203238372>3935377=7=2<202274223:20313730373233393139352>323034313538337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035352<2022706?776572223:203238332>3138357=7=2<202274223:20313730373233393139352>373136353436357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035352<2022706?776572223:203238322>33377=7=2<202274223:20313730373233393139362>3235363635397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035352<2022706?776572223:203238332>3138357=7=2<202274223:20313730373233393139362>373639323937387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035352<2022706?776572223:203238322>3635387=7=2<202274223:20313730373233393139372>3238313434367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035352<2022706?776572223:203238302>3638367=7=2<202274223:20313730373233393139372>373935343639387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035352<2022706?776572223:203238392>3036387=7=2<202274223:20313730373233393139382>333037363637377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035352<2022706?776572223:203238382>37337=7=2<202274223:20313730373233393139382>383433383835377=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =7.0354368686676025, total / elapsed =288.2550206699631 in_token_count =95 out_token_count =1933 +[7;227461736;223:2022747261696>222<202272617465223:203238382>323535303230363639393633312<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393139392>323037333038337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39382<202274656=7065726174757265223:2034342<2022706?776572223:203236322>3430337=7=2<202274223:20313730373233393139322>34333630357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034342<2022706?776572223:203236372>3733337=7=2<202274223:20313730373233393139322>3935303634347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034342<2022706?776572223:203237322>3631377=7=2<202274223:20313730373233393139332>343637333333367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034342<2022706?776572223:203236312>3837317=7=2<202274223:20313730373233393139332>3938303934367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034342<2022706?776572223:203236352>3634327=7=2<202274223:20313730373233393139342>3439343034357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034342<2022706?776572223:203236362>3436327=7=2<202274223:20313730373233393139352>303036393137357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034342<2022706?776572223:203236382>3833387=7=2<202274223:20313730373233393139352>353230353232367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034342<2022706?776572223:203235392>3234377=7=2<202274223:20313730373233393139362>3034333635367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034342<2022706?776572223:203236352>3932397=7=2<202274223:20313730373233393139362>353535393139327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034342<2022706?776572223:203236382>3535327=7=2<202274223:20313730373233393139372>303730303233387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034342<2022706?776572223:203236382>3333347=7=2<202274223:20313730373233393139372>353832373233347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034342<2022706?776572223:203237302>3432317=7=2<202274223:20313730373233393139382>303939323535367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034342<2022706?776572223:203236372>3830387=7=2<202274223:20313730373233393139382>363237313731357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034342<2022706?776572223:203236342>3237337=7=2<202274223:20313730373233393139392>313431353539367=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =8.973330974578857, total / elapsed =234.36113144134856 in_token_count =5 out_token_count =2098 +[7;227461736;223:2022747261696>222<202272617465223:203233342>33363131333134343133343835362<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393230382>3135323436377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035352<2022706?776572223:203238392>38397=7=2<202274223:20313730373233393139392>333536353437387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035352<2022706?776572223:203238362>3332327=7=2<202274223:20313730373233393139392>383639323135357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035352<2022706?776572223:203238352>3539367=7=2<202274223:20313730373233393230302>333831343932317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035352<2022706?776572223:203239302>3336357=7=2<202274223:20313730373233393230302>383935353237347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035352<2022706?776572223:203238352>3539367=7=2<202274223:20313730373233393230312>343332343037367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035352<2022706?776572223:203238392>36357=7=2<202274223:20313730373233393230312>393434353936387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035352<2022706?776572223:203239302>3037387=7=2<202274223:20313730373233393230322>343539303930377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035352<2022706?776572223:203238352>3534397=7=2<202274223:20313730373233393230322>393732303732347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035352<2022706?776572223:203238332>3437337=7=2<202274223:20313730373233393230332>343835383935327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035352<2022706?776572223:203238332>3338387=7=2<202274223:20313730373233393230332>393937383831347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035352<2022706?776572223:203238382>3239347=7=2<202274223:20313730373233393230342>353131373438387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035352<2022706?776572223:203238362>3930347=7=2<202274223:20313730373233393230352>303233393932387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035352<2022706?776572223:203238362>36317=7=2<202274223:20313730373233393230352>353338333836337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035352<2022706?776572223:203238372>3736377=7=2<202274223:20313730373233393230362>303530353637327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035352<2022706?776572223:203238392>3031377=7=2<202274223:20313730373233393230362>353632373439347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035352<2022706?776572223:203238362>3934357=7=2<202274223:20313730373233393230372>3037363236367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035352<2022706?776572223:203238392>3036387=7=2<202274223:20313730373233393230372>353838363632397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035352<2022706?776572223:203238352>3838337=7=2<202274223:20313730373233393230382>313034383531357=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =8.992095947265625, total / elapsed =226.30986278775373 in_token_count =5 out_token_count =2030 +[7;227461736;223:2022747261696>222<202272617465223:203232362>33303938363237383737353337332<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393230382>323030303533327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034342<2022706?776572223:203236372>3733337=7=2<202274223:20313730373233393139392>363536353838387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034342<2022706?776572223:203236332>3734387=7=2<202274223:20313730373233393230302>3137313435337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034342<2022706?776572223:203236392>3630397=7=2<202274223:20313730373233393230302>363833353633377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034342<2022706?776572223:203237302>3733387=7=2<202274223:20313730373233393230312>323231393335337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034342<2022706?776572223:203237302>3733387=7=2<202274223:20313730373233393230312>373335313430337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034342<2022706?776572223:203236362>3936327=7=2<202274223:20313730373233393230322>323437323538327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034342<2022706?776572223:203237302>3935347=7=2<202274223:20313730373233393230322>373631343639347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034342<2022706?776572223:203236362>3637357=7=2<202274223:20313730373233393230332>323734313438357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034342<2022706?776572223:203236392>3932357=7=2<202274223:20313730373233393230332>383136303033337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034342<2022706?776572223:203236372>3830387=7=2<202274223:20313730373233393230342>333238363439357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034342<2022706?776572223:203236362>3137357=7=2<202274223:20313730373233393230342>383431393430397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034342<2022706?776572223:203236372>3230377=7=2<202274223:20313730373233393230352>333534313837337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034342<2022706?776572223:203236372>3830387=7=2<202274223:20313730373233393230352>383638313534387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034342<2022706?776572223:203236392>3037377=7=2<202274223:20313730373233393230362>3339353934357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034342<2022706?776572223:203237302>3733387=7=2<202274223:20313730373233393230362>3930383031317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034342<2022706?776572223:203236342>3832327=7=2<202274223:20313730373233393230372>343139393836357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034342<2022706?776572223:203236372>3532317=7=2<202274223:20313730373233393230372>393430373339327=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =3.578835964202881, total / elapsed =566.3852773010447 in_token_count =253 out_token_count =1774 +[7;227461736;223:2022747261696>222<202272617465223:203536362>333835323737333031303434372<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393231312>373332333337357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203239302>3631317=7=2<202274223:20313730373233393230382>3636363739347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035362<2022706?776572223:203239312>3138367=7=2<202274223:20313730373233393230392>3138383935327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035362<2022706?776572223:203238352>3236327=7=2<202274223:20313730373233393230392>3730343431387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035362<2022706?776572223:203238392>3535317=7=2<202274223:20313730373233393231302>3231373738387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035362<2022706?776572223:203238392>38397=7=2<202274223:20313730373233393231302>373239393137387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035362<2022706?776572223:203238362>3635377=7=2<202274223:20313730373233393231312>32343238377=z[0:z/Tmp/slurm.4115007.0/base/venv/torch/lib/python3.9/site-packages/transformers/pipelines/base.py:1101: UserWarning: You seem to be using the pipelines sequentially on GPU. In order to maximize efficiency please use a dataset + warnings.warn( +Setting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =3.5856056213378906, total / elapsed =562.805900345233 in_token_count =253 out_token_count =1765 +[7;227461736;223:2022747261696>222<202272617465223:203536322>3830353930303334353233332<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393231312>373835373233347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034382<2022706?776572223:203337322>3137347=7=2<202274223:20313730373233393230382>3436353732377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236372>3830387=7=2<202274223:20313730373233393230382>393738393133387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034342<2022706?776572223:203236362>3137357=7=2<202274223:20313730373233393230392>3439323333377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034342<2022706?776572223:203236382>3535327=7=2<202274223:20313730373233393231302>303036343433337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034342<2022706?776572223:203236372>3230377=7=2<202274223:20313730373233393231302>353230323932357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034342<2022706?776572223:203236382>3833387=7=2<202274223:20313730373233393231312>303332363533387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034342<2022706?776572223:203236362>3936327=7=2<202274223:20313730373233393231312>353531343638367=z[0:z/Tmp/slurm.4115007.0/base/venv/torch/lib/python3.9/site-packages/transformers/pipelines/base.py:1101: UserWarning: You seem to be using the pipelines sequentially on GPU. In order to maximize efficiency please use a dataset + warnings.warn( +Setting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =2.972625494003296, total / elapsed =712.8378614375332 in_token_count =282 out_token_count =1837 +[7;227461736;223:2022747261696>222<202272617465223:203731322>383337383631343337353333322<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393231342>373035393031367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035362<2022706?776572223:203237392>3731337=7=2<202274223:20313730373233393231312>3737393039367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238342>3738317=7=2<202274223:20313730373233393231322>3331313233317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035362<2022706?776572223:203238372>3437397=7=2<202274223:20313730373233393231322>383533313231387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035362<2022706?776572223:203238372>3437397=7=2<202274223:20313730373233393231332>333731367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035362<2022706?776572223:203237392>3133387=7=2<202274223:20313730373233393231332>3838343932357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035362<2022706?776572223:203239302>3935317=7=2<202274223:20313730373233393231342>3339393032377=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =2.977924346923828, total / elapsed =696.4582569541853 in_token_count =282 out_token_count =1792 +[7;227461736;223:2022747261696>222<202272617465223:203639362>343538323536393534313835332<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393231342>373633373235387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39362<202274656=7065726174757265223:2035302<2022706?776572223:203336342>3638337=7=2<202274223:20313730373233393231322>303838383639367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236352>3836337=7=2<202274223:20313730373233393231322>363031323032377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236322>3430337=7=2<202274223:20313730373233393231332>313133373632397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236342>3531327=7=2<202274223:20313730373233393231332>363236303131347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034342<2022706?776572223:203236312>3837317=7=2<202274223:20313730373233393231342>313631343735347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034342<2022706?776572223:203236382>3236357=7=2<202274223:20313730373233393231342>363737313036347=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =3.5106115341186523, total / elapsed =586.5075016102336 in_token_count =256 out_token_count =1803 +[7;227461736;223:2022747261696>222<202272617465223:203538362>353037353031363130323333362<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393231382>323137343734357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39362<202274656=7065726174757265223:2036332<2022706?776572223:203339362>3134377=7=2<202274223:20313730373233393231342>393439393935337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238392>38397=7=2<202274223:20313730373233393231352>343635353135347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035362<2022706?776572223:203238362>3635377=7=2<202274223:20313730373233393231352>39373833357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035362<2022706?776572223:203238332>3931357=7=2<202274223:20313730373233393231362>3439323035357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035362<2022706?776572223:203238352>3236327=7=2<202274223:20313730373233393231372>3030343235327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035362<2022706?776572223:203239312>3935397=7=2<202274223:20313730373233393231372>3531393035387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035362<2022706?776572223:203239302>3730347=7=2<202274223:20313730373233393231382>3034343731357=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =3.516043186187744, total / elapsed =598.3999309977912 in_token_count =256 out_token_count =1848 +[7;227461736;223:2022747261696>222<202272617465223:203539382>333939393330393937373931322<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393231382>323830353535327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39382<202274656=7065726174757265223:2034362<2022706?776572223:203236372>3439347=7=2<202274223:20313730373233393231352>3138393335367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236382>3535327=7=2<202274223:20313730373233393231352>373031363034387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236382>3535327=7=2<202274223:20313730373233393231362>323136303637367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236372>3733337=7=2<202274223:20313730373233393231362>373434383638357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203237332>3634327=7=2<202274223:20313730373233393231372>323537353231397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203237302>3231327=7=2<202274223:20313730373233393231372>373639363831377=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =9.002534627914429, total / elapsed =224.38125300140757 in_token_count =5 out_token_count =2015 +[7;227461736;223:2022747261696>222<202272617465223:203232342>33383132353330303134303735372<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393232372>323230393838387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035362<2022706?776572223:203238392>3535317=7=2<202274223:20313730373233393231382>3535363635347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035362<2022706?776572223:203238362>3038337=7=2<202274223:20313730373233393231392>303639393231377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035362<2022706?776572223:203238392>3430357=7=2<202274223:20313730373233393231392>3538313832317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035362<2022706?776572223:203238342>3537397=7=2<202274223:20313730373233393232302>303936323833377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035362<2022706?776572223:203239302>3531367=7=2<202274223:20313730373233393232302>363038343739337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035362<2022706?776572223:203238302>3537357=7=2<202274223:20313730373233393232312>3132323530387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035362<2022706?776572223:203238372>3038377=7=2<202274223:20313730373233393232312>363334313839317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035362<2022706?776572223:203238392>3639337=7=2<202274223:20313730373233393232322>313637303731387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035362<2022706?776572223:203238352>3430327=7=2<202274223:20313730373233393232322>3637393133397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39362<202274656=7065726174757265223:2035362<2022706?776572223:203238362>3735327=7=2<202274223:20313730373233393232332>313931303633347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035362<2022706?776572223:203238342>3035317=7=2<202274223:20313730373233393232332>373033373536337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035362<2022706?776572223:203238322>3738337=7=2<202274223:20313730373233393232342>323136323330397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39362<202274656=7065726174757265223:2035362<2022706?776572223:203238382>3130337=7=2<202274223:20313730373233393232342>373239343834367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035362<2022706?776572223:203239312>3039357=7=2<202274223:20313730373233393232352>323431363132327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39362<202274656=7065726174757265223:2035362<2022706?776572223:203238392>3430357=7=2<202274223:20313730373233393232352>373536303036377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035362<2022706?776572223:203238332>30337=7=2<202274223:20313730373233393232362>323933343231337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035362<2022706?776572223:203238352>3733357=7=2<202274223:20313730373233393232362>3831313935367=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =9.16187858581543, total / elapsed =227.5734152631133 in_token_count =5 out_token_count =2080 +[7;227461736;223:2022747261696>222<202272617465223:203232372>353733343135323633313133332<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393232372>343433333032367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236392>3932357=7=2<202274223:20313730373233393231382>323836343535327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236392>3339337=7=2<202274223:20313730373233393231382>383034373839337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236382>3833387=7=2<202274223:20313730373233393231392>33343434367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034342<2022706?776572223:203236342>3839337=7=2<202274223:20313730373233393231392>383538353237377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034342<2022706?776572223:203236382>3936327=7=2<202274223:20313730373233393232302>333732323530367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034342<2022706?776572223:203236382>3336317=7=2<202274223:20313730373233393232302>393138333639357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236362>32347=7=2<202274223:20313730373233393232312>343330313537347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236342>3134317=7=2<202274223:20313730373233393232312>393439353731367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236362>3438367=7=2<202274223:20313730373233393232322>343633363532347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034342<2022706?776572223:203235362>3836327=7=2<202274223:20313730373233393232322>393736343936377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034342<2022706?776572223:203235352>3530317=7=2<202274223:20313730373233393232332>343936383738367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034342<2022706?776572223:203236312>3432357=7=2<202274223:20313730373233393232342>303038393430327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034342<2022706?776572223:203235382>3231317=7=2<202274223:20313730373233393232342>3532323637357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034342<2022706?776572223:203236312>3434337=7=2<202274223:20313730373233393232352>30333439317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034342<2022706?776572223:203236352>3432367=7=2<202274223:20313730373233393232352>353439313038337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034342<2022706?776572223:203235362>3835367=7=2<202274223:20313730373233393232362>303631343635377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034342<2022706?776572223:203235332>3932347=7=2<202274223:20313730373233393232362>353735323731367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383135392>343337352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034342<2022706?776572223:203236302>3037377=7=2<202274223:20313730373233393232372>303837333032377=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =1.4791243076324463, total / elapsed =1408.9417564476007 in_token_count =349 out_token_count =1735 +[7;227461736;223:2022747261696>222<202272617465223:20313430382>393431373536343437363030372<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393232382>373030393939377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383230332>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2036312<2022706?776572223:203336332>3938357=7=2<202274223:20313730373233393232372>333234383830347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383230332>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203239322>3430327=7=2<202274223:20313730373233393232372>383337393832347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383230332>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238382>3433397=7=2<202274223:20313730373233393232382>333439393636387=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =1.506643295288086, total / elapsed =1397.8092934049866 in_token_count =349 out_token_count =1757 +[7;227461736;223:2022747261696>222<202272617465223:20313339372>383039323933343034393836362<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393232382>393530303139387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383230332>343337352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2035302<2022706?776572223:203335372>3236367=7=2<202274223:20313730373233393232372>363432393231347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383230332>343337352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034352<2022706?776572223:203236332>3833327=7=2<202274223:20313730373233393232382>313535313037357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383230332>343337352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034352<2022706?776572223:203236382>3336317=7=2<202274223:20313730373233393232382>363637323734377=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =2.872809410095215, total / elapsed =791.9077374243907 in_token_count =287 out_token_count =1988 +[7;227461736;223:2022747261696>222<202272617465223:203739312>393037373337343234333930372<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393233312>353734373930327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383230332>343337352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2036322<2022706?776572223:203338362>3738397=7=2<202274223:20313730373233393232382>383632313633387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383230332>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238372>32387=7=2<202274223:20313730373233393232392>333734353236337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383230332>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238362>3939327=7=2<202274223:20313730373233393232392>3838373431327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383230332>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203239322>3430327=7=2<202274223:20313730373233393233302>343031393435347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383230332>343337352<2038313932302>305=2<20226<6?6164223:20302>39362<202274656=7065726174757265223:2035362<2022706?776572223:203238372>3831357=7=2<202274223:20313730373233393233302>393135343633347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383230332>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035362<2022706?776572223:203238312>3134337=7=2<202274223:20313730373233393233312>343337313438367=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =2.9347219467163086, total / elapsed =787.4681288241983 in_token_count =287 out_token_count =2024 +[7;227461736;223:2022747261696>222<202272617465223:203738372>343638313238383234313938332<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393233312>383834383330327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383230332>343337352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2035312<2022706?776572223:203336392>3035317=7=2<202274223:20313730373233393232392>313838393932337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383230332>343337352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034352<2022706?776572223:203236362>3236347=7=2<202274223:20313730373233393232392>37303235317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383230332>343337352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034352<2022706?776572223:203236362>3737347=7=2<202274223:20313730373233393233302>323431343830347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383230332>343337352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034352<2022706?776572223:203236322>3139387=7=2<202274223:20313730373233393233302>373539393137377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383230332>343337352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034352<2022706?776572223:203236352>3731337=7=2<202274223:20313730373233393233312>3237323332377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383230332>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236372>3930317=7=2<202274223:20313730373233393233312>383132343039327=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =8.994917869567871, total / elapsed =220.45782171163572 in_token_count =7 out_token_count =1976 +[7;227461736;223:2022747261696>222<202272617465223:203232302>34353738323137313136333537322<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393234302>3537303739357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383230332>343337352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2035362<2022706?776572223:203237392>3031357=7=2<202274223:20313730373233393233312>393531333139377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383230332>343337352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2035362<2022706?776572223:203237322>3534327=7=2<202274223:20313730373233393233322>34363434397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383230332>343337352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2035362<2022706?776572223:203238302>3238377=7=2<202274223:20313730373233393233322>3937373338327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383230332>343337352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2035362<2022706?776572223:203238322>3435337=7=2<202274223:20313730373233393233332>343930343539377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383230332>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035362<2022706?776572223:203238332>3531367=7=2<202274223:20313730373233393233342>3030333534317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383230332>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035362<2022706?776572223:203239322>3434387=7=2<202274223:20313730373233393233342>353137333536367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383230332>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035362<2022706?776572223:203239312>3931397=7=2<202274223:20313730373233393233352>303331313432327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383230332>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035362<2022706?776572223:203238342>3836377=7=2<202274223:20313730373233393233352>353433393931387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383230332>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035362<2022706?776572223:203238382>3130337=7=2<202274223:20313730373233393233362>303538323835377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383230332>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035362<2022706?776572223:203238392>38397=7=2<202274223:20313730373233393233362>353733323935347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383230332>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035362<2022706?776572223:203238322>33377=7=2<202274223:20313730373233393233372>303837373036367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383230332>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035362<2022706?776572223:203238312>3539377=7=2<202274223:20313730373233393233372>363038373530337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383230332>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035362<2022706?776572223:203238352>3539367=7=2<202274223:20313730373233393233382>313230373530377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383230332>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035362<2022706?776572223:203238312>3539377=7=2<202274223:20313730373233393233382>363430323531327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383230332>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035362<2022706?776572223:203239312>3233397=7=2<202274223:20313730373233393233392>313532333032337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383230332>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035362<2022706?776572223:203239302>3730347=7=2<202274223:20313730373233393233392>363636343335327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383230332>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035362<2022706?776572223:203239302>3431377=7=2<202274223:20313730373233393234302>313738363435317=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =8.941888809204102, total / elapsed =228.25155216637782 in_token_count =7 out_token_count =2034 +[7;227461736;223:2022747261696>222<202272617465223:203232382>32353135353231363633373738322<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393234302>383236373931337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383230332>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236342>3134317=7=2<202274223:20313730373233393233322>3332353236357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383230332>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203237312>3035367=7=2<202274223:20313730373233393233322>383338383739337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383230332>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236392>3439367=7=2<202274223:20313730373233393233332>333531343231367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383230332>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236372>3833347=7=2<202274223:20313730373233393233332>383636353537347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383230332>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203237302>3736387=7=2<202274223:20313730373233393233342>333738383030347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383230332>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236372>3833347=7=2<202274223:20313730373233393233342>383930393236347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383230332>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236372>3538387=7=2<202274223:20313730373233393233352>34303335387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383230332>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203237312>3538397=7=2<202274223:20313730373233393233352>393235393931387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383230332>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203237322>3832347=7=2<202274223:20313730373233393233362>343430333038337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383230332>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236372>3439347=7=2<202274223:20313730373233393233362>3935333336397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383230332>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236332>3231357=7=2<202274223:20313730373233393233372>343636343639357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383230332>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236322>3932397=7=2<202274223:20313730373233393233372>393739353137357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383230332>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236302>3532377=7=2<202274223:20313730373233393233382>343932383635337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383230332>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236332>3231357=7=2<202274223:20313730373233393233392>3030363932337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383230332>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236362>3637357=7=2<202274223:20313730373233393233392>353139333930367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383230332>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236392>3037377=7=2<202274223:20313730373233393234302>303332343739387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383230332>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236362>31357=7=2<202274223:20313730373233393234302>3534353733317=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =1.1536359786987305, total / elapsed =1907.8808572550479 in_token_count =363 out_token_count =1838 +[7;227461736;223:2022747261696>222<202272617465223:20313930372>383830383537323535303437392<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393234312>3732353332357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2036312<2022706?776572223:203332312>3437337=7=2<202274223:20313730373233393234302>3639323533337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39382<202274656=7065726174757265223:2035382<2022706?776572223:203239302>3935317=7=2<202274223:20313730373233393234312>323335323330347=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =1.1548726558685303, total / elapsed =1910.1673148031737 in_token_count =363 out_token_count =1843 +[7;227461736;223:2022747261696>222<202272617465223:20313931302>313637333134383033313733372<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393234312>3938313732357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2035302<2022706?776572223:203333392>34367=7=2<202274223:20313730373233393234312>303731393130317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236332>3231357=7=2<202274223:20313730373233393234312>353835313638367=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =8.924768447875977, total / elapsed =225.55207025892958 in_token_count =7 out_token_count =2006 +[7;227461736;223:2022747261696>222<202272617465223:203232352>35353230373032353839323935382<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393235302>363531303937387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238352>3335367=7=2<202274223:20313730373233393234312>373437313935377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238362>31337=7=2<202274223:20313730373233393234322>3236343637377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203239322>3234367=7=2<202274223:20313730373233393234322>3737363536377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238362>3934357=7=2<202274223:20313730373233393234332>323930353833367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238342>3030377=7=2<202274223:20313730373233393234332>383234383832357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203239332>3036377=7=2<202274223:20313730373233393234342>3333393436337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238352>3539367=7=2<202274223:20313730373233393234342>3835313730317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203239302>3935317=7=2<202274223:20313730373233393234352>333635367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203239302>3730347=7=2<202274223:20313730373233393234352>383737353837337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203239332>3036377=7=2<202274223:20313730373233393234362>3431333232377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238342>3234377=7=2<202274223:20313730373233393234362>393235323937357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238352>3838337=7=2<202274223:20313730373233393234372>343337363036337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203239302>3137377=7=2<202274223:20313730373233393234372>393439353739327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238392>3031377=7=2<202274223:20313730373233393234382>343633373130357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238392>3335357=7=2<202274223:20313730373233393234382>393938353136337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238362>3635377=7=2<202274223:20313730373233393234392>353131323133357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238372>3935377=7=2<202274223:20313730373233393235302>3032333939337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203239302>3730347=7=2<202274223:20313730373233393235302>353431393535327=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =8.941908359527588, total / elapsed =225.79072820051428 in_token_count =7 out_token_count =2012 +[7;227461736;223:2022747261696>222<202272617465223:203232352>37393037323832303035313432382<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393235302>3932333730337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034352<2022706?776572223:203239312>3033377=7=2<202274223:20313730373233393234322>303938383835387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203237322>3538357=7=2<202274223:20313730373233393234322>3631313837337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236382>3236357=7=2<202274223:20313730373233393234332>313235333539387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236382>3535327=7=2<202274223:20313730373233393234332>363639363034337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203237312>3437397=7=2<202274223:20313730373233393234342>3138323336387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236382>3031397=7=2<202274223:20313730373233393234342>363936323238337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236392>3839367=7=2<202274223:20313730373233393234352>323038363333347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236332>3734387=7=2<202274223:20313730373233393234352>373233353231377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236392>3630397=7=2<202274223:20313730373233393234362>323631353939387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236382>3833387=7=2<202274223:20313730373233393234362>373735383834347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203237302>3935347=7=2<202274223:20313730373233393234372>323838303738387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203237312>3437397=7=2<202274223:20313730373233393234372>383030363733327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236392>3336347=7=2<202274223:20313730373233393234382>333132373037327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236382>3236357=7=2<202274223:20313730373233393234382>3835313538337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203237322>3538357=7=2<202274223:20313730373233393234392>3336343936347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203237312>32347=7=2<202274223:20313730373233393234392>383738313738387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236352>3039327=7=2<202274223:20313730373233393235302>3339303130357=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =1.5885844230651855, total / elapsed =1309.9712988401932 in_token_count =344 out_token_count =1737 +[7;227461736;223:2022747261696>222<202272617465223:20313330392>393731323938383430313933322<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393235322>323430363432387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036302<2022706?776572223:203339362>3936367=7=2<202274223:20313730373233393235312>303534303537317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203238322>3635387=7=2<202274223:20313730373233393235312>3633393530397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203239312>3138367=7=2<202274223:20313730373233393235322>313536363332347=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =1.5916545391082764, total / elapsed =1292.3658680057754 in_token_count =344 out_token_count =1713 +[7;227461736;223:2022747261696>222<202272617465223:20313239322>333635383638303035373735342<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393235322>353136333534337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236312>3837317=7=2<202274223:20313730373233393235302>393238303139357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39382<202274656=7065726174757265223:2034372<2022706?776572223:203236392>3037377=7=2<202274223:20313730373233393235312>343430353739347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236372>3439347=7=2<202274223:20313730373233393235312>393634383137387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236392>3336347=7=2<202274223:20313730373233393235322>343830333237317=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =6.444571495056152, total / elapsed =302.4250722480375 in_token_count =122 out_token_count =1827 +[7;227461736;223:2022747261696>222<202272617465223:203330322>343235303732323438303337352<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393235382>363836323034377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39382<202274656=7065726174757265223:2035372<2022706?776572223:203239332>3036377=7=2<202274223:20313730373233393235322>363638393632357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238382>3230337=7=2<202274223:20313730373233393235332>3138303937367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203239312>3532367=7=2<202274223:20313730373233393235332>363933333336377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203239302>3431377=7=2<202274223:20313730373233393235342>3232383338327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238322>3635387=7=2<202274223:20313730373233393235342>3734323632327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238362>36317=7=2<202274223:20313730373233393235352>3235393233387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238352>3335367=7=2<202274223:20313730373233393235352>373734363830347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238362>3038337=7=2<202274223:20313730373233393235362>323836383835377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238352>3036397=7=2<202274223:20313730373233393235362>383237313434397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238392>3036387=7=2<202274223:20313730373233393235372>333339303838327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238352>3032337=7=2<202274223:20313730373233393235372>383532363733337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203239332>3036377=7=2<202274223:20313730373233393235382>333635303038367=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =6.456521987915039, total / elapsed =316.11446593386205 in_token_count =122 out_token_count =1919 +[7;227461736;223:2022747261696>222<202272617465223:203331362>31313434363539333338363230352<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393235382>393732393531347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236392>3037377=7=2<202274223:20313730373233393235322>3939323237387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236382>3031397=7=2<202274223:20313730373233393235332>353037333534337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236392>3630397=7=2<202274223:20313730373233393235342>3032313332367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236392>3037377=7=2<202274223:20313730373233393235342>353334363833327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236342>3237337=7=2<202274223:20313730373233393235352>303437343535387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236312>3131397=7=2<202274223:20313730373233393235352>353631333234387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236352>3131367=7=2<202274223:20313730373233393235362>3037353735377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236342>3830357=7=2<202274223:20313730373233393235362>363130323236327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236392>3630397=7=2<202274223:20313730373233393235372>3132353239377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236302>3534357=7=2<202274223:20313730373233393235372>363337343337337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236382>3236357=7=2<202274223:20313730373233393235382>313439343632357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236382>3535327=7=2<202274223:20313730373233393235382>363632323538347=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =8.94690227508545, total / elapsed =229.4648959916568 in_token_count =6 out_token_count =2047 +[7;227461736;223:2022747261696>222<202272617465223:203232392>343634383935393931363536382<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393236372>363334323138357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2035372<2022706?776572223:203239322>3737337=7=2<202274223:20313730373233393235382>38373930347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203239312>3532367=7=2<202274223:20313730373233393235392>343131353039387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203239302>3431377=7=2<202274223:20313730373233393235392>393235343735317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238382>3230337=7=2<202274223:20313730373233393236302>343337343734357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203239332>3430397=7=2<202274223:20313730373233393236302>393532343836387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238342>3733367=7=2<202274223:20313730373233393236312>343634343337377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203239302>3935317=7=2<202274223:20313730373233393236312>393935343435337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203239322>3832377=7=2<202274223:20313730373233393236322>353037343331377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238352>3335367=7=2<202274223:20313730373233393236332>303233353030377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238372>3935377=7=2<202274223:20313730373233393236332>3533353632387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203239322>3832377=7=2<202274223:20313730373233393236342>303532373834347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238382>3239347=7=2<202274223:20313730373233393236342>3538363139327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238372>34337=7=2<202274223:20313730373233393236352>303938393930347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203239322>30367=7=2<202274223:20313730373233393236352>3631313134377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203239312>3432357=7=2<202274223:20313730373233393236362>313234383030327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203239302>3037387=7=2<202274223:20313730373233393236362>363337333533347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238392>3036387=7=2<202274223:20313730373233393236372>313732303439357=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =8.96792197227478, total / elapsed =219.00279753457943 in_token_count =6 out_token_count =1958 +[7;227461736;223:2022747261696>222<202272617465223:203231392>30303237393735333435373934332<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393236372>393430393633357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034352<2022706?776572223:203236382>3236357=7=2<202274223:20313730373233393235392>323035393234337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236372>3439347=7=2<202274223:20313730373233393235392>373138373435327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236382>3535327=7=2<202274223:20313730373233393236302>323331383738387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203237302>3133357=7=2<202274223:20313730373233393236302>373533373635367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236332>3436317=7=2<202274223:20313730373233393236312>3236373839347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236362>3730317=7=2<202274223:20313730373233393236312>373835333933327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203237302>3133357=7=2<202274223:20313730373233393236322>323939353433347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236332>3436317=7=2<202274223:20313730373233393236322>383131373937317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236392>3336347=7=2<202274223:20313730373233393236332>333236303535387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236382>3031397=7=2<202274223:20313730373233393236332>3833383633387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236322>31317=7=2<202274223:20313730373233393236342>333737323131337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236322>31317=7=2<202274223:20313730373233393236342>383931313033337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203235372>3833387=7=2<202274223:20313730373233393236352>343034313838327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236352>3039327=7=2<202274223:20313730373233393236352>393137393138377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236382>35387=7=2<202274223:20313730373233393236362>343331303037347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236342>3531327=7=2<202274223:20313730373233393236362>393538333737347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236322>3932397=7=2<202274223:20313730373233393236372>3437313331397=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =7.110610723495483, total / elapsed =271.2847144937965 in_token_count =91 out_token_count =1838 +[7;227461736;223:2022747261696>222<202272617465223:203237312>323834373134343933373936352<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393237342>373435383338347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203339352>3739317=7=2<202274223:20313730373233393236372>363834313039327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203239302>3631317=7=2<202274223:20313730373233393236382>313938313033327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238372>3233397=7=2<202274223:20313730373233393236382>373130323039387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203239302>3336357=7=2<202274223:20313730373233393236392>323233373137377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203239312>3731397=7=2<202274223:20313730373233393236392>373335383534347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203239302>3935317=7=2<202274223:20313730373233393237302>3235313831377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238372>3134337=7=2<202274223:20313730373233393237302>373634313031337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238362>31337=7=2<202274223:20313730373233393237312>323736363739357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238362>3934357=7=2<202274223:20313730373233393237312>373930353030347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203239322>337=7=2<202274223:20313730373233393237322>3331303238367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203239312>3935397=7=2<202274223:20313730373233393237322>383234323230347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203239312>3432357=7=2<202274223:20313730373233393237332>33343434327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238362>3930347=7=2<202274223:20313730373233393237332>383536393430337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238372>34337=7=2<202274223:20313730373233393237342>333730313431377=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =7.125333309173584, total / elapsed =281.671033889189 in_token_count =91 out_token_count =1916 +[7;227461736;223:2022747261696>222<202272617465223:203238312>3637313033333838393138392<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393237352>3036363336347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236392>3037377=7=2<202274223:20313730373233393236372>393833353334367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236382>3836377=7=2<202274223:20313730373233393236382>343938323132337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203237322>3239387=7=2<202274223:20313730373233393236392>303139373434397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236342>3237337=7=2<202274223:20313730373233393236392>353437353735327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236362>3936327=7=2<202274223:20313730373233393237302>303539353435357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203237302>3432317=7=2<202274223:20313730373233393237302>353734333136337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203237312>32347=7=2<202274223:20313730373233393237312>303836313239347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203237322>3538357=7=2<202274223:20313730373233393237312>3630313735367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236342>3830357=7=2<202274223:20313730373233393237322>313331363533387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236312>3538347=7=2<202274223:20313730373233393237322>363435313633337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203237302>3731357=7=2<202274223:20313730373233393237332>313537333933357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203237302>3133357=7=2<202274223:20313730373233393237332>3638313034377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236382>3833387=7=2<202274223:20313730373233393237342>3139343533337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236362>3936327=7=2<202274223:20313730373233393237342>3732363831347=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =5.590300559997559, total / elapsed =376.187286788909 in_token_count =162 out_token_count =1941 +[7;227461736;223:2022747261696>222<202272617465223:203337362>3138373238363738383930392<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393238302>333337323238337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2036322<2022706?776572223:203339342>3439337=7=2<202274223:20313730373233393237342>383832363439377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203239312>3935397=7=2<202274223:20313730373233393237352>3339363832387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203239352>3437347=7=2<202274223:20313730373233393237352>393130373933337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203239302>3631317=7=2<202274223:20313730373233393237362>3432343535357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203239322>3538387=7=2<202274223:20313730373233393237362>393336383836387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203239302>3839387=7=2<202274223:20313730373233393237372>343733323736367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238382>37337=7=2<202274223:20313730373233393237372>393931343132367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238392>36357=7=2<202274223:20313730373233393237382>3530363031367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238362>36317=7=2<202274223:20313730373233393237392>303231313836367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238312>3236387=7=2<202274223:20313730373233393237392>353334323337347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238352>3236327=7=2<202274223:20313730373233393238302>303730323537347=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =5.602091550827026, total / elapsed =385.2132690836547 in_token_count =162 out_token_count =1996 +[7;227461736;223:2022747261696>222<202272617465223:203338352>323133323639303833363534372<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393238302>363638353532327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2035302<2022706?776572223:203334312>3137357=7=2<202274223:20313730373233393237352>323432313932337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236382>3833387=7=2<202274223:20313730373233393237352>373534323836387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203237302>3731357=7=2<202274223:20313730373233393237362>323637393833377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203237302>3432317=7=2<202274223:20313730373233393237362>3738303439337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203237312>3437397=7=2<202274223:20313730373233393237372>333230303730357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203237322>3538357=7=2<202274223:20313730373233393237372>3833323937377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236362>3936327=7=2<202274223:20313730373233393237382>333435333830357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203237332>3634327=7=2<202274223:20313730373233393237382>3835383834357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203237312>3437397=7=2<202274223:20313730373233393237392>3337313635347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236332>3231357=7=2<202274223:20313730373233393237392>3931373538387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203237332>35367=7=2<202274223:20313730373233393238302>343239353031387=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =5.050517320632935, total / elapsed =406.2950129122301 in_token_count =186 out_token_count =1866 +[7;227461736;223:2022747261696>222<202272617465223:203430362>323935303132393132323330312<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393238352>3338383732317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2036302<2022706?776572223:203330322>3639377=7=2<202274223:20313730373233393238302>353834333430337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203239332>3036377=7=2<202274223:20313730373233393238312>303938323638357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203239342>3635347=7=2<202274223:20313730373233393238312>363130383737387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238312>3330397=7=2<202274223:20313730373233393238322>313235303031377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238382>3439317=7=2<202274223:20313730373233393238322>363639313837357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203239302>3037387=7=2<202274223:20313730373233393238332>313831323536357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238392>36357=7=2<202274223:20313730373233393238332>363935323631357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238352>3739367=7=2<202274223:20313730373233393238342>323037333132337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203239322>3538387=7=2<202274223:20313730373233393238342>37323132357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203239322>30367=7=2<202274223:20313730373233393238352>323632303837387=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =5.059572696685791, total / elapsed =412.09013586577237 in_token_count =186 out_token_count =1899 +[7;227461736;223:2022747261696>222<202272617465223:203431322>30393031333538363537373233372<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393238352>3732383232317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39382<202274656=7065726174757265223:2034372<2022706?776572223:203238302>30337=7=2<202274223:20313730373233393238302>393431383331367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236392>3336347=7=2<202274223:20313730373233393238312>343535343335337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236362>3938387=7=2<202274223:20313730373233393238312>393736313730337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236382>3833387=7=2<202274223:20313730373233393238322>353136343736367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236332>3938367=7=2<202274223:20313730373233393238332>303330333039347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203237332>3335367=7=2<202274223:20313730373233393238332>353433353131327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203237332>3335367=7=2<202274223:20313730373233393238342>303537343435337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236362>3936327=7=2<202274223:20313730373233393238342>353639353334357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203237322>3031317=7=2<202274223:20313730373233393238352>313039373237317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236362>3338387=7=2<202274223:20313730373233393238352>363235323039337=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =6.555857419967651, total / elapsed =319.1039502519142 in_token_count =117 out_token_count =1975 +[7;227461736;223:2022747261696>222<202272617465223:203331392>313033393530323531393134322<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393239312>393435353930377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203238382>3439317=7=2<202274223:20313730373233393238352>373734333230387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238372>36377=7=2<202274223:20313730373233393238362>323935373935377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203239302>3631317=7=2<202274223:20313730373233393238362>383038363436377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203239312>3935397=7=2<202274223:20313730373233393238372>333232353735337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203239302>3730347=7=2<202274223:20313730373233393238372>383531363533387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238322>3839387=7=2<202274223:20313730373233393238382>333634393835377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238362>31337=7=2<202274223:20313730373233393238382>383738383637317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238362>3930347=7=2<202274223:20313730373233393238392>333931313636377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203239322>337=7=2<202274223:20313730373233393238392>393033383638347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238372>3233397=7=2<202274223:20313730373233393239302>343431343030337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238362>3930347=7=2<202274223:20313730373233393239302>393537333035377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203239322>3234367=7=2<202274223:20313730373233393239312>343639373237337=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =6.571342468261719, total / elapsed =309.22144292648835 in_token_count =117 out_token_count =1915 +[7;227461736;223:2022747261696>222<202272617465223:203330392>32323134343239323634383833352<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393239322>323939363435377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39382<202274656=7065726174757265223:2034362<2022706?776572223:203236392>3630397=7=2<202274223:20313730373233393238362>313337363737377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203237322>3538357=7=2<202274223:20313730373233393238362>363531303633347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203237332>3634327=7=2<202274223:20313730373233393238372>313633353538327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236342>3830357=7=2<202274223:20313730373233393238372>363934383031387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236322>36397=7=2<202274223:20313730373233393238382>323036393837367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236382>3031397=7=2<202274223:20313730373233393238382>3732303537387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203237302>3133357=7=2<202274223:20313730373233393238392>3233333330327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203237302>3935347=7=2<202274223:20313730373233393238392>373437313737387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236362>31357=7=2<202274223:20313730373233393239302>323933313237387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236352>3333317=7=2<202274223:20313730373233393239302>3830353231347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236392>3839367=7=2<202274223:20313730373233393239312>333139363533337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236392>3037377=7=2<202274223:20313730373233393239312>383331373736317=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =8.94868016242981, total / elapsed =218.46797119958353 in_token_count =6 out_token_count =1949 +[7;227461736;223:2022747261696>222<202272617465223:203231382>34363739373131393935383335332<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393330302>383935333336327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39362<202274656=7065726174757265223:2035372<2022706?776572223:203239322>30367=7=2<202274223:20313730373233393239312>3938333732367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238362>3930347=7=2<202274223:20313730373233393239322>343936323932367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238392>3833387=7=2<202274223:20313730373233393239332>3033313730347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238322>33377=7=2<202274223:20313730373233393239332>3534343933377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238372>34337=7=2<202274223:20313730373233393239342>303537313038367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238322>3034317=7=2<202274223:20313730373233393239342>353639313036337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238382>3030367=7=2<202274223:20313730373233393239352>3038323734337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203239332>3036377=7=2<202274223:20313730373233393239352>363137303235317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238342>3533347=7=2<202274223:20313730373233393239362>313239373437347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238392>3331317=7=2<202274223:20313730373233393239362>363431393035357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203239312>3935397=7=2<202274223:20313730373233393239372>313536343630337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203239352>3731347=7=2<202274223:20313730373233393239372>363639323334357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203239362>3334377=7=2<202274223:20313730373233393239382>323232343639387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203239332>3833337=7=2<202274223:20313730373233393239382>373334363835347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203239332>3036377=7=2<202274223:20313730373233393239392>323439363130347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203239312>3935397=7=2<202274223:20313730373233393239392>373631373731377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203239332>3430397=7=2<202274223:20313730373233393330302>323735343831377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203238392>3036387=7=2<202274223:20313730373233393330302>383133323735367=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =8.967316627502441, total / elapsed =220.46729050880296 in_token_count =6 out_token_count =1971 +[7;227461736;223:2022747261696>222<202272617465223:203232302>34363732393035303838303239362<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393330312>323637303335357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236362>3338387=7=2<202274223:20313730373233393239322>333436303532327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236362>3936327=7=2<202274223:20313730373233393239322>383839373537367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203235382>3635377=7=2<202274223:20313730373233393239332>343035313531317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203237322>3031317=7=2<202274223:20313730373233393239332>3932313330377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236362>31357=7=2<202274223:20313730373233393239342>343333313939367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203237302>3133357=7=2<202274223:20313730373233393239342>3934373636357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236362>31357=7=2<202274223:20313730373233393239352>343738333933337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203237322>3031317=7=2<202274223:20313730373233393239352>393934313631317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203237332>3131377=7=2<202274223:20313730373233393239362>353036333335357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203237322>3538357=7=2<202274223:20313730373233393239372>303231313538377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203235372>3330367=7=2<202274223:20313730373233393239372>353333343036377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236372>3230377=7=2<202274223:20313730373233393239382>303636383037337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236392>3336347=7=2<202274223:20313730373233393239382>353830333532357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236372>3733337=7=2<202274223:20313730373233393239392>303935313738367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236382>3031397=7=2<202274223:20313730373233393239392>3630373837397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236392>3630397=7=2<202274223:20313730373233393330302>313230363538367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203237302>3432317=7=2<202274223:20313730373233393330302>363537383531357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236372>3439347=7=2<202274223:20313730373233393330312>313639393036397=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =7.110152721405029, total / elapsed =290.00783538620396 in_token_count =91 out_token_count =1971 +[7;227461736;223:2022747261696>222<202272617465223:203239302>30303738333533383632303339362<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393330382>303036363435347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203239302>3431377=7=2<202274223:20313730373233393330312>3332373538387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203239332>3539337=7=2<202274223:20313730373233393330312>383339373337377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203238382>37337=7=2<202274223:20313730373233393330322>333536323037387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203239332>3131357=7=2<202274223:20313730373233393330322>383735343133327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203238392>3335357=7=2<202274223:20313730373233393330332>343135343834347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203239312>3138367=7=2<202274223:20313730373233393330332>393237343139327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203238392>3535317=7=2<202274223:20313730373233393330342>343431393337347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203239322>3234367=7=2<202274223:20313730373233393330342>393534303333317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203239312>3935397=7=2<202274223:20313730373233393330352>343734353638317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203239332>3430397=7=2<202274223:20313730373233393330362>303134303733387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203239352>3532357=7=2<202274223:20313730373233393330362>353335393930357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203239332>3131357=7=2<202274223:20313730373233393330372>303438303435397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203239322>3737337=7=2<202274223:20313730373233393330372>353634333938387=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =7.124405860900879, total / elapsed =290.129456456686 in_token_count =91 out_token_count =1976 +[7;227461736;223:2022747261696>222<202272617465223:203239302>3132393435363435363638362<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393330382>333932323739397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236392>3037377=7=2<202274223:20313730373233393330312>363834333630377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236332>3436317=7=2<202274223:20313730373233393330322>3230343138357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203237302>3231327=7=2<202274223:20313730373233393330322>3731363437367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203237332>3131377=7=2<202274223:20313730373233393330332>323539333131347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203237332>3131377=7=2<202274223:20313730373233393330332>373731333333377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236322>31317=7=2<202274223:20313730373233393330342>3238333335397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236322>36397=7=2<202274223:20313730373233393330342>3739353632367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236312>3538347=7=2<202274223:20313730373233393330352>333038313439387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236392>3839367=7=2<202274223:20313730373233393330352>383538333137317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236382>3034377=7=2<202274223:20313730373233393330362>333730333239347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236382>3031397=7=2<202274223:20313730373233393330362>3838353135397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236322>3430337=7=2<202274223:20313730373233393330372>333937313438317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236392>3839367=7=2<202274223:20313730373233393330372>393130313937377=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =8.878129005432129, total / elapsed =222.56941736158308 in_token_count =9 out_token_count =1967 +[7;227461736;223:2022747261696>222<202272617465223:203232322>35363934313733363135383330382<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393331362>383835393430337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2035392<2022706?776572223:203234312>3832337=7=2<202274223:20313730373233393330382>303736343333327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203239362>32347=7=2<202274223:20313730373233393330382>363033313334397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203238372>36377=7=2<202274223:20313730373233393330392>313230383735347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203239332>3833337=7=2<202274223:20313730373233393330392>363337363132387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203238382>3832387=7=2<202274223:20313730373233393331302>313439373336367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203239312>3731397=7=2<202274223:20313730373233393331302>3636343035347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203238332>3931357=7=2<202274223:20313730373233393331312>313938313031387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203239312>3731397=7=2<202274223:20313730373233393331312>373132343031397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203239322>3234367=7=2<202274223:20313730373233393331322>323330323233347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203239302>3730347=7=2<202274223:20313730373233393331322>3734333939347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203239302>3935317=7=2<202274223:20313730373233393331332>323537303439337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203239312>3935397=7=2<202274223:20313730373233393331332>373835313638327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203239322>3234367=7=2<202274223:20313730373233393331342>3239373131317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203239312>3432357=7=2<202274223:20313730373233393331342>3831353639397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203238392>38397=7=2<202274223:20313730373233393331352>333330313537337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203238362>3930347=7=2<202274223:20313730373233393331352>3834343138327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203239302>3839387=7=2<202274223:20313730373233393331362>333836323432397=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =8.900080442428589, total / elapsed =228.20018460931973 in_token_count =9 out_token_count =2022 +[7;227461736;223:2022747261696>222<202272617465223:203232382>32303031383436303933313937332<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393331372>3239323433387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034372<2022706?776572223:203333352>33327=7=2<202274223:20313730373233393330382>343532323031347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203237332>3131377=7=2<202274223:20313730373233393330382>393634323530387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236382>3031397=7=2<202274223:20313730373233393330392>343830353730387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203237332>3131377=7=2<202274223:20313730373233393330392>393932353538357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236382>3031397=7=2<202274223:20313730373233393331302>353134383630367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236392>3037377=7=2<202274223:20313730373233393331312>303430353432317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236372>3733337=7=2<202274223:20313730373233393331312>353532353436357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203237342>3137357=7=2<202274223:20313730373233393331322>303635303234367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236362>31357=7=2<202274223:20313730373233393331322>353738343831327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236342>3830357=7=2<202274223:20313730373233393331332>3039303339367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236382>3833387=7=2<202274223:20313730373233393331332>363238363438337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236342>3531327=7=2<202274223:20313730373233393331342>313437303838357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236372>3439347=7=2<202274223:20313730373233393331342>363630323630377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236382>3031397=7=2<202274223:20313730373233393331352>313734323039347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236392>3135337=7=2<202274223:20313730373233393331352>363837353036327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203236332>3436317=7=2<202274223:20313730373233393331362>323332383538327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034352<2022706?776572223:203237302>3432317=7=2<202274223:20313730373233393331362>373435373131337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236382>3031397=7=2<202274223:20313730373233393331372>323537383637387=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =3.1765854358673096, total / elapsed =609.1446425937803 in_token_count =273 out_token_count =1662 +[7;227461736;223:2022747261696>222<202272617465223:203630392>313434363432353933373830332<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393332302>3036333439347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035372<2022706?776572223:203238352>3739367=7=2<202274223:20313730373233393331362>393030343834367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39382<202274656=7065726174757265223:2035392<2022706?776572223:203238382>3135337=7=2<202274223:20313730373233393331372>343133393335377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203239312>3138367=7=2<202274223:20313730373233393331372>39333836397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203238372>3736377=7=2<202274223:20313730373233393331382>343530363530357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203239322>3234367=7=2<202274223:20313730373233393331382>393738393733327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203238392>3036387=7=2<202274223:20313730373233393331392>343937343532337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203239312>3935397=7=2<202274223:20313730373233393332302>303039373830327=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =3.1843204498291016, total / elapsed =594.1613068815172 in_token_count =273 out_token_count =1619 +[7;227461736;223:2022747261696>222<202272617465223:203539342>313631333036383831353137322<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393332302>343737353739367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034372<2022706?776572223:203236382>3535327=7=2<202274223:20313730373233393331372>383338313832327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203237332>3838317=7=2<202274223:20313730373233393331382>333530333430317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203237302>3731357=7=2<202274223:20313730373233393331382>383633343436357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236382>3535327=7=2<202274223:20313730373233393331392>333737303835327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236372>3733337=7=2<202274223:20313730373233393331392>3838393736347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203237302>3339387=7=2<202274223:20313730373233393332302>3430313733317=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =3.2655043601989746, total / elapsed =648.9043548148514 in_token_count =269 out_token_count =1850 +[7;227461736;223:2022747261696>222<202272617465223:203634382>393034333534383134383531342<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393332332>333330303239327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2036302<2022706?776572223:203239382>3132317=7=2<202274223:20313730373233393332302>3534303837357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239372>3334387=7=2<202274223:20313730373233393332312>30353736387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203239372>3334387=7=2<202274223:20313730373233393332312>353935353335387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203239382>3934327=7=2<202274223:20313730373233393332322>313132343530317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203239372>3933367=7=2<202274223:20313730373233393332322>363237323932367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203239342>3132377=7=2<202274223:20313730373233393332332>313435343434327=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =3.273555278778076, total / elapsed =646.0865389111341 in_token_count =269 out_token_count =1846 +[7;227461736;223:2022747261696>222<202272617465223:203634362>303836353338393131313334312<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393332332>373532303433327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2034372<2022706?776572223:203237352>3531397=7=2<202274223:20313730373233393332302>393134373132347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236342>3237337=7=2<202274223:20313730373233393332312>343236373032337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236352>3333317=7=2<202274223:20313730373233393332312>393431323933377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203237302>3731357=7=2<202274223:20313730373233393332322>3435393239327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236372>3439347=7=2<202274223:20313730373233393332322>393733393834357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236332>3135327=7=2<202274223:20313730373233393332332>343933343332387=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =4.483115196228027, total / elapsed =406.85994451685394 in_token_count =213 out_token_count =1611 +[7;227461736;223:2022747261696>222<202272617465223:203430362>38353939343435313638353339342<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393332372>383134333033327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2036312<2022706?776572223:203330352>3436327=7=2<202274223:20313730373233393332332>3635383538337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239322>3234367=7=2<202274223:20313730373233393332342>313832373136387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239302>3037387=7=2<202274223:20313730373233393332342>363935303930357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203239312>3233397=7=2<202274223:20313730373233393332352>323132303837327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203239302>3037387=7=2<202274223:20313730373233393332352>3732343332387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203239342>3934317=7=2<202274223:20313730373233393332362>323337373133387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203239342>3132377=7=2<202274223:20313730373233393332362>373539353834347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203239332>3430397=7=2<202274223:20313730373233393332372>323731363034337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203239382>3639367=7=2<202274223:20313730373233393332372>373837303732377=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =4.494894027709961, total / elapsed =405.7937715006117 in_token_count =213 out_token_count =1611 +[7;227461736;223:2022747261696>222<202272617465223:203430352>373933373731353030363131372<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393332382>3234373031397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2034392<2022706?776572223:203338312>3233397=7=2<202274223:20313730373233393332342>303239363036387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203237312>3437397=7=2<202274223:20313730373233393332342>3534323536367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236342>3830357=7=2<202274223:20313730373233393332352>3035343339347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236322>31317=7=2<202274223:20313730373233393332352>353638363237367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236312>3334367=7=2<202274223:20313730373233393332362>303830363731387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203237342>3938377=7=2<202274223:20313730373233393332362>353934323932347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203237322>3239387=7=2<202274223:20313730373233393332372>313036323939347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236382>3833387=7=2<202274223:20313730373233393332372>363230363839367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236382>3833387=7=2<202274223:20313730373233393332382>313332383335367=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =8.835041284561157, total / elapsed =233.04927885260832 in_token_count =11 out_token_count =2048 +[7;227461736;223:2022747261696>222<202272617465223:203233332>30343932373838353236303833322<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393333362>363530333631337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203239342>3132377=7=2<202274223:20313730373233393332382>323939343536387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203239332>3634397=7=2<202274223:20313730373233393332382>383133383939387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203239362>3334377=7=2<202274223:20313730373233393332392>333530363338347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203239352>3437347=7=2<202274223:20313730373233393332392>383735343839377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203239312>3731397=7=2<202274223:20313730373233393333302>3338373339317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203239332>3131357=7=2<202274223:20313730373233393333302>393030383934397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203239362>3030317=7=2<202274223:20313730373233393333312>3431323735387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203238372>36377=7=2<202274223:20313730373233393333312>393437303237347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203239302>3631317=7=2<202274223:20313730373233393333322>343539323734337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203239322>3737337=7=2<202274223:20313730373233393333322>3937323935397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203239382>34377=7=2<202274223:20313730373233393333332>3438353632337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203239382>3639367=7=2<202274223:20313730373233393333342>3030313032347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203239372>3538387=7=2<202274223:20313730373233393333342>353339303339317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203239372>3838327=7=2<202274223:20313730373233393333352>3035313739337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203239352>3731347=7=2<202274223:20313730373233393333352>3536343231337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203239332>3036377=7=2<202274223:20313730373233393333362>3037383038367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035382<2022706?776572223:203238392>3031377=7=2<202274223:20313730373233393333362>353930313838357=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =8.853619813919067, total / elapsed =224.54092696352285 in_token_count =11 out_token_count =1977 +[7;227461736;223:2022747261696>222<202272617465223:203232342>35343039323639363335323238352<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393333372>313030373130397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203237322>3031317=7=2<202274223:20313730373233393332382>3634373131327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236362>31357=7=2<202274223:20313730373233393332392>313630323139327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236392>3839367=7=2<202274223:20313730373233393332392>363735303337367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203237312>3437397=7=2<202274223:20313730373233393333302>313837313539387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236312>3837317=7=2<202274223:20313730373233393333302>373135373831357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236382>3236357=7=2<202274223:20313730373233393333312>323238353132337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203237332>3634327=7=2<202274223:20313730373233393333312>373435333837367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236382>3535327=7=2<202274223:20313730373233393333322>3235373634377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236342>3531327=7=2<202274223:20313730373233393333322>373733323735347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203237322>3832347=7=2<202274223:20313730373233393333332>333134393535327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203237342>3137357=7=2<202274223:20313730373233393333332>383335323834327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203237342>377=7=2<202274223:20313730373233393333342>333437343536357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236392>3839367=7=2<202274223:20313730373233393333342>383539383837317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203237312>3437397=7=2<202274223:20313730373233393333352>333733353432357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203237302>3731357=7=2<202274223:20313730373233393333352>393132323938347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236372>3733337=7=2<202274223:20313730373233393333362>343234333835357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39362<202274656=7065726174757265223:2034362<2022706?776572223:203236352>3836337=7=2<202274223:20313730373233393333362>393338383930377=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =5.88587498664856, total / elapsed =341.83532687391323 in_token_count =148 out_token_count =1864 +[7;227461736;223:2022747261696>222<202272617465223:203334312>38333533323638373339313332332<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393334322>353337323737327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239332>3833337=7=2<202274223:20313730373233393333372>313239313035367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239372>3036317=7=2<202274223:20313730373233393333372>363432383834357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239372>3538387=7=2<202274223:20313730373233393333382>3135343936377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239382>34377=7=2<202274223:20313730373233393333382>363639323239357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239312>3935397=7=2<202274223:20313730373233393333392>313831383337387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239372>3136397=7=2<202274223:20313730373233393333392>3732323832327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239362>3538377=7=2<202274223:20313730373233393334302>323334383034367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239342>3132377=7=2<202274223:20313730373233393334302>373438373030347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203238392>3833387=7=2<202274223:20313730373233393334312>3236303638377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239332>3036377=7=2<202274223:20313730373233393334312>3738303138387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239352>3437347=7=2<202274223:20313730373233393334322>333137343133367=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =5.896437883377075, total / elapsed =328.67301213559915 in_token_count =148 out_token_count =1790 +[7;227461736;223:2022747261696>222<202272617465223:203332382>36373330313231333535393931352<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393334322>393937323137377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39362<202274656=7065726174757265223:2034372<2022706?776572223:203236392>3336347=7=2<202274223:20313730373233393333372>3435303839327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236392>3839367=7=2<202274223:20313730373233393333372>3936343639317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203237332>3634327=7=2<202274223:20313730373233393333382>3530373433317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236312>3538347=7=2<202274223:20313730373233393333392>303139383430377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236392>3839367=7=2<202274223:20313730373233393333392>3533353238387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236382>3535327=7=2<202274223:20313730373233393334302>303437353335327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236382>3833387=7=2<202274223:20313730373233393334302>3536323736357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236362>3936327=7=2<202274223:20313730373233393334312>303931303431337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236362>31357=7=2<202274223:20313730373233393334312>363033313737387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236372>3733337=7=2<202274223:20313730373233393334322>313234353734327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236392>3839367=7=2<202274223:20313730373233393334322>3634303932327=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =6.711548566818237, total / elapsed =303.20871252589893 in_token_count =110 out_token_count =1925 +[7;227461736;223:2022747261696>222<202272617465223:203330332>32303837313235323538393839332<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393334392>323439383236327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2035392<2022706?776572223:203239392>3436397=7=2<202274223:20313730373233393334322>3832393534377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239322>3832377=7=2<202274223:20313730373233393334332>333435363331317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239352>3532357=7=2<202274223:20313730373233393334332>3835383630367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239372>3334387=7=2<202274223:20313730373233393334342>333731333839327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239372>3538387=7=2<202274223:20313730373233393334342>393034363534377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239342>3336367=7=2<202274223:20313730373233393334352>343235373437347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203238392>3031377=7=2<202274223:20313730373233393334352>393430363430377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239322>3538387=7=2<202274223:20313730373233393334362>343532393831327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239342>3132377=7=2<202274223:20313730373233393334362>393636393838337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239342>3731317=7=2<202274223:20313730373233393334372>3530343538347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239342>3934317=7=2<202274223:20313730373233393334382>303136383230377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239332>3330367=7=2<202274223:20313730373233393334382>3533313039387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239382>3132317=7=2<202274223:20313730373233393334392>3034333034357=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =6.7264509201049805, total / elapsed =301.9422908341539 in_token_count =110 out_token_count =1921 +[7;227461736;223:2022747261696>222<202272617465223:203330312>393432323930383334313533392<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393334392>373234353538387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39362<202274656=7065726174757265223:2034382<2022706?776572223:203332352>3134347=7=2<202274223:20313730373233393334332>3135323836387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236372>3230377=7=2<202274223:20313730373233393334332>363830383332317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236362>31357=7=2<202274223:20313730373233393334342>313934313130397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203237302>3935347=7=2<202274223:20313730373233393334342>373037353133337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236382>3031397=7=2<202274223:20313730373233393334352>3232323237317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236382>3236357=7=2<202274223:20313730373233393334352>373334333335347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236362>3338387=7=2<202274223:20313730373233393334362>323736323234397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236332>3734387=7=2<202274223:20313730373233393334362>373838343334337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236352>3333317=7=2<202274223:20313730373233393334372>333032383237317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203237322>3031317=7=2<202274223:20313730373233393334372>383135343737367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236392>3630397=7=2<202274223:20313730373233393334382>333239373338317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236392>3630397=7=2<202274223:20313730373233393334382>383638373032377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236392>3037377=7=2<202274223:20313730373233393334392>333831343736397=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =8.945547580718994, total / elapsed =223.79848544040613 in_token_count =6 out_token_count =1996 +[7;227461736;223:2022747261696>222<202272617465223:203232332>37393834383534343034303631332<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393335382>313936333339367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239372>3838327=7=2<202274223:20313730373233393334392>353537303437317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239312>3432357=7=2<202274223:20313730373233393335302>313030353637367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239372>3838327=7=2<202274223:20313730373233393335302>3631323635377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239362>3334377=7=2<202274223:20313730373233393335312>313236373433387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239372>3838327=7=2<202274223:20313730373233393335312>363338383835337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239332>3634397=7=2<202274223:20313730373233393335322>3135333934337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239382>3430397=7=2<202274223:20313730373233393335322>363932333931367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239352>3731347=7=2<202274223:20313730373233393335332>3230353538357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239372>3334387=7=2<202274223:20313730373233393335332>373137373334367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239382>3430397=7=2<202274223:20313730373233393335342>323332303331367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203238392>3031377=7=2<202274223:20313730373233393335342>373434313238377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203238382>3439317=7=2<202274223:20313730373233393335352>323834383435347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203238362>3930347=7=2<202274223:20313730373233393335352>373937303337347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203238392>36357=7=2<202274223:20313730373233393335362>333039323133397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239322>3234367=7=2<202274223:20313730373233393335362>383233343633327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239332>3330367=7=2<202274223:20313730373233393335372>333335363139327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239382>3132317=7=2<202274223:20313730373233393335372>3837333030377=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =8.966439962387085, total / elapsed =212.01279526483412 in_token_count =6 out_token_count =1895 +[7;227461736;223:2022747261696>222<202272617465223:203231322>30313237393532363438333431322<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393335382>363931383037377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034362<2022706?776572223:203237312>3737337=7=2<202274223:20313730373233393334392>383933363136347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203237302>3432317=7=2<202274223:20313730373233393335302>343038303733347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203237302>3133357=7=2<202274223:20313730373233393335302>3932303138327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236382>3031397=7=2<202274223:20313730373233393335312>343536393533387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236392>3839367=7=2<202274223:20313730373233393335312>3937313939317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236332>3734387=7=2<202274223:20313730373233393335322>3438343134357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236382>3833387=7=2<202274223:20313730373233393335322>393938343035327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203237312>3737337=7=2<202274223:20313730373233393335332>353130333437347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236362>3338387=7=2<202274223:20313730373233393335342>3034393730327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236382>3836377=7=2<202274223:20313730373233393335342>3536313932347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203237312>3437397=7=2<202274223:20313730373233393335352>303736363231387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203237302>3432317=7=2<202274223:20313730373233393335352>3538383932397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203237312>3437397=7=2<202274223:20313730373233393335362>313033323233387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236302>32347=7=2<202274223:20313730373233393335362>363433393533337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236372>3439347=7=2<202274223:20313730373233393335372>313538303032367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203237302>3731357=7=2<202274223:20313730373233393335372>3637303337397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236342>3830357=7=2<202274223:20313730373233393335382>313834373532357=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =3.0618157386779785, total / elapsed =621.5266242055675 in_token_count =278 out_token_count =1625 +[7;227461736;223:2022747261696>222<202272617465223:203632312>353236363234323035353637352<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393336312>3235393232337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39362<202274656=7065726174757265223:2036352<2022706?776572223:203430312>3432317=7=2<202274223:20313730373233393335382>333835373734397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2036302<2022706?776572223:203239382>3132317=7=2<202274223:20313730373233393335382>383938333034357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239352>31387=7=2<202274223:20313730373233393335392>3431303337317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239352>31387=7=2<202274223:20313730373233393335392>393233313739317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239372>3538387=7=2<202274223:20313730373233393336302>343730303335387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239352>3437347=7=2<202274223:20313730373233393336302>393832303437387=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =3.0696775913238525, total / elapsed =651.2084544806858 in_token_count =278 out_token_count =1721 +[7;227461736;223:2022747261696>222<202272617465223:203635312>323038343534343830363835382<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393336312>3736323333367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236392>3839367=7=2<202274223:20313730373233393335382>363937313733387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034372<2022706?776572223:203236382>3031397=7=2<202274223:20313730373233393335392>323334323536337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236392>3630397=7=2<202274223:20313730373233393335392>373437363238377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236392>3839367=7=2<202274223:20313730373233393336302>323631323735357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236382>3833387=7=2<202274223:20313730373233393336302>373734313630367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236382>35387=7=2<202274223:20313730373233393336312>323933393931367=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =8.946122407913208, total / elapsed =221.21315915032577 in_token_count =6 out_token_count =1973 +[7;227461736;223:2022747261696>222<202272617465223:203232312>32313331353931353033323537372<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393337302>323036343030347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2035392<2022706?776572223:203239332>3036377=7=2<202274223:20313730373233393336312>343934323931387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203238382>3439317=7=2<202274223:20313730373233393336322>303039303836347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239362>3838317=7=2<202274223:20313730373233393336322>353231323031347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239352>38327=7=2<202274223:20313730373233393336332>3035333937347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239322>3832377=7=2<202274223:20313730373233393336332>353636353535357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239392>3034357=7=2<202274223:20313730373233393336342>303738373332337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203238382>37337=7=2<202274223:20313730373233393336342>3539323136317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239332>3330367=7=2<202274223:20313730373233393336352>313034303136337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239372>3538387=7=2<202274223:20313730373233393336352>363530363133337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239372>3838327=7=2<202274223:20313730373233393336362>313632373135347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239332>3833337=7=2<202274223:20313730373233393336362>363734393330337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239362>32347=7=2<202274223:20313730373233393336372>313839333831367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239342>3635347=7=2<202274223:20313730373233393336372>3730313736357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239342>3132377=7=2<202274223:20313730373233393336382>323431303230347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239312>3233397=7=2<202274223:20313730373233393336382>373533303637337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239332>3430397=7=2<202274223:20313730373233393336392>323638323838347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239362>3030317=7=2<202274223:20313730373233393336392>373830333430327=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =8.966529846191406, total / elapsed =226.28598073108867 in_token_count =6 out_token_count =2023 +[7;227461736;223:2022747261696>222<202272617465223:203232362>32383539383037333130383836372<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393337302>373239373637367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034362<2022706?776572223:203234352>3030397=7=2<202274223:20313730373233393336312>383330373334357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203237302>3432317=7=2<202274223:20313730373233393336322>3334343235367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236382>35387=7=2<202274223:20313730373233393336322>383536333939337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236382>3031397=7=2<202274223:20313730373233393336332>3337303439357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203237372>3338397=7=2<202274223:20313730373233393336332>383833313237327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236392>3839367=7=2<202274223:20313730373233393336342>343137303636387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203237332>3335367=7=2<202274223:20313730373233393336342>393239303536327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236372>3230377=7=2<202274223:20313730373233393336352>343434393038397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236342>3531327=7=2<202274223:20313730373233393336352>393537343335317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236332>3938367=7=2<202274223:20313730373233393336362>343639383832327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203237312>32347=7=2<202274223:20313730373233393336372>30313238367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203237322>3031317=7=2<202274223:20313730373233393336372>353234363539367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203237342>377=7=2<202274223:20313730373233393336382>30333932347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236372>3439347=7=2<202274223:20313730373233393336382>353531313434347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236382>3236357=7=2<202274223:20313730373233393336392>303636383038357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236382>3031397=7=2<202274223:20313730373233393336392>363038343739337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236382>3833387=7=2<202274223:20313730373233393337302>313230343830387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236372>3439347=7=2<202274223:20313730373233393337302>363334343937327=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =1.58854341506958, total / elapsed =1392.4705985471048 in_token_count =344 out_token_count =1868 +[7;227461736;223:2022747261696>222<202272617465223:20313339322>343730353938353437313034382<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393337312>373935383233337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2036322<2022706?776572223:203239352>3731347=7=2<202274223:20313730373233393337302>323933303238387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2036302<2022706?776572223:203238392>3833387=7=2<202274223:20313730373233393337302>383733343937327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239382>3934327=7=2<202274223:20313730373233393337312>33383533397=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =1.5912888050079346, total / elapsed =1386.2976934529495 in_token_count =344 out_token_count =1862 +[7;227461736;223:2022747261696>222<202272617465223:20313338362>323937363933343532393439352<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393337322>333231313237347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2034382<2022706?776572223:203236342>3531327=7=2<202274223:20313730373233393337312>313436343435357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203235392>3436397=7=2<202274223:20313730373233393337312>363539383936397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203237302>3731357=7=2<202274223:20313730373233393337322>3137353930347=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =6.825048208236694, total / elapsed =307.3970961066713 in_token_count =105 out_token_count =1993 +[7;227461736;223:2022747261696>222<202272617465223:203330372>333937303936313036363731332<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393337382>363231373930367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2036332<2022706?776572223:203237362>3139347=7=2<202274223:20313730373233393337312>383937353638327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239372>3838327=7=2<202274223:20313730373233393337322>343130323639357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239332>3539337=7=2<202274223:20313730373233393337322>393233393132387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239372>3538387=7=2<202274223:20313730373233393337332>343536353336337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239342>3731317=7=2<202274223:20313730373233393337332>393638353931327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239312>3432357=7=2<202274223:20313730373233393337342>343833393935377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239312>3935397=7=2<202274223:20313730373233393337342>3939363134347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239342>3336367=7=2<202274223:20313730373233393337352>353131393439357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203238382>3439317=7=2<202274223:20313730373233393337362>303532313435327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239372>3334387=7=2<202274223:20313730373233393337362>35363435347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239342>3336367=7=2<202274223:20313730373233393337372>3038303130397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239332>3634397=7=2<202274223:20313730373233393337372>353932333432367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239312>3532367=7=2<202274223:20313730373233393337382>3130373235317=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =6.841781854629517, total / elapsed =297.29097524845616 in_token_count =105 out_token_count =1929 +[7;227461736;223:2022747261696>222<202272617465223:203239372>32393039373532343834353631362<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393337392>313632393932357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236372>3230377=7=2<202274223:20313730373233393337322>363838333832347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203237302>3133357=7=2<202274223:20313730373233393337332>323030383332367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236352>3039327=7=2<202274223:20313730373233393337332>3731333130387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236392>3336347=7=2<202274223:20313730373233393337342>3232363238387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236362>3338387=7=2<202274223:20313730373233393337342>373539383232387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236312>3334367=7=2<202274223:20313730373233393337352>323731393630357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236302>3532377=7=2<202274223:20313730373233393337352>373838313530357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236302>3831337=7=2<202274223:20313730373233393337362>333030333035347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236302>3831337=7=2<202274223:20313730373233393337362>3832313039377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203237302>3731357=7=2<202274223:20313730373233393337372>333537363832357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203235382>3635377=7=2<202274223:20313730373233393337372>383730303335347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236382>3031397=7=2<202274223:20313730373233393337382>3338333537367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236382>3236357=7=2<202274223:20313730373233393337382>383935363738357=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =8.704673051834106, total / elapsed =229.30212175854618 in_token_count =17 out_token_count =1979 +[7;227461736;223:2022747261696>222<202272617465223:203232392>33303231323137353835343631382<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393338372>33323735327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239382>3639367=7=2<202274223:20313730373233393337382>363435353738397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239372>3838327=7=2<202274223:20313730373233393337392>313630333839327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239332>3036377=7=2<202274223:20313730373233393337392>363735343033367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239392>3436397=7=2<202274223:20313730373233393338302>313837363239357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239352>3437347=7=2<202274223:20313730373233393338302>373031303738347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239382>3430397=7=2<202274223:20313730373233393338312>323436343436347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239332>3833337=7=2<202274223:20313730373233393338312>373538343638327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203238372>3134337=7=2<202274223:20313730373233393338322>323732373839377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239352>3238367=7=2<202274223:20313730373233393338322>373834383434397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239362>3334377=7=2<202274223:20313730373233393338332>323937343533327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239362>3533357=7=2<202274223:20313730373233393338332>38303937317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239362>3832327=7=2<202274223:20313730373233393338342>333233363430387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239382>3132317=7=2<202274223:20313730373233393338342>383335363738387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239372>3639367=7=2<202274223:20313730373233393338352>333530353634327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239352>3731347=7=2<202274223:20313730373233393338352>383632353931357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239332>3430397=7=2<202274223:20313730373233393338362>333737303137337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203238362>3934357=7=2<202274223:20313730373233393338362>383839303930357=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =8.726301431655884, total / elapsed =232.2862688018973 in_token_count =17 out_token_count =2010 +[7;227461736;223:2022747261696>222<202272617465223:203233322>323836323638383031383937332<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393338372>383930313739347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034362<2022706?776572223:203236342>3531327=7=2<202274223:20313730373233393337392>343037373232357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236342>3531327=7=2<202274223:20313730373233393337392>393531383532367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236392>3839367=7=2<202274223:20313730373233393338302>3436393438337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236322>31317=7=2<202274223:20313730373233393338302>393832363332397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236332>3233377=7=2<202274223:20313730373233393338312>3530313630357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236372>3230377=7=2<202274223:20313730373233393338322>3031333631377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236392>3839367=7=2<202274223:20313730373233393338322>353534373331387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236352>3039327=7=2<202274223:20313730373233393338332>3037303237377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236352>3333317=7=2<202274223:20313730373233393338332>353834303237387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236312>3334367=7=2<202274223:20313730373233393338342>303936353932347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203237302>3935347=7=2<202274223:20313730373233393338342>363130353436367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203237302>3731357=7=2<202274223:20313730373233393338352>313338353337327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236382>3535327=7=2<202274223:20313730373233393338352>363533313432377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236372>3230377=7=2<202274223:20313730373233393338362>313635333233337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236322>3430337=7=2<202274223:20313730373233393338362>363739303630327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203237302>3432317=7=2<202274223:20313730373233393338372>3139313233337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203237342>3137357=7=2<202274223:20313730373233393338372>373537343236337=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =4.420693635940552, total / elapsed =476.62203570723403 in_token_count =216 out_token_count =1891 +[7;227461736;223:2022747261696>222<202272617465223:203437362>36323230333537303732333430332<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393339312>373439323138327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2036332<2022706?776572223:203339392>3038317=7=2<202274223:20313730373233393338372>3430333634377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2036302<2022706?776572223:203238342>3230327=7=2<202274223:20313730373233393338372>393438323730387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239322>3234367=7=2<202274223:20313730373233393338382>343539383234387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203238392>38397=7=2<202274223:20313730373233393338382>393833353635387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203238362>3930347=7=2<202274223:20313730373233393338392>343938363131327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239382>3132317=7=2<202274223:20313730373233393339302>303131323534337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239382>3132317=7=2<202274223:20313730373233393339302>353235353337357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239362>3030317=7=2<202274223:20313730373233393339312>3033393336337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2035392<2022706?776572223:203239372>3838327=7=2<202274223:20313730373233393339312>353735353735367=z[0:zelapsed =4.431237697601318, total / elapsed =484.74041488741125 in_token_count =216 out_token_count =1932 +[7;227461736;223:2022747261696>222<202272617465223:203438342>37343034313438383734313132352<2022756>697473223:2022546?6;2?73222<202274223:20313730373233393339322>333231353637387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2034372<2022706?776572223:203236392>3839367=7=2<202274223:20313730373233393338382>3237323031337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203237312>32347=7=2<202274223:20313730373233393338382>3738353130367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236342>3830357=7=2<202274223:20313730373233393338392>333031353334377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236342>3830357=7=2<202274223:20313730373233393338392>383133373437327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203237302>3731357=7=2<202274223:20313730373233393339302>333438363239327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236362>3338387=7=2<202274223:20313730373233393339302>383630373333377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203236342>3830357=7=2<202274223:20313730373233393339312>333733323838347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234392>343337352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034362<2022706?776572223:203237322>3131367=7=2<202274223:20313730373233393339312>3838353337347=z[0:z +real 5m8.730s +user 9m25.050s +sys 1m6.798s +--- +fp16 +==== +[7;227461736;223:2022747261696>222<202272617465223:203233362>30373834333633333038373937382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393339342>373534393934367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;3639342>3132352<2038313932302>305=2<20226<6?6164223:20302<202274656=7065726174757265223:2035302<2022706?776572223:203130342>3332387=7=2<202274223:20313730373233393339342>323230353538367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20302>31362<202274656=7065726174757265223:2036312<2022706?776572223:203433362>30347=7=2<202274223:20313730373233393339342>373432363838347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203234372>393830373732303331323934382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393339342>373833303133387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;3639332>353632352<2038313932302>305=2<20226<6?6164223:20302<202274656=7065726174757265223:2033382<2022706?776572223:2038392>3732347=7=2<202274223:20313730373233393339342>323137393233397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20302>33362<202274656=7065726174757265223:2034382<2022706?776572223:203430362>3030357=7=2<202274223:20313730373233393339342>373339393932347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>303533343838303633313732362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393339342>393739393931347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>343438323338313631373138382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393339352>303036383531377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>34383335373435323030303735352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393339352>3230333335377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>343635353839373831343835392<2022756>697473223:202254666<6?7073222<202274223:20313730373233393339352>323330323139317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>31343132393430313433363638352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393339352>3432363937347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036372<2022706?776572223:203435362>3632347=7=2<202274223:20313730373233393339352>323634333631347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>34383034313931343433363333342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393339352>343533353732387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203431322>34317=7=2<202274223:20313730373233393339352>3236313535397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>34383133363537343939383035372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393339352>363530343232387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>313830363530353532383534312<2022756>697473223:202254666<6?7073222<202274223:20313730373233393339352>363737323534327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>343331353139343338303133332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393339352>3837343437377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2037302<2022706?776572223:203436372>3534367=7=2<202274223:20313730373233393339352>383038353435347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>33323134373534353435323636352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393339352>393030373334327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035352<2022706?776572223:203432302>3633357=7=2<202274223:20313730373233393339352>373834323137347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>34343434353236323436303035362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393339362>303938303636337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>33373838353230353738313531352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393339362>313234333631337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>34373835323539353133323339352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393339362>333231343235347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2037312<2022706?776572223:203437302>3735337=7=2<202274223:20313730373233393339362>333230373034377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>343233303033303739383230382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393339362>33343737367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035362<2022706?776572223:203432322>3236357=7=2<202274223:20313730373233393339362>323936333533387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>343637313637333032353238382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393339362>353434383737337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>343133383536343237313635362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393339362>353731323536367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>343631343838333035363037392<2022756>697473223:202254666<6?7073222<202274223:20313730373233393339362>3736393431397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>34313239313032353430343437332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393339362>3739343636367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>34343033353137333535323431332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393339362>393932383835367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2037322<2022706?776572223:203437312>35377=7=2<202274223:20313730373233393339362>383530353936377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>3336323435363436373733312<2022756>697473223:202254666<6?7073222<202274223:20313730373233393339372>303138313838327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035372<2022706?776572223:203432332>3032367=7=2<202274223:20313730373233393339362>383137373135367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>3437343130383539353234322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393339372>323136333533377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>343136363934393832383934362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393339372>323431363737387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>343136303634313838303138342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393339372>343339373637347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2037332<2022706?776572223:203437332>36387=7=2<202274223:20313730373233393339372>333632373334387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>33363638373034383630303634362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393339372>343635313139387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035372<2022706?776572223:203432332>3630337=7=2<202274223:20313730373233393339372>333332353333387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>343233303033303739383230382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393339372>363633333539327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>333834323132353439333932332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393339372>363839383532357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>343634363433323736393435372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393339372>383836373333387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>3432303437393830383732332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393339372>393133323536347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035382<2022706?776572223:203432342>3336347=7=2<202274223:20313730373233393339372>383734373732337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>343436333435333831303333372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393339382>313130313138367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2037342<2022706?776572223:203437342>3733357=7=2<202274223:20313730373233393339372>383935363339327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>333938373138333834353039322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393339382>313336373536347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>34343630323939313939343430372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393339382>3333333639317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>333839353733323335353335392<2022756>697473223:202254666<6?7073222<202274223:20313730373233393339382>3336303235377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>33303838363831393937373935372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393339382>353537313736387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2037342<2022706?776572223:203437342>3733357=7=2<202274223:20313730373233393339382>343235323430337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>34313438303236303633343735362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393339382>353833363635317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035382<2022706?776572223:203432352>3137397=7=2<202274223:20313730373233393339382>343133353535397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>34373132363839333630373634362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393339382>373831373931377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>34313133333333313233313138352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393339382>383037313634327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>34343139323839383730383037362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393339392>3030353138327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2037352<2022706?776572223:203437372>3431387=7=2<202274223:20313730373233393339382>393434373133387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>34303231383733383232353134342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393339392>303330353735337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035392<2022706?776572223:203432342>3635367=7=2<202274223:20313730373233393339382>3933323438327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>3434393138343536313135362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393339392>3232383735397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>34313733323537383034363436342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393339392>323534303531377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>34373835323539353133323339352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393339392>343532313231357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>333832303035323634353931392<2022756>697473223:202254666<6?7073222<202274223:20313730373233393339392>343737343830347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035392<2022706?776572223:203432352>3137397=7=2<202274223:20313730373233393339392>343438353433387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>343539353935333535313436312<2022756>697473223:202254666<6?7073222<202274223:20313730373233393339392>363735343934377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2037352<2022706?776572223:203437372>3934327=7=2<202274223:20313730373233393339392>343839393130367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>333636353535313934363131362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393339392>373032323336347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>3432383939363032313433342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393339392>383939303534387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>343430303336323837323333362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393339392>393235363232357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>343536373535393734393331392<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430302>313232343635317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2037352<2022706?776572223:203437382>3939377=7=2<202274223:20313730373233393430302>303031393139377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>34323836383035393733393235342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430302>3134393031377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035392<2022706?776572223:203432352>3439327=7=2<202274223:20313730373233393339392>393630363730357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>343832363237393030323338322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430302>333435383936377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>343137363431313830323539382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430302>333732343932387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>34383139393638323337363135362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430302>353639323531387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2037362<2022706?776572223:203438302>3333387=7=2<202274223:20313730373233393430302>3531373034327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>34323538343138313133323839352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430302>3539353838397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036302<2022706?776572223:203432362>3531377=7=2<202274223:20313730373233393430302>3437353330397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>343730393533343231373630362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430302>373933393737357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>33393330343230313834383932372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430302>383139333931377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>343936353132323634373535332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430312>3031373332377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>333735363938393138333538372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430312>303432393038377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036302<2022706?776572223:203432372>3034377=7=2<202274223:20313730373233393430312>3030303335317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>34343139323839383730383037362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430312>323430373134337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2037362<2022706?776572223:203438312>3434317=7=2<202274223:20313730373233393430312>303239303536337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>34323532313039373733393032342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430312>3236363339377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>3434393138343536313135362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430312>343634323931387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>343139383438393937363833352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430312>3438393831367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>34393035313635383336343736362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430312>363837363430347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2037362<2022706?776572223:203438302>3836397=7=2<202274223:20313730373233393430312>353433313336367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>34333731393732383239333232332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430312>373134343537387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036302<2022706?776572223:203432372>3333327=7=2<202274223:20313730373233393430312>353132353333327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>34383335373435323030303735352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430312>393131303637357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>34323734313839303739363232352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430312>393337393335347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>333634393738373437373333382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430322>31333435317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2037372<2022706?776572223:203438312>3634347=7=2<202274223:20313730373233393430322>303834383430337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>34333533303436343337313032352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430322>313631333231397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036302<2022706?776572223:203432372>3034377=7=2<202274223:20313730373233393430322>303238363533397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>333532363833303339353933362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430322>333538303433377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>343330383838353739383237322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430322>3338343738397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>343831303530323134313030392<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430322>353831343035327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>313832383534383239333634362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430322>363038333637377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036302<2022706?776572223:203432362>3939387=7=2<202274223:20313730373233393430322>353432383737327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>3433383737343530303830382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430322>383036303630367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2037372<2022706?776572223:203438332>3337387=7=2<202274223:20313730373233393430322>353936393237367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>323837373533343539333931322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430322>383331393532337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>343435333938393939373835372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430332>303239363432337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>32343936323835313830333135362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430332>303535343739387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>34383630393838363930343530372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430332>323533303437357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2037372<2022706?776572223:203438332>3334347=7=2<202274223:20313730373233393430332>3131313137337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>343134343837323132363133352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430332>323738383831337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203432372>3233367=7=2<202274223:20313730373233393430332>303730313235387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>343839353639393139333938332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430332>343736343836347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>33393032303339313732383630342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430332>3530323337377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>34393834303536383832383635342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430332>37303037347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2037372<2022706?776572223:203438342>3433377=7=2<202274223:20313730373233393430332>363336353233327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>33373235343538343632323033362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430332>3732353931327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203432372>3532327=7=2<202274223:20313730373233393430332>3538323333347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>353032353038313839313739382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430332>393234313537367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>333135313731363932353939352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430332>393439343833397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>353131333434373331383630342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430342>3134373438347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>343333343132303238373337342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430342>3137323837317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203432382>3333397=7=2<202274223:20313730373233393430342>303935353433367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>35303337373035323030363434352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430342>333730383139337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2037382<2022706?776572223:203438342>3638387=7=2<202274223:20313730373233393430342>313438323730347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>34343033353137333535323431332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430342>333936333330347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>34393032303130323832323339362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430342>3539343235377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>343230313634343032383636352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430342>363139373237387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203432382>3333397=7=2<202274223:20313730373233393430342>3630373437337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>34383733363130353937333832352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430342>383138363330357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2037382<2022706?776572223:203437352>33357=7=2<202274223:20313730373233393430342>36363434347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>343230313634343032383636352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430342>383433323032367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>34393134363332353339363237362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430352>303432303539327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>34303530323537313337333430362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430352>303636363133377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>353032353038313839313739382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430352>323635333937387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2037382<2022706?776572223:203438362>3630327=7=2<202274223:20313730373233393430352>313736383333397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>343236343732363437393631372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430352>323930303034357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203432392>3130317=7=2<202274223:20313730373233393430352>313531363931347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>343934333033333031333032382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430352>3438383831347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>34343033353137333535323431332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430352>353133343539377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>35303032393931333630383235362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430352>373133333033387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2037382<2022706?776572223:203438352>3530377=7=2<202274223:20313730373233393430352>363930383136347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>343332373831313632343638342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430352>373336383437347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203432382>3836337=7=2<202274223:20313730373233393430352>3636343435357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>31383835323331323031333431362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430352>393336393734357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>343032383138313137383637332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430352>393630333336347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>343837393932313539313238352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430362>313630343335377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>343130303731373731303437322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430362>313833383332327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036322<2022706?776572223:203432392>3339347=7=2<202274223:20313730373233393430362>313736323237337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>353332313735383136343934352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430362>333833373538337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2037392<2022706?776572223:203530322>3037367=7=2<202274223:20313730373233393430362>323032383730317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>343333343132303238373337342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430362>343037333037367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>353133383639353535343130322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430362>363037313837377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>34343139323839383730383037362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430362>363330363836337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239342>33363037343532393833323537352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430362>3833323532327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2037392<2022706?776572223:203437302>3234377=7=2<202274223:20313730373233393430362>373137333039357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>34323233373232353830303533342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430362>383534303835377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036322<2022706?776572223:203432372>3532327=7=2<202274223:20313730373233393430362>363935393534387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>3532313434343238343932392<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430372>303535393330397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>343330383838353739383237322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430372>303737353531367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239342>333833323933363338303130342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430372>323830313139377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2037392<2022706?776572223:203437392>3338387=7=2<202274223:20313730373233393430372>323239373031357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>34333632353039363032393030372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430372>333030393336327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036322<2022706?776572223:203432392>3633327=7=2<202274223:20313730373233393430372>323038333032357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>35333135343435323833353635362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430372>3530333533337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>34333132303430303835383334352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430372>353234343031347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239332>343537353839343634303339392<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430372>373239343938397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>343433353036323535343738332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430372>373437373835387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>35333533333232393736333935372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430372>393532383134367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2037392<2022706?776572223:203530312>3032357=7=2<202274223:20313730373233393430372>373630343039367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>34323538343138313133323839352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430372>3937313137377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036322<2022706?776572223:203432382>3537377=7=2<202274223:20313730373233393430372>373534313236337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>35313730323536343535313931342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430382>3137363232337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>34313232373934373533333133332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430382>3139343635357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>31333937313939373131313839352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430382>3339393833357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2038302<2022706?776572223:203530352>3636317=7=2<202274223:20313730373233393430382>323736323030387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>3432303437393830383732332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430382>343138303530337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036322<2022706?776572223:203433302>3430337=7=2<202274223:20313730373233393430382>323638373032337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239322>383937383235303334333935322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430382>363235323439347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>34323538343138313133323839352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430382>363431353135377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239342>3631363439353538353731352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430382>38353033397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2037392<2022706?776572223:203439342>3638327=7=2<202274223:20313730373233393430382>373934343235357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>343233363333393034333330322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430382>383634393237357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036322<2022706?776572223:203433302>3430337=7=2<202274223:20313730373233393430382>373835343136317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>34383037333436373838393531352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430392>303733383237377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>34323134323630333033333334362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430392>303838333935367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>34383335373435323030303735352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430392>3239373236347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>343130373032353430333332372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430392>333131383033337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239332>373535313134323634323534362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430392>3532313932397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2038302<2022706?776572223:203530362>3139347=7=2<202274223:20313730373233393430392>333538303937367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>343232303536383438313037392<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430392>353335313937377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036332<2022706?776572223:203433302>3634327=7=2<202274223:20313730373233393430392>333430343932357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239332>353236363938353138303937372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430392>373438303139327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>34313534333333393538333631352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430392>373538363737377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>31383434323933333237343232342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430392>393731363030357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2038302<2022706?776572223:203530352>3133347=7=2<202274223:20313730373233393430392>3837313737347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>343236373838303637323838342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393430392>393832303639337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036332<2022706?776572223:203432392>3334367=7=2<202274223:20313730373233393430392>383532363830327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>353337383537353331313033322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431302>313934393933377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>34333831343336313136333638362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431302>323035353331347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239342>303934313835333139363331362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431302>343139343137347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2038302<2022706?776572223:203437352>3131347=7=2<202274223:20313730373233393431302>333833363433397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>343332373831313632343638342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431302>3432383931367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036332<2022706?776572223:203433302>3634327=7=2<202274223:20313730373233393431302>333634353837337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239332>343834303436323932393032392<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431302>363434333635387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>343231313130363232343536352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431302>363532333836377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>35333135343435323833353635362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431302>3836383837347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>343339373230383339363136382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431302>3837353737377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>35323233393131353334323234362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431312>3039323230377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2038312<2022706?776572223:203530372>3031357=7=2<202274223:20313730373233393431302>3931333430327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>343439353030303238393832342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431312>3039393135337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036332<2022706?776572223:203433302>3932397=7=2<202274223:20313730373233393431302>393130333838357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239342>37313138383837363336353636352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431312>3331363232357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>333938373138333834353039322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431312>333232363436367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239322>373932313338363730353631332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431312>353431363334387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2038312<2022706?776572223:203437392>3938337=7=2<202274223:20313730373233393431312>3433373231357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>3430343339343936383639312<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431312>353436313635357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036332<2022706?776572223:203433302>3932397=7=2<202274223:20313730373233393431312>343332343738377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239342>38303435313638373830393332342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431312>3736363731347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>333330363136333837333537382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431312>373639373532337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>3434323234343433393431332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431312>393930303936337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2038312<2022706?776572223:203530372>3330327=7=2<202274223:20313730373233393431312>393536303731347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>34343434353236323436303035362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431312>3939333133337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036332<2022706?776572223:203433302>3634327=7=2<202274223:20313730373233393431312>393530343838337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>3335373732373330383833332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431322>323133363137337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>34343732393137363833343437372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431322>3231363538337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239332>313736353038313538303935362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431322>343338373339387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>3435343534373630353832382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431322>343339393536347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239342>35373832333031353933323230362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431322>363632373936337=z[7;227461736;223:2022747261696>222<202272617465223:203239352>343732353331303030303738332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431322>3636333331347=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036332<2022706?776572223:203433302>3634327=7=2<202274223:20313730373233393431322>343638393138367=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2038302<2022706?776572223:203437322>3730347=7=2<202274223:20313730373233393431322>343734383434377=z[0:z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>353137363536383731363330362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431322>383837343634337=z[7;227461736;223:2022747261696>222<202272617465223:203239352>34343338323137313131373837372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431322>383837343938397=z[0:z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>34383833303737303938333435342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431332>313130383439397=z[7;227461736;223:2022747261696>222<202272617465223:203239352>343532333339323639373336342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431332>313130383831367=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2038312<2022706?776572223:203530382>3036387=7=2<202274223:20313730373233393431322>3939353433397=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036332<2022706?776572223:203433302>3932397=7=2<202274223:20313730373233393431322>393839363133357=z[0:z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>343430303336323837323333362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431332>333334333934357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239322>38303332393235373431373438362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431332>3333363430327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>343430363637313834343838322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431332>353537373737347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036332<2022706?776572223:203433312>3734387=7=2<202274223:20313730373233393431332>353036373135337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239332>38363634393035353137353232342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431332>3536303939387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2038302<2022706?776572223:203439352>3530337=7=2<202274223:20313730373233393431332>353134323734387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>34333439383932303631393734332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431332>3738323330327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>353233333338303237393833362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431332>373834343133387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>34333738323831363830363137342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431342>303035363934347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>35323432383439303836313234362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431342>3030373735327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>34343437363830383233323139362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431342>323239303738337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036342<2022706?776572223:203433312>3734387=7=2<202274223:20313730373233393431342>3032313537327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239332>323234303432363837303133382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431342>3233323833337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2038312<2022706?776572223:203530392>3432337=7=2<202274223:20313730373233393431342>3033303032317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>34323333313834393137333837372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431342>343532353537387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239332>34393833363630393536363432372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431342>3435373738367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>34343732393137363833343437372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431342>3637353934337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036342<2022706?776572223:203433312>3436317=7=2<202274223:20313730373233393431342>3533363738397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>35323038313330343236333735342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431342>363831313136337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2038312<2022706?776572223:203530352>3432317=7=2<202274223:20313730373233393431342>3534363938327=z[0:z +real 0m22.442s +user 0m23.874s +sys 0m21.704s +--- +bf16 +==== +[7;227461736;223:2022747261696>222<202272617465223:203136362>333034363435323134363235342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431372>3034333336387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;3639342>303632352<2038313932302>305=2<20226<6?6164223:20302<202274656=7065726174757265223:2035362<2022706?776572223:2039362>3830347=7=2<202274223:20313730373233393431362>363638363039347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203137372>33333734313237323132323539322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431372>303633393136347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;3639332>353632352<2038313932302>305=2<20226<6?6164223:20302<202274656=7065726174757265223:2034332<2022706?776572223:2038302>3738377=7=2<202274223:20313730373233393431362>363730373338377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203238302>373932383734383738333730392<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431372>3132333534367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203236382>353430343834333237343137342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431372>313436323432367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>383338363938343035343730342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431372>313937373232377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20302>372<202274656=7065726174757265223:2036362<2022706?776572223:203332372>3831357=7=2<202274223:20313730373233393431372>3138393932367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239302>393133313430373731373636342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431372>3232313932387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20302>38382<202274656=7065726174757265223:2035302<2022706?776572223:203239312>3233397=7=2<202274223:20313730373233393431372>313934373130337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>37383731313937393934323930342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431372>3237323031357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>383831363934323733393132352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431372>323936313733387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>303436393430353238333439332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431372>333436333837317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>383736393136333430313137372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431372>3337303333337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>383836343732333631353031382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431372>3432303535337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>3039323535383837393230312<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431372>34343436397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>393135313434313137313338312<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431372>343934373032367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>383532303733353633323634382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431372>353138383533327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>3931383936373433363331372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431372>353638383639387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>373932383439383730343734392<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431372>353934303730377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>39343338323134313132343830352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431372>3634333031317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>38363932373139363539322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431372>363638323333347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>393431393039343139333030352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431372>37313731367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2037322<2022706?776572223:203435302>3936317=7=2<202274223:20313730373233393431372>373039363238367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>38373032323734393131363535362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431372>373432333934377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2035372<2022706?776572223:203430302>3336327=7=2<202274223:20313730373233393431372>373135333831317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>39303934303933323239383432332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431372>373931343037367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>38353031363237353236343135352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431372>383136363435347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>393339303431343737353435342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431372>383635353533317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>38363036373235313534393832372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431372>383930383037367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>383736393136333430313137372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431372>393339373136367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>37383830373437393539303439352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431372>393634393833357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>393132323736363932333639362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431382>303133383731377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>38383734323739393734373536342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431382>3033393133367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>383638333136343436383235352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431382>303838303333327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>38323831393031393834323830352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431382>313133333032377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>373139333330373535303331352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431382>313632323336357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>373232313934343534323439332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431382>313837353032397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>373437303135343936343630312<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431382>323336353433347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>373033313034313730313731322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431382>323631383139367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035382<2022706?776572223:203430332>337=7=2<202274223:20313730373233393431382>323436393631387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>383936393834363935353931352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431382>333130363937337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2037342<2022706?776572223:203435342>3138377=7=2<202274223:20313730373233393431382>323434363631337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>3833323936363536333934332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431382>333336303934317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>393339303431343737353435342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431382>333834393531387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>38363335333839343336313537372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431382>343130323533337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>3933393939373435313937352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431382>343539303933337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>38353131313831353438373832342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431382>343834343138327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>393337313239353437313532312<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431382>353333323433377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>38343533383538333337303432362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431382>353538353930327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>343035363133343738343634362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431382>363038363536347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>38353937313730353137363031332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431382>363332373531377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>38313039393635353532353131372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431382>363832383635397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>38353131313831353438373832342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431382>373036393133357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>393133323332343934343731392<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431382>373537303136327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>37383731313937393934323930342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431382>373831303939337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035392<2022706?776572223:203430342>3634367=7=2<202274223:20313730373233393431382>373730333539357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>383830373338363734383530322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431382>383331313831387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2037352<2022706?776572223:203435352>3234387=7=2<202274223:20313730373233393431382>373637313137337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>383132393036383631363834312<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431382>383535333539337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>38363335333839343336313537372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431382>3930353433387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>383332303131323738353432372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431382>393239353237337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>38363733363039333338383138362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431382>393739363037337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>38333737343330383331373637352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431392>303033363930377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>38353937313730353137363031332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431392>303533373635337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>38373330393431303338303838352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431392>3037373834347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>383236323739363935323631372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431392>3132373934357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>38373738373139313435373334362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431392>313531393938387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>3732373932323031383531372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431392>323032323335327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>37373437303534303434393831352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431392>323236313833347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>39313033363531303636323537362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431392>323736333836377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>373034303538363236303334362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431392>333030343538377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036302<2022706?776572223:203430322>3532387=7=2<202274223:20313730373233393431392>323933303535337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>39313830313135393732393132342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431392>333530353438357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2037352<2022706?776572223:203435352>3030397=7=2<202274223:20313730373233393431392>323930323730387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>383533393834333938343837382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431392>333734373230367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>39303934303933323239383432332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431392>343234383033377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>38353937313730353137363031332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431392>343438383833337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>393434373737343136343535322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431392>343938393438387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>38363335333839343336313537372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431392>353233303339337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>383836343732333631353031382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431392>3537333132317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>38323533323434353239303130342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431392>3539383332317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>383438323531393636363137362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431392>363437323935377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>383534393339383235333234342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431392>363732343838327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>39323337343637323337353832362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431392>373231343431357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>383339363533373333393133312<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431392>373436363536327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>373830343334393936313739382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431392>373935363331327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>38373838323734393531383037362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431392>383230383130337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>37353137383932343938393036332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431392>3836393933387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2037362<2022706?776572223:203435382>34387=7=2<202274223:20313730373233393431392>38333936387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>37313136393434393430313430372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431392>3839353030397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036302<2022706?776572223:203430342>3634367=7=2<202274223:20313730373233393431392>383433353436347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>38373838323734393531383037362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431392>3934343230377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>3639383333313938323936332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393431392>393639343137337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>383935303733333036373438342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432302>303138333639377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>383432353139373536313336372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432302>3034333538367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>393330343337393834363632342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432302>303932353233337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>383833363035343930343932342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432302>3131373733397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>393136303939393337373031382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432302>313636363730337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>38373539363037373138313333372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432302>3139313839347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>383439323037333536353534372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432302>323430383339327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>373939353335323333303137352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432302>323636303836387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>3930303830373534373131312<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432302>333134393837327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>383636343035343237303839322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432302>333430323434337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>39303734393737373431363136342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432302>333839313339327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2037362<2022706?776572223:203435392>38337=7=2<202274223:20313730373233393432302>333537393432387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>383338363938343035343730342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432302>343134343038347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036302<2022706?776572223:203430362>3531387=7=2<202274223:20313730373233393432302>3336333438327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>383339363533373333393133312<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432302>343633333838327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>37373437303534303434393831352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432302>3438383637387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>373232313934343534323439332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432302>353337363636367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>37333834323331323733313532332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432302>353632393439347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>383535383935323538333131312<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432302>363132393830317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>383731313833303232353632322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432302>3633373131317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>383734303439363533363539312<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432302>363837313433337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>383233343133393836363234352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432302>373131323739347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>383832363439383739313236362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432302>3736313330397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>38353937313730353137363031332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432302>373835343338387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>393038343533353435343936322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432302>383335343538337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>38343036303930363835303530352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432302>383539363033367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>393336313733353931313838342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432302>393039353935357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2037362<2022706?776572223:203436302>3036397=7=2<202274223:20313730373233393432302>383736393638317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>38363733363039333338383138362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432302>3933333736327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203430362>3831317=7=2<202274223:20313730373233393432302>383836313834377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>383439323037333536353534372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432302>3938333838347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>383133383632303234313231382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432312>3030383032367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>393230383739313332383330382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432312>303538303333377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>383839333339323837383739382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432312>303832313739387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>38343135363434303932343632352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432312>313332323035327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>383438323531393636363137362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432312>313536333434327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>383339363533373333393133312<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432312>323036333832337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>383734303439363533363539312<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432312>323330343939377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>3732373932323031383531372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432312>323830353832377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>383832363439383739313236362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432312>333034363535387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>37353237343430313930303736352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432312>333534383932377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>38373838323734393531383037362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432312>333738383131317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>383634343934343331393536322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432312>343239303634357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2037372<2022706?776572223:203435392>38337=7=2<202274223:20313730373233393432312>3339303337347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>383935303733333036373438342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432312>343532393632347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203430362>3237397=7=2<202274223:20313730373233393432312>3430313234337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>38353330323839373738303133332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432312>353033333336327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>383533393834333938343837382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432312>353237323032387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>38363036373235313534393832372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432312>353737353233357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>373938353830313632373836322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432312>3630323535387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>383638333136343436383235352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432312>363531363839357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>38343633343132303531393234362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432312>363736373237387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>393033363734373530333536362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432312>3732353833377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>38343533383538333337303432362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432312>373530383931347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>383734303439363533363539312<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432312>373939393936397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>373139333330373535303331352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432312>383235303837337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>38373738373139313435373334362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432312>383734313632377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>373433313936363034323937352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432312>3839393337397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>393134313838333032373238312<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432312>3934383331347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2037372<2022706?776572223:203436302>3036397=7=2<202274223:20313730373233393432312>393132353131337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>38353937313730353137363031332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432312>393733353433367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203430342>3933337=7=2<202274223:20313730373233393432312>393230323939387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>373735363630333231303831392<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432322>303232353833377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>383434343330343638333635362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432322>303437383132377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>38313836333739323835323439342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432322>303936383438377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>383636343035343237303839322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432322>313231393731347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>393133323332343934343731392<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432322>3137313031317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>383538373631353934313732342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432322>3139363132397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>3839313235303630323839332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432322>323435313732337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>38373231333835363031303939332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432322>323730323937337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>3930303830373534373131312<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432322>333139333239357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>3835373830363134323733352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432322>333434343536327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>38393630323839393830393336342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432322>3339333438317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>383536383530363937343437392<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432322>3431383632387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>383939383531383235303031382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432322>343637363337357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2037372<2022706?776572223:203435392>3534327=7=2<202274223:20313730373233393432322>343237373338347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>38353031363237353236343135352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432322>3439323738397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203430372>3035317=7=2<202274223:20313730373233393432322>343337303730387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>38363932373139363539322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432322>353431383739327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>38343036303930363835303530352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432322>353637303332387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>38393838393631303930343535352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432322>363137323432387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>38363932373139363539322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432322>363431313931357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>38323135303335343439343036342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432322>363931343236337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>3833323936363536333934332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432322>373135333630347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>383933313631393432353135372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432322>373635353837387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>38353330323839373738303133332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432322>373839353232347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>393636373637323335333135372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432322>383339373335337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>383830373338363734383530322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432322>383633363737337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>39303237313930303937383832362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432322>393133383834367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>383338363938343035343730342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432322>3933373834337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>3839313235303630323839332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432322>393838303533337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2037372<2022706?776572223:203436302>3839317=7=2<202274223:20313730373233393432322>3934363430367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>38343135363434303932343632352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432332>303132303034397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203430362>3237397=7=2<202274223:20313730373233393432322>393537303836337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>3932313833343939303331392<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432332>3036323238397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>38353330323839373738303133332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432332>303836323437347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>38373738373139313435373334362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432332>313336343438397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>373939353335323333303137352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432332>3136303432377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>38373937383330383139333936352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432332>323130363135347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>37333834323331323733313532332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432332>32333437317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>383932323036323639363238312<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432332>323834373635327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>38363036373235313534393832372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432332>333038383731337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>393033363734373530333536362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432332>33353839327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>383836343732333631353031382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432332>3338333032347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>383932323036323639363238312<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432332>3433333037327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>38313139353137303533393339342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432332>343537313935357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>393337313239353437313532312<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432332>353037323135337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2037372<2022706?776572223:203436312>3431387=7=2<202274223:20313730373233393432332>3436303438337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>38333737343330383331373637352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432332>3533313336317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313631312>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203430372>3537377=7=2<202274223:20313730373233393432332>343732313138347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>353730363839343933363034352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432332>35383137397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>38363036373235313534393832372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432332>363036373532327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>36383430313633343233363730342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432332>363536313130387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>38343334373531303931373634342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432332>3638303931387=z[0:z +real 0m8.961s +user 0m8.979s +sys 0m8.885s +--- +tf32 +==== +[7;227461736;223:2022747261696>222<202272617465223:203131382>37393633343536363639393639342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432352>393037333937337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;3639342>303632352<2038313932302>305=2<20226<6?6164223:20302<202274656=7065726174757265223:2035352<2022706?776572223:203130392>3139367=7=2<202274223:20313730373233393432352>353031383438357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203132302>313637303236333030313134362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432352>393138353838347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;3639332>353632352<2038313932302>305=2<20226<6?6164223:20302<202274656=7065726174757265223:2034332<2022706?776572223:2039312>3930337=7=2<202274223:20313730373233393432352>353139363238337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134352>34383638353633343333313737332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432362>303630333033377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2036352<2022706?776572223:203334392>3932397=7=2<202274223:20313730373233393432362>303436303837337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203133342>35303033303735303031363830382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432362>303832353231377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035302<2022706?776572223:203330362>3237377=7=2<202274223:20313730373233393432362>303539323739347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>32313930303136383530303935372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432362>323038383532357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>34343233313630383938373133382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432362>3233313833387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>363938383239343935303430352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432362>333536383239347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>363736353337373933393536342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432362>333739383330387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37303239303530343437373633342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432362>353034373936377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>35303332323633373930363630362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432362>353237393934367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>36393235393637333334323132382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432362>3635323737367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2037322<2022706?776572223:203436382>31377=7=2<202274223:20313730373233393432362>353630303139357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>36353432353237373534343631342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432362>363736393835377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035372<2022706?776572223:203431362>32337=7=2<202274223:20313730373233393432362>353732383937347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>36393136333738393333393334382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432362>3830303833367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>36353136313733353438353231362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432362>3832353038397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>36343635383633353638323732372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432362>393438383537337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>36353636343836393334343034372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432362>393733313031367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>36363039363135343034363032352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432372>303936383639327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2037342<2022706?776572223:203437322>3730347=7=2<202274223:20313730373233393432372>3037323239387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>36313536383931323431363131322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432372>31323131367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035392<2022706?776572223:203432332>3433367=7=2<202274223:20313730373233393432372>303835383431377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>363634333136313530303437332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432372>323435303638387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>36323039353735313131353039382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432372>323639333939367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>35353531323935303930353738352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432372>3339333138327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>36353437333139353238363635342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432372>343137343135397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>36373836393437363332343532332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432372>353431313738357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>36353636343836393334343034372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432372>353635343235367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>36363532373436333737333731332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432372>363930313939317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2037352<2022706?776572223:203436352>39377=7=2<202274223:20313730373233393432372>353935343930327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>36343635383633353638323732372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432372>373133343535377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036302<2022706?776572223:203432342>3830377=7=2<202274223:20313730373233393432372>3630333632367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>36363831353031373439363431352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432372>383338333035327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>36353136313733353438353231362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432372>383631353432327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>373033313434373839393533342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432372>393836323736317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>343836303133303736333936392<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432382>3030393732337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>36393231313733313138363136342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432382>313334323536347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2037352<2022706?776572223:203437392>3130317=7=2<202274223:20313730373233393432382>3131323630357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>36343434333033313930363231372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432382>313537373437337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203432352>3839357=7=2<202274223:20313730373233393432382>313233363739367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>36363836323934343139383336332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432382>323832343138337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>36323639343437363739363835322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432382>33303539347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>36393930363932323730373631372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432382>343330333930347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>36363136383033373236323638352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432382>343533393435347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>36393238333634343533363034362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432382>353738333637327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>36363139313939383438393338372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432382>363031393435397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>36353430313331383738393433382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432382>373237343739377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2037362<2022706?776572223:203437392>3932317=7=2<202274223:20313730373233393432382>3636333431387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>323931343435393231363233362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432382>373530333136397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203432332>32367=7=2<202274223:20313730373233393432382>363737343630347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>36363736373039313130333437322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432382>383735363736347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>36373331383236333237393032332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432382>383938353134337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37303737303030393532303232362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432392>303233363430367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37303737303030393532303232362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432392>3034363437367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37303931333836373036333235372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432392>313731363030367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37303236363533303033373233332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432392>313934343339367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036322<2022706?776572223:203433322>3630317=7=2<202274223:20313730373233393432392>3139313138347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37303838393839303631323739362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432392>333139353538397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2037362<2022706?776572223:203437382>3836327=7=2<202274223:20313730373233393432392>313738303338387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37303732323035373632343338362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432392>333432343639327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>363830313332373737353431332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432392>343637363332357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>36393532333336303732363230352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432392>3439303434367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>34373734303739323133393635322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432392>363135393031377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>35393635333435303135303139342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432392>363338353930367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37303030323831363239343837372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432392>3736343838387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2037372<2022706?776572223:203438302>3730337=7=2<202274223:20313730373233393432392>363930313830357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37303630323137393233373734342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432392>3738363535347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036322<2022706?776572223:203433332>3839347=7=2<202274223:20313730373233393432392>373033313036367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>36393634333232313731393735382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432392>3931323935357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>373039383537393638373835322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393432392>393334353931387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37303336323432383236323636362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433302>303630393335337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>363937313531333932343334332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433302>303832353633327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37303137303633333034383638312<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433302>323038393032367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37313137373631333132313135342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433302>323330353136327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036322<2022706?776572223:203433362>3035327=7=2<202274223:20313730373233393433302>323237353538317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37303630323137393233373734342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433302>333536383633337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2037372<2022706?776572223:203438332>3133397=7=2<202274223:20313730373233393433302>323139313533327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37303537383230333739323334362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433302>333738353437327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>36393039313837373134383738342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433302>353034393230377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37303739333938353538343131322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433302>353236353037367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>36363437393533393233343733322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433302>3635323932387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>36363537353338383632313637382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433302>363734353036327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>36373137343437353239333230362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433302>383032313730337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2037372<2022706?776572223:203437352>3131317=7=2<202274223:20313730373233393433302>373531363630387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>36363836323934343139383336332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433302>383232353939367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036322<2022706?776572223:203433312>3439387=7=2<202274223:20313730373233393433302>373537313138327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>36393231313733313138363136342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433302>39353032357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>36393432373437333332323634352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433302>393730363633387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>353334353535323635343839342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433312>303938333831337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37303032363738393838343934362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433312>313138363432337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>373033313434373839393533342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433312>323436333434367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>373033383634303330313232392<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433312>323636363030387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37303537383230333739323334362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433312>333934333033387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2037372<2022706?776572223:203438332>3130357=7=2<202274223:20313730373233393433312>323730343139317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37313336393433343331323230392<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433312>343134353439347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036332<2022706?776572223:203433332>3635367=7=2<202274223:20313730373233393433312>323736353439387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>373032313835383133383833352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433312>353432333530337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>36393537313330343839313734342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433312>353632353839347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>36393235393637333334323132382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433312>363931333539337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>373138393639363831303434372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433312>373130353335357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37303836353931343233393635362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433312>383339333233337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2037372<2022706?776572223:203438322>3033327=7=2<202274223:20313730373233393433312>373839393534377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37303737303030393532303232362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433312>383538343932347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036332<2022706?776572223:203433352>3234327=7=2<202274223:20313730373233393433312>373935363331367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>3638383238323035303637372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433312>393837333835357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>36383538383531313239303437342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433322>303036353436337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>36363338333639313038333731352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433322>313335343730367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>363833393637363138333237382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433322>313534363032337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>363732323234303433313237382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433322>323833343732357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>36393330373631353830373235332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433322>333032353932357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>343930333136303237393438312<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433322>3433313634357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2037382<2022706?776572223:203438312>3736317=7=2<202274223:20313730373233393433322>333131363031397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37313033333735303437353237322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433322>3435303534367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036332<2022706?776572223:203433342>3731317=7=2<202274223:20313730373233393433322>333235373436387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>36363933343833343833303637362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433322>3537393732377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37303732323035373632343338362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433322>353938353835387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37303431303337373833393231382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433322>3732383835397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37303936313832303139363131352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433322>3734363534317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37313334353435363339323730362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433322>383736383232327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2037382<2022706?776572223:203439392>3134387=7=2<202274223:20313730373233393433322>38323531337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>36393833353030333332383831342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433322>3839343530377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036332<2022706?776572223:203433362>3334357=7=2<202274223:20313730373233393433322>383337373531327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37303931333836373036333235372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433332>303234383634347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37313033333735303437353237322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433332>303432353333327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37313939323838373336303438392<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433332>313732383133347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37303639383038313739323433352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433332>313930343930357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>363839393539393533313030342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433332>333230373839387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37303737303030393532303232362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433332>333338343433337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37313438393332353036393537352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433332>3436383734327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2037392<2022706?776572223:203439392>3936377=7=2<202274223:20313730373233393433332>333732373137397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37303239303530343437373633342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433332>343836343236367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036332<2022706?776572223:203433332>3635367=7=2<202274223:20313730373233393433332>333735313739387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>35363735373235313436353434322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433332>3631363932327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37313038313730343338313239372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433332>363334343533337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>353031373335373339383538322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433332>3736373230347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>36303733303833363931353231352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433332>37383235317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37313737373037303737343338322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433332>3931353135387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2037392<2022706?776572223:203530302>3439337=7=2<202274223:20313730373233393433332>383935353533347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37303132323638353031383232382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433332>393330343731327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036332<2022706?776572223:203433362>3538337=7=2<202274223:20313730373233393433332>383938343138377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37313436353334363736333435382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433342>303633323030377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>36393537313330343839313734342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433342>303738353130357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37303836353931343233393635362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433342>3231313136327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37303630323137393233373734342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433342>323236343638337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>373135313333303334353330322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433342>333539313131387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37313137373631333132313135342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433342>333734343231387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>373138393639363831303434372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433342>353037303632327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2037392<2022706?776572223:203439382>3836327=7=2<202274223:20313730373233393433342>343138343832387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37313232353536373935343939372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433342>353232333733377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036342<2022706?776572223:203433362>3334357=7=2<202274223:20313730373233393433342>3432313335347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>393534383437353439323037312<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433342>3635353837327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>36373139383433393736343336362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433342>363730343339377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>383339353930373636333635342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433342>383036313430347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>36373630353834373539343639322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433342>383138353237357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>36393534373333323737303332372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433342>393534313333337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2037392<2022706?776572223:203530312>3236347=7=2<202274223:20313730373233393433342>393338383734377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>363937383730353734363237372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433342>3936363439337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036342<2022706?776572223:203433342>3939377=7=2<202274223:20313730373233393433342>393433363131397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37313536313236303435313837382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433352>3130323139337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37303537383230333739323334362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433352>313134353431357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37313837323938383438333739332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433352>3235303134357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37303635303133303336303436352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433352>323632343938397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37313732393131323338333634372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433352>333938303938377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37313137373631333132313135342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433352>343130343438387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37323230383731303231303436372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433352>3534363035337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2037392<2022706?776572223:203439392>3936377=7=2<202274223:20313730373233393433352>343535373536347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37303739333938353538343131322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433352>3535383430387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036342<2022706?776572223:203433342>3731317=7=2<202274223:20313730373233393433352>3436313635387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>36353532323230323338373833342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433352>363936313834367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37303137303633333034383638312<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433352>37303634367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>303132353433333538313535332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433352>383434383434367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37303737303030393532303232362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433352>3835343431367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>36353638383832383934383736382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433352>393932383538327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37313137373631333132313135342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433362>303032333636387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37313732393131323338333634372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433362>313430383035377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2037392<2022706?776572223:203530302>3230367=7=2<202274223:20313730373233393433362>3030333736387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>373036323631353437363034352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433362>313530333232347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036342<2022706?776572223:203433362>3538337=7=2<202274223:20313730373233393433362>303130383336347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>373132373335323330393831322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433362>3238383833387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37303537383230333739323334362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433362>323938333530337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37313234393534353438373839362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433362>3433363739337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>373033383634303330313232392<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433362>343436333130337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37313934343932373537373831352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433362>353834373434377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2037392<2022706?776572223:203530332>3133347=7=2<202274223:20313730373233393433362>353232333133387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>373136303932313737363030342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433362>353934323535377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036342<2022706?776572223:203433362>3334357=7=2<202274223:20313730373233393433362>353238303034327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>39323531383631353136373439352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433362>373334373033337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37313336393433343331323230392<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433362>3734323239347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>34323632373536333438383231362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433362>383832393438397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37313232353536373935343939372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433362>383930323435347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>373136303932313737363030342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433372>303330383939357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37313538353233393036373239382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433372>303338313934377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37303635303133303336303436352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433372>313738383635327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2037392<2022706?776572223:203530332>3133347=7=2<202274223:20313730373233393433372>303339343934357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37313033333735303437353237322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433372>313836313436337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036342<2022706?776572223:203433322>3331357=7=2<202274223:20313730373233393433372>303436383732367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>36383230353031373332303732372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433372>333237303235347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>36393537313330343839313734342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433372>333334313838357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37313332313437383535303532322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433372>343734393830367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>35343635313633343134363732382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433372>343832333833337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>33323831373136373730313937322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433372>363233333231337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2038302<2022706?776572223:203530322>3839357=7=2<202274223:20313730373233393433372>353536343531387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37313038313730343338313239372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433372>363330333533327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036342<2022706?776572223:203433352>3234327=7=2<202274223:20313730373233393433372>353634393730357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>30303839383035383534313330372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433372>373733333135377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37303137303633333034383638312<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433372>373738343031397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>323433373737323732393036332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433372>393231373437327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37303838393839303631323739362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433372>393236333834327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>373132373335323330393831322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433382>3036393730377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>373033313434373839393533342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433382>303734333438327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37313830313035303038353734322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433382>3231373635387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2038302<2022706?776572223:203530302>3733317=7=2<202274223:20313730373233393433382>303732323939357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>373139323039343738303234382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433382>323232323933317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036342<2022706?776572223:203433372>3130387=7=2<202274223:20313730373233393433382>303831323535377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37313732393131323338333634372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433382>333635363835327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37313130353638313435303238332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433382>333730333136377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37323038383830373835333830382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433382>353133363336347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37313533373238313931333738382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433382>353138323635357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>32333735343432343835373732352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433382>363633303732367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2037392<2022706?776572223:203530322>3630387=7=2<202274223:20313730373233393433382>363235343436337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37313130353638313435303238332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433382>363636323136347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036342<2022706?776572223:203433382>3231317=7=2<202274223:20313730373233393433382>363432363737357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37303838393839303631323739362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433382>383132323034317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>36373535373931363130323739372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433382>383134323735337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37323539323431303734343330332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433382>393630313530357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37303834313933373934333832382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433382>393632323239377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>37313737373037303737343338322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433392>313038313033387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>363130343231313130363730372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393433392>313130323937377=z[0:z +real 0m15.096s +user 0m16.675s +sys 0m14.620s +--- +fp32 +==== +[7;227461736;223:2022747261696>222<202272617465223:2031382>3934353334333834333932353230382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393434312>393537393638327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;3639342>303632352<2038313932302>305=2<20226<6?6164223:20302<202274656=7065726174757265223:2035362<2022706?776572223:203131302>3235337=7=2<202274223:20313730373233393434302>363039313737347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036342<2022706?776572223:203330342>3832337=7=2<202274223:20313730373233393434312>313234393236367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036362<2022706?776572223:203331322>3238347=7=2<202274223:20313730373233393434312>3634393535387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031382>3935383939333332323439313237382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393434312>393730353431327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;3639332>353632352<2038313932302>305=2<20226<6?6164223:20302<202274656=7065726174757265223:2034352<2022706?776572223:2039332>3238367=7=2<202274223:20313730373233393434302>363230393230327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238312>3236387=7=2<202274223:20313730373233393434312>313335313632367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238392>3535317=7=2<202274223:20313730373233393434312>363630313537347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137373636323331373632313034322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393434332>3130363734367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2036372<2022706?776572223:203331332>3837357=7=2<202274223:20313730373233393434322>313631373534387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036372<2022706?776572223:203332342>3335317=7=2<202274223:20313730373233393434322>363734363135397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363434333239323232313335332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393434332>313138353639347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035352<2022706?776572223:203239322>3438357=7=2<202274223:20313730373233393434322>313736313635337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035352<2022706?776572223:203238342>3434387=7=2<202274223:20313730373233393434322>363838393639317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31373731303830363939373632312<2022756>697473223:202254666<6?7073222<202274223:20313730373233393434342>3235353036367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036372<2022706?776572223:203331322>3238347=7=2<202274223:20313730373233393434332>3231373030357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036372<2022706?776572223:203332362>3038317=7=2<202274223:20313730373233393434332>373339313635357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136353031303333303839303637342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393434342>323636333838327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035352<2022706?776572223:203239302>3037387=7=2<202274223:20313730373233393434332>323230343835347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035352<2022706?776572223:203238342>3733367=7=2<202274223:20313730373233393434332>373433393834357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31373739303935343633323730392<2022756>697473223:202254666<6?7073222<202274223:20313730373233393434352>343033333739327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036372<2022706?776572223:203331312>3538347=7=2<202274223:20313730373233393434342>3236353139357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036372<2022706?776572223:203331322>3532347=7=2<202274223:20313730373233393434342>373935393938387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036362<2022706?776572223:203332352>3730317=7=2<202274223:20313730373233393434352>333138373231387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136353838363436353637343539332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393434352>34313432317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035352<2022706?776572223:203239342>3336367=7=2<202274223:20313730373233393434342>323639383639337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035352<2022706?776572223:203239342>3635347=7=2<202274223:20313730373233393434342>373938353530367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035352<2022706?776572223:203238312>3739347=7=2<202274223:20313730373233393434352>333231353435347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137373438363836383835373838372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393434362>353531363335377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036362<2022706?776572223:203331312>3538347=7=2<202274223:20313730373233393434352>383431333138317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036362<2022706?776572223:203332332>3034387=7=2<202274223:20313730373233393434362>333635333631327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136343339373038343230313034352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393434362>353632303639327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035352<2022706?776572223:203239342>3934317=7=2<202274223:20313730373233393434352>383434313233317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035352<2022706?776572223:203238312>3739347=7=2<202274223:20313730373233393434362>3336383135337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31373831383436393534343631312<2022756>697473223:202254666<6?7073222<202274223:20313730373233393434372>3639393936337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036362<2022706?776572223:203332352>3436317=7=2<202274223:20313730373233393434362>383930303730377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036362<2022706?776572223:203331302>3339397=7=2<202274223:20313730373233393434372>3433313030347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136353637353338393531353833372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393434372>3731363830397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20302>39362<202274656=7065726174757265223:2035352<2022706?776572223:203238392>3535317=7=2<202274223:20313730373233393434362>383936313732387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035352<2022706?776572223:203238392>3331317=7=2<202274223:20313730373233393434372>343333333531337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137393534343630363330303330382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393434382>383438303230337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2036362<2022706?776572223:203332332>3935337=7=2<202274223:20313730373233393434372>3935343130357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036352<2022706?776572223:203331302>3339397=7=2<202274223:20313730373233393434382>343735353838387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363530393739343037363434362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393434382>3836343537377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035352<2022706?776572223:203238342>3434387=7=2<202274223:20313730373233393434372>393536393130387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035352<2022706?776572223:203238392>3535317=7=2<202274223:20313730373233393434382>353034363639377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137383935343335373337343532322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393434392>393936303933337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2036352<2022706?776572223:203332322>3437327=7=2<202274223:20313730373233393434382>393930333139337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036352<2022706?776572223:203332312>3933377=7=2<202274223:20313730373233393434392>353032363037337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136343436303739363331353930342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393435302>303132333132327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203239322>3737337=7=2<202274223:20313730373233393434392>303138323037367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238342>3434387=7=2<202274223:20313730373233393434392>353333303332327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137383733313032393431363839352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393435312>3134343238337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036352<2022706?776572223:203331332>3130377=7=2<202274223:20313730373233393435302>303431393836377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036352<2022706?776572223:203332312>3933377=7=2<202274223:20313730373233393435302>35353731367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036352<2022706?776572223:203331322>3831327=7=2<202274223:20313730373233393435312>3036393331387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363439393034313936363734332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393435312>3136303131387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238332>3134327=7=2<202274223:20313730373233393435302>303539303036327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238312>3739347=7=2<202274223:20313730373233393435302>353730383636367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203239352>31387=7=2<202274223:20313730373233393435312>3038353136367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31373837373838383439363939372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393435322>323932353034357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036352<2022706?776572223:203332302>3334377=7=2<202274223:20313730373233393435312>353835333032387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036352<2022706?776572223:203331342>3533367=7=2<202274223:20313730373233393435322>303937383633377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136333735323032323839353739322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393435322>333037393331347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238312>3530377=7=2<202274223:20313730373233393435312>353937303832367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203239312>3138367=7=2<202274223:20313730373233393435322>313130393839337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137373833373736393539343437362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393435332>3434313137387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036352<2022706?776572223:203331322>3532347=7=2<202274223:20313730373233393435322>3631323237367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036342<2022706?776572223:203331372>3933337=7=2<202274223:20313730373233393435332>3132343331377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136323739363435363333343039362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393435332>3435353734317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238302>31367=7=2<202274223:20313730373233393435322>363235343331337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237392>3633337=7=2<202274223:20313730373233393435332>313337383837357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137383431353938363332303436362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393435342>353839323334387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2036342<2022706?776572223:203331332>3130377=7=2<202274223:20313730373233393435332>363339343033367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036342<2022706?776572223:203331372>3131317=7=2<202274223:20313730373233393435342>313533363033337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363137343134363232383439362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393435342>3630333639397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203239322>3438357=7=2<202274223:20313730373233393435332>363531323234397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238302>3434377=7=2<202274223:20313730373233393435342>313937303830367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137373838313633333038393435322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393435352>373337343230337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036342<2022706?776572223:203330392>3837317=7=2<202274223:20313730373233393435342>363636303638337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036342<2022706?776572223:203331342>3639377=7=2<202274223:20313730373233393435352>313834323038327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036342<2022706?776572223:203331362>3538337=7=2<202274223:20313730373233393435352>363936353232357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136343338393132303231363437332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393435352>373532343235377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203239322>3234367=7=2<202274223:20313730373233393435342>373039323034347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238302>3638367=7=2<202274223:20313730373233393435352>323233343334327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203239322>3234367=7=2<202274223:20313730373233393435352>373337343736337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>313738333736313038313835352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393435362>383835343238377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036342<2022706?776572223:203331332>3633357=7=2<202274223:20313730373233393435362>323131313035337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036342<2022706?776572223:203331362>3832337=7=2<202274223:20313730373233393435362>3732333137347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363331373037303835353131362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393435362>393030323932397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203239332>3539337=7=2<202274223:20313730373233393435362>3235323430397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238312>3530377=7=2<202274223:20313730373233393435362>373732333937337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137373532323735353834333733362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393435382>303333353330357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036342<2022706?776572223:203331352>3232357=7=2<202274223:20313730373233393435372>323337333937347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036332<2022706?776572223:203331312>3735367=7=2<202274223:20313730373233393435372>373439343935337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363032343437363433393238372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393435382>303438323637387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203239302>3336357=7=2<202274223:20313730373233393435372>3238343730317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238322>3835357=7=2<202274223:20313730373233393435372>373939393731337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31373739383533313132333838342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393435392>3138313732377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2036332<2022706?776572223:203331372>3633387=7=2<202274223:20313730373233393435382>323836323437357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036332<2022706?776572223:203331302>3634357=7=2<202274223:20313730373233393435382>383030333438387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363330393130373931393536312<2022756>697473223:202254666<6?7073222<202274223:20313730373233393435392>3139363139397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203239302>3336357=7=2<202274223:20313730373233393435382>333132303332377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238332>3338387=7=2<202274223:20313730373233393435382>383236343538327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137393231373537323030313837352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393436302>333239373238347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036332<2022706?776572223:203331352>3539337=7=2<202274223:20313730373233393435392>333133333638337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036332<2022706?776572223:203330392>3034387=7=2<202274223:20313730373233393435392>383236343231377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136333431333538323137323933362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393436302>333433393632327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238382>3439317=7=2<202274223:20313730373233393435392>333633343631377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238362>3038337=7=2<202274223:20313730373233393435392>383736313935377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137383637393138363137303536362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393436312>343737383134347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036332<2022706?776572223:203331392>3831327=7=2<202274223:20313730373233393436302>333339353230327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036332<2022706?776572223:203330382>3035367=7=2<202274223:20313730373233393436302>383532323231357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036332<2022706?776572223:203330372>32347=7=2<202274223:20313730373233393436312>333634393933337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3135383831393933343230343131382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393436312>3439323032377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238372>3134337=7=2<202274223:20313730373233393436302>333839363234367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238372>34337=7=2<202274223:20313730373233393436302>393038343837387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238372>34337=7=2<202274223:20313730373233393436312>3432313930377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137373537303630353336373132362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393436322>3632363133397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036332<2022706?776572223:203332302>3138357=7=2<202274223:20313730373233393436312>383737363438387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036332<2022706?776572223:203330362>3130377=7=2<202274223:20313730373233393436322>3431313535357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363032363036383534383034332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393436322>363430303339327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238352>3236327=7=2<202274223:20313730373233393436312>393334333933327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238372>3935377=7=2<202274223:20313730373233393436322>343436373934357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31373635303630303939313639342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393436332>373734343134387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2036332<2022706?776572223:203331372>3139327=7=2<202274223:20313730373233393436322>3932363535357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036332<2022706?776572223:203330362>3939327=7=2<202274223:20313730373233393436332>343338383335317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136323636393035343635393234342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393436332>373837383730327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238332>3338387=7=2<202274223:20313730373233393436322>393539333530387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238332>3134327=7=2<202274223:20313730373233393436332>3439343430347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137353630343938343033313539372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393436342>3932323736397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036332<2022706?776572223:203331382>3436317=7=2<202274223:20313730373233393436332>3935323733377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036322<2022706?776572223:203330342>3832337=7=2<202274223:20313730373233393436342>343635313934357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136343232393834313931353033382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393436342>393335363737387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203239302>3631317=7=2<202274223:20313730373233393436342>303036333434367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238322>3835357=7=2<202274223:20313730373233393436342>353138343839367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137373838313633333038393435322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393436362>303730393435357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2036322<2022706?776572223:203330352>3238347=7=2<202274223:20313730373233393436342>393930383137357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036322<2022706?776572223:203332302>3334377=7=2<202274223:20313730373233393436352>353034323535387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036322<2022706?776572223:203330342>3939367=7=2<202274223:20313730373233393436362>303136347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363139393232363136363533382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393436362>303833353234357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203239302>3037387=7=2<202274223:20313730373233393436352>303330363234397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238312>3236387=7=2<202274223:20313730373233393436352>353434303135367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203239322>3234367=7=2<202274223:20313730373233393436362>303536343634327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31373832343834393932363830332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393436372>3231393038317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036322<2022706?776572223:203331382>3137337=7=2<202274223:20313730373233393436362>353239343234377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036322<2022706?776572223:203330352>3932387=7=2<202274223:20313730373233393436372>303431383131377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136323131313639323234393237362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393436372>323331343233397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237382>3831327=7=2<202274223:20313730373233393436362>353639353433347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203239332>3036377=7=2<202274223:20313730373233393436372>3038313531357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31373736323634333031313238372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393436382>333637323331387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2036322<2022706?776572223:203332302>3035327=7=2<202274223:20313730373233393436372>353534373831377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036322<2022706?776572223:203330342>3436387=7=2<202274223:20313730373233393436382>303936323634317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136333339333637343236373339332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393436382>333739313833337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238312>3236387=7=2<202274223:20313730373233393436372>353935313636327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238302>39387=7=2<202274223:20313730373233393436382>313235393232347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137373736323030353834383438362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393436392>3531353337337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036322<2022706?776572223:203330352>3238347=7=2<202274223:20313730373233393436382>3630383335327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036322<2022706?776572223:203331372>3933337=7=2<202274223:20313730373233393436392>313331323337377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136343338313135363233383532332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393436392>353236393039347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203239332>3330367=7=2<202274223:20313730373233393436382>363339373530377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237392>3039397=7=2<202274223:20313730373233393436392>313534313334387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137373237313534393736333330342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393437302>3636333530317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2036322<2022706?776572223:203330342>3232317=7=2<202274223:20313730373233393436392>363435323037347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036322<2022706?776572223:203331362>3238387=7=2<202274223:20313730373233393437302>313636303432387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136343032323738343038313235382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393437302>363734363335347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203239322>3234367=7=2<202274223:20313730373233393436392>3636363132387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237392>39327=7=2<202274223:20313730373233393437302>313738333339357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137373439343834333733323032342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393437312>383131373033327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036322<2022706?776572223:203330362>3939327=7=2<202274223:20313730373233393437302>363738323233367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036322<2022706?776572223:203331372>3438317=7=2<202274223:20313730373233393437312>3230303539387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036322<2022706?776572223:203331362>3238387=7=2<202274223:20313730373233393437312>373134393037367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136343238313630373037323630332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393437312>383233333332387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238392>3833387=7=2<202274223:20313730373233393437302>363931353232387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237392>3633337=7=2<202274223:20313730373233393437312>323132363739397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203239332>3539337=7=2<202274223:20313730373233393437312>373236333039387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137363434363230343639303433322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393437322>3936303033337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036322<2022706?776572223:203330352>3932387=7=2<202274223:20313730373233393437322>323237303437347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036322<2022706?776572223:203331372>3131317=7=2<202274223:20313730373233393437322>373831333636337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136343336393231303238343030342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393437322>393731313130367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238392>3833387=7=2<202274223:20313730373233393437322>323431363434367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238302>3638367=7=2<202274223:20313730373233393437322>373834393135327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31373737343630353536363234352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393437342>313038313030327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036322<2022706?776572223:203330362>3130377=7=2<202274223:20313730373233393437332>3239393631377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036322<2022706?776572223:203330392>3430397=7=2<202274223:20313730373233393437332>383236343938357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363332343633353730353139312<2022756>697473223:202254666<6?7073222<202274223:20313730373233393437342>313138383837377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203239322>3737337=7=2<202274223:20313730373233393437332>333034383630367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238302>3638367=7=2<202274223:20313730373233393437332>383335393836317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31373731353539313734333032372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393437352>323536343432357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2036312<2022706?776572223:203331352>35327=7=2<202274223:20313730373233393437342>3333393134347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203330382>3539327=7=2<202274223:20313730373233393437342>383630333234347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136303737383133353233303135362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393437352>323636393639347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238332>3931357=7=2<202274223:20313730373233393437342>333531373830347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203239322>3234367=7=2<202274223:20313730373233393437342>383639313030387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31373731343339353535343433372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393437362>343034363033327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036322<2022706?776572223:203331342>3030317=7=2<202274223:20313730373233393437352>3432303932357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036322<2022706?776572223:203331312>3735367=7=2<202274223:20313730373233393437352>393431393435387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136333434393431363530373135322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393437362>343134373236357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238322>3332387=7=2<202274223:20313730373233393437352>343138333136387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238372>3935377=7=2<202274223:20313730373233393437352>393339313233327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137383438333737393533303531372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393437372>353533303033357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2036312<2022706?776572223:203330352>3131327=7=2<202274223:20313730373233393437362>3436333637377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203331322>33367=7=2<202274223:20313730373233393437372>303130393530337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203331312>3239367=7=2<202274223:20313730373233393437372>353333363633337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136333638343333333739343838372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393437372>353632343737367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238382>37337=7=2<202274223:20313730373233393437362>343630383330327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238332>3637357=7=2<202274223:20313730373233393437372>303036353133367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238382>3439317=7=2<202274223:20313730373233393437372>353237383439377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137373537303630353336373132362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393437382>373031323931387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203331332>3137377=7=2<202274223:20313730373233393437382>303530363031377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203331302>3634357=7=2<202274223:20313730373233393437382>353639383135397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136333139343539373438363837352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393437382>3731303331397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238362>3930347=7=2<202274223:20313730373233393437382>303433303631337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238362>36317=7=2<202274223:20313730373233393437382>353633363934327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137373032383332343735303032322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393437392>383439343538327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203330392>3430397=7=2<202274223:20313730373233393437392>303838313130347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203331312>3436317=7=2<202274223:20313730373233393437392>363334323637367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136343037383532393938303937362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393437392>3835383035357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238372>3134337=7=2<202274223:20313730373233393437392>303832353233367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238372>3935377=7=2<202274223:20313730373233393437392>363234323031337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137383439393733303934333730362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393438302>393937343435337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2036312<2022706?776572223:203330382>3539327=7=2<202274223:20313730373233393438302>313438393032377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203331312>3939367=7=2<202274223:20313730373233393438302>363634313436327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136353831383736313439343536332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393438312>303035373132337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238342>3434387=7=2<202274223:20313730373233393438302>313338333036347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238392>3833387=7=2<202274223:20313730373233393438302>363530363030347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137373737333936383530353432342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393438322>3134353631347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2036312<2022706?776572223:203331322>3238347=7=2<202274223:20313730373233393438312>3137363135347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203331322>31327=7=2<202274223:20313730373233393438312>363839393432367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136343832333136373032353536372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393438322>313533343034357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238342>3733367=7=2<202274223:20313730373233393438312>313633373434327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238382>3230337=7=2<202274223:20313730373233393438312>363736333031327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137373439343834333733323032342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393438332>323933383337357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203330312>3334337=7=2<202274223:20313730373233393438322>323132353135347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203331312>3232317=7=2<202274223:20313730373233393438322>373338393133357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203330382>38387=7=2<202274223:20313730373233393438332>323536303431387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136333937383938333935383939342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393438332>333031313432357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203239302>3631317=7=2<202274223:20313730373233393438322>313933393130317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238302>31367=7=2<202274223:20313730373233393438322>373333303335387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203239312>3138367=7=2<202274223:20313730373233393438332>323530323838357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>313738313430383330353634382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393438342>3434313937347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203330382>3233327=7=2<202274223:20313730373233393438332>3737353138347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203331322>33367=7=2<202274223:20313730373233393438342>333137373531347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136323734303731373839323930322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393438342>343439303135347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238312>3236387=7=2<202274223:20313730373233393438332>373638323139377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237382>3831327=7=2<202274223:20313730373233393438342>333134383035337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>313736373933303830313936382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393438352>353930333732387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203330372>3435377=7=2<202274223:20313730373233393438342>383431363031317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203331332>3837357=7=2<202274223:20313730373233393438352>333930363237367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>313632373132383438373933392<2022756>697473223:202254666<6?7073222<202274223:20313730373233393438352>353936393233347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203239322>3438357=7=2<202274223:20313730373233393438342>383338343738387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237382>3831327=7=2<202274223:20313730373233393438352>333631383632347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31373739393332383635323735332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393438362>3733383532317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203331322>33367=7=2<202274223:20313730373233393438352>393032363834377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203330352>3932387=7=2<202274223:20313730373233393438362>343137333432327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363139323036303430323936332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393438362>373434383033347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203239322>3438357=7=2<202274223:20313730373233393438352>383832303530357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237382>3537337=7=2<202274223:20313730373233393438362>3339363234357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31373734353839353638353036342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393438372>383836353037357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2036312<2022706?776572223:203331352>3232357=7=2<202274223:20313730373233393438362>393531373032347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203330332>3430357=7=2<202274223:20313730373233393438372>343633393330387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363139353634333237383035312<2022756>697473223:202254666<6?7073222<202274223:20313730373233393438372>383932363534347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203239322>3737337=7=2<202274223:20313730373233393438362>393038303736357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203239332>3036377=7=2<202274223:20313730373233393438372>343233303730327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137383130303935333537343130322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393438392>3033343630397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203239332>3939327=7=2<202274223:20313730373233393438372>393736303034317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203330332>3131317=7=2<202274223:20313730373233393438382>343930373530337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203330322>3430377=7=2<202274223:20313730373233393438392>3030333730387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136313539303138393634323338362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393438392>3034303532317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237392>3039397=7=2<202274223:20313730373233393438372>393335323230327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238392>3535317=7=2<202274223:20313730373233393438382>343439323136347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237392>39327=7=2<202274223:20313730373233393438382>393631353638387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137373338373138333439303830342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393439302>313833303139397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036302<2022706?776572223:203331332>3633357=7=2<202274223:20313730373233393438392>353331333035387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203330322>3035357=7=2<202274223:20313730373233393439302>303433363730347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136313938343239393637393338322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393439302>313838343430387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203239302>3037387=7=2<202274223:20313730373233393438392>343735373332367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238322>3332387=7=2<202274223:20313730373233393438392>393838343331377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31373637323932383630353835312<2022756>697473223:202254666<6?7073222<202274223:20313730373233393439312>333331313739347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203331362>3034387=7=2<202274223:20313730373233393439302>353536393837387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203330312>32387=7=2<202274223:20313730373233393439312>303639303738327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363332373432323737303237342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393439312>3333363232327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203239302>3336357=7=2<202274223:20313730373233393439302>35303435377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203239302>3037387=7=2<202274223:20313730373233393439312>3034323032377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31373633333435363932363536362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393439322>343739333738357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2036302<2022706?776572223:203331342>3639377=7=2<202274223:20313730373233393439312>353831393934387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203330322>31367=7=2<202274223:20313730373233393439322>313138303535387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136343234353736393632363034322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393439322>343833393730347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238342>3434387=7=2<202274223:20313730373233393439312>353534313832387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238382>3230337=7=2<202274223:20313730373233393439322>303637373234327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137373133313939333637333339352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393439332>363237363537327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2036312<2022706?776572223:203330322>3136347=7=2<202274223:20313730373233393439322>363331323234367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203331332>3936337=7=2<202274223:20313730373233393439332>3135333930367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363238373231303138383030372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393439332>3633313737327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238342>3032337=7=2<202274223:20313730373233393439322>353830313830347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238372>3532397=7=2<202274223:20313730373233393439332>303933373835337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238382>3030337=7=2<202274223:20313730373233393439332>363238353839347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31373735353036363830333636392<2022756>697473223:202254666<6?7073222<202274223:20313730373233393439342>373735373934357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036302<2022706?776572223:203330332>3531317=7=2<202274223:20313730373233393439332>3636363030347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036302<2022706?776572223:203331352>33317=7=2<202274223:20313730373233393439342>313830313935367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036302<2022706?776572223:203330332>3531317=7=2<202274223:20313730373233393439342>3732323538377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363236323532363037323437362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393439342>373739363530327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238352>3839377=7=2<202274223:20313730373233393439342>313432313731347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238362>3735387=7=2<202274223:20313730373233393439342>3635343436377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137373032303335303236333837372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393439352>393233393635377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036302<2022706?776572223:203331322>3930337=7=2<202274223:20313730373233393439352>3233343739327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036302<2022706?776572223:203331342>3738347=7=2<202274223:20313730373233393439352>3734383639347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363230313231363636353933312<2022756>697473223:202254666<6?7073222<202274223:20313730373233393439352>393237343937347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238382>3832317=7=2<202274223:20313730373233393439352>3136383033357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238312>3333377=7=2<202274223:20313730373233393439352>363830313439387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137373438323838313432333330352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393439372>303732313037367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2036302<2022706?776572223:203330322>3938357=7=2<202274223:20313730373233393439362>3236323431387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036302<2022706?776572223:203331322>3930337=7=2<202274223:20313730373233393439362>373736333439357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136303338383035353133333434322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393439372>303735343435347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238362>3934377=7=2<202274223:20313730373233393439362>313933353032327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238332>3738337=7=2<202274223:20313730373233393439362>37303635327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31373637343932323136383131332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393439382>323230333437347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2036302<2022706?776572223:203330332>3232347=7=2<202274223:20313730373233393439372>3331333730337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036302<2022706?776572223:203331332>3637367=7=2<202274223:20313730373233393439372>383238333531357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363135373432363633343532372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393439382>323233333330357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203239302>3933347=7=2<202274223:20313730373233393439372>323139373931327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238312>3930367=7=2<202274223:20313730373233393439372>373332323833347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31373633333435363932363536362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393439392>333638353138367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2036302<2022706?776572223:203330302>3537377=7=2<202274223:20313730373233393439382>333430353131337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036302<2022706?776572223:203331302>3439357=7=2<202274223:20313730373233393439382>3835333130377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036302<2022706?776572223:203331312>3032387=7=2<202274223:20313730373233393439392>333636313731367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136333139383537383938313934382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393439392>333731313136367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238382>3239367=7=2<202274223:20313730373233393439382>323435363837327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237392>3939347=7=2<202274223:20313730373233393439382>373539323834357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203239332>3930367=7=2<202274223:20313730373233393439392>323731363135337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137363039313336383031393036322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393530302>353136383132337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036302<2022706?776572223:203330362>37347=7=2<202274223:20313730373233393439392>393036393039377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036302<2022706?776572223:203330382>3632317=7=2<202274223:20313730373233393530302>343232343435387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136323539373339313936313538332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393530302>353139303035387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238392>3334367=7=2<202274223:20313730373233393439392>3738333934317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237392>3530347=7=2<202274223:20313730373233393530302>323937323834387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31373632353838313733393632332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393530312>363635303136377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036302<2022706?776572223:203330382>3632317=7=2<202274223:20313730373233393530302>3933343934347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036302<2022706?776572223:203330392>3637347=7=2<202274223:20313730373233393530312>3434383538377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136323335343533393032373732382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393530312>363636383335357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203239342>3433387=7=2<202274223:20313730373233393530302>383230303932327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237392>3436337=7=2<202274223:20313730373233393530312>333536323939327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137363135353135373931333135382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393530322>383133323138367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036302<2022706?776572223:203330382>3033397=7=2<202274223:20313730373233393530312>393630383032387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036302<2022706?776572223:203330392>3134377=7=2<202274223:20313730373233393530322>343734353431377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363234353430363831373432332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393530322>383134363536377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203239312>3830317=7=2<202274223:20313730373233393530312>383731343032357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237392>3436337=7=2<202274223:20313730373233393530322>333833343933327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137353535333135373638343238382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393530332>3936313436327=z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136323331303734363533303830332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393530332>393632343930387=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2036302<2022706?776572223:203331312>3032387=7=2<202274223:20313730373233393530322>393836383135357=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203239312>3435397=7=2<202274223:20313730373233393530322>383936333733337=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036302<2022706?776572223:203331302>3230387=7=2<202274223:20313730373233393530332>353030343438327=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238372>3731377=7=2<202274223:20313730373233393530332>343038363338357=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238342>3534387=7=2<202274223:20313730373233393530332>393437333734337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137353834303139393433363434372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393530352>313039373432367=z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136333437373238373734383633382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393530352>313130353437387=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036302<2022706?776572223:203330302>3537377=7=2<202274223:20313730373233393530342>3033343637367=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238382>3533357=7=2<202274223:20313730373233393530342>343635353137357=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203331302>3230387=7=2<202274223:20313730373233393530342>353436383234377=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238342>3739337=7=2<202274223:20313730373233393530342>3937373631347=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036302<2022706?776572223:203330372>3531337=7=2<202274223:20313730373233393530352>3035393132357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31373535373330393038363136342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393530362>323538323731327=z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136313938383238303637313535342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393530362>323539303332357=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036302<2022706?776572223:203331302>3439357=7=2<202274223:20313730373233393530352>353732363137357=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238362>3939377=7=2<202274223:20313730373233393530352>343931363439367=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036302<2022706?776572223:203330372>3236367=7=2<202274223:20313730373233393530362>3038343831317=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238352>3630347=7=2<202274223:20313730373233393530362>303033383937327=z[0:z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31373731353539313734333032372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393530372>34303635327=z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363235343936313731323735382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393530372>343037343030387=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203330382>3033397=7=2<202274223:20313730373233393530362>363139363039347=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238392>31367=7=2<202274223:20313730373233393530362>353137323235337=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203331332>3936337=7=2<202274223:20313730373233393530372>313338363238377=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238382>3239367=7=2<202274223:20313730373233393530372>303239333037317=z[0:z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31373733363732343635343137352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393530382>353534373932367=z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363238373231303138383030372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393530382>353535363633337=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2036302<2022706?776572223:203330382>3033397=7=2<202274223:20313730373233393530372>363531363133327=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238352>3331387=7=2<202274223:20313730373233393530372>353432373937387=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036302<2022706?776572223:203331312>3236387=7=2<202274223:20313730373233393530382>313833353432357=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238372>3437387=7=2<202274223:20313730373233393530382>303535383632377=z[0:z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31373733373132333339323832342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393530392>373033303031337=z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136333331343034333035383834332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393530392>373033383439367=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2036312<2022706?776572223:203330372>387=7=2<202274223:20313730373233393530382>363936393239327=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238372>3731377=7=2<202274223:20313730373233393530382>3536383737357=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203330342>3537327=7=2<202274223:20313730373233393530392>323132303839357=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238342>3838327=7=2<202274223:20313730373233393530392>303830383730367=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238382>3239367=7=2<202274223:20313730373233393530392>353935343031337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137353438313339383538383936382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393531302>383531343032387=z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136303935333237383339393236322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393531302>383532333338387=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203238382>3230337=7=2<202274223:20313730373233393530392>373234323932387=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238332>3230357=7=2<202274223:20313730373233393531302>313039333732317=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203330352>3130357=7=2<202274223:20313730373233393531302>323430353935337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203239302>3430327=7=2<202274223:20313730373233393531302>3632323635357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203331352>3731347=7=2<202274223:20313730373233393531302>3735353436387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137343930373334353136303535352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393531322>303034323333347=z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136313034343833313738343638362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393531322>3030353034327=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203330392>39327=7=2<202274223:20313730373233393531312>323730353639387=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203238392>3539317=7=2<202274223:20313730373233393531312>313337353434347=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203331302>3439357=7=2<202274223:20313730373233393531312>373930373339337=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238392>3334367=7=2<202274223:20313730373233393531312>363439353531397=z[0:z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31373636303536383631323334312<2022756>697473223:202254666<6?7073222<202274223:20313730373233393531332>313532353333387=z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136303532373336373633303431352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393531332>3135333530327=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2036312<2022706?776572223:203331312>3535357=7=2<202274223:20313730373233393531322>333035333535387=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238322>3931397=7=2<202274223:20313730373233393531322>313633353033327=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203330392>3338377=7=2<202274223:20313730373233393531322>383139313034327=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238352>3630347=7=2<202274223:20313730373233393531322>363738313033327=z[0:z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137373531303739333530303139372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393531342>333030373335377=z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136323332363637313035313938322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393531342>333031363437377=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2036312<2022706?776572223:203330392>3338377=7=2<202274223:20313730373233393531332>333331333930397=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203238352>3839377=7=2<202274223:20313730373233393531332>3139303239357=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203330392>3134377=7=2<202274223:20313730373233393531332>383434363237347=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238362>3432327=7=2<202274223:20313730373233393531332>373033373639327=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238362>3636317=7=2<202274223:20313730373233393531342>323136323230317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137323635393330303133313131362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393531352>3434393235347=z[7;227461736;223:2022747261696>222<202272617465223:2031392>313632363635303733333834322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393531352>3434393931387=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203330362>3937397=7=2<202274223:20313730373233393531342>3337383036337=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238352>3933397=7=2<202274223:20313730373233393531342>37333031337=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203330382>38367=7=2<202274223:20313730373233393531342>3839323432357=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238362>3934377=7=2<202274223:20313730373233393531352>323432343730357=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203331312>3032387=7=2<202274223:20313730373233393531352>3431313634347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137363338323431323835393937362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393531362>353937363036347=z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136323235353031303931353131382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393531362>353938333939347=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203330382>3332377=7=2<202274223:20313730373233393531352>393235383034347=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203238342>3236317=7=2<202274223:20313730373233393531352>373631323934317=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203331342>3230327=7=2<202274223:20313730373233393531362>343339343734337=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238342>3335367=7=2<202274223:20313730373233393531362>323733373634317=z[0:z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137333931383737383135343832382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393531372>373436303538357=z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136323331343732373635383631382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393531372>373436373537377=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203331312>3739357=7=2<202274223:20313730373233393531362>393732343237387=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238372>3831367=7=2<202274223:20313730373233393531362>373930313436367=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203330362>37347=7=2<202274223:20313730373233393531372>343835363138387=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238332>3031327=7=2<202274223:20313730373233393531372>3330353939317=z[0:z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137363938343436353135383331362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393531382>3839343335397=z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363232373838393735363738352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393531382>3839353234387=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2036312<2022706?776572223:203331332>3936337=7=2<202274223:20313730373233393531372>393937393236327=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203238372>3139327=7=2<202274223:20313730373233393531372>383138333133347=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203330342>3537327=7=2<202274223:20313730373233393531382>353132323738337=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203238342>3539357=7=2<202274223:20313730373233393531382>333330393038337=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238362>3636317=7=2<202274223:20313730373233393531382>3834343133327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31373632383237333839373435352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393532302>3034323639347=z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363233313837303837383830382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393532302>303433353935367=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203331322>3930337=7=2<202274223:20313730373233393531392>303234393130347=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238332>3733367=7=2<202274223:20313730373233393531392>333536363933337=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203330352>3633327=7=2<202274223:20313730373233393531392>353632323534327=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203239302>3639367=7=2<202274223:20313730373233393531392>383732363735347=z[0:z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137353436353435323139363237382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393532312>313930393831317=z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136313633373935393639323533342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393532312>313931383131387=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203239392>3232397=7=2<202274223:20313730373233393532302>3038313930347=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203238312>3333377=7=2<202274223:20313730373233393532302>333834383135357=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036322<2022706?776572223:203331352>33317=7=2<202274223:20313730373233393532302>353936333831327=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238322>3139337=7=2<202274223:20313730373233393532302>383938373631377=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203330332>3232347=7=2<202274223:20313730373233393532312>313038343636347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137363033313536353337383738362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393532322>333339343635347=z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136303834313832333238343832332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393532322>333430333138327=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036312<2022706?776572223:203331382>3533397=7=2<202274223:20313730373233393532312>363232343033317=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203239322>3237377=7=2<202274223:20313730373233393532312>3431383839317=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036322<2022706?776572223:203330322>3938357=7=2<202274223:20313730373233393532322>3136333132357=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237392>3739317=7=2<202274223:20313730373233393532312>393434373238397=z[0:z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137363532313935383034303334332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393532332>3438373830357=z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136313932343538343939353333332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393532332>3438383638357=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036322<2022706?776572223:203331352>3834347=7=2<202274223:20313730373233393532322>363832373038357=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203239302>3136347=7=2<202274223:20313730373233393532322>3435373834327=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036322<2022706?776572223:203331372>3433317=7=2<202274223:20313730373233393532332>313934393130337=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238312>3836327=7=2<202274223:20313730373233393532322>393730363432387=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203239312>32327=7=2<202274223:20313730373233393532332>3438323830327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137353137343433353138383337342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393532342>363336323237367=z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363134383636383836383431362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393532342>363337313133337=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2036322<2022706?776572223:203330332>3735387=7=2<202274223:20313730373233393532332>373039303331337=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237392>3739317=7=2<202274223:20313730373233393532332>393936323138377=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036322<2022706?776572223:203331362>3038337=7=2<202274223:20313730373233393532342>323231343936387=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203238302>3332337=7=2<202274223:20313730373233393532342>3533393733327=z[0:z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31373531393833353430363133332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393532352>373834353735377=z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136323538313436363939303434362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393532352>373835333338327=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2036322<2022706?776572223:203330342>3034357=7=2<202274223:20313730373233393532342>373539383432327=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203239322>3237377=7=2<202274223:20313730373233393532352>303531393034327=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036322<2022706?776572223:203331372>3433317=7=2<202274223:20313730373233393532352>323733323030337=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237382>31327=7=2<202274223:20313730373233393532352>353635323637387=z[0:z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137343934333232323439323837352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393532362>393333303831367=z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136313233313932313835383138352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393532362>393333393037357=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036322<2022706?776572223:203330342>3537327=7=2<202274223:20313730373233393532352>373836353531327=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2035332<2022706?776572223:203239312>32327=7=2<202274223:20313730373233393532362>303737373131367=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036322<2022706?776572223:203331372>3433317=7=2<202274223:20313730373233393532362>323938353835347=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238312>3035317=7=2<202274223:20313730373233393532362>353930373837327=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036322<2022706?776572223:203331372>3433317=7=2<202274223:20313730373233393532362>383132323534327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137353531373237383036393439322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393532382>303831353233347=z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136323639363932333633303836352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393532382>3038323233397=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036322<2022706?776572223:203330342>3034357=7=2<202274223:20313730373233393532372>333534313336327=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203237392>3436337=7=2<202274223:20313730373233393532372>313333383931337=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036322<2022706?776572223:203331372>3139317=7=2<202274223:20313730373233393532372>3836363735357=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203238392>3837387=7=2<202274223:20313730373233393532372>363436353432337=z[0:z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31373536343038363339373436312<2022756>697473223:202254666<6?7073222<202274223:20313730373233393532392>3232393839347=z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363236383839363130353932372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393532392>323330363731367=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036322<2022706?776572223:203330342>3537327=7=2<202274223:20313730373233393532382>3338323335347=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237382>3430367=7=2<202274223:20313730373233393532382>3136303730387=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036322<2022706?776572223:203331362>3635387=7=2<202274223:20313730373233393532382>383938333032367=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203239342>3134347=7=2<202274223:20313730373233393532382>3637393433367=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203237382>31367=7=2<202274223:20313730373233393532392>313933343536367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137363135353135373931333135382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393533302>333738313933347=z[7;227461736;223:2022747261696>222<202272617465223:2031392>313632383935393930303731332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393533302>333739303534337=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2036322<2022706?776572223:203330342>3238347=7=2<202274223:20313730373233393532392>343130333438327=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203239322>3033387=7=2<202274223:20313730373233393532392>373333373037377=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036322<2022706?776572223:203330362>3435337=7=2<202274223:20313730373233393532392>393438333936327=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203239322>3237377=7=2<202274223:20313730373233393533302>323438303434337=z[0:z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31373635313339383339373533332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393533312>353236343935357=z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363139323835363539363236392<2022756>697473223:202254666<6?7073222<202274223:20313730373233393533312>353237333738387=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036322<2022706?776572223:203331362>3839377=7=2<202274223:20313730373233393533302>343632323939337=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237392>3436337=7=2<202274223:20313730373233393533302>373631393539337=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036322<2022706?776572223:203330362>37347=7=2<202274223:20313730373233393533302>393736383730357=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203238382>3832317=7=2<202274223:20313730373233393533312>323734313235367=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036322<2022706?776572223:203331352>3032337=7=2<202274223:20313730373233393533312>343839303731347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137373531303739333530303139372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393533322>363734383330347=z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136313830393133373636313439332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393533322>363735373135377=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036322<2022706?776572223:203330392>3134377=7=2<202274223:20313730373233393533322>303032313337377=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203238322>3339347=7=2<202274223:20313730373233393533312>373838303934387=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036322<2022706?776572223:203331352>35357=7=2<202274223:20313730373233393533322>3534323435347=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203238382>3837347=7=2<202274223:20313730373233393533322>333239393130337=z[0:z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137343931313333313532343138322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393533332>383233313436387=z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136333539363733363834343730332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393533332>383233383331387=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036322<2022706?776572223:203331322>3337367=7=2<202274223:20313730373233393533332>303535383734387=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238332>3733367=7=2<202274223:20313730373233393533322>383433303737347=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036322<2022706?776572223:203331322>3631357=7=2<202274223:20313730373233393533332>353638323739337=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238362>3133367=7=2<202274223:20313730373233393533332>333535323232377=z[0:z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31373635383537353037393932322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393533342>393731343732357=z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136333430353631393030353735382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393533342>3937323236327=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2036332<2022706?776572223:203331322>3337367=7=2<202274223:20313730373233393533342>303832313835337=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203238362>3133367=7=2<202274223:20313730373233393533332>383639363035387=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036332<2022706?776572223:203331352>3032337=7=2<202274223:20313730373233393533342>353935313830377=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203238342>3739337=7=2<202274223:20313730373233393533342>333831363230327=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238352>3839377=7=2<202274223:20313730373233393533342>3839353530387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137373235393538373733333135342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393533362>313139393930337=z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136333737393839353031373530352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393533362>3132303836337=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036322<2022706?776572223:203331302>3230387=7=2<202274223:20313730373233393533352>313039303938347=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238382>3035357=7=2<202274223:20313730373233393533352>34313035397=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036332<2022706?776572223:203331332>3936337=7=2<202274223:20313730373233393533352>3632373531327=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203238372>3532397=7=2<202274223:20313730373233393533352>393234393338377=z[0:z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137363437303132363733363237332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393533372>323638333332377=z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136333132363931323332333731352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393533372>3236393133397=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2036332<2022706?776572223:203330392>3134377=7=2<202274223:20313730373233393533362>313431353038367=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203238342>3739337=7=2<202274223:20313730373233393533362>343433303535347=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036332<2022706?776572223:203331362>3635387=7=2<202274223:20313730373233393533362>363533383237347=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238362>3934377=7=2<202274223:20313730373233393533362>393633383636377=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036332<2022706?776572223:203331352>3834347=7=2<202274223:20313730373233393533372>313639313130337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137343839353338363037393631362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393533382>343136383339317=z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363139393232363136363533382<2022756>697473223:202254666<6?7073222<202274223:20313730373233393533382>343137353533327=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036332<2022706?776572223:203331302>3733347=7=2<202274223:20313730373233393533372>363833333439367=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238352>3331387=7=2<202274223:20313730373233393533372>343736343539357=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036332<2022706?776572223:203331372>3433317=7=2<202274223:20313730373233393533382>313936373234327=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238372>3437387=7=2<202274223:20313730373233393533372>393935393432367=z[0:z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31373530363638303039393835322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393533392>35363631397=z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136323539333431303731363331352<2022756>697473223:202254666<6?7073222<202274223:20313730373233393533392>353636393433327=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2036332<2022706?776572223:203331302>3230387=7=2<202274223:20313730373233393533382>37303930367=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203238352>3037397=7=2<202274223:20313730373233393533382>353038353235367=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036332<2022706?776572223:203331342>3230327=7=2<202274223:20313730373233393533392>3232313937377=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203238372>3437387=7=2<202274223:20313730373233393533392>303234313030357=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238342>3032337=7=2<202274223:20313730373233393533392>353430303734337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31373534383933373137393532362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393534302>3731343439357=z[7;227461736;223:2022747261696>222<202272617465223:2031392>3135393239373530373330333638342<2022756>697473223:202254666<6?7073222<202274223:20313730373233393534302>373135353239347=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036332<2022706?776572223:203331312>3032387=7=2<202274223:20313730373233393533392>373334363736387=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238372>3437387=7=2<202274223:20313730373233393534302>3035323430367=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036332<2022706?776572223:203331372>3731387=7=2<202274223:20313730373233393534302>323437303833347=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203238342>3838327=7=2<202274223:20313730373233393534302>353636333833367=z[0:z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137363039313336383031393036322<2022756>697473223:202254666<6?7073222<202274223:20313730373233393534312>383632383937367=z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363032343437363433393238372<2022756>697473223:202254666<6?7073222<202274223:20313730373233393534312>3836333834387=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2036332<2022706?776572223:203330382>3332377=7=2<202274223:20313730373233393534302>3736303338347=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203238352>3630347=7=2<202274223:20313730373233393534312>303830353031337=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036332<2022706?776572223:203331342>3132327=7=2<202274223:20313730373233393534312>323733313031367=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238322>3339347=7=2<202274223:20313730373233393534312>3539333133347=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036332<2022706?776572223:203332302>3033387=7=2<202274223:20313730373233393534312>3738363934377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137363634353535363839363133332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393534332>3031313536317=z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363134383636383836383431362<2022756>697473223:202254666<6?7073222<202274223:20313730373233393534332>303132343132387=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036332<2022706?776572223:203330372>387=7=2<202274223:20313730373233393534322>333032373632357=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238392>3334367=7=2<202274223:20313730373233393534322>313036343837387=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036332<2022706?776572223:203331362>3839377=7=2<202274223:20313730373233393534322>383136363733387=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238382>3533357=7=2<202274223:20313730373233393534322>3634383432327=z[0:z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3137363235343833303437323331332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393534342>313539393132367=z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363133333934303037383637332<2022756>697473223:202254666<6?7073222<202274223:20313730373233393534342>313630383039387=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2036332<2022706?776572223:203330382>3033397=7=2<202274223:20313730373233393534332>333335373831367=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203238332>3738337=7=2<202274223:20313730373233393534332>313631383836327=z[0:z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2036332<2022706?776572223:203332302>3132367=7=2<202274223:20313730373233393534332>383438333833377=z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313938392>343337352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203239302>3430327=7=2<202274223:20313730373233393534332>363738323533377=z[0:z[0:z +real 1m45.138s +user 1m52.414s +sys 1m44.574s +--- +resnet50 +======== +/Tmp/slurm.4115007.0/base/venv/torch/lib/python3.9/site-packages/torch/utils/data/dataloader.py:557: UserWarning: This DataLoader will create 8 worker processes in total. Our suggested max number of worker in current system is 4, which is smaller than what this DataLoader is going to create. Please be aware that excessive worker creation might get DataLoader running slow or even freeze, lower the worker number to avoid potential slowness/freeze if necessary. + warnings.warn(_create_warning_msg( +/Tmp/slurm.4115007.0/base/venv/torch/lib/python3.9/site-packages/torch/utils/data/dataloader.py:557: UserWarning: This DataLoader will create 8 worker processes in total. Our suggested max number of worker in current system is 4, which is smaller than what this DataLoader is going to create. Please be aware that excessive worker creation might get DataLoader running slow or even freeze, lower the worker number to avoid potential slowness/freeze if necessary. + warnings.warn(_create_warning_msg( + +real 7m39.036s +user 26m38.497s +sys 3m25.387s +--- +convnext_large-fp32 +=================== +/Tmp/slurm.4115007.0/base/venv/torch/lib/python3.9/site-packages/torch/utils/data/dataloader.py:557: UserWarning: This DataLoader will create 8 worker processes in total. Our suggested max number of worker in current system is 4, which is smaller than what this DataLoader is going to create. Please be aware that excessive worker creation might get DataLoader running slow or even freeze, lower the worker number to avoid potential slowness/freeze if necessary. + warnings.warn(_create_warning_msg( +/Tmp/slurm.4115007.0/base/venv/torch/lib/python3.9/site-packages/torch/utils/data/dataloader.py:557: UserWarning: This DataLoader will create 8 worker processes in total. Our suggested max number of worker in current system is 4, which is smaller than what this DataLoader is going to create. Please be aware that excessive worker creation might get DataLoader running slow or even freeze, lower the worker number to avoid potential slowness/freeze if necessary. + warnings.warn(_create_warning_msg( + +real 52m57.528s +user 73m30.090s +sys 49m19.248s +--- +convnext_large-fp16 +=================== +/Tmp/slurm.4115007.0/base/venv/torch/lib/python3.9/site-packages/torch/utils/data/dataloader.py:557: UserWarning: This DataLoader will create 8 worker processes in total. Our suggested max number of worker in current system is 4, which is smaller than what this DataLoader is going to create. Please be aware that excessive worker creation might get DataLoader running slow or even freeze, lower the worker number to avoid potential slowness/freeze if necessary. + warnings.warn(_create_warning_msg( +/Tmp/slurm.4115007.0/base/venv/torch/lib/python3.9/site-packages/torch/utils/data/dataloader.py:557: UserWarning: This DataLoader will create 8 worker processes in total. Our suggested max number of worker in current system is 4, which is smaller than what this DataLoader is going to create. Please be aware that excessive worker creation might get DataLoader running slow or even freeze, lower the worker number to avoid potential slowness/freeze if necessary. + warnings.warn(_create_warning_msg( +slurmstepd: error: *** JOB 4115007 ON cn-g024 CANCELLED AT 2024-02-06T13:24:45 DUE TO TIME LIMIT *** + +======== GPU REPORT ======== + +==============NVSMI LOG============== + +Timestamp : Tue Feb 6 13:24:45 2024 +Driver Version : 535.104.12 +CUDA Version : 12.2 + +Attached GPUs : 2 +GPU 00000000:81:00.0 + Accounting Mode : Enabled + Accounting Mode Buffer Size : 4000 + Accounted Processes + Process ID : 15486 + GPU Utilization : 0 % + Memory Utilization : 0 % + Max memory usage : 574 MiB + Time : 103278 ms + Is Running : 0 + Process ID : 16229 + GPU Utilization : 1 % + Memory Utilization : 0 % + Max memory usage : 574 MiB + Time : 3360 ms + Is Running : 0 + Process ID : 16325 + GPU Utilization : 0 % + Memory Utilization : 0 % + Max memory usage : 574 MiB + Time : 102656 ms + Is Running : 0 + Process ID : 17030 + GPU Utilization : 1 % + Memory Utilization : 0 % + Max memory usage : 574 MiB + Time : 3452 ms + Is Running : 0 + Process ID : 17273 + GPU Utilization : 2 % + Memory Utilization : 0 % + Max memory usage : 4712 MiB + Time : 44212 ms + Is Running : 0 + Process ID : 17725 + GPU Utilization : 76 % + Memory Utilization : 56 % + Max memory usage : 27548 MiB + Time : 307134 ms + Is Running : 0 + Process ID : 18964 + GPU Utilization : 90 % + Memory Utilization : 21 % + Max memory usage : 910 MiB + Time : 21263 ms + Is Running : 0 + Process ID : 19092 + GPU Utilization : 83 % + Memory Utilization : 19 % + Max memory usage : 910 MiB + Time : 7814 ms + Is Running : 0 + Process ID : 19180 + GPU Utilization : 96 % + Memory Utilization : 26 % + Max memory usage : 1288 MiB + Time : 13983 ms + Is Running : 0 + Process ID : 19282 + GPU Utilization : 99 % + Memory Utilization : 4 % + Max memory usage : 1288 MiB + Time : 104066 ms + Is Running : 0 + Process ID : 19702 + GPU Utilization : 35 % + Memory Utilization : 15 % + Max memory usage : 3852 MiB + Time : 453580 ms + Is Running : 0 + Process ID : 9877 + GPU Utilization : 97 % + Memory Utilization : 16 % + Max memory usage : 48704 MiB + Time : 3176123 ms + Is Running : 0 + Process ID : 9956 + GPU Utilization : 74 % + Memory Utilization : 37 % + Max memory usage : 26584 MiB + Time : 0 ms + Is Running : 1 + +GPU 00000000:C1:00.0 + Accounting Mode : Enabled + Accounting Mode Buffer Size : 4000 + Accounted Processes + Process ID : 17726 + GPU Utilization : 76 % + Memory Utilization : 56 % + Max memory usage : 27548 MiB + Time : 307508 ms + Is Running : 0 + Process ID : 18965 + GPU Utilization : 91 % + Memory Utilization : 21 % + Max memory usage : 910 MiB + Time : 21299 ms + Is Running : 0 + Process ID : 19093 + GPU Utilization : 77 % + Memory Utilization : 18 % + Max memory usage : 910 MiB + Time : 7734 ms + Is Running : 0 + Process ID : 19181 + GPU Utilization : 94 % + Memory Utilization : 26 % + Max memory usage : 1288 MiB + Time : 14005 ms + Is Running : 0 + Process ID : 19283 + GPU Utilization : 99 % + Memory Utilization : 4 % + Max memory usage : 1288 MiB + Time : 103897 ms + Is Running : 0 + Process ID : 19703 + GPU Utilization : 35 % + Memory Utilization : 15 % + Max memory usage : 3852 MiB + Time : 457533 ms + Is Running : 0 + Process ID : 9878 + GPU Utilization : 97 % + Memory Utilization : 17 % + Max memory usage : 48704 MiB + Time : 3154313 ms + Is Running : 0 + Process ID : 9957 + GPU Utilization : 74 % + Memory Utilization : 37 % + Max memory usage : 26584 MiB + Time : 0 ms + Is Running : 1 + +Tue Feb 6 13:24:46 2024 ++---------------------------------------------------------------------------------------+ +| NVIDIA-SMI 535.104.12 Driver Version: 535.104.12 CUDA Version: 12.2 | +|-----------------------------------------+----------------------+----------------------+ +| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC | +| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. | +| | | MIG M. | +|=========================================+======================+======================| +| 0 NVIDIA A100-SXM4-80GB On | 00000000:81:00.0 Off | 0 | +| N/A 66C P0 400W / 500W | 26594MiB / 81920MiB | 96% Default | +| | | Disabled | ++-----------------------------------------+----------------------+----------------------+ +| 1 NVIDIA A100-SXM4-80GB On | 00000000:C1:00.0 Off | 0 | +| N/A 53C P0 176W / 500W | 26594MiB / 81920MiB | 99% Default | +| | | Disabled | ++-----------------------------------------+----------------------+----------------------+ + ++---------------------------------------------------------------------------------------+ +| Processes: | +| GPU GI CI PID Type Process name GPU Memory | +| ID ID Usage | +|=======================================================================================| +| 0 N/A N/A 9956 C python 26584MiB | +| 1 N/A N/A 9957 C python 26584MiB | ++---------------------------------------------------------------------------------------+ diff --git a/scripts/barebone_voir.out b/scripts/barebone_voir.out new file mode 100644 index 000000000..ecf3085b3 --- /dev/null +++ b/scripts/barebone_voir.out @@ -0,0 +1,7434 @@ + PYTHON: 3.9 + branch: overhead + origin: https://github.com/mila-iqia/milabench.git + config: /Tmp/slurm.4115546.0/milabench/config/standard.yaml + env: ./env + args: +Collecting package metadata (current_repodata.json): ...working... done +Solving environment: ...working... done + + +==> WARNING: A newer version of conda exists. <== + current version: 23.5.2 + latest version: 24.1.0 + +Please update conda by running + + $ conda update -n base -c defaults conda + +Or to minimize the number of packages updated during conda update use + + conda install conda=24.1.0 + + + +## Package Plan ## + + environment location: /Tmp/slurm.4115546.0/env + + added / updated specs: + - python=3.9 + + +The following NEW packages will be INSTALLED: + + _libgcc_mutex pkgs/main/linux-64::_libgcc_mutex-0.1-main + _openmp_mutex pkgs/main/linux-64::_openmp_mutex-5.1-1_gnu + ca-certificates pkgs/main/linux-64::ca-certificates-2023.12.12-h06a4308_0 + ld_impl_linux-64 pkgs/main/linux-64::ld_impl_linux-64-2.38-h1181459_1 + libffi pkgs/main/linux-64::libffi-3.4.4-h6a678d5_0 + libgcc-ng pkgs/main/linux-64::libgcc-ng-11.2.0-h1234567_1 + libgomp pkgs/main/linux-64::libgomp-11.2.0-h1234567_1 + libstdcxx-ng pkgs/main/linux-64::libstdcxx-ng-11.2.0-h1234567_1 + ncurses pkgs/main/linux-64::ncurses-6.4-h6a678d5_0 + openssl pkgs/main/linux-64::openssl-3.0.13-h7f8727e_0 + pip pkgs/main/linux-64::pip-23.3.1-py39h06a4308_0 + python pkgs/main/linux-64::python-3.9.18-h955ad1f_0 + readline pkgs/main/linux-64::readline-8.2-h5eee18b_0 + setuptools pkgs/main/linux-64::setuptools-68.2.2-py39h06a4308_0 + sqlite pkgs/main/linux-64::sqlite-3.41.2-h5eee18b_0 + tk pkgs/main/linux-64::tk-8.6.12-h1ccaba5_0 + tzdata pkgs/main/noarch::tzdata-2023d-h04d1e81_0 + wheel pkgs/main/linux-64::wheel-0.41.2-py39h06a4308_0 + xz pkgs/main/linux-64::xz-5.4.5-h5eee18b_0 + zlib pkgs/main/linux-64::zlib-1.2.13-h5eee18b_0 + + + +Downloading and Extracting Packages + +Preparing transaction: ...working... done +Verifying transaction: ...working... done +Executing transaction: ...working... done +# +# To activate this environment, use +# +# $ conda activate /Tmp/slurm.4115546.0/env +# +# To deactivate an active environment, use +# +# $ conda deactivate + +Cloning into 'milabench'... +Obtaining file:///Tmp/slurm.4115546.0/milabench + Installing build dependencies: started + Installing build dependencies: finished with status 'done' + Checking if build backend supports build_editable: started + Checking if build backend supports build_editable: finished with status 'done' + Getting requirements to build editable: started + Getting requirements to build editable: finished with status 'done' + Preparing editable metadata (pyproject.toml): started + Preparing editable metadata (pyproject.toml): finished with status 'done' +Collecting voir@ git+https://github.com/breuleux/voir@master (from milabench==0.1.0) + Cloning https://github.com/breuleux/voir (to revision master) to /tmp/pip-install-qj7e8v7_/voir_2fe4851083fa404f88f8bee675458894 + Running command git clone --filter=blob:none --quiet https://github.com/breuleux/voir /tmp/pip-install-qj7e8v7_/voir_2fe4851083fa404f88f8bee675458894 + Resolved https://github.com/breuleux/voir to commit 08b19eb9bce3a38cbf38bb59ee117c0cb6f116da + Installing build dependencies: started + Installing build dependencies: finished with status 'done' + Getting requirements to build wheel: started + Getting requirements to build wheel: finished with status 'done' + Preparing metadata (pyproject.toml): started + Preparing metadata (pyproject.toml): finished with status 'done' +Collecting GitPython<4.0.0,>=3.1.24 (from milabench==0.1.0) + Downloading GitPython-3.1.41-py3-none-any.whl.metadata (14 kB) +Collecting PyYAML<7.0,>=6.0 (from milabench==0.1.0) + Downloading PyYAML-6.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (2.1 kB) +Collecting blessed<2.0.0,>=1.19.1 (from milabench==0.1.0) + Downloading blessed-1.20.0-py2.py3-none-any.whl (58 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58.4/58.4 kB 5.7 MB/s eta 0:00:00 +Collecting coleo<0.4.0,>=0.3.0 (from milabench==0.1.0) + Downloading coleo-0.3.3-py3-none-any.whl.metadata (13 kB) +Collecting cp-template<0.4.0,>=0.3.0 (from milabench==0.1.0) + Downloading cp_template-0.3.0-py3-none-any.whl (3.3 kB) +Collecting giving<0.5.0,>=0.4.0 (from milabench==0.1.0) + Downloading giving-0.4.2-py3-none-any.whl (28 kB) +Collecting hrepr<0.5.0,>=0.4.0 (from milabench==0.1.0) + Downloading hrepr-0.4.1-py3-none-any.whl (21 kB) +Collecting importlib-resources<7.0.0,>=6.1.0 (from milabench==0.1.0) + Downloading importlib_resources-6.1.1-py3-none-any.whl.metadata (4.1 kB) +Collecting nox<2022.0.0,>=2021.10.1 (from milabench==0.1.0) + Downloading nox-2021.10.1-py3-none-any.whl (49 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 49.7/49.7 kB 23.4 MB/s eta 0:00:00 +Collecting numpy>=1.23.0 (from milabench==0.1.0) + Downloading numpy-1.26.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (61 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 61.0/61.0 kB 24.6 MB/s eta 0:00:00 +Collecting omegaconf<3.0.0,>=2.3.0 (from milabench==0.1.0) + Downloading omegaconf-2.3.0-py3-none-any.whl (79 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 79.5/79.5 kB 27.6 MB/s eta 0:00:00 +Collecting ovld<0.4.0,>=0.3.2 (from milabench==0.1.0) + Downloading ovld-0.3.2-py3-none-any.whl (16 kB) +Collecting pandas<2.0.0,>=1.4.2 (from milabench==0.1.0) + Downloading pandas-1.5.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.2 MB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 12.2/12.2 MB 101.9 MB/s eta 0:00:00 +Collecting pathspec<0.10.0,>=0.9.0 (from milabench==0.1.0) + Downloading pathspec-0.9.0-py2.py3-none-any.whl (31 kB) +Collecting pip-tools<7.0.0,>=6.12.3 (from milabench==0.1.0) + Downloading pip_tools-6.14.0-py3-none-any.whl.metadata (23 kB) +Collecting psutil<6.0.0,>=5.9.5 (from milabench==0.1.0) + Downloading psutil-5.9.8-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (21 kB) +Collecting psycopg2-binary<3.0.0,>=2.9.6 (from milabench==0.1.0) + Downloading psycopg2_binary-2.9.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (4.4 kB) +Collecting ptera<2.0.0,>=1.2.0 (from milabench==0.1.0) + Downloading ptera-1.4.1-py3-none-any.whl (39 kB) +Collecting py-cpuinfo<10.0.0,>=9.0.0 (from milabench==0.1.0) + Downloading py_cpuinfo-9.0.0-py3-none-any.whl (22 kB) +Collecting pymongo<5.0.0,>=4.3.3 (from milabench==0.1.0) + Downloading pymongo-4.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (22 kB) +Collecting pynvml<12.0.0,>=11.4.1 (from milabench==0.1.0) + Downloading pynvml-11.5.0-py3-none-any.whl (53 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 53.1/53.1 kB 34.5 MB/s eta 0:00:00 +Collecting requests<3.0.0,>=2.26.0 (from milabench==0.1.0) + Downloading requests-2.31.0-py3-none-any.whl.metadata (4.6 kB) +Collecting rich<14.0.0,>=13.3.2 (from milabench==0.1.0) + Downloading rich-13.7.0-py3-none-any.whl.metadata (18 kB) +Collecting sqlalchemy<3.0.0,>=2.0.15 (from milabench==0.1.0) + Downloading SQLAlchemy-2.0.25-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (9.6 kB) +Collecting tqdm<5.0.0,>=4.64.1 (from milabench==0.1.0) + Downloading tqdm-4.66.1-py3-none-any.whl.metadata (57 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 57.6/57.6 kB 26.3 MB/s eta 0:00:00 +Collecting wcwidth>=0.1.4 (from blessed<2.0.0,>=1.19.1->milabench==0.1.0) + Downloading wcwidth-0.2.13-py2.py3-none-any.whl.metadata (14 kB) +Collecting six>=1.9.0 (from blessed<2.0.0,>=1.19.1->milabench==0.1.0) + Downloading six-1.16.0-py2.py3-none-any.whl (11 kB) +Collecting pystache<0.7.0,>=0.6.0 (from cp-template<0.4.0,>=0.3.0->milabench==0.1.0) + Downloading pystache-0.6.5-py3-none-any.whl.metadata (14 kB) +Collecting gitdb<5,>=4.0.1 (from GitPython<4.0.0,>=3.1.24->milabench==0.1.0) + Downloading gitdb-4.0.11-py3-none-any.whl.metadata (1.2 kB) +Collecting asttokens<3.0.0,>=2.2.1 (from giving<0.5.0,>=0.4.0->milabench==0.1.0) + Downloading asttokens-2.4.1-py2.py3-none-any.whl.metadata (5.2 kB) +Collecting reactivex<5.0.0,>=4.0.0 (from giving<0.5.0,>=0.4.0->milabench==0.1.0) + Downloading reactivex-4.0.4-py3-none-any.whl (217 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 217.8/217.8 kB 93.6 MB/s eta 0:00:00 +Collecting varname<0.11.0,>=0.10.0 (from giving<0.5.0,>=0.4.0->milabench==0.1.0) + Downloading varname-0.10.0-py3-none-any.whl (22 kB) +Collecting zipp>=3.1.0 (from importlib-resources<7.0.0,>=6.1.0->milabench==0.1.0) + Downloading zipp-3.17.0-py3-none-any.whl.metadata (3.7 kB) +Collecting argcomplete<2.0,>=1.9.4 (from nox<2022.0.0,>=2021.10.1->milabench==0.1.0) + Downloading argcomplete-1.12.3-py2.py3-none-any.whl (38 kB) +Collecting colorlog<7.0.0,>=2.6.1 (from nox<2022.0.0,>=2021.10.1->milabench==0.1.0) + Downloading colorlog-6.8.2-py3-none-any.whl.metadata (10 kB) +Collecting packaging>=20.9 (from nox<2022.0.0,>=2021.10.1->milabench==0.1.0) + Downloading packaging-23.2-py3-none-any.whl.metadata (3.2 kB) +Collecting py<2.0.0,>=1.4.0 (from nox<2022.0.0,>=2021.10.1->milabench==0.1.0) + Downloading py-1.11.0-py2.py3-none-any.whl (98 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 98.7/98.7 kB 55.9 MB/s eta 0:00:00 +Collecting virtualenv>=14.0.0 (from nox<2022.0.0,>=2021.10.1->milabench==0.1.0) + Downloading virtualenv-20.25.0-py3-none-any.whl.metadata (4.5 kB) +Collecting antlr4-python3-runtime==4.9.* (from omegaconf<3.0.0,>=2.3.0->milabench==0.1.0) + Downloading antlr4-python3-runtime-4.9.3.tar.gz (117 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 117.0/117.0 kB 64.4 MB/s eta 0:00:00 + Preparing metadata (setup.py): started + Preparing metadata (setup.py): finished with status 'done' +Collecting python-dateutil>=2.8.1 (from pandas<2.0.0,>=1.4.2->milabench==0.1.0) + Downloading python_dateutil-2.8.2-py2.py3-none-any.whl (247 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 247.7/247.7 kB 92.6 MB/s eta 0:00:00 +Collecting pytz>=2020.1 (from pandas<2.0.0,>=1.4.2->milabench==0.1.0) + Downloading pytz-2024.1-py2.py3-none-any.whl.metadata (22 kB) +Collecting build (from pip-tools<7.0.0,>=6.12.3->milabench==0.1.0) + Downloading build-1.0.3-py3-none-any.whl.metadata (4.2 kB) +Collecting click>=8 (from pip-tools<7.0.0,>=6.12.3->milabench==0.1.0) + Downloading click-8.1.7-py3-none-any.whl.metadata (3.0 kB) +Requirement already satisfied: pip>=22.2 in ./env/lib/python3.9/site-packages (from pip-tools<7.0.0,>=6.12.3->milabench==0.1.0) (23.3.1) +Requirement already satisfied: setuptools in ./env/lib/python3.9/site-packages (from pip-tools<7.0.0,>=6.12.3->milabench==0.1.0) (68.2.2) +Requirement already satisfied: wheel in ./env/lib/python3.9/site-packages (from pip-tools<7.0.0,>=6.12.3->milabench==0.1.0) (0.41.2) +Collecting tomli (from pip-tools<7.0.0,>=6.12.3->milabench==0.1.0) + Downloading tomli-2.0.1-py3-none-any.whl (12 kB) +Collecting codefind<0.2.0,>=0.1.2 (from ptera<2.0.0,>=1.2.0->milabench==0.1.0) + Downloading codefind-0.1.3-py3-none-any.whl (3.1 kB) +Collecting dnspython<3.0.0,>=1.16.0 (from pymongo<5.0.0,>=4.3.3->milabench==0.1.0) + Downloading dnspython-2.5.0-py3-none-any.whl.metadata (5.8 kB) +Collecting charset-normalizer<4,>=2 (from requests<3.0.0,>=2.26.0->milabench==0.1.0) + Downloading charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (33 kB) +Collecting idna<4,>=2.5 (from requests<3.0.0,>=2.26.0->milabench==0.1.0) + Downloading idna-3.6-py3-none-any.whl.metadata (9.9 kB) +Collecting urllib3<3,>=1.21.1 (from requests<3.0.0,>=2.26.0->milabench==0.1.0) + Downloading urllib3-2.2.0-py3-none-any.whl.metadata (6.4 kB) +Collecting certifi>=2017.4.17 (from requests<3.0.0,>=2.26.0->milabench==0.1.0) + Downloading certifi-2024.2.2-py3-none-any.whl.metadata (2.2 kB) +Collecting markdown-it-py>=2.2.0 (from rich<14.0.0,>=13.3.2->milabench==0.1.0) + Downloading markdown_it_py-3.0.0-py3-none-any.whl.metadata (6.9 kB) +Collecting pygments<3.0.0,>=2.13.0 (from rich<14.0.0,>=13.3.2->milabench==0.1.0) + Downloading pygments-2.17.2-py3-none-any.whl.metadata (2.6 kB) +Collecting typing-extensions>=4.6.0 (from sqlalchemy<3.0.0,>=2.0.15->milabench==0.1.0) + Downloading typing_extensions-4.9.0-py3-none-any.whl.metadata (3.0 kB) +Collecting greenlet!=0.4.17 (from sqlalchemy<3.0.0,>=2.0.15->milabench==0.1.0) + Downloading greenlet-3.0.3-cp39-cp39-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.metadata (3.8 kB) +Collecting smmap<6,>=3.0.1 (from gitdb<5,>=4.0.1->GitPython<4.0.0,>=3.1.24->milabench==0.1.0) + Downloading smmap-5.0.1-py3-none-any.whl.metadata (4.3 kB) +Collecting mdurl~=0.1 (from markdown-it-py>=2.2.0->rich<14.0.0,>=13.3.2->milabench==0.1.0) + Downloading mdurl-0.1.2-py3-none-any.whl (10.0 kB) +Collecting importlib-metadata>=4.6 (from pystache<0.7.0,>=0.6.0->cp-template<0.4.0,>=0.3.0->milabench==0.1.0) + Downloading importlib_metadata-7.0.1-py3-none-any.whl.metadata (4.9 kB) +Collecting executing<2.0,>=1.1 (from varname<0.11.0,>=0.10.0->giving<0.5.0,>=0.4.0->milabench==0.1.0) + Downloading executing-1.2.0-py2.py3-none-any.whl (24 kB) +Collecting distlib<1,>=0.3.7 (from virtualenv>=14.0.0->nox<2022.0.0,>=2021.10.1->milabench==0.1.0) + Downloading distlib-0.3.8-py2.py3-none-any.whl.metadata (5.1 kB) +Collecting filelock<4,>=3.12.2 (from virtualenv>=14.0.0->nox<2022.0.0,>=2021.10.1->milabench==0.1.0) + Downloading filelock-3.13.1-py3-none-any.whl.metadata (2.8 kB) +Collecting platformdirs<5,>=3.9.1 (from virtualenv>=14.0.0->nox<2022.0.0,>=2021.10.1->milabench==0.1.0) + Downloading platformdirs-4.2.0-py3-none-any.whl.metadata (11 kB) +Collecting pyproject_hooks (from build->pip-tools<7.0.0,>=6.12.3->milabench==0.1.0) + Downloading pyproject_hooks-1.0.0-py3-none-any.whl (9.3 kB) +Downloading coleo-0.3.3-py3-none-any.whl (12 kB) +Downloading GitPython-3.1.41-py3-none-any.whl (196 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 196.4/196.4 kB 87.9 MB/s eta 0:00:00 +Downloading importlib_resources-6.1.1-py3-none-any.whl (33 kB) +Downloading numpy-1.26.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.2 MB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 18.2/18.2 MB 96.7 MB/s eta 0:00:00 +Downloading pip_tools-6.14.0-py3-none-any.whl (55 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 55.9/55.9 kB 33.6 MB/s eta 0:00:00 +Downloading psutil-5.9.8-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (288 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 288.2/288.2 kB 97.4 MB/s eta 0:00:00 +Downloading psycopg2_binary-2.9.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 3.0/3.0 MB 104.8 MB/s eta 0:00:00 +Downloading pymongo-4.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (676 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 676.3/676.3 kB 99.7 MB/s eta 0:00:00 +Downloading PyYAML-6.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (738 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 738.9/738.9 kB 103.0 MB/s eta 0:00:00 +Downloading requests-2.31.0-py3-none-any.whl (62 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 62.6/62.6 kB 3.1 MB/s eta 0:00:00 +Downloading rich-13.7.0-py3-none-any.whl (240 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 240.6/240.6 kB 91.4 MB/s eta 0:00:00 +Downloading SQLAlchemy-2.0.25-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 3.1/3.1 MB 104.5 MB/s eta 0:00:00 +Downloading tqdm-4.66.1-py3-none-any.whl (78 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 78.3/78.3 kB 49.2 MB/s eta 0:00:00 +Downloading asttokens-2.4.1-py2.py3-none-any.whl (27 kB) +Downloading certifi-2024.2.2-py3-none-any.whl (163 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 163.8/163.8 kB 55.7 MB/s eta 0:00:00 +Downloading charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (142 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 142.3/142.3 kB 65.0 MB/s eta 0:00:00 +Downloading click-8.1.7-py3-none-any.whl (97 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 97.9/97.9 kB 60.3 MB/s eta 0:00:00 +Downloading colorlog-6.8.2-py3-none-any.whl (11 kB) +Downloading dnspython-2.5.0-py3-none-any.whl (305 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 305.4/305.4 kB 98.4 MB/s eta 0:00:00 +Downloading gitdb-4.0.11-py3-none-any.whl (62 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 62.7/62.7 kB 540.2 kB/s eta 0:00:00 +Downloading greenlet-3.0.3-cp39-cp39-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (614 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 614.3/614.3 kB 73.2 MB/s eta 0:00:00 +Downloading idna-3.6-py3-none-any.whl (61 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 61.6/61.6 kB 39.3 MB/s eta 0:00:00 +Downloading markdown_it_py-3.0.0-py3-none-any.whl (87 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 87.5/87.5 kB 52.6 MB/s eta 0:00:00 +Downloading packaging-23.2-py3-none-any.whl (53 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 53.0/53.0 kB 34.0 MB/s eta 0:00:00 +Downloading pygments-2.17.2-py3-none-any.whl (1.2 MB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.2/1.2 MB 101.5 MB/s eta 0:00:00 +Downloading pystache-0.6.5-py3-none-any.whl (81 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 81.3/81.3 kB 40.7 MB/s eta 0:00:00 +Downloading pytz-2024.1-py2.py3-none-any.whl (505 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 505.5/505.5 kB 98.7 MB/s eta 0:00:00 +Downloading typing_extensions-4.9.0-py3-none-any.whl (32 kB) +Downloading urllib3-2.2.0-py3-none-any.whl (120 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 120.9/120.9 kB 69.9 MB/s eta 0:00:00 +Downloading virtualenv-20.25.0-py3-none-any.whl (3.8 MB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 3.8/3.8 MB 104.8 MB/s eta 0:00:00 +Downloading wcwidth-0.2.13-py2.py3-none-any.whl (34 kB) +Downloading zipp-3.17.0-py3-none-any.whl (7.4 kB) +Downloading build-1.0.3-py3-none-any.whl (18 kB) +Downloading distlib-0.3.8-py2.py3-none-any.whl (468 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 468.9/468.9 kB 99.3 MB/s eta 0:00:00 +Downloading filelock-3.13.1-py3-none-any.whl (11 kB) +Downloading importlib_metadata-7.0.1-py3-none-any.whl (23 kB) +Downloading platformdirs-4.2.0-py3-none-any.whl (17 kB) +Downloading smmap-5.0.1-py3-none-any.whl (24 kB) +Building wheels for collected packages: milabench, antlr4-python3-runtime, voir + Building editable for milabench (pyproject.toml): started + Building editable for milabench (pyproject.toml): finished with status 'done' + Created wheel for milabench: filename=milabench-0.1.0-cp39-cp39-manylinux_2_31_x86_64.whl size=2540 sha256=eb7203eb30fa0b94879dca7a7ac75b33cd54214d26544cf270a6c0a8aef3d69f + Stored in directory: /tmp/pip-ephem-wheel-cache-_dfv74jv/wheels/4c/0f/7c/4d24e3257b4fbfe4be199217707e833df397d2a9b0c56be921 + Building wheel for antlr4-python3-runtime (setup.py): started + Building wheel for antlr4-python3-runtime (setup.py): finished with status 'done' + Created wheel for antlr4-python3-runtime: filename=antlr4_python3_runtime-4.9.3-py3-none-any.whl size=144554 sha256=0042ab7ffefbcbbaf06505410d078f50e3568443a588204bb15dd8d76042f15b + Stored in directory: /Tmp/slurm.4115546.0/base/cache/pip/wheels/23/cf/80/f3efa822e6ab23277902ee9165fe772eeb1dfb8014f359020a + Building wheel for voir (pyproject.toml): started + Building wheel for voir (pyproject.toml): finished with status 'done' + Created wheel for voir: filename=voir-0.2.12-py3-none-any.whl size=35680 sha256=a328d0b6870c176ef1902b308f705c1564ba35107cfca2b30b9449414c8b6602 + Stored in directory: /tmp/pip-ephem-wheel-cache-_dfv74jv/wheels/84/84/4a/c80daeea0e92bba98cd19cb2fd7d2e9cc6075cef2dedbd09df +Successfully built milabench antlr4-python3-runtime voir +Installing collected packages: wcwidth, pytz, py-cpuinfo, executing, distlib, argcomplete, antlr4-python3-runtime, zipp, varname, urllib3, typing-extensions, tqdm, tomli, smmap, six, PyYAML, pynvml, pygments, py, psycopg2-binary, psutil, platformdirs, pathspec, packaging, ovld, numpy, mdurl, idna, greenlet, filelock, dnspython, colorlog, codefind, click, charset-normalizer, certifi, virtualenv, sqlalchemy, requests, reactivex, python-dateutil, pyproject_hooks, pymongo, omegaconf, markdown-it-py, importlib-resources, importlib-metadata, hrepr, gitdb, blessed, asttokens, rich, pystache, pandas, nox, giving, GitPython, build, ptera, pip-tools, voir, coleo, cp-template, milabench +Successfully installed GitPython-3.1.41 PyYAML-6.0.1 antlr4-python3-runtime-4.9.3 argcomplete-1.12.3 asttokens-2.4.1 blessed-1.20.0 build-1.0.3 certifi-2024.2.2 charset-normalizer-3.3.2 click-8.1.7 codefind-0.1.3 coleo-0.3.3 colorlog-6.8.2 cp-template-0.3.0 distlib-0.3.8 dnspython-2.5.0 executing-1.2.0 filelock-3.13.1 gitdb-4.0.11 giving-0.4.2 greenlet-3.0.3 hrepr-0.4.1 idna-3.6 importlib-metadata-7.0.1 importlib-resources-6.1.1 markdown-it-py-3.0.0 mdurl-0.1.2 milabench-0.1.0 nox-2021.10.1 numpy-1.26.4 omegaconf-2.3.0 ovld-0.3.2 packaging-23.2 pandas-1.5.3 pathspec-0.9.0 pip-tools-6.14.0 platformdirs-4.2.0 psutil-5.9.8 psycopg2-binary-2.9.9 ptera-1.4.1 py-1.11.0 py-cpuinfo-9.0.0 pygments-2.17.2 pymongo-4.6.1 pynvml-11.5.0 pyproject_hooks-1.0.0 pystache-0.6.5 python-dateutil-2.8.2 pytz-2024.1 reactivex-4.0.4 requests-2.31.0 rich-13.7.0 six-1.16.0 smmap-5.0.1 sqlalchemy-2.0.25 tomli-2.0.1 tqdm-4.66.1 typing-extensions-4.9.0 urllib3-2.2.0 varname-0.10.0 virtualenv-20.25.0 voir-0.2.12 wcwidth-0.2.13 zipp-3.17.0 + +The following have been reloaded with a version change: + 1) gcc/7.4.0 => gcc/9.3.0 + +[=== Module cudatoolkit/11.8 loaded ===] + +Install +------- +llama [start] pip install -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt [at 2024-02-06 15:49:18.000132] +llama [stdout] Looking in indexes: https://pypi.org/simple, https://download.pytorch.org/whl/cu118 +llama [stdout] Collecting aiohttp==3.8.6 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 9)) +llama [stdout] Downloading aiohttp-3.8.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (7.7 kB) +llama [stdout] Collecting aiosignal==1.3.1 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 13)) +llama [stdout] Downloading aiosignal-1.3.1-py3-none-any.whl (7.6 kB) +llama [stdout] Collecting antlr4-python3-runtime==4.9.3 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 15)) +llama [stdout] Using cached antlr4_python3_runtime-4.9.3-py3-none-any.whl +llama [stdout] Collecting asttokens==2.4.1 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 17)) +llama [stdout] Using cached asttokens-2.4.1-py2.py3-none-any.whl.metadata (5.2 kB) +llama [stdout] Collecting async-timeout==4.0.3 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 19)) +llama [stdout] Downloading async_timeout-4.0.3-py3-none-any.whl.metadata (4.2 kB) +llama [stdout] Collecting attrs==23.1.0 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 21)) +llama [stdout] Downloading attrs-23.1.0-py3-none-any.whl (61 kB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 61.2/61.2 kB 5.3 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Collecting certifi==2023.7.22 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 23)) +llama [stdout] Downloading certifi-2023.7.22-py3-none-any.whl.metadata (2.2 kB) +llama [stdout] Collecting charset-normalizer==3.3.2 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 25)) +llama [stdout] Using cached charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (33 kB) +llama [stdout] Collecting codefind==0.1.3 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 29)) +llama [stdout] Using cached codefind-0.1.3-py3-none-any.whl (3.1 kB) +llama [stdout] Collecting datasets==2.14.6 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 31)) +llama [stdout] Downloading datasets-2.14.6-py3-none-any.whl.metadata (19 kB) +llama [stdout] Collecting dill==0.3.7 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 33)) +llama [stdout] Downloading dill-0.3.7-py3-none-any.whl.metadata (9.9 kB) +llama [stdout] Collecting executing==1.2.0 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 37)) +llama [stdout] Using cached executing-1.2.0-py2.py3-none-any.whl (24 kB) +llama [stdout] Collecting fairscale==0.4.13 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 39)) +llama [stdout] Downloading fairscale-0.4.13.tar.gz (266 kB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 266.3/266.3 kB 22.2 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Installing build dependencies: started +llama [stdout] Installing build dependencies: finished with status 'done' +llama [stdout] Getting requirements to build wheel: started +llama [stdout] Getting requirements to build wheel: finished with status 'done' +llama [stdout] Installing backend dependencies: started +llama [stdout] Installing backend dependencies: finished with status 'done' +llama [stdout] Preparing metadata (pyproject.toml): started +llama [stdout] Preparing metadata (pyproject.toml): finished with status 'done' +llama [stdout] Collecting filelock==3.13.1 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 41)) +llama [stdout] Using cached filelock-3.13.1-py3-none-any.whl.metadata (2.8 kB) +llama [stdout] Collecting fire==0.5.0 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 47)) +llama [stdout] Downloading fire-0.5.0.tar.gz (88 kB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 88.3/88.3 kB 47.1 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Preparing metadata (setup.py): started +llama [stdout] Preparing metadata (setup.py): finished with status 'done' +llama [stdout] Collecting frozenlist==1.4.0 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 49)) +llama [stdout] Downloading frozenlist-1.4.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (5.2 kB) +llama [stdout] Collecting fsspec==2023.10.0 (from fsspec[http]==2023.10.0->-r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 53)) +llama [stdout] Downloading fsspec-2023.10.0-py3-none-any.whl.metadata (6.8 kB) +llama [stdout] Collecting giving==0.4.2 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 58)) +llama [stdout] Using cached giving-0.4.2-py3-none-any.whl (28 kB) +llama [stdout] Collecting huggingface-hub==0.17.3 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 62)) +llama [stdout] Downloading huggingface_hub-0.17.3-py3-none-any.whl.metadata (13 kB) +llama [stdout] Collecting idna==3.4 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 67)) +llama [stdout] Downloading https://download.pytorch.org/whl/idna-3.4-py3-none-any.whl (61 kB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 61.5/61.5 kB 6.4 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Collecting jinja2==3.1.2 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 71)) +llama [stdout] Downloading https://download.pytorch.org/whl/Jinja2-3.1.2-py3-none-any.whl (133 kB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 133.1/133.1 kB 12.4 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Collecting markdown-it-py==3.0.0 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 73)) +llama [stdout] Using cached markdown_it_py-3.0.0-py3-none-any.whl.metadata (6.9 kB) +llama [stdout] Collecting markupsafe==2.1.3 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 75)) +llama [stdout] Downloading https://download.pytorch.org/whl/MarkupSafe-2.1.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (25 kB) +llama [stdout] Collecting mdurl==0.1.2 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 77)) +llama [stdout] Using cached mdurl-0.1.2-py3-none-any.whl (10.0 kB) +llama [stdout] Collecting mpmath==1.3.0 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 79)) +llama [stdout] Downloading https://download.pytorch.org/whl/mpmath-1.3.0-py3-none-any.whl (536 kB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 536.2/536.2 kB 39.2 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Collecting multidict==6.0.4 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 81)) +llama [stdout] Downloading multidict-6.0.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (114 kB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 114.2/114.2 kB 51.7 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Collecting multiprocess==0.70.15 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 85)) +llama [stdout] Downloading multiprocess-0.70.15-py39-none-any.whl.metadata (7.2 kB) +llama [stdout] Collecting networkx==3.2.1 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 87)) +llama [stdout] Downloading https://download.pytorch.org/whl/networkx-3.2.1-py3-none-any.whl (1.6 MB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.6/1.6 MB 96.8 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Collecting numpy==1.26.1 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 89)) +llama [stdout] Downloading numpy-1.26.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (61 kB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 61.2/61.2 kB 24.1 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Collecting omegaconf==2.3.0 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 96)) +llama [stdout] Using cached omegaconf-2.3.0-py3-none-any.whl (79 kB) +llama [stdout] Collecting ovld==0.3.2 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 98)) +llama [stdout] Using cached ovld-0.3.2-py3-none-any.whl (16 kB) +llama [stdout] Collecting packaging==23.2 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 100)) +llama [stdout] Using cached packaging-23.2-py3-none-any.whl.metadata (3.2 kB) +llama [stdout] Collecting pandas==2.1.2 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 105)) +llama [stdout] Downloading pandas-2.1.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (18 kB) +llama [stdout] Collecting ptera==1.4.1 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 107)) +llama [stdout] Using cached ptera-1.4.1-py3-none-any.whl (39 kB) +llama [stdout] Collecting pyarrow==14.0.0 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 109)) +llama [stdout] Downloading pyarrow-14.0.0-cp39-cp39-manylinux_2_28_x86_64.whl.metadata (3.0 kB) +llama [stdout] Collecting pygments==2.16.1 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 111)) +llama [stdout] Downloading Pygments-2.16.1-py3-none-any.whl.metadata (2.5 kB) +llama [stdout] Collecting pynvml==11.5.0 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 113)) +llama [stdout] Using cached pynvml-11.5.0-py3-none-any.whl (53 kB) +llama [stdout] Collecting python-dateutil==2.8.2 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 115)) +llama [stdout] Using cached python_dateutil-2.8.2-py2.py3-none-any.whl (247 kB) +llama [stdout] Collecting pytz==2023.3.post1 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 117)) +llama [stdout] Downloading pytz-2023.3.post1-py2.py3-none-any.whl.metadata (22 kB) +llama [stdout] Collecting pyyaml==6.0.1 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 119)) +llama [stdout] Using cached PyYAML-6.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (2.1 kB) +llama [stdout] Collecting reactivex==4.0.4 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 125)) +llama [stdout] Using cached reactivex-4.0.4-py3-none-any.whl (217 kB) +llama [stdout] Collecting regex==2023.10.3 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 127)) +llama [stdout] Downloading regex-2023.10.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (40 kB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 40.9/40.9 kB 19.5 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Collecting requests==2.31.0 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 129)) +llama [stdout] Using cached requests-2.31.0-py3-none-any.whl.metadata (4.6 kB) +llama [stdout] Collecting rich==13.6.0 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 135)) +llama [stdout] Downloading rich-13.6.0-py3-none-any.whl.metadata (18 kB) +llama [stdout] Collecting safetensors==0.4.0 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 137)) +llama [stdout] Downloading safetensors-0.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (3.8 kB) +llama [stdout] Collecting sentencepiece==0.1.99 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 139)) +llama [stdout] Downloading sentencepiece-0.1.99-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.3/1.3 MB 69.8 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Collecting six==1.16.0 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 141)) +llama [stdout] Using cached six-1.16.0-py2.py3-none-any.whl (11 kB) +llama [stdout] Collecting sympy==1.12 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 146)) +llama [stdout] Downloading https://download.pytorch.org/whl/sympy-1.12-py3-none-any.whl (5.7 MB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 5.7/5.7 MB 79.2 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Collecting termcolor==2.3.0 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 148)) +llama [stdout] Downloading termcolor-2.3.0-py3-none-any.whl (6.9 kB) +llama [stdout] Collecting tokenizers==0.14.1 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 150)) +llama [stdout] Downloading tokenizers-0.14.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (6.7 kB) +llama [stdout] Collecting torch==2.1.0+cu118 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 152)) +llama [stdout] Downloading https://download.pytorch.org/whl/cu118/torch-2.1.0%2Bcu118-cp39-cp39-linux_x86_64.whl (2325.9 MB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2.3/2.3 GB 5.1 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Collecting tqdm==4.66.1 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 156)) +llama [stdout] Using cached tqdm-4.66.1-py3-none-any.whl.metadata (57 kB) +llama [stdout] Collecting transformers==4.35.0 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 161)) +llama [stdout] Downloading transformers-4.35.0-py3-none-any.whl.metadata (123 kB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 123.1/123.1 kB 55.3 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Collecting triton==2.1.0 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 163)) +llama [stdout] Downloading https://download.pytorch.org/whl/triton-2.1.0-0-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (89.3 MB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 89.3/89.3 MB 61.8 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Collecting typing-extensions==4.8.0 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 165)) +llama [stdout] Downloading https://download.pytorch.org/whl/typing_extensions-4.8.0-py3-none-any.whl (31 kB) +llama [stdout] Collecting tzdata==2023.3 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 170)) +llama [stdout] Downloading tzdata-2023.3-py2.py3-none-any.whl (341 kB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 341.8/341.8 kB 100.8 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Collecting urllib3==2.0.7 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 172)) +llama [stdout] Downloading urllib3-2.0.7-py3-none-any.whl.metadata (6.6 kB) +llama [stdout] Collecting varname==0.10.0 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 174)) +llama [stdout] Using cached varname-0.10.0-py3-none-any.whl (22 kB) +llama [stdout] Collecting voir==0.2.11 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 176)) +llama [stdout] Downloading voir-0.2.11-py3-none-any.whl.metadata (791 bytes) +llama [stdout] Collecting xxhash==3.4.1 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 178)) +llama [stdout] Downloading xxhash-3.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (12 kB) +llama [stdout] Collecting yarl==1.9.2 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt (line 180)) +llama [stdout] Downloading yarl-1.9.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (269 kB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 269.4/269.4 kB 93.2 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Downloading aiohttp-3.8.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.1/1.1 MB 42.2 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Using cached asttokens-2.4.1-py2.py3-none-any.whl (27 kB) +llama [stdout] Downloading async_timeout-4.0.3-py3-none-any.whl (5.7 kB) +llama [stdout] Downloading certifi-2023.7.22-py3-none-any.whl (158 kB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 158.3/158.3 kB 78.9 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Using cached charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (142 kB) +llama [stdout] Downloading datasets-2.14.6-py3-none-any.whl (493 kB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 493.7/493.7 kB 92.5 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Downloading dill-0.3.7-py3-none-any.whl (115 kB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 115.3/115.3 kB 59.7 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Using cached filelock-3.13.1-py3-none-any.whl (11 kB) +llama [stdout] Downloading frozenlist-1.4.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (228 kB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 228.0/228.0 kB 74.6 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Downloading fsspec-2023.10.0-py3-none-any.whl (166 kB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 166.4/166.4 kB 77.9 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Downloading huggingface_hub-0.17.3-py3-none-any.whl (295 kB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 295.0/295.0 kB 97.8 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Using cached markdown_it_py-3.0.0-py3-none-any.whl (87 kB) +llama [stdout] Downloading multiprocess-0.70.15-py39-none-any.whl (133 kB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 133.3/133.3 kB 68.6 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Downloading numpy-1.26.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.2 MB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 18.2/18.2 MB 97.6 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Using cached packaging-23.2-py3-none-any.whl (53 kB) +llama [stdout] Downloading pandas-2.1.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.3 MB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 12.3/12.3 MB 102.1 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Downloading pyarrow-14.0.0-cp39-cp39-manylinux_2_28_x86_64.whl (38.0 MB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 38.0/38.0 MB 82.4 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Downloading Pygments-2.16.1-py3-none-any.whl (1.2 MB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.2/1.2 MB 103.7 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Downloading pytz-2023.3.post1-py2.py3-none-any.whl (502 kB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 502.5/502.5 kB 101.1 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Using cached PyYAML-6.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (738 kB) +llama [stdout] Downloading regex-2023.10.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (773 kB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 773.3/773.3 kB 102.1 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Using cached requests-2.31.0-py3-none-any.whl (62 kB) +llama [stdout] Downloading rich-13.6.0-py3-none-any.whl (239 kB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 239.8/239.8 kB 94.9 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Downloading safetensors-0.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.3/1.3 MB 99.7 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Downloading tokenizers-0.14.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.8 MB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 3.8/3.8 MB 104.4 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Using cached tqdm-4.66.1-py3-none-any.whl (78 kB) +llama [stdout] Downloading transformers-4.35.0-py3-none-any.whl (7.9 MB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 7.9/7.9 MB 104.4 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Downloading urllib3-2.0.7-py3-none-any.whl (124 kB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 124.2/124.2 kB 66.6 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Downloading voir-0.2.11-py3-none-any.whl (35 kB) +llama [stdout] Downloading xxhash-3.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (193 kB) +llama [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 193.8/193.8 kB 91.2 MB/s eta 0:00:00 +llama [stdout] +llama [stdout] Building wheels for collected packages: fairscale, fire +llama [stdout] Building wheel for fairscale (pyproject.toml): started +llama [stdout] Building wheel for fairscale (pyproject.toml): finished with status 'done' +llama [stdout] Created wheel for fairscale: filename=fairscale-0.4.13-py3-none-any.whl size=332104 sha256=fdb6cfaaeac7f238f252fb5d8193d838336c5a296f2a0411ed7746527cfd2473 +llama [stdout] Stored in directory: /Tmp/slurm.4115546.0/base/cache/pip/wheels/10/ea/7f/8f35af83599829bb4790bdc16949dd99aeeb62e9a1faf47d47 +llama [stdout] Building wheel for fire (setup.py): started +llama [stdout] Building wheel for fire (setup.py): finished with status 'done' +llama [stdout] Created wheel for fire: filename=fire-0.5.0-py2.py3-none-any.whl size=116934 sha256=e8c43ae71b22986241c568e383c7934a85c084f6ba881332d9f3c42dc1ba3de8 +llama [stdout] Stored in directory: /Tmp/slurm.4115546.0/base/cache/pip/wheels/f7/f1/89/b9ea2bf8f80ec027a88fef1d354b3816b4d3d29530988972f6 +llama [stdout] Successfully built fairscale fire +llama [stdout] Installing collected packages: sentencepiece, pytz, mpmath, executing, antlr4-python3-runtime, xxhash, varname, urllib3, tzdata, typing-extensions, tqdm, termcolor, sympy, six, safetensors, regex, pyyaml, pynvml, pygments, packaging, ovld, numpy, networkx, multidict, mdurl, markupsafe, idna, fsspec, frozenlist, filelock, dill, codefind, charset-normalizer, certifi, attrs, async-timeout, yarl, triton, requests, reactivex, python-dateutil, pyarrow, omegaconf, multiprocess, markdown-it-py, jinja2, fire, asttokens, aiosignal, torch, rich, pandas, huggingface-hub, giving, aiohttp, tokenizers, ptera, fairscale, voir, transformers, datasets +llama [stdout] Successfully installed aiohttp-3.8.6 aiosignal-1.3.1 antlr4-python3-runtime-4.9.3 asttokens-2.4.1 async-timeout-4.0.3 attrs-23.1.0 certifi-2023.7.22 charset-normalizer-3.3.2 codefind-0.1.3 datasets-2.14.6 dill-0.3.7 executing-1.2.0 fairscale-0.4.13 filelock-3.13.1 fire-0.5.0 frozenlist-1.4.0 fsspec-2023.10.0 giving-0.4.2 huggingface-hub-0.17.3 idna-3.4 jinja2-3.1.2 markdown-it-py-3.0.0 markupsafe-2.1.3 mdurl-0.1.2 mpmath-1.3.0 multidict-6.0.4 multiprocess-0.70.15 networkx-3.2.1 numpy-1.26.1 omegaconf-2.3.0 ovld-0.3.2 packaging-23.2 pandas-2.1.2 ptera-1.4.1 pyarrow-14.0.0 pygments-2.16.1 pynvml-11.5.0 python-dateutil-2.8.2 pytz-2023.3.post1 pyyaml-6.0.1 reactivex-4.0.4 regex-2023.10.3 requests-2.31.0 rich-13.6.0 safetensors-0.4.0 sentencepiece-0.1.99 six-1.16.0 sympy-1.12 termcolor-2.3.0 tokenizers-0.14.1 torch-2.1.0+cu118 tqdm-4.66.1 transformers-4.35.0 triton-2.1.0 typing-extensions-4.8.0 tzdata-2023.3 urllib3-2.0.7 varname-0.10.0 voir-0.2.11 xxhash-3.4.1 yarl-1.9.2 +llama [stderr] +llama [stderr] [notice] A new release of pip is available: 23.3.2 -> 24.0 +llama [stderr] [notice] To update, run: pip install --upgrade pip +llama [end] pip install -r /Tmp/slurm.4115546.0/milabench/benchmarks/llama/requirements.cuda.txt [at 2024-02-06 15:50:46.643362] +fp16 [start] pip install -r /Tmp/slurm.4115546.0/milabench/benchmarks/flops/requirements.cuda.txt [at 2024-02-06 15:50:46.649318] +fp16 [stdout] Looking in indexes: https://pypi.org/simple, https://download.pytorch.org/whl/cu118 +fp16 [stdout] Requirement already satisfied: antlr4-python3-runtime==4.9.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/flops/requirements.cuda.txt (line 9)) (4.9.3) +fp16 [stdout] Requirement already satisfied: asttokens==2.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/flops/requirements.cuda.txt (line 13)) (2.4.1) +fp16 [stdout] Requirement already satisfied: certifi==2023.7.22 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/flops/requirements.cuda.txt (line 17)) (2023.7.22) +fp16 [stdout] Requirement already satisfied: charset-normalizer==3.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/flops/requirements.cuda.txt (line 21)) (3.3.2) +fp16 [stdout] Requirement already satisfied: codefind==0.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/flops/requirements.cuda.txt (line 25)) (0.1.3) +fp16 [stdout] Requirement already satisfied: executing==1.2.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/flops/requirements.cuda.txt (line 29)) (1.2.0) +fp16 [stdout] Requirement already satisfied: filelock==3.13.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/flops/requirements.cuda.txt (line 33)) (3.13.1) +fp16 [stdout] Requirement already satisfied: fsspec==2023.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/flops/requirements.cuda.txt (line 38)) (2023.10.0) +fp16 [stdout] Requirement already satisfied: giving==0.4.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/flops/requirements.cuda.txt (line 42)) (0.4.2) +fp16 [stdout] Requirement already satisfied: idna==3.4 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/flops/requirements.cuda.txt (line 47)) (3.4) +fp16 [stdout] Requirement already satisfied: jinja2==3.1.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/flops/requirements.cuda.txt (line 51)) (3.1.2) +fp16 [stdout] Requirement already satisfied: markdown-it-py==3.0.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/flops/requirements.cuda.txt (line 55)) (3.0.0) +fp16 [stdout] Requirement already satisfied: markupsafe==2.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/flops/requirements.cuda.txt (line 59)) (2.1.3) +fp16 [stdout] Requirement already satisfied: mdurl==0.1.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/flops/requirements.cuda.txt (line 63)) (0.1.2) +fp16 [stdout] Requirement already satisfied: mpmath==1.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/flops/requirements.cuda.txt (line 67)) (1.3.0) +fp16 [stdout] Requirement already satisfied: networkx==3.2.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/flops/requirements.cuda.txt (line 71)) (3.2.1) +fp16 [stdout] Requirement already satisfied: numpy==1.26.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/flops/requirements.cuda.txt (line 75)) (1.26.1) +fp16 [stdout] Requirement already satisfied: omegaconf==2.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/flops/requirements.cuda.txt (line 79)) (2.3.0) +fp16 [stdout] Requirement already satisfied: ovld==0.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/flops/requirements.cuda.txt (line 83)) (0.3.2) +fp16 [stdout] Collecting pillow==10.1.0 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/flops/requirements.cuda.txt (line 87)) +fp16 [stdout] Downloading Pillow-10.1.0-cp39-cp39-manylinux_2_28_x86_64.whl.metadata (9.5 kB) +fp16 [stdout] Requirement already satisfied: ptera==1.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/flops/requirements.cuda.txt (line 91)) (1.4.1) +fp16 [stdout] Requirement already satisfied: pygments==2.16.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/flops/requirements.cuda.txt (line 95)) (2.16.1) +fp16 [stdout] Requirement already satisfied: pynvml==11.5.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/flops/requirements.cuda.txt (line 99)) (11.5.0) +fp16 [stdout] Requirement already satisfied: pyyaml==6.0.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/flops/requirements.cuda.txt (line 103)) (6.0.1) +fp16 [stdout] Requirement already satisfied: reactivex==4.0.4 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/flops/requirements.cuda.txt (line 107)) (4.0.4) +fp16 [stdout] Requirement already satisfied: requests==2.31.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/flops/requirements.cuda.txt (line 111)) (2.31.0) +fp16 [stdout] Requirement already satisfied: rich==13.6.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/flops/requirements.cuda.txt (line 115)) (13.6.0) +fp16 [stdout] Requirement already satisfied: six==1.16.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/flops/requirements.cuda.txt (line 119)) (1.16.0) +fp16 [stdout] Requirement already satisfied: sympy==1.12 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/flops/requirements.cuda.txt (line 123)) (1.12) +fp16 [stdout] Requirement already satisfied: torch==2.1.0+cu118 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/flops/requirements.cuda.txt (line 127)) (2.1.0+cu118) +fp16 [stdout] Collecting torchvision==0.16.0+cu118 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/flops/requirements.cuda.txt (line 131)) +fp16 [stdout] Downloading https://download.pytorch.org/whl/cu118/torchvision-0.16.0%2Bcu118-cp39-cp39-linux_x86_64.whl (6.2 MB) +fp16 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 6.2/6.2 MB 55.6 MB/s eta 0:00:00 +fp16 [stdout] +fp16 [stdout] Requirement already satisfied: tqdm==4.66.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/flops/requirements.cuda.txt (line 133)) (4.66.1) +fp16 [stdout] Requirement already satisfied: triton==2.1.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/flops/requirements.cuda.txt (line 135)) (2.1.0) +fp16 [stdout] Requirement already satisfied: typing-extensions==4.8.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/flops/requirements.cuda.txt (line 139)) (4.8.0) +fp16 [stdout] Collecting urllib3==1.26.18 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/flops/requirements.cuda.txt (line 144)) +fp16 [stdout] Downloading urllib3-1.26.18-py2.py3-none-any.whl.metadata (48 kB) +fp16 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 48.9/48.9 kB 5.0 MB/s eta 0:00:00 +fp16 [stdout] +fp16 [stdout] Requirement already satisfied: varname==0.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/flops/requirements.cuda.txt (line 148)) (0.10.0) +fp16 [stdout] Requirement already satisfied: voir==0.2.11 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/flops/requirements.cuda.txt (line 152)) (0.2.11) +fp16 [stdout] Downloading Pillow-10.1.0-cp39-cp39-manylinux_2_28_x86_64.whl (3.6 MB) +fp16 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 3.6/3.6 MB 60.9 MB/s eta 0:00:00 +fp16 [stdout] +fp16 [stdout] Downloading urllib3-1.26.18-py2.py3-none-any.whl (143 kB) +fp16 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 143.8/143.8 kB 73.9 MB/s eta 0:00:00 +fp16 [stdout] +fp16 [stdout] Installing collected packages: urllib3, pillow, torchvision +fp16 [stdout] Attempting uninstall: urllib3 +fp16 [stdout] Found existing installation: urllib3 2.0.7 +fp16 [stdout] Uninstalling urllib3-2.0.7: +fp16 [stdout] Successfully uninstalled urllib3-2.0.7 +fp16 [stdout] Successfully installed pillow-10.1.0 torchvision-0.16.0+cu118 urllib3-1.26.18 +fp16 [stderr] +fp16 [stderr] [notice] A new release of pip is available: 23.3.2 -> 24.0 +fp16 [stderr] [notice] To update, run: pip install --upgrade pip +fp16 [end] pip install -r /Tmp/slurm.4115546.0/milabench/benchmarks/flops/requirements.cuda.txt [at 2024-02-06 15:50:49.898048] +bf16 [message] Benchmark bf16 is already installed +tf32 [message] Benchmark tf32 is already installed +fp32 [message] Benchmark fp32 is already installed +resnet50 [start] pip install -r /Tmp/slurm.4115546.0/milabench/benchmarks/torchvision/requirements.cuda.txt [at 2024-02-06 15:50:49.904029] +resnet50 [stdout] Looking in indexes: https://pypi.org/simple, https://download.pytorch.org/whl/cu118 +resnet50 [stdout] Requirement already satisfied: antlr4-python3-runtime==4.9.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 9)) (4.9.3) +resnet50 [stdout] Requirement already satisfied: asttokens==2.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 13)) (2.4.1) +resnet50 [stdout] Requirement already satisfied: certifi==2023.7.22 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 17)) (2023.7.22) +resnet50 [stdout] Requirement already satisfied: charset-normalizer==3.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 21)) (3.3.2) +resnet50 [stdout] Requirement already satisfied: codefind==0.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 25)) (0.1.3) +resnet50 [stdout] Requirement already satisfied: executing==1.2.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 29)) (1.2.0) +resnet50 [stdout] Requirement already satisfied: filelock==3.13.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 33)) (3.13.1) +resnet50 [stdout] Requirement already satisfied: fsspec==2023.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 38)) (2023.10.0) +resnet50 [stdout] Requirement already satisfied: giving==0.4.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 42)) (0.4.2) +resnet50 [stdout] Requirement already satisfied: idna==3.4 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 47)) (3.4) +resnet50 [stdout] Requirement already satisfied: jinja2==3.1.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 51)) (3.1.2) +resnet50 [stdout] Requirement already satisfied: markdown-it-py==3.0.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 55)) (3.0.0) +resnet50 [stdout] Requirement already satisfied: markupsafe==2.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 59)) (2.1.3) +resnet50 [stdout] Requirement already satisfied: mdurl==0.1.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 63)) (0.1.2) +resnet50 [stdout] Requirement already satisfied: mpmath==1.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 67)) (1.3.0) +resnet50 [stdout] Requirement already satisfied: networkx==3.2.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 71)) (3.2.1) +resnet50 [stdout] Requirement already satisfied: numpy==1.26.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 75)) (1.26.1) +resnet50 [stdout] Requirement already satisfied: omegaconf==2.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 79)) (2.3.0) +resnet50 [stdout] Requirement already satisfied: ovld==0.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 83)) (0.3.2) +resnet50 [stdout] Requirement already satisfied: pillow==10.1.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 87)) (10.1.0) +resnet50 [stdout] Requirement already satisfied: ptera==1.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 91)) (1.4.1) +resnet50 [stdout] Requirement already satisfied: pygments==2.16.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 95)) (2.16.1) +resnet50 [stdout] Requirement already satisfied: pynvml==11.5.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 99)) (11.5.0) +resnet50 [stdout] Requirement already satisfied: pyyaml==6.0.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 103)) (6.0.1) +resnet50 [stdout] Requirement already satisfied: reactivex==4.0.4 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 107)) (4.0.4) +resnet50 [stdout] Requirement already satisfied: requests==2.31.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 111)) (2.31.0) +resnet50 [stdout] Requirement already satisfied: rich==13.6.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 115)) (13.6.0) +resnet50 [stdout] Requirement already satisfied: six==1.16.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 119)) (1.16.0) +resnet50 [stdout] Requirement already satisfied: sympy==1.12 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 123)) (1.12) +resnet50 [stdout] Requirement already satisfied: torch==2.1.0+cu118 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 127)) (2.1.0+cu118) +resnet50 [stdout] Requirement already satisfied: torchvision==0.16.0+cu118 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 131)) (0.16.0+cu118) +resnet50 [stdout] Requirement already satisfied: tqdm==4.66.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 133)) (4.66.1) +resnet50 [stdout] Requirement already satisfied: triton==2.1.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 135)) (2.1.0) +resnet50 [stdout] Requirement already satisfied: typing-extensions==4.8.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 139)) (4.8.0) +resnet50 [stdout] Requirement already satisfied: urllib3==1.26.18 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 144)) (1.26.18) +resnet50 [stdout] Requirement already satisfied: varname==0.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 148)) (0.10.0) +resnet50 [stdout] Requirement already satisfied: voir==0.2.11 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 152)) (0.2.11) +resnet50 [stderr] +resnet50 [stderr] [notice] A new release of pip is available: 23.3.2 -> 24.0 +resnet50 [stderr] [notice] To update, run: pip install --upgrade pip +resnet50 [end] pip install -r /Tmp/slurm.4115546.0/milabench/benchmarks/torchvision/requirements.cuda.txt [at 2024-02-06 15:50:51.304759] +regnet_y_128gf [message] Benchmark regnet_y_128gf is already installed +bert-fp32 [start] pip install -r /Tmp/slurm.4115546.0/milabench/benchmarks/huggingface/requirements.cuda.txt [at 2024-02-06 15:50:51.310622] +bert-fp32 [stdout] Looking in indexes: https://pypi.org/simple, https://download.pytorch.org/whl/cu118 +bert-fp32 [stdout] Requirement already satisfied: antlr4-python3-runtime==4.9.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 9)) (4.9.3) +bert-fp32 [stdout] Requirement already satisfied: asttokens==2.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 13)) (2.4.1) +bert-fp32 [stdout] Requirement already satisfied: certifi==2023.7.22 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 17)) (2023.7.22) +bert-fp32 [stdout] Requirement already satisfied: charset-normalizer==3.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 21)) (3.3.2) +bert-fp32 [stdout] Requirement already satisfied: codefind==0.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 25)) (0.1.3) +bert-fp32 [stdout] Requirement already satisfied: executing==1.2.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 29)) (1.2.0) +bert-fp32 [stdout] Requirement already satisfied: filelock==3.13.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 33)) (3.13.1) +bert-fp32 [stdout] Requirement already satisfied: fsspec==2023.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 40)) (2023.10.0) +bert-fp32 [stdout] Requirement already satisfied: giving==0.4.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 45)) (0.4.2) +bert-fp32 [stdout] Requirement already satisfied: huggingface-hub==0.17.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 50)) (0.17.3) +bert-fp32 [stdout] Requirement already satisfied: idna==3.4 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 55)) (3.4) +bert-fp32 [stdout] Requirement already satisfied: jinja2==3.1.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 59)) (3.1.2) +bert-fp32 [stdout] Requirement already satisfied: markdown-it-py==3.0.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 63)) (3.0.0) +bert-fp32 [stdout] Requirement already satisfied: markupsafe==2.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 67)) (2.1.3) +bert-fp32 [stdout] Requirement already satisfied: mdurl==0.1.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 71)) (0.1.2) +bert-fp32 [stdout] Requirement already satisfied: mpmath==1.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 75)) (1.3.0) +bert-fp32 [stdout] Requirement already satisfied: networkx==3.2.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 79)) (3.2.1) +bert-fp32 [stdout] Requirement already satisfied: numpy==1.26.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 83)) (1.26.1) +bert-fp32 [stdout] Requirement already satisfied: omegaconf==2.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 87)) (2.3.0) +bert-fp32 [stdout] Requirement already satisfied: ovld==0.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 91)) (0.3.2) +bert-fp32 [stdout] Requirement already satisfied: packaging==23.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 95)) (23.2) +bert-fp32 [stdout] Requirement already satisfied: ptera==1.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 100)) (1.4.1) +bert-fp32 [stdout] Requirement already satisfied: pygments==2.16.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 104)) (2.16.1) +bert-fp32 [stdout] Requirement already satisfied: pynvml==11.5.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 108)) (11.5.0) +bert-fp32 [stdout] Requirement already satisfied: pyyaml==6.0.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 112)) (6.0.1) +bert-fp32 [stdout] Requirement already satisfied: reactivex==4.0.4 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 118)) (4.0.4) +bert-fp32 [stdout] Requirement already satisfied: regex==2023.10.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 122)) (2023.10.3) +bert-fp32 [stdout] Requirement already satisfied: requests==2.31.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 126)) (2.31.0) +bert-fp32 [stdout] Requirement already satisfied: rich==13.6.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 131)) (13.6.0) +bert-fp32 [stdout] Requirement already satisfied: safetensors==0.4.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 135)) (0.4.0) +bert-fp32 [stdout] Requirement already satisfied: six==1.16.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 139)) (1.16.0) +bert-fp32 [stdout] Requirement already satisfied: sympy==1.12 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 143)) (1.12) +bert-fp32 [stdout] Requirement already satisfied: tokenizers==0.14.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 147)) (0.14.1) +bert-fp32 [stdout] Requirement already satisfied: torch==2.1.0+cu118 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 151)) (2.1.0+cu118) +bert-fp32 [stdout] Requirement already satisfied: tqdm==4.66.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 153)) (4.66.1) +bert-fp32 [stdout] Requirement already satisfied: transformers==4.35.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 158)) (4.35.0) +bert-fp32 [stdout] Requirement already satisfied: triton==2.1.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 160)) (2.1.0) +bert-fp32 [stdout] Requirement already satisfied: typing-extensions==4.8.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 164)) (4.8.0) +bert-fp32 [stdout] Requirement already satisfied: urllib3==1.26.18 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 170)) (1.26.18) +bert-fp32 [stdout] Requirement already satisfied: varname==0.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 174)) (0.10.0) +bert-fp32 [stdout] Requirement already satisfied: voir==0.2.11 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 178)) (0.2.11) +bert-fp32 [stderr] +bert-fp32 [stderr] [notice] A new release of pip is available: 23.3.2 -> 24.0 +bert-fp32 [stderr] [notice] To update, run: pip install --upgrade pip +bert-fp32 [end] pip install -r /Tmp/slurm.4115546.0/milabench/benchmarks/huggingface/requirements.cuda.txt [at 2024-02-06 15:50:52.724131] +bert-fp16 [message] Benchmark bert-fp16 is already installed +bert-tf32 [message] Benchmark bert-tf32 is already installed +bert-tf32-fp16 [message] Benchmark bert-tf32-fp16 is already installed +t5 [message] Benchmark t5 is already installed +reformer [message] Benchmark reformer is already installed +whisper [message] Benchmark whisper is already installed +resnet152 [start] pip install -r /Tmp/slurm.4115546.0/milabench/benchmarks/timm/requirements.cuda.txt [at 2024-02-06 15:50:52.730626] +resnet152 [stdout] Looking in indexes: https://pypi.org/simple, https://download.pytorch.org/whl/cu118 +resnet152 [stdout] Requirement already satisfied: antlr4-python3-runtime==4.9.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/timm/requirements.cuda.txt (line 9)) (4.9.3) +resnet152 [stdout] Requirement already satisfied: asttokens==2.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/timm/requirements.cuda.txt (line 13)) (2.4.1) +resnet152 [stdout] Requirement already satisfied: certifi==2023.7.22 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/timm/requirements.cuda.txt (line 17)) (2023.7.22) +resnet152 [stdout] Requirement already satisfied: charset-normalizer==3.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/timm/requirements.cuda.txt (line 21)) (3.3.2) +resnet152 [stdout] Requirement already satisfied: codefind==0.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/timm/requirements.cuda.txt (line 25)) (0.1.3) +resnet152 [stdout] Requirement already satisfied: executing==1.2.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/timm/requirements.cuda.txt (line 29)) (1.2.0) +resnet152 [stdout] Requirement already satisfied: filelock==3.13.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/timm/requirements.cuda.txt (line 33)) (3.13.1) +resnet152 [stdout] Requirement already satisfied: fsspec==2023.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/timm/requirements.cuda.txt (line 39)) (2023.10.0) +resnet152 [stdout] Requirement already satisfied: giving==0.4.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/timm/requirements.cuda.txt (line 44)) (0.4.2) +resnet152 [stdout] Requirement already satisfied: huggingface-hub==0.17.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/timm/requirements.cuda.txt (line 49)) (0.17.3) +resnet152 [stdout] Requirement already satisfied: idna==3.4 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/timm/requirements.cuda.txt (line 51)) (3.4) +resnet152 [stdout] Requirement already satisfied: jinja2==3.1.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/timm/requirements.cuda.txt (line 55)) (3.1.2) +resnet152 [stdout] Requirement already satisfied: markdown-it-py==3.0.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/timm/requirements.cuda.txt (line 59)) (3.0.0) +resnet152 [stdout] Requirement already satisfied: markupsafe==2.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/timm/requirements.cuda.txt (line 63)) (2.1.3) +resnet152 [stdout] Requirement already satisfied: mdurl==0.1.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/timm/requirements.cuda.txt (line 67)) (0.1.2) +resnet152 [stdout] Requirement already satisfied: mpmath==1.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/timm/requirements.cuda.txt (line 71)) (1.3.0) +resnet152 [stdout] Requirement already satisfied: networkx==3.2.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/timm/requirements.cuda.txt (line 75)) (3.2.1) +resnet152 [stdout] Requirement already satisfied: numpy==1.26.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/timm/requirements.cuda.txt (line 79)) (1.26.1) +resnet152 [stdout] Requirement already satisfied: omegaconf==2.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/timm/requirements.cuda.txt (line 83)) (2.3.0) +resnet152 [stdout] Requirement already satisfied: ovld==0.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/timm/requirements.cuda.txt (line 87)) (0.3.2) +resnet152 [stdout] Requirement already satisfied: packaging==23.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/timm/requirements.cuda.txt (line 91)) (23.2) +resnet152 [stdout] Requirement already satisfied: pillow==10.1.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/timm/requirements.cuda.txt (line 95)) (10.1.0) +resnet152 [stdout] Requirement already satisfied: ptera==1.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/timm/requirements.cuda.txt (line 99)) (1.4.1) +resnet152 [stdout] Requirement already satisfied: pygments==2.16.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/timm/requirements.cuda.txt (line 103)) (2.16.1) +resnet152 [stdout] Requirement already satisfied: pynvml==11.5.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/timm/requirements.cuda.txt (line 107)) (11.5.0) +resnet152 [stdout] Requirement already satisfied: pyyaml==6.0.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/timm/requirements.cuda.txt (line 111)) (6.0.1) +resnet152 [stdout] Requirement already satisfied: reactivex==4.0.4 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/timm/requirements.cuda.txt (line 116)) (4.0.4) +resnet152 [stdout] Requirement already satisfied: requests==2.31.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/timm/requirements.cuda.txt (line 120)) (2.31.0) +resnet152 [stdout] Requirement already satisfied: rich==13.6.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/timm/requirements.cuda.txt (line 125)) (13.6.0) +resnet152 [stdout] Requirement already satisfied: safetensors==0.4.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/timm/requirements.cuda.txt (line 129)) (0.4.0) +resnet152 [stdout] Requirement already satisfied: six==1.16.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/timm/requirements.cuda.txt (line 131)) (1.16.0) +resnet152 [stdout] Requirement already satisfied: sympy==1.12 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/timm/requirements.cuda.txt (line 135)) (1.12) +resnet152 [stdout] Requirement already satisfied: torch==2.1.0+cu118 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/timm/requirements.cuda.txt (line 139)) (2.1.0+cu118) +resnet152 [stdout] Requirement already satisfied: torchvision==0.16.0+cu118 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/timm/requirements.cuda.txt (line 143)) (0.16.0+cu118) +resnet152 [stdout] Requirement already satisfied: tqdm==4.66.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/timm/requirements.cuda.txt (line 145)) (4.66.1) +resnet152 [stdout] Requirement already satisfied: triton==2.1.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/timm/requirements.cuda.txt (line 149)) (2.1.0) +resnet152 [stdout] Requirement already satisfied: typing-extensions==4.8.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/timm/requirements.cuda.txt (line 153)) (4.8.0) +resnet152 [stdout] Requirement already satisfied: urllib3==1.26.18 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/timm/requirements.cuda.txt (line 159)) (1.26.18) +resnet152 [stdout] Requirement already satisfied: varname==0.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/timm/requirements.cuda.txt (line 163)) (0.10.0) +resnet152 [stdout] Requirement already satisfied: voir==0.2.11 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/timm/requirements.cuda.txt (line 167)) (0.2.11) +resnet152 [stderr] +resnet152 [stderr] [notice] A new release of pip is available: 23.3.2 -> 24.0 +resnet152 [stderr] [notice] To update, run: pip install --upgrade pip +resnet152 [end] pip install -r /Tmp/slurm.4115546.0/milabench/benchmarks/timm/requirements.cuda.txt [at 2024-02-06 15:50:54.143303] +resnet152-multi [message] Benchmark resnet152-multi is already installed +davit_large [message] Benchmark davit_large is already installed +davit_large-multi [message] Benchmark davit_large-multi is already installed +focalnet [message] Benchmark focalnet is already installed +opt-1_3b [start] pip install -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt [at 2024-02-06 15:50:54.854970] +opt-1_3b [stdout] Looking in indexes: https://pypi.org/simple, https://download.pytorch.org/whl/cu118 +opt-1_3b [stdout] Collecting accelerate==0.24.1 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 9)) +opt-1_3b [stdout] Downloading accelerate-0.24.1-py3-none-any.whl.metadata (18 kB) +opt-1_3b [stdout] Requirement already satisfied: aiohttp==3.8.6 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 11)) (3.8.6) +opt-1_3b [stdout] Requirement already satisfied: aiosignal==1.3.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 16)) (1.3.1) +opt-1_3b [stdout] Requirement already satisfied: antlr4-python3-runtime==4.9.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 20)) (4.9.3) +opt-1_3b [stdout] Requirement already satisfied: asttokens==2.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 24)) (2.4.1) +opt-1_3b [stdout] Requirement already satisfied: async-timeout==4.0.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 28)) (4.0.3) +opt-1_3b [stdout] Requirement already satisfied: attrs==23.1.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 32)) (23.1.0) +opt-1_3b [stdout] Requirement already satisfied: certifi==2023.7.22 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 36)) (2023.7.22) +opt-1_3b [stdout] Requirement already satisfied: charset-normalizer==3.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 40)) (3.3.2) +opt-1_3b [stdout] Requirement already satisfied: codefind==0.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 45)) (0.1.3) +opt-1_3b [stdout] Requirement already satisfied: datasets==2.14.6 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 49)) (2.14.6) +opt-1_3b [stdout] Collecting deepspeed==0.12.2 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 53)) +opt-1_3b [stdout] Downloading deepspeed-0.12.2.tar.gz (1.2 MB) +opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.2/1.2 MB 27.4 MB/s eta 0:00:00 +opt-1_3b [stdout] +opt-1_3b [stdout] Preparing metadata (setup.py): started +opt-1_3b [stdout] Preparing metadata (setup.py): finished with status 'done' +opt-1_3b [stdout] Requirement already satisfied: dill==0.3.7 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 55)) (0.3.7) +opt-1_3b [stdout] Collecting evaluate==0.4.1 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 61)) +opt-1_3b [stdout] Downloading evaluate-0.4.1-py3-none-any.whl.metadata (9.4 kB) +opt-1_3b [stdout] Requirement already satisfied: executing==1.2.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 63)) (1.2.0) +opt-1_3b [stdout] Requirement already satisfied: filelock==3.13.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 67)) (3.13.1) +opt-1_3b [stdout] Requirement already satisfied: frozenlist==1.4.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 74)) (1.4.0) +opt-1_3b [stdout] Requirement already satisfied: fsspec==2023.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from fsspec[http]==2023.10.0->-r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 79)) (2023.10.0) +opt-1_3b [stdout] Requirement already satisfied: giving==0.4.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 86)) (0.4.2) +opt-1_3b [stdout] Collecting hjson==3.1.0 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 91)) +opt-1_3b [stdout] Downloading hjson-3.1.0-py3-none-any.whl (54 kB) +opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54.0/54.0 kB 29.9 MB/s eta 0:00:00 +opt-1_3b [stdout] +opt-1_3b [stdout] Requirement already satisfied: huggingface-hub==0.17.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 95)) (0.17.3) +opt-1_3b [stdout] Requirement already satisfied: idna==3.4 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 103)) (3.4) +opt-1_3b [stdout] Requirement already satisfied: jinja2==3.1.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 108)) (3.1.2) +opt-1_3b [stdout] Requirement already satisfied: markdown-it-py==3.0.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 112)) (3.0.0) +opt-1_3b [stdout] Requirement already satisfied: markupsafe==2.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 116)) (2.1.3) +opt-1_3b [stdout] Requirement already satisfied: mdurl==0.1.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 120)) (0.1.2) +opt-1_3b [stdout] Requirement already satisfied: mpmath==1.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 124)) (1.3.0) +opt-1_3b [stdout] Requirement already satisfied: multidict==6.0.4 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 128)) (6.0.4) +opt-1_3b [stdout] Requirement already satisfied: multiprocess==0.70.15 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 133)) (0.70.15) +opt-1_3b [stdout] Requirement already satisfied: networkx==3.2.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 138)) (3.2.1) +opt-1_3b [stdout] Collecting ninja==1.11.1.1 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 142)) +opt-1_3b [stdout] Using cached ninja-1.11.1.1-py2.py3-none-manylinux1_x86_64.manylinux_2_5_x86_64.whl.metadata (5.3 kB) +opt-1_3b [stdout] Requirement already satisfied: numpy==1.26.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 146)) (1.26.1) +opt-1_3b [stdout] Requirement already satisfied: omegaconf==2.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 157)) (2.3.0) +opt-1_3b [stdout] Requirement already satisfied: ovld==0.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 161)) (0.3.2) +opt-1_3b [stdout] Requirement already satisfied: packaging==23.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 165)) (23.2) +opt-1_3b [stdout] Requirement already satisfied: pandas==2.1.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 174)) (2.1.2) +opt-1_3b [stdout] Requirement already satisfied: pillow==10.1.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 179)) (10.1.0) +opt-1_3b [stdout] Collecting psutil==5.9.6 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 183)) +opt-1_3b [stdout] Downloading psutil-5.9.6-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (21 kB) +opt-1_3b [stdout] Requirement already satisfied: ptera==1.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 188)) (1.4.1) +opt-1_3b [stdout] Collecting py-cpuinfo==9.0.0 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 192)) +opt-1_3b [stdout] Using cached py_cpuinfo-9.0.0-py3-none-any.whl (22 kB) +opt-1_3b [stdout] Requirement already satisfied: pyarrow==14.0.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 196)) (14.0.0) +opt-1_3b [stdout] Collecting pydantic==1.10.13 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 200)) +opt-1_3b [stdout] Downloading pydantic-1.10.13-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (149 kB) +opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 149.6/149.6 kB 64.6 MB/s eta 0:00:00 +opt-1_3b [stdout] +opt-1_3b [stdout] Requirement already satisfied: pygments==2.16.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 204)) (2.16.1) +opt-1_3b [stdout] Requirement already satisfied: pynvml==11.5.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 208)) (11.5.0) +opt-1_3b [stdout] Requirement already satisfied: python-dateutil==2.8.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 213)) (2.8.2) +opt-1_3b [stdout] Requirement already satisfied: pytz==2023.3.post1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 217)) (2023.3.post1) +opt-1_3b [stdout] Requirement already satisfied: pyyaml==6.0.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 221)) (6.0.1) +opt-1_3b [stdout] Requirement already satisfied: reactivex==4.0.4 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 229)) (4.0.4) +opt-1_3b [stdout] Requirement already satisfied: regex==2023.10.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 233)) (2023.10.3) +opt-1_3b [stdout] Requirement already satisfied: requests==2.31.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 237)) (2.31.0) +opt-1_3b [stdout] Collecting responses==0.18.0 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 247)) +opt-1_3b [stdout] Downloading responses-0.18.0-py3-none-any.whl (38 kB) +opt-1_3b [stdout] Requirement already satisfied: rich==13.6.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 251)) (13.6.0) +opt-1_3b [stdout] Requirement already satisfied: safetensors==0.4.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 255)) (0.4.0) +opt-1_3b [stdout] Requirement already satisfied: six==1.16.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 259)) (1.16.0) +opt-1_3b [stdout] Requirement already satisfied: sympy==1.12 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 264)) (1.12) +opt-1_3b [stdout] Requirement already satisfied: tokenizers==0.14.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 268)) (0.14.1) +opt-1_3b [stdout] Requirement already satisfied: torch==2.1.0+cu118 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 272)) (2.1.0+cu118) +opt-1_3b [stdout] Collecting torchaudio==2.1.0+cu118 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 279)) +opt-1_3b [stdout] Downloading https://download.pytorch.org/whl/cu118/torchaudio-2.1.0%2Bcu118-cp39-cp39-linux_x86_64.whl (3.2 MB) +opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 3.2/3.2 MB 48.6 MB/s eta 0:00:00 +opt-1_3b [stdout] +opt-1_3b [stdout] Requirement already satisfied: torchvision==0.16.0+cu118 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 281)) (0.16.0+cu118) +opt-1_3b [stdout] Requirement already satisfied: tqdm==4.66.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 283)) (4.66.1) +opt-1_3b [stdout] Requirement already satisfied: transformers==4.35.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 291)) (4.35.0) +opt-1_3b [stdout] Requirement already satisfied: triton==2.1.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 293)) (2.1.0) +opt-1_3b [stdout] Requirement already satisfied: typing-extensions==4.8.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 297)) (4.8.0) +opt-1_3b [stdout] Requirement already satisfied: tzdata==2023.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 304)) (2023.3) +opt-1_3b [stdout] Requirement already satisfied: urllib3==1.26.18 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 308)) (1.26.18) +opt-1_3b [stdout] Requirement already satisfied: varname==0.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 313)) (0.10.0) +opt-1_3b [stdout] Requirement already satisfied: voir==0.2.11 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 317)) (0.2.11) +opt-1_3b [stdout] Requirement already satisfied: xxhash==3.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 319)) (3.4.1) +opt-1_3b [stdout] Requirement already satisfied: yarl==1.9.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 324)) (1.9.2) +opt-1_3b [stdout] Downloading accelerate-0.24.1-py3-none-any.whl (261 kB) +opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 261.4/261.4 kB 74.1 MB/s eta 0:00:00 +opt-1_3b [stdout] +opt-1_3b [stdout] Downloading evaluate-0.4.1-py3-none-any.whl (84 kB) +opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 84.1/84.1 kB 49.5 MB/s eta 0:00:00 +opt-1_3b [stdout] +opt-1_3b [stdout] Using cached ninja-1.11.1.1-py2.py3-none-manylinux1_x86_64.manylinux_2_5_x86_64.whl (307 kB) +opt-1_3b [stdout] Downloading psutil-5.9.6-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (283 kB) +opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 283.6/283.6 kB 90.2 MB/s eta 0:00:00 +opt-1_3b [stdout] +opt-1_3b [stdout] Downloading pydantic-1.10.13-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB) +opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 3.2/3.2 MB 74.6 MB/s eta 0:00:00 +opt-1_3b [stdout] +opt-1_3b [stdout] Building wheels for collected packages: deepspeed +opt-1_3b [stdout] Building wheel for deepspeed (setup.py): started +opt-1_3b [stdout] Building wheel for deepspeed (setup.py): finished with status 'done' +opt-1_3b [stdout] Created wheel for deepspeed: filename=deepspeed-0.12.2-py3-none-any.whl size=1265671 sha256=3f7ee01f26bc2c1fd6ad3383a964b1852beb643301efcf5b44bf8dcc84a198f6 +opt-1_3b [stdout] Stored in directory: /Tmp/slurm.4115546.0/base/cache/pip/wheels/e1/19/3c/919d17396974990105fee67fb8161f89374c2bafde85e3113c +opt-1_3b [stdout] Successfully built deepspeed +opt-1_3b [stdout] Installing collected packages: py-cpuinfo, ninja, hjson, pydantic, psutil, responses, torchaudio, deepspeed, accelerate, evaluate +opt-1_3b [stdout] Successfully installed accelerate-0.24.1 deepspeed-0.12.2 evaluate-0.4.1 hjson-3.1.0 ninja-1.11.1.1 psutil-5.9.6 py-cpuinfo-9.0.0 pydantic-1.10.13 responses-0.18.0 torchaudio-2.1.0+cu118 +opt-1_3b [stderr] +opt-1_3b [stderr] [notice] A new release of pip is available: 23.3.2 -> 24.0 +opt-1_3b [stderr] [notice] To update, run: pip install --upgrade pip +opt-1_3b [end] pip install -r /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt [at 2024-02-06 15:51:08.236120] +opt-6_7b [message] Benchmark opt-6_7b is already installed +stargan [start] pip install -r /Tmp/slurm.4115546.0/milabench/benchmarks/stargan/requirements.cuda.txt [at 2024-02-06 15:51:08.242601] +stargan [stdout] Looking in indexes: https://pypi.org/simple, https://download.pytorch.org/whl/cu118 +stargan [stdout] Requirement already satisfied: antlr4-python3-runtime==4.9.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 9)) (4.9.3) +stargan [stdout] Requirement already satisfied: asttokens==2.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 13)) (2.4.1) +stargan [stdout] Requirement already satisfied: certifi==2023.7.22 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 17)) (2023.7.22) +stargan [stdout] Requirement already satisfied: charset-normalizer==3.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 21)) (3.3.2) +stargan [stdout] Requirement already satisfied: codefind==0.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 25)) (0.1.3) +stargan [stdout] Requirement already satisfied: executing==1.2.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 29)) (1.2.0) +stargan [stdout] Requirement already satisfied: filelock==3.13.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 33)) (3.13.1) +stargan [stdout] Requirement already satisfied: fsspec==2023.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 38)) (2023.10.0) +stargan [stdout] Requirement already satisfied: giving==0.4.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 42)) (0.4.2) +stargan [stdout] Requirement already satisfied: idna==3.4 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 47)) (3.4) +stargan [stdout] Requirement already satisfied: jinja2==3.1.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 51)) (3.1.2) +stargan [stdout] Requirement already satisfied: markdown-it-py==3.0.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 55)) (3.0.0) +stargan [stdout] Requirement already satisfied: markupsafe==2.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 59)) (2.1.3) +stargan [stdout] Requirement already satisfied: mdurl==0.1.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 63)) (0.1.2) +stargan [stdout] Requirement already satisfied: mpmath==1.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 67)) (1.3.0) +stargan [stdout] Requirement already satisfied: networkx==3.2.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 71)) (3.2.1) +stargan [stdout] Requirement already satisfied: numpy==1.26.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 75)) (1.26.1) +stargan [stdout] Requirement already satisfied: omegaconf==2.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 79)) (2.3.0) +stargan [stdout] Requirement already satisfied: ovld==0.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 83)) (0.3.2) +stargan [stdout] Requirement already satisfied: pillow==10.1.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 87)) (10.1.0) +stargan [stdout] Requirement already satisfied: ptera==1.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 91)) (1.4.1) +stargan [stdout] Requirement already satisfied: pygments==2.16.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 95)) (2.16.1) +stargan [stdout] Requirement already satisfied: pynvml==11.5.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 99)) (11.5.0) +stargan [stdout] Requirement already satisfied: pyyaml==6.0.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 103)) (6.0.1) +stargan [stdout] Requirement already satisfied: reactivex==4.0.4 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 107)) (4.0.4) +stargan [stdout] Requirement already satisfied: requests==2.31.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 111)) (2.31.0) +stargan [stdout] Requirement already satisfied: rich==13.6.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 115)) (13.6.0) +stargan [stdout] Requirement already satisfied: six==1.16.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 119)) (1.16.0) +stargan [stdout] Requirement already satisfied: sympy==1.12 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 123)) (1.12) +stargan [stdout] Requirement already satisfied: torch==2.1.0+cu118 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 127)) (2.1.0+cu118) +stargan [stdout] Requirement already satisfied: torchvision==0.16.0+cu118 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 131)) (0.16.0+cu118) +stargan [stdout] Requirement already satisfied: triton==2.1.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 133)) (2.1.0) +stargan [stdout] Requirement already satisfied: typing-extensions==4.8.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 137)) (4.8.0) +stargan [stdout] Requirement already satisfied: urllib3==1.26.18 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 142)) (1.26.18) +stargan [stdout] Requirement already satisfied: varname==0.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 146)) (0.10.0) +stargan [stdout] Requirement already satisfied: voir==0.2.11 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 150)) (0.2.11) +stargan [stderr] +stargan [stderr] [notice] A new release of pip is available: 23.3.2 -> 24.0 +stargan [stderr] [notice] To update, run: pip install --upgrade pip +stargan [end] pip install -r /Tmp/slurm.4115546.0/milabench/benchmarks/stargan/requirements.cuda.txt [at 2024-02-06 15:51:09.852485] +super-slomo [start] pip install -r /Tmp/slurm.4115546.0/milabench/benchmarks/super-slomo/requirements.cuda.txt [at 2024-02-06 15:51:09.858222] +super-slomo [stdout] Looking in indexes: https://pypi.org/simple, https://download.pytorch.org/whl/cu118 +super-slomo [stdout] Requirement already satisfied: antlr4-python3-runtime==4.9.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 9)) (4.9.3) +super-slomo [stdout] Requirement already satisfied: asttokens==2.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 13)) (2.4.1) +super-slomo [stdout] Requirement already satisfied: certifi==2023.7.22 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 17)) (2023.7.22) +super-slomo [stdout] Requirement already satisfied: charset-normalizer==3.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 21)) (3.3.2) +super-slomo [stdout] Requirement already satisfied: codefind==0.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 25)) (0.1.3) +super-slomo [stdout] Requirement already satisfied: executing==1.2.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 29)) (1.2.0) +super-slomo [stdout] Requirement already satisfied: filelock==3.13.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 33)) (3.13.1) +super-slomo [stdout] Requirement already satisfied: fsspec==2023.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 38)) (2023.10.0) +super-slomo [stdout] Requirement already satisfied: giving==0.4.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 42)) (0.4.2) +super-slomo [stdout] Requirement already satisfied: idna==3.4 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 47)) (3.4) +super-slomo [stdout] Requirement already satisfied: jinja2==3.1.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 51)) (3.1.2) +super-slomo [stdout] Requirement already satisfied: markdown-it-py==3.0.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 55)) (3.0.0) +super-slomo [stdout] Requirement already satisfied: markupsafe==2.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 59)) (2.1.3) +super-slomo [stdout] Requirement already satisfied: mdurl==0.1.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 63)) (0.1.2) +super-slomo [stdout] Requirement already satisfied: mpmath==1.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 67)) (1.3.0) +super-slomo [stdout] Requirement already satisfied: networkx==3.2.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 71)) (3.2.1) +super-slomo [stdout] Requirement already satisfied: numpy==1.26.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 75)) (1.26.1) +super-slomo [stdout] Requirement already satisfied: omegaconf==2.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 80)) (2.3.0) +super-slomo [stdout] Collecting opencv-python==4.8.1.78 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 84)) +super-slomo [stdout] Downloading opencv_python-4.8.1.78-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (19 kB) +super-slomo [stdout] Requirement already satisfied: ovld==0.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 86)) (0.3.2) +super-slomo [stdout] Requirement already satisfied: pillow==10.1.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 90)) (10.1.0) +super-slomo [stdout] Requirement already satisfied: ptera==1.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 94)) (1.4.1) +super-slomo [stdout] Requirement already satisfied: pygments==2.16.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 98)) (2.16.1) +super-slomo [stdout] Requirement already satisfied: pynvml==11.5.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 102)) (11.5.0) +super-slomo [stdout] Requirement already satisfied: pyyaml==6.0.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 106)) (6.0.1) +super-slomo [stdout] Requirement already satisfied: reactivex==4.0.4 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 110)) (4.0.4) +super-slomo [stdout] Requirement already satisfied: requests==2.31.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 114)) (2.31.0) +super-slomo [stdout] Requirement already satisfied: rich==13.6.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 118)) (13.6.0) +super-slomo [stdout] Requirement already satisfied: six==1.16.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 122)) (1.16.0) +super-slomo [stdout] Requirement already satisfied: sympy==1.12 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 126)) (1.12) +super-slomo [stdout] Requirement already satisfied: torch==2.1.0+cu118 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 130)) (2.1.0+cu118) +super-slomo [stdout] Requirement already satisfied: torchvision==0.16.0+cu118 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 134)) (0.16.0+cu118) +super-slomo [stdout] Requirement already satisfied: tqdm==4.66.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 136)) (4.66.1) +super-slomo [stdout] Requirement already satisfied: triton==2.1.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 138)) (2.1.0) +super-slomo [stdout] Requirement already satisfied: typing-extensions==4.8.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 142)) (4.8.0) +super-slomo [stdout] Requirement already satisfied: urllib3==1.26.18 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 147)) (1.26.18) +super-slomo [stdout] Requirement already satisfied: varname==0.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 151)) (0.10.0) +super-slomo [stdout] Requirement already satisfied: voir==0.2.11 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 155)) (0.2.11) +super-slomo [stdout] Downloading opencv_python-4.8.1.78-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (61.7 MB) +super-slomo [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 61.7/61.7 MB 71.5 MB/s eta 0:00:00 +super-slomo [stdout] +super-slomo [stdout] Installing collected packages: opencv-python +super-slomo [stdout] Successfully installed opencv-python-4.8.1.78 +super-slomo [stderr] +super-slomo [stderr] [notice] A new release of pip is available: 23.3.2 -> 24.0 +super-slomo [stderr] [notice] To update, run: pip install --upgrade pip +super-slomo [end] pip install -r /Tmp/slurm.4115546.0/milabench/benchmarks/super-slomo/requirements.cuda.txt [at 2024-02-06 15:51:13.370805] +dlrm [start] pip install -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt [at 2024-02-06 15:51:13.810505] +dlrm [stdout] Looking in indexes: https://pypi.org/simple, https://download.pytorch.org/whl/cu118 +dlrm [stdout] Collecting absl-py==2.0.0 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 9)) +dlrm [stdout] Downloading absl_py-2.0.0-py3-none-any.whl.metadata (2.3 kB) +dlrm [stdout] Requirement already satisfied: antlr4-python3-runtime==4.9.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 13)) (4.9.3) +dlrm [stdout] Requirement already satisfied: asttokens==2.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 17)) (2.4.1) +dlrm [stdout] Collecting cachetools==5.3.2 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 21)) +dlrm [stdout] Downloading cachetools-5.3.2-py3-none-any.whl.metadata (5.2 kB) +dlrm [stdout] Requirement already satisfied: certifi==2023.7.22 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 25)) (2023.7.22) +dlrm [stdout] Requirement already satisfied: charset-normalizer==3.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 29)) (3.3.2) +dlrm [stdout] Requirement already satisfied: codefind==0.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 33)) (0.1.3) +dlrm [stdout] Collecting docker==6.1.3 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 37)) +dlrm [stdout] Downloading docker-6.1.3-py3-none-any.whl.metadata (3.5 kB) +dlrm [stdout] Collecting docstring-parser==0.8.1 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 41)) +dlrm [stdout] Downloading docstring_parser-0.8.1.tar.gz (14 kB) +dlrm [stdout] Installing build dependencies: started +dlrm [stdout] Installing build dependencies: finished with status 'done' +dlrm [stdout] Getting requirements to build wheel: started +dlrm [stdout] Getting requirements to build wheel: finished with status 'done' +dlrm [stdout] Preparing metadata (pyproject.toml): started +dlrm [stdout] Preparing metadata (pyproject.toml): finished with status 'done' +dlrm [stdout] Requirement already satisfied: executing==1.2.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 45)) (1.2.0) +dlrm [stdout] Collecting fbgemm-gpu==0.5.0+cu118 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 49)) +dlrm [stdout] Downloading https://download.pytorch.org/whl/cu118/fbgemm_gpu-0.5.0%2Bcu118-cp39-cp39-manylinux2014_x86_64.whl (227.0 MB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 227.0/227.0 MB 34.2 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Requirement already satisfied: filelock==3.13.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 53)) (3.13.1) +dlrm [stdout] Requirement already satisfied: fsspec==2023.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 59)) (2023.10.0) +dlrm [stdout] Collecting future==0.18.3 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 64)) +dlrm [stdout] Downloading future-0.18.3.tar.gz (840 kB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 840.9/840.9 kB 22.1 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Preparing metadata (setup.py): started +dlrm [stdout] Preparing metadata (setup.py): finished with status 'done' +dlrm [stdout] Requirement already satisfied: giving==0.4.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 66)) (0.4.2) +dlrm [stdout] Collecting google-auth==2.23.4 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 71)) +dlrm [stdout] Downloading google_auth-2.23.4-py2.py3-none-any.whl.metadata (4.7 kB) +dlrm [stdout] Collecting google-auth-oauthlib==1.1.0 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 76)) +dlrm [stdout] Downloading google_auth_oauthlib-1.1.0-py2.py3-none-any.whl.metadata (2.7 kB) +dlrm [stdout] Collecting graphviz==0.20.1 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 80)) +dlrm [stdout] Downloading graphviz-0.20.1-py3-none-any.whl (47 kB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 47.0/47.0 kB 27.7 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Collecting grpcio==1.59.2 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 84)) +dlrm [stdout] Downloading grpcio-1.59.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (4.0 kB) +dlrm [stdout] Requirement already satisfied: idna==3.4 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 88)) (3.4) +dlrm [stdout] Collecting importlib-metadata==6.8.0 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 92)) +dlrm [stdout] Downloading importlib_metadata-6.8.0-py3-none-any.whl.metadata (5.1 kB) +dlrm [stdout] Requirement already satisfied: jinja2==3.1.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 96)) (3.1.2) +dlrm [stdout] Collecting joblib==1.3.2 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 100)) +dlrm [stdout] Downloading joblib-1.3.2-py3-none-any.whl.metadata (5.4 kB) +dlrm [stdout] Collecting lightning-utilities==0.9.0 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 104)) +dlrm [stdout] Downloading lightning_utilities-0.9.0-py3-none-any.whl.metadata (4.6 kB) +dlrm [stdout] Collecting markdown==3.5.1 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 108)) +dlrm [stdout] Downloading Markdown-3.5.1-py3-none-any.whl.metadata (7.1 kB) +dlrm [stdout] Requirement already satisfied: markdown-it-py==3.0.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 112)) (3.0.0) +dlrm [stdout] Requirement already satisfied: markupsafe==2.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 116)) (2.1.3) +dlrm [stdout] Requirement already satisfied: mdurl==0.1.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 121)) (0.1.2) +dlrm [stdout] Requirement already satisfied: mpmath==1.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 125)) (1.3.0) +dlrm [stdout] Collecting mypy-extensions==1.0.0 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 129)) +dlrm [stdout] Downloading mypy_extensions-1.0.0-py3-none-any.whl (4.7 kB) +dlrm [stdout] Requirement already satisfied: networkx==3.2.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 133)) (3.2.1) +dlrm [stdout] Requirement already satisfied: numpy==1.26.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 137)) (1.26.1) +dlrm [stdout] Collecting oauthlib==3.2.2 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 145)) +dlrm [stdout] Downloading oauthlib-3.2.2-py3-none-any.whl (151 kB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 151.7/151.7 kB 71.7 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Requirement already satisfied: omegaconf==2.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 149)) (2.3.0) +dlrm [stdout] Collecting onnx==1.15.0 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 153)) +dlrm [stdout] Downloading onnx-1.15.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (15 kB) +dlrm [stdout] Requirement already satisfied: ovld==0.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 155)) (0.3.2) +dlrm [stdout] Requirement already satisfied: packaging==23.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 159)) (23.2) +dlrm [stdout] Collecting protobuf==4.23.4 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 165)) +dlrm [stdout] Downloading protobuf-4.23.4-cp37-abi3-manylinux2014_x86_64.whl.metadata (540 bytes) +dlrm [stdout] Requirement already satisfied: ptera==1.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 170)) (1.4.1) +dlrm [stdout] Collecting pyasn1==0.5.0 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 174)) +dlrm [stdout] Downloading pyasn1-0.5.0-py2.py3-none-any.whl (83 kB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 83.9/83.9 kB 40.3 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Collecting pyasn1-modules==0.3.0 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 179)) +dlrm [stdout] Downloading pyasn1_modules-0.3.0-py2.py3-none-any.whl (181 kB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 181.3/181.3 kB 80.1 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Collecting pydot==1.4.2 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 183)) +dlrm [stdout] Downloading pydot-1.4.2-py2.py3-none-any.whl (21 kB) +dlrm [stdout] Requirement already satisfied: pygments==2.16.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 185)) (2.16.1) +dlrm [stdout] Requirement already satisfied: pynvml==11.5.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 189)) (11.5.0) +dlrm [stdout] Collecting pyparsing==3.1.1 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 193)) +dlrm [stdout] Downloading pyparsing-3.1.1-py3-none-any.whl.metadata (5.1 kB) +dlrm [stdout] Collecting pyre-extensions==0.0.30 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 197)) +dlrm [stdout] Downloading pyre_extensions-0.0.30-py3-none-any.whl (12 kB) +dlrm [stdout] Requirement already satisfied: pyyaml==6.0.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 201)) (6.0.1) +dlrm [stdout] Requirement already satisfied: reactivex==4.0.4 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 206)) (4.0.4) +dlrm [stdout] Requirement already satisfied: requests==2.31.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 210)) (2.31.0) +dlrm [stdout] Collecting requests-oauthlib==1.3.1 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 216)) +dlrm [stdout] Downloading requests_oauthlib-1.3.1-py2.py3-none-any.whl (23 kB) +dlrm [stdout] Requirement already satisfied: rich==13.6.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 220)) (13.6.0) +dlrm [stdout] Collecting rsa==4.9 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 224)) +dlrm [stdout] Downloading rsa-4.9-py3-none-any.whl (34 kB) +dlrm [stdout] Collecting scikit-learn==1.3.2 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 228)) +dlrm [stdout] Downloading scikit_learn-1.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (11 kB) +dlrm [stdout] Collecting scipy==1.11.3 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 230)) +dlrm [stdout] Downloading scipy-1.11.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (60 kB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 60.4/60.4 kB 34.9 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Requirement already satisfied: six==1.16.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 234)) (1.16.0) +dlrm [stdout] Requirement already satisfied: sympy==1.12 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 239)) (1.12) +dlrm [stdout] Collecting tabulate==0.9.0 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 243)) +dlrm [stdout] Downloading tabulate-0.9.0-py3-none-any.whl (35 kB) +dlrm [stdout] Collecting tensorboard==2.15.1 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 247)) +dlrm [stdout] Downloading tensorboard-2.15.1-py3-none-any.whl.metadata (1.7 kB) +dlrm [stdout] Collecting tensorboard-data-server==0.7.2 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 249)) +dlrm [stdout] Downloading tensorboard_data_server-0.7.2-py3-none-manylinux_2_31_x86_64.whl.metadata (1.1 kB) +dlrm [stdout] Collecting threadpoolctl==3.2.0 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 253)) +dlrm [stdout] Downloading threadpoolctl-3.2.0-py3-none-any.whl.metadata (10.0 kB) +dlrm [stdout] Requirement already satisfied: torch==2.1.0+cu118 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 257)) (2.1.0+cu118) +dlrm [stdout] Collecting torchmetrics==1.0.3 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 262)) +dlrm [stdout] Downloading https://download.pytorch.org/whl/torchmetrics-1.0.3-py3-none-any.whl (731 kB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 731.6/731.6 kB 95.3 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Collecting torchrec==0.5.0+cu118 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 266)) +dlrm [stdout] Downloading https://download.pytorch.org/whl/cu118/torchrec-0.5.0%2Bcu118-py3-none-any.whl (393 kB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 393.8/393.8 kB 87.7 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Collecting torchviz==0.0.2 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 268)) +dlrm [stdout] Downloading torchviz-0.0.2.tar.gz (4.9 kB) +dlrm [stdout] Preparing metadata (setup.py): started +dlrm [stdout] Preparing metadata (setup.py): finished with status 'done' +dlrm [stdout] Collecting torchx==0.5.0 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 270)) +dlrm [stdout] Downloading torchx-0.5.0-py3-none-any.whl (251 kB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 251.2/251.2 kB 91.0 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Requirement already satisfied: tqdm==4.66.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 272)) (4.66.1) +dlrm [stdout] Requirement already satisfied: triton==2.1.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 276)) (2.1.0) +dlrm [stdout] Requirement already satisfied: typing-extensions==4.8.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 280)) (4.8.0) +dlrm [stdout] Collecting typing-inspect==0.9.0 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 288)) +dlrm [stdout] Downloading typing_inspect-0.9.0-py3-none-any.whl.metadata (1.5 kB) +dlrm [stdout] Requirement already satisfied: urllib3==1.26.18 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 292)) (1.26.18) +dlrm [stdout] Requirement already satisfied: varname==0.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 298)) (0.10.0) +dlrm [stdout] Requirement already satisfied: voir==0.2.11 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 302)) (0.2.11) +dlrm [stdout] Collecting websocket-client==1.6.4 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 304)) +dlrm [stdout] Downloading websocket_client-1.6.4-py3-none-any.whl.metadata (7.7 kB) +dlrm [stdout] Collecting werkzeug==3.0.1 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 308)) +dlrm [stdout] Downloading werkzeug-3.0.1-py3-none-any.whl.metadata (4.1 kB) +dlrm [stdout] Collecting zipp==3.17.0 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 312)) +dlrm [stdout] Using cached zipp-3.17.0-py3-none-any.whl.metadata (3.7 kB) +dlrm [stdout] Requirement already satisfied: setuptools>=41.0.0 in ./base/venv/torch/lib/python3.9/site-packages (from tensorboard==2.15.1->-r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 247)) (69.0.3) +dlrm [stdout] Downloading absl_py-2.0.0-py3-none-any.whl (130 kB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 130.2/130.2 kB 2.0 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Downloading cachetools-5.3.2-py3-none-any.whl (9.3 kB) +dlrm [stdout] Downloading docker-6.1.3-py3-none-any.whl (148 kB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 148.1/148.1 kB 70.8 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Downloading google_auth-2.23.4-py2.py3-none-any.whl (183 kB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 183.3/183.3 kB 72.4 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Downloading google_auth_oauthlib-1.1.0-py2.py3-none-any.whl (19 kB) +dlrm [stdout] Downloading grpcio-1.59.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.3 MB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 5.3/5.3 MB 89.7 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Downloading importlib_metadata-6.8.0-py3-none-any.whl (22 kB) +dlrm [stdout] Downloading joblib-1.3.2-py3-none-any.whl (302 kB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 302.2/302.2 kB 94.6 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Downloading lightning_utilities-0.9.0-py3-none-any.whl (23 kB) +dlrm [stdout] Downloading Markdown-3.5.1-py3-none-any.whl (102 kB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 102.2/102.2 kB 60.0 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Downloading onnx-1.15.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.7 MB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 15.7/15.7 MB 69.7 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Downloading protobuf-4.23.4-cp37-abi3-manylinux2014_x86_64.whl (304 kB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 304.5/304.5 kB 97.5 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Downloading pyparsing-3.1.1-py3-none-any.whl (103 kB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 103.1/103.1 kB 59.2 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Downloading scikit_learn-1.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.9 MB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 10.9/10.9 MB 99.1 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Downloading scipy-1.11.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.6 MB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 36.6/36.6 MB 82.8 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Downloading tensorboard-2.15.1-py3-none-any.whl (5.5 MB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 5.5/5.5 MB 91.4 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Downloading tensorboard_data_server-0.7.2-py3-none-manylinux_2_31_x86_64.whl (6.6 MB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 6.6/6.6 MB 103.3 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Downloading threadpoolctl-3.2.0-py3-none-any.whl (15 kB) +dlrm [stdout] Downloading typing_inspect-0.9.0-py3-none-any.whl (8.8 kB) +dlrm [stdout] Downloading websocket_client-1.6.4-py3-none-any.whl (57 kB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 57.3/57.3 kB 36.6 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Downloading werkzeug-3.0.1-py3-none-any.whl (226 kB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 226.7/226.7 kB 91.4 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Using cached zipp-3.17.0-py3-none-any.whl (7.4 kB) +dlrm [stdout] Building wheels for collected packages: docstring-parser, future, torchviz +dlrm [stdout] Building wheel for docstring-parser (pyproject.toml): started +dlrm [stdout] Building wheel for docstring-parser (pyproject.toml): finished with status 'done' +dlrm [stdout] Created wheel for docstring-parser: filename=docstring_parser-0.8.1-py3-none-any.whl size=19661 sha256=1a542c0e4492d66ecd4fe1e948975afb1cd4c5a6d0ca58be36d4ee2ce36bd6ee +dlrm [stdout] Stored in directory: /Tmp/slurm.4115546.0/base/cache/pip/wheels/35/b6/65/eda0a6497d7e3275201108c17e12c945989eb0d6e9dcc8eca2 +dlrm [stdout] Building wheel for future (setup.py): started +dlrm [stdout] Building wheel for future (setup.py): finished with status 'done' +dlrm [stdout] Created wheel for future: filename=future-0.18.3-py3-none-any.whl size=492024 sha256=a31bee69c8ded1927ff64cad17fd9cefa9a79574fd862b7d0ecda45e1450f490 +dlrm [stdout] Stored in directory: /Tmp/slurm.4115546.0/base/cache/pip/wheels/bf/5d/6a/2e53874f7ec4e2bede522385439531fafec8fafe005b5c3d1b +dlrm [stdout] Building wheel for torchviz (setup.py): started +dlrm [stdout] Building wheel for torchviz (setup.py): finished with status 'done' +dlrm [stdout] Created wheel for torchviz: filename=torchviz-0.0.2-py3-none-any.whl size=4131 sha256=91a2b31218f1bb267233d009089fd353a1a313fede2c3cd25ae34c42de033217 +dlrm [stdout] Stored in directory: /Tmp/slurm.4115546.0/base/cache/pip/wheels/29/65/6e/db2515eb1dc760fecd36b40d54df65c1e18534013f1c037e2e +dlrm [stdout] Successfully built docstring-parser future torchviz +dlrm [stdout] Installing collected packages: fbgemm-gpu, zipp, werkzeug, websocket-client, threadpoolctl, tensorboard-data-server, tabulate, scipy, pyparsing, pyasn1, protobuf, oauthlib, mypy-extensions, lightning-utilities, joblib, grpcio, graphviz, future, docstring-parser, cachetools, absl-py, typing-inspect, scikit-learn, rsa, requests-oauthlib, pydot, pyasn1-modules, onnx, importlib-metadata, docker, torchviz, torchmetrics, pyre-extensions, markdown, google-auth, torchx, torchrec, google-auth-oauthlib, tensorboard +dlrm [stdout] Successfully installed absl-py-2.0.0 cachetools-5.3.2 docker-6.1.3 docstring-parser-0.8.1 fbgemm-gpu-0.5.0+cu118 future-0.18.3 google-auth-2.23.4 google-auth-oauthlib-1.1.0 graphviz-0.20.1 grpcio-1.59.2 importlib-metadata-6.8.0 joblib-1.3.2 lightning-utilities-0.9.0 markdown-3.5.1 mypy-extensions-1.0.0 oauthlib-3.2.2 onnx-1.15.0 protobuf-4.23.4 pyasn1-0.5.0 pyasn1-modules-0.3.0 pydot-1.4.2 pyparsing-3.1.1 pyre-extensions-0.0.30 requests-oauthlib-1.3.1 rsa-4.9 scikit-learn-1.3.2 scipy-1.11.3 tabulate-0.9.0 tensorboard-2.15.1 tensorboard-data-server-0.7.2 threadpoolctl-3.2.0 torchmetrics-1.0.3 torchrec-0.5.0+cu118 torchviz-0.0.2 torchx-0.5.0 typing-inspect-0.9.0 websocket-client-1.6.4 werkzeug-3.0.1 zipp-3.17.0 +dlrm [stderr] +dlrm [stderr] [notice] A new release of pip is available: 23.3.2 -> 24.0 +dlrm [stderr] [notice] To update, run: pip install --upgrade pip +dlrm [end] pip install -r /Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/requirements.cuda.txt [at 2024-02-06 15:51:40.822850] +rwkv [start] pip install -r /Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/requirements.cuda.txt [at 2024-02-06 15:51:40.826841] +rwkv [stdout] Looking in indexes: https://pypi.org/simple, https://download.pytorch.org/whl/cu118 +rwkv [stdout] Requirement already satisfied: aiohttp==3.8.6 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 9)) (3.8.6) +rwkv [stdout] Requirement already satisfied: aiosignal==1.3.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 13)) (1.3.1) +rwkv [stdout] Requirement already satisfied: antlr4-python3-runtime==4.9.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 17)) (4.9.3) +rwkv [stdout] Requirement already satisfied: asttokens==2.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 21)) (2.4.1) +rwkv [stdout] Requirement already satisfied: async-timeout==4.0.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 25)) (4.0.3) +rwkv [stdout] Requirement already satisfied: attrs==23.1.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 29)) (23.1.0) +rwkv [stdout] Requirement already satisfied: certifi==2023.7.22 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 33)) (2023.7.22) +rwkv [stdout] Requirement already satisfied: charset-normalizer==3.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 37)) (3.3.2) +rwkv [stdout] Requirement already satisfied: codefind==0.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 42)) (0.1.3) +rwkv [stdout] Requirement already satisfied: deepspeed==0.12.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 46)) (0.12.2) +rwkv [stdout] Requirement already satisfied: executing==1.2.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 48)) (1.2.0) +rwkv [stdout] Requirement already satisfied: filelock==3.13.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 52)) (3.13.1) +rwkv [stdout] Requirement already satisfied: frozenlist==1.4.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 57)) (1.4.0) +rwkv [stdout] Requirement already satisfied: fsspec==2023.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from fsspec[http]==2023.10.0->-r /Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 62)) (2023.10.0) +rwkv [stdout] Requirement already satisfied: giving==0.4.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 67)) (0.4.2) +rwkv [stdout] Requirement already satisfied: hjson==3.1.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 72)) (3.1.0) +rwkv [stdout] Requirement already satisfied: idna==3.4 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 76)) (3.4) +rwkv [stdout] Requirement already satisfied: jinja2==3.1.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 81)) (3.1.2) +rwkv [stdout] Requirement already satisfied: lightning-utilities==0.9.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 85)) (0.9.0) +rwkv [stdout] Requirement already satisfied: markdown-it-py==3.0.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 90)) (3.0.0) +rwkv [stdout] Requirement already satisfied: markupsafe==2.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 94)) (2.1.3) +rwkv [stdout] Requirement already satisfied: mdurl==0.1.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 98)) (0.1.2) +rwkv [stdout] Requirement already satisfied: mpmath==1.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 102)) (1.3.0) +rwkv [stdout] Requirement already satisfied: multidict==6.0.4 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 106)) (6.0.4) +rwkv [stdout] Requirement already satisfied: networkx==3.2.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 111)) (3.2.1) +rwkv [stdout] Requirement already satisfied: ninja==1.11.1.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 115)) (1.11.1.1) +rwkv [stdout] Requirement already satisfied: numpy==1.26.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 119)) (1.26.1) +rwkv [stdout] Requirement already satisfied: omegaconf==2.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 125)) (2.3.0) +rwkv [stdout] Requirement already satisfied: ovld==0.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 129)) (0.3.2) +rwkv [stdout] Requirement already satisfied: packaging==23.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 133)) (23.2) +rwkv [stdout] Requirement already satisfied: psutil==5.9.6 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 140)) (5.9.6) +rwkv [stdout] Requirement already satisfied: ptera==1.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 144)) (1.4.1) +rwkv [stdout] Requirement already satisfied: py-cpuinfo==9.0.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 148)) (9.0.0) +rwkv [stdout] Requirement already satisfied: pydantic==1.10.13 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 152)) (1.10.13) +rwkv [stdout] Requirement already satisfied: pygments==2.16.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 156)) (2.16.1) +rwkv [stdout] Requirement already satisfied: pynvml==11.5.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 160)) (11.5.0) +rwkv [stdout] Collecting pytorch-lightning==1.9.5 (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 165)) +rwkv [stdout] Downloading pytorch_lightning-1.9.5-py3-none-any.whl (829 kB) +rwkv [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 829.5/829.5 kB 10.5 MB/s eta 0:00:00 +rwkv [stdout] +rwkv [stdout] Requirement already satisfied: pyyaml==6.0.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 167)) (6.0.1) +rwkv [stdout] Requirement already satisfied: reactivex==4.0.4 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 172)) (4.0.4) +rwkv [stdout] Requirement already satisfied: requests==2.31.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 176)) (2.31.0) +rwkv [stdout] Requirement already satisfied: rich==13.6.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 180)) (13.6.0) +rwkv [stdout] Requirement already satisfied: six==1.16.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 184)) (1.16.0) +rwkv [stdout] Requirement already satisfied: sympy==1.12 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 188)) (1.12) +rwkv [stdout] Requirement already satisfied: torch==2.1.0+cu118 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 192)) (2.1.0+cu118) +rwkv [stdout] Requirement already satisfied: torchmetrics==1.0.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 198)) (1.0.3) +rwkv [stdout] Requirement already satisfied: tqdm==4.66.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 202)) (4.66.1) +rwkv [stdout] Requirement already satisfied: triton==2.1.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 207)) (2.1.0) +rwkv [stdout] Requirement already satisfied: typing-extensions==4.8.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 211)) (4.8.0) +rwkv [stdout] Requirement already satisfied: urllib3==1.26.18 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 219)) (1.26.18) +rwkv [stdout] Requirement already satisfied: varname==0.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 223)) (0.10.0) +rwkv [stdout] Requirement already satisfied: voir==0.2.11 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 227)) (0.2.11) +rwkv [stdout] Requirement already satisfied: yarl==1.9.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/requirements.cuda.txt (line 229)) (1.9.2) +rwkv [stdout] Installing collected packages: pytorch-lightning +rwkv [stdout] Successfully installed pytorch-lightning-1.9.5 +rwkv [stderr] +rwkv [stderr] [notice] A new release of pip is available: 23.3.2 -> 24.0 +rwkv [stderr] [notice] To update, run: pip install --upgrade pip +rwkv [end] pip install -r /Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/requirements.cuda.txt [at 2024-02-06 15:51:43.630094] +[DONE] Reports directory: /Tmp/slurm.4115546.0/base/runs/install.2024-02-06_15:49:16.821231 + +Prepare +------- +llama [config.system.arch] cuda +llama [config.system.sshkey] None +llama [config.system.nodes] [{'aliaslist': [], + 'hostname': 'localhost', + 'ip': '127.0.0.1', + 'ipaddrlist': ['::1', + 'fe80::1e34:da03:5b:a694%ibp148s0', + '10.20.8.76', + '172.16.8.76', + '127.0.0.1', + '00:00:10:29:fe:80:00:00:00:00:00:00:1c:34:da:03:00:5b:a6:94', + 'fe80::1270:fd03:52:c7c2%ibp75s0', + '00:00:10:29:fe:80:00:00:00:00:00:00:10:70:fd:03:00:52:c7:c2', + '5c:ff:35:fb:8e:43', + '00:00:00:00:00:00', + '10.20.136.76', + 'fe80::5eff:35ff:fefb:8e43%enp226s0'], + 'local': True, + 'main': True, + 'name': 'local', + 'port': 8123, + 'user': 'root'}] +llama [config.system.gpu.capacity] 81920 MiB +llama [config.system.self.name] local +llama [config.system.self.ip] 127.0.0.1 +llama [config.system.self.port] 8123 +llama [config.system.self.user] root +llama [config.system.self.main] True +llama [config.system.self.hostname] localhost +llama [config.system.self.aliaslist] [] +llama [config.system.self.ipaddrlist] ['::1', + 'fe80::1e34:da03:5b:a694%ibp148s0', + '10.20.8.76', + '172.16.8.76', + '127.0.0.1', + '00:00:10:29:fe:80:00:00:00:00:00:00:1c:34:da:03:00:5b:a6:94', + 'fe80::1270:fd03:52:c7c2%ibp75s0', + '00:00:10:29:fe:80:00:00:00:00:00:00:10:70:fd:03:00:52:c7:c2', + '5c:ff:35:fb:8e:43', + '00:00:00:00:00:00', + '10.20.136.76', + 'fe80::5eff:35ff:fefb:8e43%enp226s0'] +llama [config.system.self.local] True +llama [config.dirs.base] /Tmp/slurm.4115546.0/base +llama [config.dirs.venv] /Tmp/slurm.4115546.0/base/venv/torch +llama [config.dirs.data] /Tmp/slurm.4115546.0/base/data +llama [config.dirs.runs] /Tmp/slurm.4115546.0/base/runs +llama [config.dirs.extra] /Tmp/slurm.4115546.0/base/extra/llm +llama [config.dirs.cache] /Tmp/slurm.4115546.0/base/cache +llama [config.group] llm +llama [config.install_group] torch +llama [config.install_variant] cuda +llama [config.run_name] prepare.2024-02-06_15:51:44.996940 +llama [config.enabled] True +llama [config.capabilities.nodes] 1 +llama [config.max_duration] 800 +llama [config.voir.options.stop] 30 +llama [config.voir.options.interval] 1s +llama [config.validation.usage.gpu_load_threshold] 0.5 +llama [config.validation.usage.gpu_mem_threshold] 0.5 +llama [config.config_base] /Tmp/slurm.4115546.0/milabench/config +llama [config.config_file] /Tmp/slurm.4115546.0/milabench/config/standard.yaml +llama [config.definition] /Tmp/slurm.4115546.0/milabench/benchmarks/llama +llama [config.plan.method] per_gpu +llama [config.tags] ['llm', 'nlp'] +llama [config.weight] 1.0 +llama [config.name] llama +llama [config.tag] ['llama'] +llama [meta] {'accelerators': {'arch': 'cuda', + 'gpus': {'GPU-4cf16da6-6e32-13fe-8103-b869f4c114b8': {'device': '0', + 'memory': {'total': 81920.0, 'used': 873.9375}, + 'power': 62.285, + 'product': 'NVIDIA A100-SXM4-80GB', + 'selection_variable': 'CUDA_VISIBLE_DEVICES', + 'temperature': 26, + 'utilization': {'compute': 0, + 'memory': 0.010668182373046875}}, + 'GPU-4f8e63df-6c6a-06db-bf46-85c6d7c97cea': {'device': '1', + 'memory': {'total': 81920.0, 'used': 873.9375}, + 'power': 63.272, + 'product': 'NVIDIA A100-SXM4-80GB', + 'selection_variable': 'CUDA_VISIBLE_DEVICES', + 'temperature': 26, + 'utilization': {'compute': 0, + 'memory': 0.010668182373046875}}}}, + 'cpu': {'brand': 'AMD EPYC 7742 64-Core Processor', 'count': 128}, + 'date': 1707270709.185297, + 'milabench': {'commit': '4c8961898aa0dc59a9227c32d562c7a0be37ea03', + 'date': '2024-02-06 11:53:56 -0500', + 'tag': '4c89618'}, + 'os': {'machine': 'x86_64', + 'nodename': 'cn-d004.server.mila.quebec', + 'release': '5.4.0-165-generic', + 'sysname': 'Linux', + 'version': '#182-Ubuntu SMP Mon Oct 2 19:43:28 UTC 2023'}, + 'pytorch': {'build_settings': {'BLAS_INFO': 'mkl', + 'BUILD_TYPE': 'Release', + 'CUDA_VERSION': '11.8', + 'CUDNN_VERSION': '8.7.0', + 'CXX_COMPILER': '/opt/rh/devtoolset-9/root/usr/bin/c++', + 'CXX_FLAGS': '-D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -fvisibility-inlines-hidden ' + '-DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER ' + '-DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK ' + '-DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra ' + '-Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation ' + '-Wnarrowing -Wno-missing-field-initializers -Wno-type-limits ' + '-Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter ' + '-Wno-unused-function -Wno-unused-result -Wno-strict-overflow ' + '-Wno-strict-aliasing -Wno-stringop-overflow -Wno-psabi ' + '-Wno-error=pedantic -Wno-error=old-style-cast ' + '-Wno-invalid-partial-specialization -Wno-unused-private-field ' + '-Wno-aligned-allocation-unavailable -Wno-missing-braces ' + '-fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable ' + '-Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math ' + '-Werror=format -Werror=cast-function-type -Wno-stringop-overflow', + 'LAPACK_INFO': 'mkl', + 'PERF_WITH_AVX': '1', + 'PERF_WITH_AVX2': '1', + 'PERF_WITH_AVX512': '1', + 'TORCH_DISABLE_GPU_ASSERTS': 'ON', + 'TORCH_VERSION': '2.1.0', + 'USE_CUDA': 'ON', + 'USE_CUDNN': 'ON', + 'USE_EXCEPTION_PTR': '1', + 'USE_GFLAGS': 'OFF', + 'USE_GLOG': 'OFF', + 'USE_MKL': 'ON', + 'USE_MKLDNN': 'ON', + 'USE_MPI': 'OFF', + 'USE_NCCL': '1', + 'USE_NNPACK': 'ON', + 'USE_OPENMP': 'ON', + 'USE_ROCM': 'OFF'}, + 'compiler': 'GCC 9.3', + 'cpp': 'C++ Version: 201703', + 'cpu': 'CPU capability usage: AVX2', + 'intel': 'Intel(R) oneAPI Math Kernel Library Version 2022.2-Product Build 20220804 for Intel(R) 64 ' + 'architecture applications', + 'lapack': 'LAPACK is enabled (usually provided by MKL)', + 'mkl': 'OpenMP 201511 (a.k.a. OpenMP 4.5)', + 'nnpack': 'NNPACK is enabled', + 'openmp': 'OpenMP 201511 (a.k.a. OpenMP 4.5)', + 'torch': '2.1.0+cu118'}} +llama [start] python /Tmp/slurm.4115546.0/milabench/benchmarks/llama/main.py --prepare --cache /Tmp/slurm.4115546.0/base/cache [at 2024-02-06 15:51:49.210340] +llama [stderr] Dataset +llama [stderr] Downloading readme: 0%| | 0.00/10.5k [00:00 +opt-1_3b [stderr] sys.exit(main()) +opt-1_3b [stderr] File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/accelerate/commands/accelerate_cli.py", line 47, in main +opt-1_3b [stderr] args.func(args) +opt-1_3b [stderr] File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/accelerate/commands/launch.py", line 985, in launch_command +opt-1_3b [stderr] multi_gpu_launcher(args) +opt-1_3b [stderr] File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/accelerate/commands/launch.py", line 644, in multi_gpu_launcher +opt-1_3b [stderr] current_env = prepare_multi_gpu_env(args) +opt-1_3b [stderr] File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/accelerate/utils/launch.py", line 132, in prepare_multi_gpu_env +opt-1_3b [stderr] raise ConnectionError( +opt-1_3b [stderr] ConnectionError: Tried to launch distributed communication on port `29500`, but another process is utilizing it. Please specify a different port (such as using the `----main_process_port` flag or specifying a different `main_process_port` in your config file) and rerun your script. To automatically use the next open port (on a single node), you can set this to `0`. +opt-1_3b [end (1)] accelerate launch --mixed_precision=fp16 --num_machines=1 --dynamo_backend=no --num_processes=1 --num_cpu_threads_per_process=8 /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/main.py --max_train_steps 100 --dataset_name wikitext --dataset_config_name wikitext-103-v1 --dataset_rev b08601e --validation_split_percentage 5 --per_gpu_batch_size 1 --cpus_per_gpu 8 --model_name facebook/opt-1.3b --prepare_only --cache /Tmp/slurm.4115546.0/base/cache [at 2024-02-06 15:55:05.157742] +opt-6_7b [config.system.arch] cuda +opt-6_7b [config.system.sshkey] None +opt-6_7b [config.system.nodes] [{'aliaslist': [], + 'hostname': 'localhost', + 'ip': '127.0.0.1', + 'ipaddrlist': ['::1', + 'fe80::1e34:da03:5b:a694%ibp148s0', + '10.20.8.76', + '172.16.8.76', + '127.0.0.1', + '00:00:10:29:fe:80:00:00:00:00:00:00:1c:34:da:03:00:5b:a6:94', + 'fe80::1270:fd03:52:c7c2%ibp75s0', + '00:00:10:29:fe:80:00:00:00:00:00:00:10:70:fd:03:00:52:c7:c2', + '5c:ff:35:fb:8e:43', + '00:00:00:00:00:00', + '10.20.136.76', + 'fe80::5eff:35ff:fefb:8e43%enp226s0'], + 'local': True, + 'main': True, + 'name': 'local', + 'port': 8123, + 'user': 'root'}] +opt-6_7b [config.system.gpu.capacity] 81920 MiB +opt-6_7b [config.system.self.name] local +opt-6_7b [config.system.self.ip] 127.0.0.1 +opt-6_7b [config.system.self.port] 8123 +opt-6_7b [config.system.self.user] root +opt-6_7b [config.system.self.main] True +opt-6_7b [config.system.self.hostname] localhost +opt-6_7b [config.system.self.aliaslist] [] +opt-6_7b [config.system.self.ipaddrlist] ['::1', + 'fe80::1e34:da03:5b:a694%ibp148s0', + '10.20.8.76', + '172.16.8.76', + '127.0.0.1', + '00:00:10:29:fe:80:00:00:00:00:00:00:1c:34:da:03:00:5b:a6:94', + 'fe80::1270:fd03:52:c7c2%ibp75s0', + '00:00:10:29:fe:80:00:00:00:00:00:00:10:70:fd:03:00:52:c7:c2', + '5c:ff:35:fb:8e:43', + '00:00:00:00:00:00', + '10.20.136.76', + 'fe80::5eff:35ff:fefb:8e43%enp226s0'] +opt-6_7b [config.system.self.local] True +opt-6_7b [config.dirs.base] /Tmp/slurm.4115546.0/base +opt-6_7b [config.dirs.venv] /Tmp/slurm.4115546.0/base/venv/torch +opt-6_7b [config.dirs.data] /Tmp/slurm.4115546.0/base/data +opt-6_7b [config.dirs.runs] /Tmp/slurm.4115546.0/base/runs +opt-6_7b [config.dirs.extra] /Tmp/slurm.4115546.0/base/extra/opt +opt-6_7b [config.dirs.cache] /Tmp/slurm.4115546.0/base/cache +opt-6_7b [config.group] opt +opt-6_7b [config.install_group] torch +opt-6_7b [config.install_variant] cuda +opt-6_7b [config.run_name] prepare.2024-02-06_15:51:44.996940 +opt-6_7b [config.enabled] True +opt-6_7b [config.capabilities.nodes] 1 +opt-6_7b [config.max_duration] 600 +opt-6_7b [config.voir.options.stop] 60 +opt-6_7b [config.voir.options.interval] 1s +opt-6_7b [config.validation.usage.gpu_load_threshold] 0.5 +opt-6_7b [config.validation.usage.gpu_mem_threshold] 0.5 +opt-6_7b [config.config_base] /Tmp/slurm.4115546.0/milabench/config +opt-6_7b [config.config_file] /Tmp/slurm.4115546.0/milabench/config/standard.yaml +opt-6_7b [config.tags] ['huggingface', 'language-modeling', 'llm', 'multigpu', 'nlp', 'transformer'] +opt-6_7b [config.definition] /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt +opt-6_7b [config.plan.method] njobs +opt-6_7b [config.plan.n] 1 +opt-6_7b [config.argv.--max_train_steps] 100 +opt-6_7b [config.argv.--dataset_name] wikitext +opt-6_7b [config.argv.--dataset_config_name] wikitext-103-v1 +opt-6_7b [config.argv.--dataset_rev] b08601e +opt-6_7b [config.argv.--validation_split_percentage] 5 +opt-6_7b [config.argv.--per_gpu_batch_size] 1 +opt-6_7b [config.argv.--cpus_per_gpu] 8 +opt-6_7b [config.argv.--model_name] facebook/opt-6.7b +opt-6_7b [config.gradient_accumulation_steps] 1 +opt-6_7b [config.use_deepspeed] True +opt-6_7b [config.num_machines] 1 +opt-6_7b [config.weight] 5.0 +opt-6_7b [config.name] opt-6_7b +opt-6_7b [config.tag] ['opt-6_7b'] +opt-6_7b [meta] {'accelerators': {'arch': 'cuda', + 'gpus': {'GPU-4cf16da6-6e32-13fe-8103-b869f4c114b8': {'device': '0', + 'memory': {'total': 81920.0, 'used': 873.9375}, + 'power': 62.22, + 'product': 'NVIDIA A100-SXM4-80GB', + 'selection_variable': 'CUDA_VISIBLE_DEVICES', + 'temperature': 26, + 'utilization': {'compute': 0, + 'memory': 0.010668182373046875}}, + 'GPU-4f8e63df-6c6a-06db-bf46-85c6d7c97cea': {'device': '1', + 'memory': {'total': 81920.0, 'used': 873.9375}, + 'power': 63.272, + 'product': 'NVIDIA A100-SXM4-80GB', + 'selection_variable': 'CUDA_VISIBLE_DEVICES', + 'temperature': 27, + 'utilization': {'compute': 0, + 'memory': 0.010668182373046875}}}}, + 'cpu': {'brand': 'AMD EPYC 7742 64-Core Processor', 'count': 128}, + 'date': 1707270908.742581, + 'milabench': {'commit': '4c8961898aa0dc59a9227c32d562c7a0be37ea03', + 'date': '2024-02-06 11:53:56 -0500', + 'tag': '4c89618'}, + 'os': {'machine': 'x86_64', + 'nodename': 'cn-d004.server.mila.quebec', + 'release': '5.4.0-165-generic', + 'sysname': 'Linux', + 'version': '#182-Ubuntu SMP Mon Oct 2 19:43:28 UTC 2023'}, + 'pytorch': {'build_settings': {'BLAS_INFO': 'mkl', + 'BUILD_TYPE': 'Release', + 'CUDA_VERSION': '11.8', + 'CUDNN_VERSION': '8.7.0', + 'CXX_COMPILER': '/opt/rh/devtoolset-9/root/usr/bin/c++', + 'CXX_FLAGS': '-D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -fvisibility-inlines-hidden ' + '-DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER ' + '-DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK ' + '-DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra ' + '-Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation ' + '-Wnarrowing -Wno-missing-field-initializers -Wno-type-limits ' + '-Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter ' + '-Wno-unused-function -Wno-unused-result -Wno-strict-overflow ' + '-Wno-strict-aliasing -Wno-stringop-overflow -Wno-psabi ' + '-Wno-error=pedantic -Wno-error=old-style-cast ' + '-Wno-invalid-partial-specialization -Wno-unused-private-field ' + '-Wno-aligned-allocation-unavailable -Wno-missing-braces ' + '-fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable ' + '-Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math ' + '-Werror=format -Werror=cast-function-type -Wno-stringop-overflow', + 'LAPACK_INFO': 'mkl', + 'PERF_WITH_AVX': '1', + 'PERF_WITH_AVX2': '1', + 'PERF_WITH_AVX512': '1', + 'TORCH_DISABLE_GPU_ASSERTS': 'ON', + 'TORCH_VERSION': '2.1.0', + 'USE_CUDA': 'ON', + 'USE_CUDNN': 'ON', + 'USE_EXCEPTION_PTR': '1', + 'USE_GFLAGS': 'OFF', + 'USE_GLOG': 'OFF', + 'USE_MKL': 'ON', + 'USE_MKLDNN': 'ON', + 'USE_MPI': 'OFF', + 'USE_NCCL': '1', + 'USE_NNPACK': 'ON', + 'USE_OPENMP': 'ON', + 'USE_ROCM': 'OFF'}, + 'compiler': 'GCC 9.3', + 'cpp': 'C++ Version: 201703', + 'cpu': 'CPU capability usage: AVX2', + 'intel': 'Intel(R) oneAPI Math Kernel Library Version 2022.2-Product Build 20220804 for Intel(R) 64 ' + 'architecture applications', + 'lapack': 'LAPACK is enabled (usually provided by MKL)', + 'mkl': 'OpenMP 201511 (a.k.a. OpenMP 4.5)', + 'nnpack': 'NNPACK is enabled', + 'openmp': 'OpenMP 201511 (a.k.a. OpenMP 4.5)', + 'torch': '2.1.0+cu118'}} +opt-6_7b [start] accelerate launch --mixed_precision=fp16 --num_machines=1 --dynamo_backend=no --num_processes=1 --num_cpu_threads_per_process=8 /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/main.py --max_train_steps 100 --dataset_name wikitext --dataset_config_name wikitext-103-v1 --dataset_rev b08601e --validation_split_percentage 5 --per_gpu_batch_size 1 --cpus_per_gpu 8 --model_name facebook/opt-6.7b --prepare_only --cache /Tmp/slurm.4115546.0/base/cache [at 2024-02-06 15:55:08.763972] +opt-6_7b [stderr] The following values were not passed to `accelerate launch` and had defaults used instead: +opt-6_7b [stderr] More than one GPU was found, enabling multi-GPU training. +opt-6_7b [stderr] If this was unintended please pass in `--num_processes=1`. +opt-6_7b [stderr] To avoid this warning pass in values for each of the problematic parameters or run `accelerate config`. +opt-6_7b [stderr] Traceback (most recent call last): +opt-6_7b [stderr] File "/Tmp/slurm.4115546.0/base/venv/torch/bin/accelerate", line 8, in +opt-6_7b [stderr] sys.exit(main()) +opt-6_7b [stderr] File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/accelerate/commands/accelerate_cli.py", line 47, in main +opt-6_7b [stderr] args.func(args) +opt-6_7b [stderr] File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/accelerate/commands/launch.py", line 985, in launch_command +opt-6_7b [stderr] multi_gpu_launcher(args) +opt-6_7b [stderr] File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/accelerate/commands/launch.py", line 644, in multi_gpu_launcher +opt-6_7b [stderr] current_env = prepare_multi_gpu_env(args) +opt-6_7b [stderr] File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/accelerate/utils/launch.py", line 132, in prepare_multi_gpu_env +opt-6_7b [stderr] raise ConnectionError( +opt-6_7b [stderr] ConnectionError: Tried to launch distributed communication on port `29500`, but another process is utilizing it. Please specify a different port (such as using the `----main_process_port` flag or specifying a different `main_process_port` in your config file) and rerun your script. To automatically use the next open port (on a single node), you can set this to `0`. +opt-6_7b [end (1)] accelerate launch --mixed_precision=fp16 --num_machines=1 --dynamo_backend=no --num_processes=1 --num_cpu_threads_per_process=8 /Tmp/slurm.4115546.0/milabench/benchmarks/accelerate_opt/main.py --max_train_steps 100 --dataset_name wikitext --dataset_config_name wikitext-103-v1 --dataset_rev b08601e --validation_split_percentage 5 --per_gpu_batch_size 1 --cpus_per_gpu 8 --model_name facebook/opt-6.7b --prepare_only --cache /Tmp/slurm.4115546.0/base/cache [at 2024-02-06 15:55:10.980066] +stargan [config.system.arch] cuda +stargan [config.system.sshkey] None +stargan [config.system.nodes] [{'aliaslist': [], + 'hostname': 'localhost', + 'ip': '127.0.0.1', + 'ipaddrlist': ['::1', + 'fe80::1e34:da03:5b:a694%ibp148s0', + '10.20.8.76', + '172.16.8.76', + '127.0.0.1', + '00:00:10:29:fe:80:00:00:00:00:00:00:1c:34:da:03:00:5b:a6:94', + 'fe80::1270:fd03:52:c7c2%ibp75s0', + '00:00:10:29:fe:80:00:00:00:00:00:00:10:70:fd:03:00:52:c7:c2', + '5c:ff:35:fb:8e:43', + '00:00:00:00:00:00', + '10.20.136.76', + 'fe80::5eff:35ff:fefb:8e43%enp226s0'], + 'local': True, + 'main': True, + 'name': 'local', + 'port': 8123, + 'user': 'root'}] +stargan [config.system.gpu.capacity] 81920 MiB +stargan [config.system.self.name] local +stargan [config.system.self.ip] 127.0.0.1 +stargan [config.system.self.port] 8123 +stargan [config.system.self.user] root +stargan [config.system.self.main] True +stargan [config.system.self.hostname] localhost +stargan [config.system.self.aliaslist] [] +stargan [config.system.self.ipaddrlist] ['::1', + 'fe80::1e34:da03:5b:a694%ibp148s0', + '10.20.8.76', + '172.16.8.76', + '127.0.0.1', + '00:00:10:29:fe:80:00:00:00:00:00:00:1c:34:da:03:00:5b:a6:94', + 'fe80::1270:fd03:52:c7c2%ibp75s0', + '00:00:10:29:fe:80:00:00:00:00:00:00:10:70:fd:03:00:52:c7:c2', + '5c:ff:35:fb:8e:43', + '00:00:00:00:00:00', + '10.20.136.76', + 'fe80::5eff:35ff:fefb:8e43%enp226s0'] +stargan [config.system.self.local] True +stargan [config.dirs.base] /Tmp/slurm.4115546.0/base +stargan [config.dirs.venv] /Tmp/slurm.4115546.0/base/venv/torch +stargan [config.dirs.data] /Tmp/slurm.4115546.0/base/data +stargan [config.dirs.runs] /Tmp/slurm.4115546.0/base/runs +stargan [config.dirs.extra] /Tmp/slurm.4115546.0/base/extra/stargan +stargan [config.dirs.cache] /Tmp/slurm.4115546.0/base/cache +stargan [config.group] stargan +stargan [config.install_group] torch +stargan [config.install_variant] cuda +stargan [config.run_name] prepare.2024-02-06_15:51:44.996940 +stargan [config.enabled] True +stargan [config.capabilities.nodes] 1 +stargan [config.max_duration] 600 +stargan [config.voir.options.stop] 60 +stargan [config.voir.options.interval] 1s +stargan [config.validation.usage.gpu_load_threshold] 0.5 +stargan [config.validation.usage.gpu_mem_threshold] 0.5 +stargan [config.config_base] /Tmp/slurm.4115546.0/milabench/config +stargan [config.config_file] /Tmp/slurm.4115546.0/milabench/config/standard.yaml +stargan [config.tags] ['gan', 'resnet', 'vision'] +stargan [config.definition] /Tmp/slurm.4115546.0/milabench/benchmarks/stargan +stargan [config.plan.method] per_gpu +stargan [config.argv.--image_size] 512 +stargan [config.argv.--c_dim] 5 +stargan [config.argv.--batch_size] 16 +stargan [config.weight] 1.0 +stargan [config.name] stargan +stargan [config.tag] ['stargan'] +stargan [meta] {'accelerators': {'arch': 'cuda', + 'gpus': {'GPU-4cf16da6-6e32-13fe-8103-b869f4c114b8': {'device': '0', + 'memory': {'total': 81920.0, 'used': 873.9375}, + 'power': 62.155, + 'product': 'NVIDIA A100-SXM4-80GB', + 'selection_variable': 'CUDA_VISIBLE_DEVICES', + 'temperature': 27, + 'utilization': {'compute': 0, + 'memory': 0.010668182373046875}}, + 'GPU-4f8e63df-6c6a-06db-bf46-85c6d7c97cea': {'device': '1', + 'memory': {'total': 81920.0, 'used': 873.9375}, + 'power': 63.206, + 'product': 'NVIDIA A100-SXM4-80GB', + 'selection_variable': 'CUDA_VISIBLE_DEVICES', + 'temperature': 27, + 'utilization': {'compute': 0, + 'memory': 0.010668182373046875}}}}, + 'cpu': {'brand': 'AMD EPYC 7742 64-Core Processor', 'count': 128}, + 'date': 1707270914.49403, + 'milabench': {'commit': '4c8961898aa0dc59a9227c32d562c7a0be37ea03', + 'date': '2024-02-06 11:53:56 -0500', + 'tag': '4c89618'}, + 'os': {'machine': 'x86_64', + 'nodename': 'cn-d004.server.mila.quebec', + 'release': '5.4.0-165-generic', + 'sysname': 'Linux', + 'version': '#182-Ubuntu SMP Mon Oct 2 19:43:28 UTC 2023'}, + 'pytorch': {'build_settings': {'BLAS_INFO': 'mkl', + 'BUILD_TYPE': 'Release', + 'CUDA_VERSION': '11.8', + 'CUDNN_VERSION': '8.7.0', + 'CXX_COMPILER': '/opt/rh/devtoolset-9/root/usr/bin/c++', + 'CXX_FLAGS': '-D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -fvisibility-inlines-hidden ' + '-DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER ' + '-DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK ' + '-DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra ' + '-Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation ' + '-Wnarrowing -Wno-missing-field-initializers -Wno-type-limits ' + '-Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter ' + '-Wno-unused-function -Wno-unused-result -Wno-strict-overflow ' + '-Wno-strict-aliasing -Wno-stringop-overflow -Wno-psabi ' + '-Wno-error=pedantic -Wno-error=old-style-cast ' + '-Wno-invalid-partial-specialization -Wno-unused-private-field ' + '-Wno-aligned-allocation-unavailable -Wno-missing-braces ' + '-fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable ' + '-Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math ' + '-Werror=format -Werror=cast-function-type -Wno-stringop-overflow', + 'LAPACK_INFO': 'mkl', + 'PERF_WITH_AVX': '1', + 'PERF_WITH_AVX2': '1', + 'PERF_WITH_AVX512': '1', + 'TORCH_DISABLE_GPU_ASSERTS': 'ON', + 'TORCH_VERSION': '2.1.0', + 'USE_CUDA': 'ON', + 'USE_CUDNN': 'ON', + 'USE_EXCEPTION_PTR': '1', + 'USE_GFLAGS': 'OFF', + 'USE_GLOG': 'OFF', + 'USE_MKL': 'ON', + 'USE_MKLDNN': 'ON', + 'USE_MPI': 'OFF', + 'USE_NCCL': '1', + 'USE_NNPACK': 'ON', + 'USE_OPENMP': 'ON', + 'USE_ROCM': 'OFF'}, + 'compiler': 'GCC 9.3', + 'cpp': 'C++ Version: 201703', + 'cpu': 'CPU capability usage: AVX2', + 'intel': 'Intel(R) oneAPI Math Kernel Library Version 2022.2-Product Build 20220804 for Intel(R) 64 ' + 'architecture applications', + 'lapack': 'LAPACK is enabled (usually provided by MKL)', + 'mkl': 'OpenMP 201511 (a.k.a. OpenMP 4.5)', + 'nnpack': 'NNPACK is enabled', + 'openmp': 'OpenMP 201511 (a.k.a. OpenMP 4.5)', + 'torch': '2.1.0+cu118'}} +stargan [start] true [at 2024-02-06 15:55:14.517094] +stargan [end] true [at 2024-02-06 15:55:14.517827] +super-slomo [config.system.arch] cuda +super-slomo [config.system.sshkey] None +super-slomo [config.system.nodes] [{'aliaslist': [], + 'hostname': 'localhost', + 'ip': '127.0.0.1', + 'ipaddrlist': ['::1', + 'fe80::1e34:da03:5b:a694%ibp148s0', + '10.20.8.76', + '172.16.8.76', + '127.0.0.1', + '00:00:10:29:fe:80:00:00:00:00:00:00:1c:34:da:03:00:5b:a6:94', + 'fe80::1270:fd03:52:c7c2%ibp75s0', + '00:00:10:29:fe:80:00:00:00:00:00:00:10:70:fd:03:00:52:c7:c2', + '5c:ff:35:fb:8e:43', + '00:00:00:00:00:00', + '10.20.136.76', + 'fe80::5eff:35ff:fefb:8e43%enp226s0'], + 'local': True, + 'main': True, + 'name': 'local', + 'port': 8123, + 'user': 'root'}] +super-slomo [config.system.gpu.capacity] 81920 MiB +super-slomo [config.system.self.name] local +super-slomo [config.system.self.ip] 127.0.0.1 +super-slomo [config.system.self.port] 8123 +super-slomo [config.system.self.user] root +super-slomo [config.system.self.main] True +super-slomo [config.system.self.hostname] localhost +super-slomo [config.system.self.aliaslist] [] +super-slomo [config.system.self.ipaddrlist] ['::1', + 'fe80::1e34:da03:5b:a694%ibp148s0', + '10.20.8.76', + '172.16.8.76', + '127.0.0.1', + '00:00:10:29:fe:80:00:00:00:00:00:00:1c:34:da:03:00:5b:a6:94', + 'fe80::1270:fd03:52:c7c2%ibp75s0', + '00:00:10:29:fe:80:00:00:00:00:00:00:10:70:fd:03:00:52:c7:c2', + '5c:ff:35:fb:8e:43', + '00:00:00:00:00:00', + '10.20.136.76', + 'fe80::5eff:35ff:fefb:8e43%enp226s0'] +super-slomo [config.system.self.local] True +super-slomo [config.dirs.base] /Tmp/slurm.4115546.0/base +super-slomo [config.dirs.venv] /Tmp/slurm.4115546.0/base/venv/torch +super-slomo [config.dirs.data] /Tmp/slurm.4115546.0/base/data +super-slomo [config.dirs.runs] /Tmp/slurm.4115546.0/base/runs +super-slomo [config.dirs.extra] /Tmp/slurm.4115546.0/base/extra/super-slomo +super-slomo [config.dirs.cache] /Tmp/slurm.4115546.0/base/cache +super-slomo [config.group] super-slomo +super-slomo [config.install_group] torch +super-slomo [config.install_variant] cuda +super-slomo [config.run_name] prepare.2024-02-06_15:51:44.996940 +super-slomo [config.enabled] True +super-slomo [config.capabilities.nodes] 1 +super-slomo [config.max_duration] 600 +super-slomo [config.voir.options.stop] 60 +super-slomo [config.voir.options.interval] 1s +super-slomo [config.validation.usage.gpu_load_threshold] 0.5 +super-slomo [config.validation.usage.gpu_mem_threshold] 0.5 +super-slomo [config.config_base] /Tmp/slurm.4115546.0/milabench/config +super-slomo [config.config_file] /Tmp/slurm.4115546.0/milabench/config/standard.yaml +super-slomo [config.tags] ['convnet', 'unet', 'video-interpolation', 'vision'] +super-slomo [config.definition] /Tmp/slurm.4115546.0/milabench/benchmarks/super-slomo +super-slomo [config.plan.method] per_gpu +super-slomo [config.argv.--train_batch_size] 32 +super-slomo [config.weight] 1.0 +super-slomo [config.name] super-slomo +super-slomo [config.tag] ['super-slomo'] +super-slomo [meta] {'accelerators': {'arch': 'cuda', + 'gpus': {'GPU-4cf16da6-6e32-13fe-8103-b869f4c114b8': {'device': '0', + 'memory': {'total': 81920.0, 'used': 873.9375}, + 'power': 62.22, + 'product': 'NVIDIA A100-SXM4-80GB', + 'selection_variable': 'CUDA_VISIBLE_DEVICES', + 'temperature': 26, + 'utilization': {'compute': 0, + 'memory': 0.010668182373046875}}, + 'GPU-4f8e63df-6c6a-06db-bf46-85c6d7c97cea': {'device': '1', + 'memory': {'total': 81920.0, 'used': 873.9375}, + 'power': 63.338, + 'product': 'NVIDIA A100-SXM4-80GB', + 'selection_variable': 'CUDA_VISIBLE_DEVICES', + 'temperature': 27, + 'utilization': {'compute': 0, + 'memory': 0.010668182373046875}}}}, + 'cpu': {'brand': 'AMD EPYC 7742 64-Core Processor', 'count': 128}, + 'date': 1707270917.978162, + 'milabench': {'commit': '4c8961898aa0dc59a9227c32d562c7a0be37ea03', + 'date': '2024-02-06 11:53:56 -0500', + 'tag': '4c89618'}, + 'os': {'machine': 'x86_64', + 'nodename': 'cn-d004.server.mila.quebec', + 'release': '5.4.0-165-generic', + 'sysname': 'Linux', + 'version': '#182-Ubuntu SMP Mon Oct 2 19:43:28 UTC 2023'}, + 'pytorch': {'build_settings': {'BLAS_INFO': 'mkl', + 'BUILD_TYPE': 'Release', + 'CUDA_VERSION': '11.8', + 'CUDNN_VERSION': '8.7.0', + 'CXX_COMPILER': '/opt/rh/devtoolset-9/root/usr/bin/c++', + 'CXX_FLAGS': '-D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -fvisibility-inlines-hidden ' + '-DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER ' + '-DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK ' + '-DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra ' + '-Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation ' + '-Wnarrowing -Wno-missing-field-initializers -Wno-type-limits ' + '-Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter ' + '-Wno-unused-function -Wno-unused-result -Wno-strict-overflow ' + '-Wno-strict-aliasing -Wno-stringop-overflow -Wno-psabi ' + '-Wno-error=pedantic -Wno-error=old-style-cast ' + '-Wno-invalid-partial-specialization -Wno-unused-private-field ' + '-Wno-aligned-allocation-unavailable -Wno-missing-braces ' + '-fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable ' + '-Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math ' + '-Werror=format -Werror=cast-function-type -Wno-stringop-overflow', + 'LAPACK_INFO': 'mkl', + 'PERF_WITH_AVX': '1', + 'PERF_WITH_AVX2': '1', + 'PERF_WITH_AVX512': '1', + 'TORCH_DISABLE_GPU_ASSERTS': 'ON', + 'TORCH_VERSION': '2.1.0', + 'USE_CUDA': 'ON', + 'USE_CUDNN': 'ON', + 'USE_EXCEPTION_PTR': '1', + 'USE_GFLAGS': 'OFF', + 'USE_GLOG': 'OFF', + 'USE_MKL': 'ON', + 'USE_MKLDNN': 'ON', + 'USE_MPI': 'OFF', + 'USE_NCCL': '1', + 'USE_NNPACK': 'ON', + 'USE_OPENMP': 'ON', + 'USE_ROCM': 'OFF'}, + 'compiler': 'GCC 9.3', + 'cpp': 'C++ Version: 201703', + 'cpu': 'CPU capability usage: AVX2', + 'intel': 'Intel(R) oneAPI Math Kernel Library Version 2022.2-Product Build 20220804 for Intel(R) 64 ' + 'architecture applications', + 'lapack': 'LAPACK is enabled (usually provided by MKL)', + 'mkl': 'OpenMP 201511 (a.k.a. OpenMP 4.5)', + 'nnpack': 'NNPACK is enabled', + 'openmp': 'OpenMP 201511 (a.k.a. OpenMP 4.5)', + 'torch': '2.1.0+cu118'}} +super-slomo [start] /Tmp/slurm.4115546.0/milabench/benchmarks/super-slomo/prepare.py --train_batch_size 32 [at 2024-02-06 15:55:17.999563] +super-slomo [stderr] /Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/torchvision/models/_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead. +super-slomo [stderr] warnings.warn( +super-slomo [stderr] /Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/torchvision/models/_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing `weights=VGG16_Weights.IMAGENET1K_V1`. You can also use `weights=VGG16_Weights.DEFAULT` to get the most up-to-date weights. +super-slomo [stderr] warnings.warn(msg) +super-slomo [stderr] Downloading: "https://download.pytorch.org/models/vgg16-397923af.pth" to /Tmp/slurm.4115546.0/base/cache/hub/checkpoints/vgg16-397923af.pth +super-slomo [stderr] 0%| | 0.00/528M [00:00222<202272617465223:203137382>30353637353938383131383336372<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333038372>3535363632367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32373231382>37352<2038313932302>305=2<20226<6?6164223:20302>30382<202274656=7065726174757265223:2032372<2022706?776572223:2037322>3538327=7=2<202274223:20313730373235333037372>313037393038377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32373234302>37352<2038313932302>305=2<20226<6?6164223:20302<202274656=7065726174757265223:2032372<2022706?776572223:2037322>3538327=7=2<202274223:20313730373235333037372>363335313334357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32373236382>37352<2038313932302>305=2<20226<6?6164223:20302>38362<202274656=7065726174757265223:2032392<2022706?776572223:203234342>3730387=7=2<202274223:20313730373235333037382>3137303531377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32373331362>37352<2038313932302>305=2<20226<6?6164223:20302>37382<202274656=7065726174757265223:2033312<2022706?776572223:203232332>33357=7=2<202274223:20313730373235333037382>373332313033367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32373336322>37352<2038313932302>305=2<20226<6?6164223:20302>38352<202274656=7065726174757265223:2033322<2022706?776572223:203234382>3037347=7=2<202274223:20313730373235333037392>323732373933387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32373534322>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2033332<2022706?776572223:203234302>3534357=7=2<202274223:20313730373235333037392>383432313337367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32373630322>37352<2038313932302>305=2<20226<6?6164223:20302>38392<202274656=7065726174757265223:2033332<2022706?776572223:203235322>3031387=7=2<202274223:20313730373235333038302>343237353530367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32373634322>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2033332<2022706?776572223:203234392>3537377=7=2<202274223:20313730373235333038302>393836363435377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32373730322>37352<2038313932302>305=2<20226<6?6164223:20302>38392<202274656=7065726174757265223:2033342<2022706?776572223:203235392>3739377=7=2<202274223:20313730373235333038312>353234373833387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32373734322>37352<2038313932302>305=2<20226<6?6164223:20302>38372<202274656=7065726174757265223:2033342<2022706?776572223:203236312>3930337=7=2<202274223:20313730373235333038322>303832353630357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32373830322>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2033342<2022706?776572223:203236382>3832337=7=2<202274223:20313730373235333038322>3631363035367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32373930322>37352<2038313932302>305=2<20226<6?6164223:20302>37352<202274656=7065726174757265223:2033342<2022706?776572223:203233392>3732327=7=2<202274223:20313730373235333038332>313539363837337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32373930322>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2033352<2022706?776572223:203235352>3330397=7=2<202274223:20313730373235333038332>363934383938347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383032322>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2033342<2022706?776572223:203232382>3834387=7=2<202274223:20313730373235333038342>323633303333367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383032322>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2033352<2022706?776572223:203236332>37347=7=2<202274223:20313730373235333038342>3739383438397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383032322>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2033352<2022706?776572223:203236312>30347=7=2<202274223:20313730373235333038352>3333353331377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234322>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2033362<2022706?776572223:203235362>3736357=7=2<202274223:20313730373235333038352>383939313232377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234322>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2033362<2022706?776572223:203235392>327=7=2<202274223:20313730373235333038362>343631333539337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383234322>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2033362<2022706?776572223:203236342>3238347=7=2<202274223:20313730373235333038372>303235373838387=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =10.749157905578613, total / elapsed =182.33986487283775 in_token_count =9 out_token_count =1951 +[7;227461736;223:2022747261696>222<202272617465223:203138322>33333938363438373238333737352<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333038372>3538323431367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32373231382>37352<2038313932302>305=2<20226<6?6164223:20302<202274656=7065726174757265223:2032372<2022706?776572223:2038382>3931387=7=2<202274223:20313730373235333037372>303033303832337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32373234302>37352<2038313932302>305=2<20226<6?6164223:20302<202274656=7065726174757265223:2032372<2022706?776572223:2037342>3533337=7=2<202274223:20313730373235333037372>353533393237327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32373236382>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2032392<2022706?776572223:203138392>3231367=7=2<202274223:20313730373235333037382>303931313036347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32373331362>37352<2038313932302>305=2<20226<6?6164223:20302>37322<202274656=7065726174757265223:2033322<2022706?776572223:203234382>3437357=7=2<202274223:20313730373235333037382>363335323738377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32373336322>37352<2038313932302>305=2<20226<6?6164223:20302>38392<202274656=7065726174757265223:2033332<2022706?776572223:203235312>3433337=7=2<202274223:20313730373235333037392>313732383336337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32373534322>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2033332<2022706?776572223:203235322>3334357=7=2<202274223:20313730373235333037392>373131373832357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32373630322>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2033332<2022706?776572223:203235312>3735357=7=2<202274223:20313730373235333038302>333030323233367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32373634322>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2033342<2022706?776572223:203235372>3431387=7=2<202274223:20313730373235333038302>383538373033347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32373730322>37352<2038313932302>305=2<20226<6?6164223:20302>38382<202274656=7065726174757265223:2033342<2022706?776572223:203235342>3732317=7=2<202274223:20313730373235333038312>343233343833367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32373734322>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2033352<2022706?776572223:203235302>3235327=7=2<202274223:20313730373235333038312>393835393536327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32373830322>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2033352<2022706?776572223:203236352>3234337=7=2<202274223:20313730373235333038322>353233313133357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32373838322>37352<2038313932302>305=2<20226<6?6164223:20302>38382<202274656=7065726174757265223:2033342<2022706?776572223:203139382>3037367=7=2<202274223:20313730373235333038332>303634303435377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32373930322>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2033352<2022706?776572223:203234392>3133337=7=2<202274223:20313730373235333038332>363030343630357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383030322>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2033352<2022706?776572223:203135392>3332317=7=2<202274223:20313730373235333038342>323235383734327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383032322>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2033362<2022706?776572223:203235342>3138397=7=2<202274223:20313730373235333038342>373539303239397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383032322>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2033362<2022706?776572223:203235382>3036387=7=2<202274223:20313730373235333038352>323937373138337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234322>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2033362<2022706?776572223:203236322>3836317=7=2<202274223:20313730373235333038352>3836333132357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234322>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2033372<2022706?776572223:203236342>3130317=7=2<202274223:20313730373235333038362>343037323234347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234322>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2033372<2022706?776572223:203236342>3336397=7=2<202274223:20313730373235333038362>393734383632387=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =5.253225326538086, total / elapsed =385.2871091927501 in_token_count =185 out_token_count =1839 +[7;227461736;223:2022747261696>222<202272617465223:203338352>323837313039313932373530312<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333039322>383130393633327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>38392<202274656=7065726174757265223:2033392<2022706?776572223:203336342>3038367=7=2<202274223:20313730373235333038372>363433373335367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2033362<2022706?776572223:203234382>3036347=7=2<202274223:20313730373235333038382>3234323633327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2033362<2022706?776572223:203235362>38327=7=2<202274223:20313730373235333038382>383330343231377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2033372<2022706?776572223:203235362>38327=7=2<202274223:20313730373235333038392>3336373534387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2033372<2022706?776572223:203234342>3730387=7=2<202274223:20313730373235333038392>3930343433357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2033372<2022706?776572223:203235372>3336347=7=2<202274223:20313730373235333039302>3434373439317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2033372<2022706?776572223:203236332>34317=7=2<202274223:20313730373235333039312>3033333432387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2033372<2022706?776572223:203235332>3739377=7=2<202274223:20313730373235333039312>3634393433337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2033372<2022706?776572223:203235372>3431387=7=2<202274223:20313730373235333039322>323130313638367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2033382<2022706?776572223:203236322>3535317=7=2<202274223:20313730373235333039322>373436323036357=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =5.323453426361084, total / elapsed =363.2980032140548 in_token_count =185 out_token_count =1749 +[7;227461736;223:2022747261696>222<202272617465223:203336332>323938303033323134303534382<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333039322>3930363031327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383234322>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2033372<2022706?776572223:203236362>3230377=7=2<202274223:20313730373235333038372>353837383138397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2033372<2022706?776572223:203235322>3631337=7=2<202274223:20313730373235333038382>323239323134327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2033372<2022706?776572223:203235352>3639357=7=2<202274223:20313730373235333038382>383137393831377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2033372<2022706?776572223:203235362>3838327=7=2<202274223:20313730373235333038392>3335393837317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2033372<2022706?776572223:203234362>3632387=7=2<202274223:20313730373235333038392>3839343630317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2033372<2022706?776572223:203235332>3236357=7=2<202274223:20313730373235333039302>3433363935327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2033382<2022706?776572223:203235372>3431387=7=2<202274223:20313730373235333039312>303231363539317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39362<202274656=7065726174757265223:2033382<2022706?776572223:203235302>3234357=7=2<202274223:20313730373235333039312>363432353237367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2033382<2022706?776572223:203234392>3732327=7=2<202274223:20313730373235333039322>313938333531317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2033382<2022706?776572223:203235392>3537377=7=2<202274223:20313730373235333039322>373336383831377=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =6.713852167129517, total / elapsed =299.97681656745186 in_token_count =121 out_token_count =1893 +[7;227461736;223:2022747261696>222<202272617465223:203239392>39373638313635363734353138362<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333039392>353235393135347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2033382<2022706?776572223:203235372>3431387=7=2<202274223:20313730373235333039332>323830383337387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2033382<2022706?776572223:203234352>30337=7=2<202274223:20313730373235333039332>383138333134387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2033382<2022706?776572223:203235382>3837377=7=2<202274223:20313730373235333039342>333634333530387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2033382<2022706?776572223:203235312>3638317=7=2<202274223:20313730373235333039342>393336313639367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2033382<2022706?776572223:203235392>327=7=2<202274223:20313730373235333039352>343736333936387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2033382<2022706?776572223:203234382>3333337=7=2<202274223:20313730373235333039362>3036333739317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2033382<2022706?776572223:203235342>3636317=7=2<202274223:20313730373235333039362>3636333633337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2033392<2022706?776572223:203235372>3638377=7=2<202274223:20313730373235333039372>333035363239337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2033392<2022706?776572223:203236302>3938327=7=2<202274223:20313730373235333039372>383435333733367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2033392<2022706?776572223:203236302>3731337=7=2<202274223:20313730373235333039382>333831333736357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2033392<2022706?776572223:203235392>3739317=7=2<202274223:20313730373235333039382>393230313336357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2033392<2022706?776572223:203236312>3930337=7=2<202274223:20313730373235333039392>343534373337327=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =6.806850910186768, total / elapsed =293.0870715875957 in_token_count =121 out_token_count =1874 +[7;227461736;223:2022747261696>222<202272617465223:203239332>303837303731353837353935372<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333039392>373133303334347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2033392<2022706?776572223:203235332>307=7=2<202274223:20313730373235333039332>323732353536357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2033382<2022706?776572223:203234372>3831357=7=2<202274223:20313730373235333039332>383039353639367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2033382<2022706?776572223:203234352>34347=7=2<202274223:20313730373235333039342>333536313735377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2033392<2022706?776572223:203235312>3135377=7=2<202274223:20313730373235333039342>3932373235317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2033392<2022706?776572223:203234362>39367=7=2<202274223:20313730373235333039352>343638313731347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2033392<2022706?776572223:203234392>3635357=7=2<202274223:20313730373235333039362>303533323438327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2033392<2022706?776572223:203235352>3034337=7=2<202274223:20313730373235333039362>363534383632367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2033392<2022706?776572223:203235352>36347=7=2<202274223:20313730373235333039372>333030353730377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2033392<2022706?776572223:203235302>3833357=7=2<202274223:20313730373235333039372>383337313730317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2033392<2022706?776572223:203235322>3934337=7=2<202274223:20313730373235333039382>333733323638347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034302<2022706?776572223:203235302>3839357=7=2<202274223:20313730373235333039382>393038353537347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034302<2022706?776572223:203236332>3436357=7=2<202274223:20313730373235333039392>343437303337377=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =6.5733819007873535, total / elapsed =316.12342495285407 in_token_count =127 out_token_count =1951 +[7;227461736;223:2022747261696>222<202272617465223:203331362>31323334323439353238353430372<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333130362>3130303337367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2033392<2022706?776572223:203236322>3439357=7=2<202274223:20313730373235333039392>393838383336337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2033392<2022706?776572223:203235372>37347=7=2<202274223:20313730373235333130302>363137323437337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2033392<2022706?776572223:203235332>3835357=7=2<202274223:20313730373235333130312>323332323332387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2033392<2022706?776572223:203235362>3535327=7=2<202274223:20313730373235333130312>373931303834357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034302<2022706?776572223:203235382>3333397=7=2<202274223:20313730373235333130322>3333353835357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034302<2022706?776572223:203235382>36367=7=2<202274223:20313730373235333130322>383639383630367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034302<2022706?776572223:203236302>3434317=7=2<202274223:20313730373235333130332>343039383630367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034302<2022706?776572223:203236322>3534367=7=2<202274223:20313730373235333130332>393433313132397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034302<2022706?776572223:203236342>3937357=7=2<202274223:20313730373235333130342>353534373333357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034302<2022706?776572223:203235372>31357=7=2<202274223:20313730373235333130352>313635393837357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39362<202274656=7065726174757265223:2034302<2022706?776572223:203236342>3333317=7=2<202274223:20313730373235333130352>3735383636327=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =6.6608946323394775, total / elapsed =311.8199753402351 in_token_count =127 out_token_count =1950 +[7;227461736;223:2022747261696>222<202272617465223:203331312>383139393735333430323335312<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333130362>333734393431367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034302<2022706?776572223:203235342>3435327=7=2<202274223:20313730373235333039392>393830343737337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034302<2022706?776572223:203234352>3435317=7=2<202274223:20313730373235333130302>3631323332337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034302<2022706?776572223:203234392>3635357=7=2<202274223:20313730373235333130312>323236323536317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034302<2022706?776572223:203235322>3431357=7=2<202274223:20313730373235333130312>3738323333327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034302<2022706?776572223:203235332>3332357=7=2<202274223:20313730373235333130322>333235353834347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034302<2022706?776572223:203235312>3232397=7=2<202274223:20313730373235333130322>383631353834347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034302<2022706?776572223:203235332>3836357=7=2<202274223:20313730373235333130332>333937393230347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034302<2022706?776572223:203235312>3535357=7=2<202274223:20313730373235333130332>393335303538347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203235302>3235327=7=2<202274223:20313730373235333130342>3534373434347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203235362>3933337=7=2<202274223:20313730373235333130352>313631353938327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203235362>3238357=7=2<202274223:20313730373235333130352>37353233327=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =9.367568969726562, total / elapsed =204.1084518490405 in_token_count =6 out_token_count =1906 +[7;227461736;223:2022747261696>222<202272617465223:203230342>313038343531383439303430352<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333131352>3436383839377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>38392<202274656=7065726174757265223:2034302<2022706?776572223:203235332>3835357=7=2<202274223:20313730373235333130362>343235343039367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034302<2022706?776572223:203235352>3337327=7=2<202274223:20313730373235333130362>393831363338377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034302<2022706?776572223:203235392>32357=7=2<202274223:20313730373235333130372>353136323731347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034312<2022706?776572223:203235332>3236357=7=2<202274223:20313730373235333130382>303735373931387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034312<2022706?776572223:203235332>3236357=7=2<202274223:20313730373235333130382>363136393332397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203235382>3333387=7=2<202274223:20313730373235333130392>313632323836337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203235312>3735357=7=2<202274223:20313730373235333130392>373630303736357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203236312>3335387=7=2<202274223:20313730373235333131302>333536363139347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203236342>3337377=7=2<202274223:20313730373235333131302>393336383438327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203235392>3739377=7=2<202274223:20313730373235333131312>343832333539367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203236332>3733347=7=2<202274223:20313730373235333131322>313035343938387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203235312>3735357=7=2<202274223:20313730373235333131322>3635333235327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203236302>3434317=7=2<202274223:20313730373235333131332>313838363830327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203236332>3436357=7=2<202274223:20313730373235333131332>373535333937387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034322<2022706?776572223:203236322>3237377=7=2<202274223:20313730373235333131342>3334383533387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034322<2022706?776572223:203236352>3234337=7=2<202274223:20313730373235333131342>383833363730367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034322<2022706?776572223:203236342>3337377=7=2<202274223:20313730373235333131352>343138363839377=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =9.502230405807495, total / elapsed =207.74070041424662 in_token_count =6 out_token_count =1968 +[7;227461736;223:2022747261696>222<202272617465223:203230372>37343037303034313432343636322<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333131352>383737333232347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203235372>3533317=7=2<202274223:20313730373235333130362>343039363839347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>38392<202274656=7065726174757265223:2034312<2022706?776572223:203235312>3232397=7=2<202274223:20313730373235333130362>393733343234347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>38382<202274656=7065726174757265223:2034312<2022706?776572223:203234382>3437357=7=2<202274223:20313730373235333130372>353037333038327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034312<2022706?776572223:203235342>35317=7=2<202274223:20313730373235333130382>303637323937377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034312<2022706?776572223:203235362>3631337=7=2<202274223:20313730373235333130382>363030343835367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034312<2022706?776572223:203235312>31377=7=2<202274223:20313730373235333130392>3135303239347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034312<2022706?776572223:203235372>3230327=7=2<202274223:20313730373235333130392>373338353332387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034312<2022706?776572223:203235372>3533317=7=2<202274223:20313730373235333131302>333332393738327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034312<2022706?776572223:203235372>3533317=7=2<202274223:20313730373235333131302>3931323730337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034312<2022706?776572223:203235342>3833397=7=2<202274223:20313730373235333131312>343639363732327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203235382>3938347=7=2<202274223:20313730373235333131322>313031313530357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203234372>3239387=7=2<202274223:20313730373235333131322>363434353532327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203236312>37337=7=2<202274223:20313730373235333131332>313830363232337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203235342>3138377=7=2<202274223:20313730373235333131332>373433363633337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203235332>35397=7=2<202274223:20313730373235333131342>333430373035397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203235382>3338387=7=2<202274223:20313730373235333131342>3837353231357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383236362>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034322<2022706?776572223:203236302>3439317=7=2<202274223:20313730373235333131352>343130353532337=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =3.60976505279541, total / elapsed =618.0457640234255 in_token_count =256 out_token_count =1975 +[7;227461736;223:2022747261696>222<202272617465223:203631382>303435373634303233343235352<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333131392>3037393532367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383239382>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034332<2022706?776572223:203236302>31377=7=2<202274223:20313730373235333131362>303230333536377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383239382>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203236302>3433387=7=2<202274223:20313730373235333131362>363335313935377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383239382>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034322<2022706?776572223:203235382>3333397=7=2<202274223:20313730373235333131372>323237383631367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383239382>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034322<2022706?776572223:203236352>3536357=7=2<202274223:20313730373235333131372>383138323239347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383239382>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034322<2022706?776572223:203236352>3536357=7=2<202274223:20313730373235333131382>3335353137357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383239382>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034322<2022706?776572223:203236382>3836317=7=2<202274223:20313730373235333131382>383930373339327=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =3.664381504058838, total / elapsed =600.3741688913063 in_token_count =256 out_token_count =1944 +[7;227461736;223:2022747261696>222<202272617465223:203630302>333734313638383931333036332<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333131392>3534323730337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383239382>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034362<2022706?776572223:203334362>3438397=7=2<202274223:20313730373235333131362>303131313930347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383239382>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034332<2022706?776572223:203236322>3237327=7=2<202274223:20313730373235333131362>363233333938357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383239382>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034332<2022706?776572223:203235362>3631337=7=2<202274223:20313730373235333131372>3231393034317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383239382>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034322<2022706?776572223:203234352>3139357=7=2<202274223:20313730373235333131372>3831323635367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383239382>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034332<2022706?776572223:203236302>3232337=7=2<202274223:20313730373235333131382>333435383632397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383239382>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034332<2022706?776572223:203236342>3039337=7=2<202274223:20313730373235333131382>383831313933397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383239382>37352<2038313932302>305=2<20226<6?6164223:20302>39362<202274656=7065726174757265223:2034332<2022706?776572223:203235362>3238357=7=2<202274223:20313730373235333131392>343635323833327=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =1.8434009552001953, total / elapsed =1220.5700521380318 in_token_count =340 out_token_count =1910 +[7;227461736;223:2022747261696>222<202272617465223:20313232302>353730303532313338303331382<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333132302>393233393235347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2034352<2022706?776572223:203332332>3833357=7=2<202274223:20313730373235333131392>343735363032347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39362<202274656=7065726174757265223:2034332<2022706?776572223:203236342>3634367=7=2<202274223:20313730373235333132302>303634373433337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>36372<202274656=7065726174757265223:2034312<2022706?776572223:203231382>3633377=7=2<202274223:20313730373235333132302>3635373135397=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =1.8649332523345947, total / elapsed =1213.9844668252003 in_token_count =340 out_token_count =1924 +[7;227461736;223:2022747261696>222<202272617465223:20313231332>393834343636383235323030332<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333132312>343038363731397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39382<202274656=7065726174757265223:2034342<2022706?776572223:203236362>3233397=7=2<202274223:20313730373235333132302>303535383432327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>37332<202274656=7065726174757265223:2034322<2022706?776572223:203137342>3935357=7=2<202274223:20313730373235333132302>363332383930327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034332<2022706?776572223:203236332>3832357=7=2<202274223:20313730373235333132312>323038313739327=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =7.290889501571655, total / elapsed =295.3000452874632 in_token_count =95 out_token_count =2058 +[7;227461736;223:2022747261696>222<202272617465223:203239352>333030303435323837343633322<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333132382>323135373336327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034332<2022706?776572223:203235352>3633397=7=2<202274223:20313730373235333132312>323136383932357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034332<2022706?776572223:203236302>3736387=7=2<202274223:20313730373235333132312>373531333134397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034332<2022706?776572223:203235362>3233317=7=2<202274223:20313730373235333132322>333338373330337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034332<2022706?776572223:203236322>3534367=7=2<202274223:20313730373235333132322>3837393034337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034332<2022706?776572223:203236342>3937357=7=2<202274223:20313730373235333132332>343235393136347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034332<2022706?776572223:203236302>3434317=7=2<202274223:20313730373235333132332>3937383232327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034332<2022706?776572223:203236342>3635337=7=2<202274223:20313730373235333132342>353235383736357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034332<2022706?776572223:203236352>3833347=7=2<202274223:20313730373235333132352>303630333430347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034332<2022706?776572223:203236312>3335387=7=2<202274223:20313730373235333132352>3539383133387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034332<2022706?776572223:203235382>3030397=7=2<202274223:20313730373235333132362>313331363935357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034332<2022706?776572223:203236352>35327=7=2<202274223:20313730373235333132362>373630393932337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034332<2022706?776572223:203236342>3030397=7=2<202274223:20313730373235333132372>333539333636347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39362<202274656=7065726174757265223:2034332<2022706?776572223:203236392>3435317=7=2<202274223:20313730373235333132372>3935343732317=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =7.394042015075684, total / elapsed =282.93049941217936 in_token_count =95 out_token_count =1997 +[7;227461736;223:2022747261696>222<202272617465223:203238322>39333034393934313231373933362<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333132382>3830333633367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034332<2022706?776572223:203235332>3332357=7=2<202274223:20313730373235333132312>373432383031327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034332<2022706?776572223:203234392>3132367=7=2<202274223:20313730373235333132322>333237393337387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034332<2022706?776572223:203235302>3235327=7=2<202274223:20313730373235333132322>383639363136377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034332<2022706?776572223:203234392>3339347=7=2<202274223:20313730373235333132332>343133343832377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034332<2022706?776572223:203235332>367=7=2<202274223:20313730373235333132332>393632323236327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034332<2022706?776572223:203235342>3833397=7=2<202274223:20313730373235333132342>353131393034327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034332<2022706?776572223:203235362>3239327=7=2<202274223:20313730373235333132352>3035323038357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034332<2022706?776572223:203235372>3230327=7=2<202274223:20313730373235333132352>353837383731337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034332<2022706?776572223:203235372>3739397=7=2<202274223:20313730373235333132362>3132343133337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034332<2022706?776572223:203236312>3335337=7=2<202274223:20313730373235333132362>373630373738377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034332<2022706?776572223:203235342>3737367=7=2<202274223:20313730373235333132372>333539313239347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034332<2022706?776572223:203236332>37387=7=2<202274223:20313730373235333132372>393530333534367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034332<2022706?776572223:203236332>3530347=7=2<202274223:20313730373235333132382>353737303239357=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =6.783121109008789, total / elapsed =203.8884427646754 in_token_count =5 out_token_count =1378 +[7;227461736;223:2022747261696>222<202272617465223:203230332>383838343432373634363735342<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333133342>393939373830327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>38382<202274656=7065726174757265223:2034332<2022706?776572223:203235322>3238367=7=2<202274223:20313730373235333132382>353733393932377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034332<2022706?776572223:203236322>3836387=7=2<202274223:20313730373235333132392>3138303639367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034332<2022706?776572223:203236302>31377=7=2<202274223:20313730373235333132392>373632327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034332<2022706?776572223:203236312>3335387=7=2<202274223:20313730373235333133302>323937323136347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034332<2022706?776572223:203236312>3335387=7=2<202274223:20313730373235333133302>383333373332367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034332<2022706?776572223:203236312>30347=7=2<202274223:20313730373235333133312>333730363134337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034332<2022706?776572223:203236302>31377=7=2<202274223:20313730373235333133312>3935303138397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034332<2022706?776572223:203236352>3536357=7=2<202274223:20313730373235333133322>353435383133337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034332<2022706?776572223:203235322>3631337=7=2<202274223:20313730373235333133332>303830373336327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034332<2022706?776572223:203236302>31377=7=2<202274223:20313730373235333133332>363138333038337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034332<2022706?776572223:203236302>37317=7=2<202274223:20313730373235333133342>323437333737347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034332<2022706?776572223:203236322>3535317=7=2<202274223:20313730373235333133342>3738353037347=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =9.527214050292969, total / elapsed =206.4611952262701 in_token_count =5 out_token_count =1962 +[7;227461736;223:2022747261696>222<202272617465223:203230362>343631313935323236323730312<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333133382>33333139327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>38382<202274656=7065726174757265223:2034332<2022706?776572223:203235342>3435357=7=2<202274223:20313730373235333132392>3139373032357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>38392<202274656=7065726174757265223:2034332<2022706?776572223:203235332>35397=7=2<202274223:20313730373235333132392>373832373435317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>38392<202274656=7065726174757265223:2034332<2022706?776572223:203235322>3733367=7=2<202274223:20313730373235333133302>333231353435387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>38392<202274656=7065726174757265223:2034332<2022706?776572223:203235352>3432387=7=2<202274223:20313730373235333133302>383537353336367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034332<2022706?776572223:203235302>3537337=7=2<202274223:20313730373235333133312>333935313334377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034332<2022706?776572223:203236302>3232337=7=2<202274223:20313730373235333133312>3937373234337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034332<2022706?776572223:203235332>3333357=7=2<202274223:20313730373235333133322>353639373031327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034332<2022706?776572223:203235372>3739397=7=2<202274223:20313730373235333133332>3131383936377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034332<2022706?776572223:203235382>3730397=7=2<202274223:20313730373235333133332>363736393839387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034332<2022706?776572223:203234382>3739377=7=2<202274223:20313730373235333133342>323836363637367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034332<2022706?776572223:203235392>3537377=7=2<202274223:20313730373235333133342>3832323438317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034332<2022706?776572223:203235312>31377=7=2<202274223:20313730373235333133352>343035333632317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034332<2022706?776572223:203235382>31327=7=2<202274223:20313730373235333133362>303036393239327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034332<2022706?776572223:203235372>3437317=7=2<202274223:20313730373235333133362>353837353530367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034332<2022706?776572223:203235372>387=7=2<202274223:20313730373235333133372>313631373639327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034332<2022706?776572223:203234332>3335347=7=2<202274223:20313730373235333133372>3639393034367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034332<2022706?776572223:203235342>3138377=7=2<202274223:20313730373235333133382>323337353434357=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =3.680830478668213, total / elapsed =557.7545643294093 in_token_count =253 out_token_count =1800 +[7;227461736;223:2022747261696>222<202272617465223:203535372>373534353634333239343039332<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333133382>363831363032377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39382<202274656=7065726174757265223:2034352<2022706?776572223:203236352>3234337=7=2<202274223:20313730373235333133352>3336353632317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034332<2022706?776572223:203236372>3037357=7=2<202274223:20313730373235333133352>3934353039317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034332<2022706?776572223:203235332>3533337=7=2<202274223:20313730373235333133362>353237373839387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034332<2022706?776572223:203236322>38327=7=2<202274223:20313730373235333133372>303931353632357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034332<2022706?776572223:203235382>3630387=7=2<202274223:20313730373235333133372>363431333038387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034332<2022706?776572223:203235392>3532317=7=2<202274223:20313730373235333133382>313839333736367=z[0:z/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/transformers/pipelines/base.py:1101: UserWarning: You seem to be using the pipelines sequentially on GPU. In order to maximize efficiency please use a dataset + warnings.warn( +Setting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =3.104884147644043, total / elapsed =684.4055684372089 in_token_count =282 out_token_count =1843 +[7;227461736;223:2022747261696>222<202272617465223:203638342>343035353638343337323038392<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333134312>373837353135367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39362<202274656=7065726174757265223:2034332<2022706?776572223:203334302>3037357=7=2<202274223:20313730373235333133382>373232313633327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034342<2022706?776572223:203235342>3339367=7=2<202274223:20313730373235333133392>323538393533367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034332<2022706?776572223:203236322>38327=7=2<202274223:20313730373235333133392>383233353236347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034332<2022706?776572223:203236352>35327=7=2<202274223:20313730373235333134302>343234313235327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034332<2022706?776572223:203236352>3235327=7=2<202274223:20313730373235333134302>393538313637337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034332<2022706?776572223:203236312>3330387=7=2<202274223:20313730373235333134312>343936333431327=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =3.7853810787200928, total / elapsed =533.103525915632 in_token_count =253 out_token_count =1765 +[7;227461736;223:2022747261696>222<202272617465223:203533332>3130333532353931353633322<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333134322>313137343537327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39362<202274656=7065726174757265223:2034342<2022706?776572223:203236322>3237327=7=2<202274223:20313730373235333133382>373639303339347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034332<2022706?776572223:203236332>3435387=7=2<202274223:20313730373235333133392>333035323034367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034332<2022706?776572223:203235342>3138377=7=2<202274223:20313730373235333133392>3836333139397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034332<2022706?776572223:203235342>3435357=7=2<202274223:20313730373235333134302>343532373731347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034332<2022706?776572223:203235362>3238357=7=2<202274223:20313730373235333134302>393836353530337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034332<2022706?776572223:203234392>3938347=7=2<202274223:20313730373235333134312>353435323032357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034332<2022706?776572223:203236322>3836317=7=2<202274223:20313730373235333134322>303739363636317=z[0:z/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/transformers/pipelines/base.py:1101: UserWarning: You seem to be using the pipelines sequentially on GPU. In order to maximize efficiency please use a dataset + warnings.warn( +Setting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =3.148392915725708, total / elapsed =656.5254259325998 in_token_count =282 out_token_count =1785 +[7;227461736;223:2022747261696>222<202272617465223:203635362>353235343235393332353939382<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333134352>323636383333387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39362<202274656=7065726174757265223:2034342<2022706?776572223:203235312>3439327=7=2<202274223:20313730373235333134322>363133333938387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034332<2022706?776572223:203235372>3437317=7=2<202274223:20313730373235333134332>3135313131387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034332<2022706?776572223:203234382>3739377=7=2<202274223:20313730373235333134332>373038393537377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034332<2022706?776572223:203235382>33397=7=2<202274223:20313730373235333134342>3234333334377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034332<2022706?776572223:203235362>35367=7=2<202274223:20313730373235333134342>383234343230377=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =3.668144941329956, total / elapsed =560.5012977634842 in_token_count =256 out_token_count =1800 +[7;227461736;223:2022747261696>222<202272617465223:203536302>353031323937373633343834322<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333134352>343536383435387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034372<2022706?776572223:203336322>3139387=7=2<202274223:20313730373235333134322>303330383138377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034332<2022706?776572223:203235332>3739377=7=2<202274223:20313730373235333134322>3536363635397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034332<2022706?776572223:203235392>3532317=7=2<202274223:20313730373235333134332>313030383438377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034332<2022706?776572223:203235342>31327=7=2<202274223:20313730373235333134332>3638313935327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034332<2022706?776572223:203236382>3236337=7=2<202274223:20313730373235333134342>323137383139377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034332<2022706?776572223:203236322>3237377=7=2<202274223:20313730373235333134342>373937383232377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034332<2022706?776572223:203235392>3532317=7=2<202274223:20313730373235333134352>343237303938337=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =3.734924793243408, total / elapsed =549.1409100687438 in_token_count =256 out_token_count =1795 +[7;227461736;223:2022747261696>222<202272617465223:203534392>313430393130303638373433382<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333134392>303032383230337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>38392<202274656=7065726174757265223:2034372<2022706?776572223:203335352>3531377=7=2<202274223:20313730373235333134352>343338313931327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034332<2022706?776572223:203235382>39387=7=2<202274223:20313730373235333134362>3031373134367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034332<2022706?776572223:203236312>3637347=7=2<202274223:20313730373235333134362>353935393236387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034332<2022706?776572223:203235322>3733367=7=2<202274223:20313730373235333134372>313431343836367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034332<2022706?776572223:203235352>3639357=7=2<202274223:20313730373235333134372>363830383933347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034332<2022706?776572223:203235352>3432387=7=2<202274223:20313730373235333134382>323634313738387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034332<2022706?776572223:203234362>3639327=7=2<202274223:20313730373235333134382>383736333331387=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =9.568991899490356, total / elapsed =202.63367556025113 in_token_count =5 out_token_count =1934 +[7;227461736;223:2022747261696>222<202272617465223:203230322>36333336373535363032353131332<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333135352>303236393230387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>38382<202274656=7065726174757265223:2034332<2022706?776572223:203235302>3136387=7=2<202274223:20313730373235333134362>303033313230347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>38382<202274656=7065726174757265223:2034322<2022706?776572223:203235352>3330397=7=2<202274223:20313730373235333134362>353732363935377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>38392<202274656=7065726174757265223:2034322<2022706?776572223:203235382>3333397=7=2<202274223:20313730373235333134372>313239353731377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>38392<202274656=7065726174757265223:2034322<2022706?776572223:203235372>3638377=7=2<202274223:20313730373235333134372>363730313933347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034322<2022706?776572223:203235382>39337=7=2<202274223:20313730373235333134382>323439393133357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034322<2022706?776572223:203235392>3834387=7=2<202274223:20313730373235333134382>383530343233337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034322<2022706?776572223:203235382>3630387=7=2<202274223:20313730373235333134392>343431363138377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034322<2022706?776572223:203235362>38327=7=2<202274223:20313730373235333134392>393939323237337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034322<2022706?776572223:203235382>36367=7=2<202274223:20313730373235333135302>353432373533377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203235352>3330397=7=2<202274223:20313730373235333135312>303736343231337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203235362>3232397=7=2<202274223:20313730373235333135312>363130303332367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203235362>3232397=7=2<202274223:20313730373235333135322>313439343339387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203235352>3330397=7=2<202274223:20313730373235333135322>373434363038327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203235362>3832387=7=2<202274223:20313730373235333135332>3330383532317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203236372>3934317=7=2<202274223:20313730373235333135332>383434383739367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203236372>3033327=7=2<202274223:20313730373235333135342>333834333032367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203236342>3333317=7=2<202274223:20313730373235333135342>393737373032367=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =1.5149779319763184, total / elapsed =1378.8979733023957 in_token_count =349 out_token_count =1740 +[7;227461736;223:2022747261696>222<202272617465223:20313337382>383937393733333032333935372<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333135362>353432393231337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383338342>37352<2038313932302>305=2<20226<6?6164223:20302>39382<202274656=7065726174757265223:2034342<2022706?776572223:203235382>39337=7=2<202274223:20313730373235333135352>353138393835337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383338342>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034332<2022706?776572223:203236322>38327=7=2<202274223:20313730373235333135362>303737323131347=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =9.63944387435913, total / elapsed =209.65939802563187 in_token_count =5 out_token_count =2016 +[7;227461736;223:2022747261696>222<202272617465223:203230392>36353933393830323536333138372<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333135382>363433323533387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>38372<202274656=7065726174757265223:2034322<2022706?776572223:203235332>3836357=7=2<202274223:20313730373235333134392>3530333538367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>38382<202274656=7065726174757265223:2034322<2022706?776572223:203234382>3533377=7=2<202274223:20313730373235333135302>303337363733357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>38382<202274656=7065726174757265223:2034322<2022706?776572223:203235382>3338387=7=2<202274223:20313730373235333135302>353733333138327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>38382<202274656=7065726174757265223:2034322<2022706?776572223:203235342>35317=7=2<202274223:20313730373235333135312>313037323238357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>38382<202274656=7065726174757265223:2034322<2022706?776572223:203235302>3235327=7=2<202274223:20313730373235333135312>363431373837357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>38392<202274656=7065726174757265223:2034322<2022706?776572223:203235352>3337347=7=2<202274223:20313730373235333135322>3137363735367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>38392<202274656=7065726174757265223:2034322<2022706?776572223:203235312>3439377=7=2<202274223:20313730373235333135322>373730363638337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034322<2022706?776572223:203234382>3830357=7=2<202274223:20313730373235333135332>333138363337347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034322<2022706?776572223:203235352>3936337=7=2<202274223:20313730373235333135332>383534363133387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034322<2022706?776572223:203234382>3437357=7=2<202274223:20313730373235333135342>333932353632397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034322<2022706?776572223:203234382>3134367=7=2<202274223:20313730373235333135342>393832343539357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203235372>31357=7=2<202274223:20313730373235333135352>353237323034387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034322<2022706?776572223:203234392>3338377=7=2<202274223:20313730373235333135362>3039373130397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203235322>3733367=7=2<202274223:20313730373235333135362>373033313631377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203236312>3430317=7=2<202274223:20313730373235333135372>323930303036397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203236312>30387=7=2<202274223:20313730373235333135372>383739303031397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383334302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203236322>3237327=7=2<202274223:20313730373235333135382>343336333732387=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =2.971538782119751, total / elapsed =756.8469284441487 in_token_count =287 out_token_count =1962 +[7;227461736;223:2022747261696>222<202272617465223:203735362>383436393238343434313438372<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333135392>353135343138357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383338342>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034362<2022706?776572223:203335352>3838397=7=2<202274223:20313730373235333135362>3637313936337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383338342>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034332<2022706?776572223:203236342>3634367=7=2<202274223:20313730373235333135372>323539333432347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383338342>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034332<2022706?776572223:203236392>3138337=7=2<202274223:20313730373235333135372>383339383531397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383338342>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034322<2022706?776572223:203234392>3931357=7=2<202274223:20313730373235333135382>343133343738397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383338342>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034322<2022706?776572223:203237302>3332337=7=2<202274223:20313730373235333135382>393936303034387=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =1.6473846435546875, total / elapsed =1282.6391263673665 in_token_count =349 out_token_count =1764 +[7;227461736;223:2022747261696>222<202272617465223:20313238322>363339313236333637333636352<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333136302>3239303832337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383338342>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2034382<2022706?776572223:203334332>3536337=7=2<202274223:20313730373235333135392>303230333335327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383338342>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203138302>3933347=7=2<202274223:20313730373235333135392>353830373435377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383338342>37352<2038313932302>305=2<20226<6?6164223:20302>37392<202274656=7065726174757265223:2034322<2022706?776572223:203235382>33397=7=2<202274223:20313730373235333136302>313135323638357=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =2.9748198986053467, total / elapsed =786.602241398559 in_token_count =287 out_token_count =2053 +[7;227461736;223:2022747261696>222<202272617465223:203738362>3630323234313339383535392<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333136332>3236363736347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383338342>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2034342<2022706?776572223:203236352>3838357=7=2<202274223:20313730373235333136302>373232303232337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383338342>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034332<2022706?776572223:203236302>3439317=7=2<202274223:20313730373235333136312>3330343438347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383338342>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203235372>387=7=2<202274223:20313730373235333136312>383338343030387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383338342>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203235392>3839387=7=2<202274223:20313730373235333136322>333734383433347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383338342>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203236312>3939387=7=2<202274223:20313730373235333136322>393038313839387=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =9.391075134277344, total / elapsed =206.79208421107361 in_token_count =7 out_token_count =1935 +[7;227461736;223:2022747261696>222<202272617465223:203230362>37393230383432313130373336312<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333136382>393037363930337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383338342>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034312<2022706?776572223:203139362>3635367=7=2<202274223:20313730373235333135392>353331313432357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383338342>37352<2038313932302>305=2<20226<6?6164223:20302>38352<202274656=7065726174757265223:2034322<2022706?776572223:203236312>3335387=7=2<202274223:20313730373235333136302>303636303637327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383338342>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203235352>3330397=7=2<202274223:20313730373235333136302>3639303832327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383338342>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203236312>3033367=7=2<202274223:20313730373235333136312>32373231317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383338342>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203235322>3032337=7=2<202274223:20313730373235333136312>383133303030377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383338342>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203235372>3039367=7=2<202274223:20313730373235333136322>333438313738397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383338342>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203236372>3334337=7=2<202274223:20313730373235333136322>383832353635377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383338342>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203235352>3930377=7=2<202274223:20313730373235333136332>3431373533327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383338342>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203235382>3630387=7=2<202274223:20313730373235333136332>3937383639367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383338342>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203236342>3932327=7=2<202274223:20313730373235333136342>3531323731367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383338342>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203235392>3739377=7=2<202274223:20313730373235333136352>303931333032397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383338342>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034322<2022706?776572223:203236332>3134327=7=2<202274223:20313730373235333136352>363330343234357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383338342>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034322<2022706?776572223:203236362>3131317=7=2<202274223:20313730373235333136362>313634387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383338342>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034322<2022706?776572223:203236332>3436357=7=2<202274223:20313730373235333136362>3730303139327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383338342>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034322<2022706?776572223:203236322>3237377=7=2<202274223:20313730373235333136372>3236373938367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383338342>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034322<2022706?776572223:203236312>30347=7=2<202274223:20313730373235333136372>393334353939367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383338342>37352<2038313932302>305=2<20226<6?6164223:20302>39362<202274656=7065726174757265223:2034322<2022706?776572223:203237312>3234347=7=2<202274223:20313730373235333136382>3533363936317=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =1.1738746166229248, total / elapsed =1891.173016745718 in_token_count =363 out_token_count =1857 +[7;227461736;223:2022747261696>222<202272617465223:20313839312>3137333031363734353731382<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333137302>303832363232387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034372<2022706?776572223:203332382>3337327=7=2<202274223:20313730373235333136392>303836363236337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034332<2022706?776572223:203236382>3538357=7=2<202274223:20313730373235333136392>363530373739357=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =9.455640077590942, total / elapsed =219.44574697989748 in_token_count =7 out_token_count =2068 +[7;227461736;223:2022747261696>222<202272617465223:203231392>34343537343639373938393734382<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333137322>373233353639397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383338342>37352<2038313932302>305=2<20226<6?6164223:20302>38392<202274656=7065726174757265223:2034322<2022706?776572223:203234392>3338377=7=2<202274223:20313730373235333136332>343433303832367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383338342>37352<2038313932302>305=2<20226<6?6164223:20302>38392<202274656=7065726174757265223:2034322<2022706?776572223:203235352>3130377=7=2<202274223:20313730373235333136342>303134363835397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383338342>37352<2038313932302>305=2<20226<6?6164223:20302>38392<202274656=7065726174757265223:2034322<2022706?776572223:203234382>3134367=7=2<202274223:20313730373235333136342>353530373834337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383338342>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034322<2022706?776572223:203235332>3332357=7=2<202274223:20313730373235333136352>313232313431387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383338342>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034322<2022706?776572223:203235322>3038317=7=2<202274223:20313730373235333136352>3635363138377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383338342>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034322<2022706?776572223:203235332>3836357=7=2<202274223:20313730373235333136362>313839363635367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383338342>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034322<2022706?776572223:203234392>3338377=7=2<202274223:20313730373235333136362>373235393031367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383338342>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034322<2022706?776572223:203234382>3134367=7=2<202274223:20313730373235333136372>333039353231347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383338342>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034322<2022706?776572223:203234382>3437357=7=2<202274223:20313730373235333136372>393431383932317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383338342>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203235332>35397=7=2<202274223:20313730373235333136382>3534373337387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383338342>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203235372>3533317=7=2<202274223:20313730373235333136392>303934393934387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383338342>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203235362>3238357=7=2<202274223:20313730373235333136392>363538353233387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383338342>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203235392>3537377=7=2<202274223:20313730373235333137302>313934333230327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383338342>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203236312>3335337=7=2<202274223:20313730373235333137302>373238383630347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383338342>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203235392>3839387=7=2<202274223:20313730373235333137312>333233343831337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383338342>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203236342>3130317=7=2<202274223:20313730373235333137312>393333303330317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383338342>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034322<2022706?776572223:203236332>37387=7=2<202274223:20313730373235333137322>343639363534387=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =1.189232349395752, total / elapsed =1859.182523182629 in_token_count =363 out_token_count =1848 +[7;227461736;223:2022747261696>222<202272617465223:20313835392>3138323532333138323632392<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333137332>39313338317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034372<2022706?776572223:203332352>3835317=7=2<202274223:20313730373235333137332>303033313336347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034332<2022706?776572223:203235332>3836357=7=2<202274223:20313730373235333137332>353436393535337=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =9.321810722351074, total / elapsed =202.75030852839706 in_token_count =7 out_token_count =1883 +[7;227461736;223:2022747261696>222<202272617465223:203230322>37353033303835323833393730362<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333137392>343035343939357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034332<2022706?776572223:203238392>3837397=7=2<202274223:20313730373235333137302>313835333836347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034322<2022706?776572223:203236302>3434317=7=2<202274223:20313730373235333137302>373139373536347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034322<2022706?776572223:203236332>34317=7=2<202274223:20313730373235333137312>333133343235337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203235392>3532317=7=2<202274223:20313730373235333137312>393139333539347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203236372>3033327=7=2<202274223:20313730373235333137322>343631383835327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203236312>3839397=7=2<202274223:20313730373235333137322>3939343538377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203236302>3131397=7=2<202274223:20313730373235333137332>3533323630347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203235362>38327=7=2<202274223:20313730373235333137342>303735383330377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203236342>3333317=7=2<202274223:20313730373235333137342>363136323833377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034322<2022706?776572223:203235352>3330397=7=2<202274223:20313730373235333137352>3234313337367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034322<2022706?776572223:203236352>3235327=7=2<202274223:20313730373235333137352>383536363332327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034322<2022706?776572223:203235392>3532317=7=2<202274223:20313730373235333137362>3339313539317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034322<2022706?776572223:203236332>34317=7=2<202274223:20313730373235333137362>393830323036357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203236322>3232317=7=2<202274223:20313730373235333137372>353638353433327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034322<2022706?776572223:203236312>30347=7=2<202274223:20313730373235333137382>313531373938377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034322<2022706?776572223:203236372>3033327=7=2<202274223:20313730373235333137382>373236333637357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39362<202274656=7065726174757265223:2034322<2022706?776572223:203235392>3139397=7=2<202274223:20313730373235333137392>333138343536347=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =1.6207983493804932, total / elapsed =1249.3842931009906 in_token_count =344 out_token_count =1681 +[7;227461736;223:2022747261696>222<202272617465223:20313234392>333834323933313030393930362<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333138312>303237333335367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2034342<2022706?776572223:203236302>3434317=7=2<202274223:20313730373235333137392>3836343737367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034322<2022706?776572223:203236362>3434317=7=2<202274223:20313730373235333138302>333938393237377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39362<202274656=7065726174757265223:2034322<2022706?776572223:203237302>3932317=7=2<202274223:20313730373235333138302>393832313936337=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =9.457900524139404, total / elapsed =220.66207977905339 in_token_count =7 out_token_count =2080 +[7;227461736;223:2022747261696>222<202272617465223:203232302>36363230373937373930353333392<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333138332>333732373830337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>38392<202274656=7065726174757265223:2034322<2022706?776572223:203235322>3637397=7=2<202274223:20313730373235333137342>303837353939357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>38392<202274656=7065726174757265223:2034322<2022706?776572223:203235322>3637397=7=2<202274223:20313730373235333137342>363234353534327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>38392<202274656=7065726174757265223:2034322<2022706?776572223:203235322>3637397=7=2<202274223:20313730373235333137352>3234353930327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034322<2022706?776572223:203235362>35367=7=2<202274223:20313730373235333137352>383631383932377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034322<2022706?776572223:203235342>3435357=7=2<202274223:20313730373235333137362>343030343533387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034322<2022706?776572223:203235382>3036387=7=2<202274223:20313730373235333137362>393932383531357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034322<2022706?776572223:203234362>39367=7=2<202274223:20313730373235333137372>353939343631387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034322<2022706?776572223:203235302>3537337=7=2<202274223:20313730373235333137382>3138333237337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034322<2022706?776572223:203235312>37367=7=2<202274223:20313730373235333137382>373634393731357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203235362>35367=7=2<202274223:20313730373235333137392>3336373238367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203236302>3439357=7=2<202274223:20313730373235333137392>393031343036337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203235382>3036387=7=2<202274223:20313730373235333138302>3434303536367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203235382>39387=7=2<202274223:20313730373235333138302>393938343939397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203235372>31357=7=2<202274223:20313730373235333138312>3534343637337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203235392>3330357=7=2<202274223:20313730373235333138322>30383335357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034322<2022706?776572223:203235392>3632377=7=2<202274223:20313730373235333138322>3639363334337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034322<2022706?776572223:203236332>3138337=7=2<202274223:20313730373235333138332>333435313135347=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =1.640610694885254, total / elapsed =1253.1918793469763 in_token_count =344 out_token_count =1712 +[7;227461736;223:2022747261696>222<202272617465223:20313235332>313931383739333436393736332<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333138352>303135323930337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2034332<2022706?776572223:203236302>3439357=7=2<202274223:20313730373235333138332>393337373537377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034322<2022706?776572223:203236322>3237327=7=2<202274223:20313730373235333138342>3531353837347=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =6.66797947883606, total / elapsed =300.9907283563409 in_token_count =122 out_token_count =1885 +[7;227461736;223:2022747261696>222<202272617465223:203330302>393930373238333536333430392<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333138372>363936343338337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203235382>30377=7=2<202274223:20313730373235333138312>353330393532377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203235352>3330397=7=2<202274223:20313730373235333138322>303731373936377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203236362>3736337=7=2<202274223:20313730373235333138322>363830313631357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203236342>3030397=7=2<202274223:20313730373235333138332>333331353830397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034322<2022706?776572223:203236312>3633317=7=2<202274223:20313730373235333138332>393137353233347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034322<2022706?776572223:203236342>3932327=7=2<202274223:20313730373235333138342>3435353035377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034322<2022706?776572223:203235382>3333397=7=2<202274223:20313730373235333138352>303232343633337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034322<2022706?776572223:203236332>34317=7=2<202274223:20313730373235333138352>353632323336387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034322<2022706?776572223:203236392>3733327=7=2<202274223:20313730373235333138362>3039363930327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034322<2022706?776572223:203236312>3839397=7=2<202274223:20313730373235333138362>363933343735327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39362<202274656=7065726174757265223:2034322<2022706?776572223:203236372>3632327=7=2<202274223:20313730373235333138372>3235353334327=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =6.776566743850708, total / elapsed =296.1676724900882 in_token_count =122 out_token_count =1885 +[7;227461736;223:2022747261696>222<202272617465223:203239362>313637363732343930303838322<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333139312>373932383739337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034342<2022706?776572223:203332322>3833377=7=2<202274223:20313730373235333138352>303832323338327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034322<2022706?776572223:203235372>3533317=7=2<202274223:20313730373235333138352>363136313432357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034322<2022706?776572223:203235302>3537337=7=2<202274223:20313730373235333138362>3135303634357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034322<2022706?776572223:203235382>3938347=7=2<202274223:20313730373235333138362>373532313731357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034322<2022706?776572223:203236322>3331397=7=2<202274223:20313730373235333138372>3330313737347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203235382>39387=7=2<202274223:20313730373235333138372>383430343234387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203235302>3839357=7=2<202274223:20313730373235333138382>3431363731397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203236312>3335337=7=2<202274223:20313730373235333138382>3937333136367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203235352>3337347=7=2<202274223:20313730373235333138392>353132393230317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203234362>33377=7=2<202274223:20313730373235333139302>313339393834317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203235302>3537337=7=2<202274223:20313730373235333139302>373133373430367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203235372>3230327=7=2<202274223:20313730373235333139312>323735383831387=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =9.487451553344727, total / elapsed =210.2777535972427 in_token_count =6 out_token_count =1989 +[7;227461736;223:2022747261696>222<202272617465223:203231302>323737373533353937323432372<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333139372>313834393833337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203235312>3135377=7=2<202274223:20313730373235333138372>373930303138387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034322<2022706?776572223:203235352>3633397=7=2<202274223:20313730373235333138382>333330363835317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034322<2022706?776572223:203235342>3938377=7=2<202274223:20313730373235333138382>383636383132357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034322<2022706?776572223:203234372>3830367=7=2<202274223:20313730373235333138392>3430303335367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034322<2022706?776572223:203236312>3632367=7=2<202274223:20313730373235333138392>393736343032387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203236332>3436357=7=2<202274223:20313730373235333139302>3531313432367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203235342>3435327=7=2<202274223:20313730373235333139312>303435383133337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034322<2022706?776572223:203236322>3535317=7=2<202274223:20313730373235333139312>353832333033387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203236312>3839397=7=2<202274223:20313730373235333139322>313734333839347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203236302>3131397=7=2<202274223:20313730373235333139322>373339373039367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203236302>3736387=7=2<202274223:20313730373235333139332>333034353038347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034322<2022706?776572223:203236322>3534367=7=2<202274223:20313730373235333139332>383537373339347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034322<2022706?776572223:203236322>3535317=7=2<202274223:20313730373235333139342>3339323536327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034322<2022706?776572223:203236342>3932327=7=2<202274223:20313730373235333139342>393236373731347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203138342>3631317=7=2<202274223:20313730373235333139352>353538383432347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39362<202274656=7065726174757265223:2034322<2022706?776572223:203235352>3930377=7=2<202274223:20313730373235333139362>313033343838347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034322<2022706?776572223:203236342>3635337=7=2<202274223:20313730373235333139362>36333837367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034322<2022706?776572223:203236372>3335347=7=2<202274223:20313730373235333139372>313735383430367=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =9.623470306396484, total / elapsed =207.20176158018975 in_token_count =6 out_token_count =1988 +[7;227461736;223:2022747261696>222<202272617465223:203230372>32303137363135383031383937352<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333230312>343137333336327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034322<2022706?776572223:203139332>3334397=7=2<202274223:20313730373235333139312>383039303830317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>38382<202274656=7065726174757265223:2034322<2022706?776572223:203234382>3739377=7=2<202274223:20313730373235333139322>3336383530327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>38392<202274656=7065726174757265223:2034322<2022706?776572223:203234332>3039397=7=2<202274223:20313730373235333139322>393132393037317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034322<2022706?776572223:203235332>307=7=2<202274223:20313730373235333139332>343436373939357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034322<2022706?776572223:203232382>39367=7=2<202274223:20313730373235333139332>3938323233347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034322<2022706?776572223:203235382>33397=7=2<202274223:20313730373235333139342>353232313831337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034322<2022706?776572223:203234372>3238397=7=2<202274223:20313730373235333139352>303739323630367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>36372<202274656=7065726174757265223:2034312<2022706?776572223:203234362>3730327=7=2<202274223:20313730373235333139352>373133353832357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034322<2022706?776572223:203234372>3238397=7=2<202274223:20313730373235333139362>333531313438317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034322<2022706?776572223:203235332>3236387=7=2<202274223:20313730373235333139362>3931383238377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203234382>3739377=7=2<202274223:20313730373235333139372>3435313934347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203235322>3431357=7=2<202274223:20313730373235333139372>39383532357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203235312>3232397=7=2<202274223:20313730373235333139382>353232373436337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203235352>3337347=7=2<202274223:20313730373235333139392>303536373536337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203235382>33397=7=2<202274223:20313730373235333139392>353936393638327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203235332>35397=7=2<202274223:20313730373235333230302>313533353033347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203235392>3632377=7=2<202274223:20313730373235333230302>3731363533327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203235332>3836357=7=2<202274223:20313730373235333230312>323533303336337=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =7.382139444351196, total / elapsed =254.66871957269427 in_token_count =91 out_token_count =1789 +[7;227461736;223:2022747261696>222<202272617465223:203235342>36363837313935373236393432372<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333230342>353638313332397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203235382>3333397=7=2<202274223:20313730373235333139372>373131393130357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203235372>3039367=7=2<202274223:20313730373235333139382>323436313138337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203236362>3434317=7=2<202274223:20313730373235333139382>3830393438337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203235352>3330397=7=2<202274223:20313730373235333139392>333437323234327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203236302>37317=7=2<202274223:20313730373235333139392>383937393238327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203235342>31327=7=2<202274223:20313730373235333230302>343331383632367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203234382>3037347=7=2<202274223:20313730373235333230312>303030343637387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203236382>3836317=7=2<202274223:20313730373235333230312>35393137397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034322<2022706?776572223:203235382>3630387=7=2<202274223:20313730373235333230322>313432323938357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034322<2022706?776572223:203236362>3136337=7=2<202274223:20313730373235333230322>3637373638397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034322<2022706?776572223:203235352>3936327=7=2<202274223:20313730373235333230332>3235333330337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034322<2022706?776572223:203235372>3431387=7=2<202274223:20313730373235333230332>3739323633377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034322<2022706?776572223:203237302>3035347=7=2<202274223:20313730373235333230342>333530363030377=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =7.498277425765991, total / elapsed =261.2600053004677 in_token_count =91 out_token_count =1868 +[7;227461736;223:2022747261696>222<202272617465223:203236312>323630303035333030343637372<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333230382>3931363535367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034322<2022706?776572223:203234372>3238397=7=2<202274223:20313730373235333230312>373838363439367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034322<2022706?776572223:203235352>3130367=7=2<202274223:20313730373235333230322>333232353731357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034322<2022706?776572223:203234382>3739377=7=2<202274223:20313730373235333230322>383633363739347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034322<2022706?776572223:203235332>35397=7=2<202274223:20313730373235333230332>333939393133387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203235332>367=7=2<202274223:20313730373235333230332>393534373835337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203235352>3130367=7=2<202274223:20313730373235333230342>343931353238337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203236302>3439357=7=2<202274223:20313730373235333230352>313834373039337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203235392>3330357=7=2<202274223:20313730373235333230352>373139333337377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203236312>3335337=7=2<202274223:20313730373235333230362>323534373437347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203235362>35367=7=2<202274223:20313730373235333230362>3739303534367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203235382>39387=7=2<202274223:20313730373235333230372>3332353436327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203235382>3635387=7=2<202274223:20313730373235333230372>383538343537387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203235382>3938347=7=2<202274223:20313730373235333230382>333932323935387=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =5.789478778839111, total / elapsed =362.5542264136056 in_token_count =162 out_token_count =1937 +[7;227461736;223:2022747261696>222<202272617465223:203336322>353534323236343133363035362<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333231302>333538353938357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034332<2022706?776572223:203235392>3532317=7=2<202274223:20313730373235333230342>393337343933337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203236332>3134327=7=2<202274223:20313730373235333230352>343733343739337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203236332>34317=7=2<202274223:20313730373235333230362>303136323034387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034322<2022706?776572223:203235372>3039367=7=2<202274223:20313730373235333230362>3539383430337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034322<2022706?776572223:203235382>3932387=7=2<202274223:20313730373235333230372>313735373139357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034322<2022706?776572223:203236362>3131317=7=2<202274223:20313730373235333230372>3733303538337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034322<2022706?776572223:203236302>3131397=7=2<202274223:20313730373235333230382>323730343438377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034322<2022706?776572223:203236312>3839397=7=2<202274223:20313730373235333230382>383034333636387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034322<2022706?776572223:203236332>37347=7=2<202274223:20313730373235333230392>3333393230367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034322<2022706?776572223:203237312>3234347=7=2<202274223:20313730373235333230392>3837373935367=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =5.869117021560669, total / elapsed =350.648997530595 in_token_count =162 out_token_count =1896 +[7;227461736;223:2022747261696>222<202272617465223:203335302>3634383939373533303539352<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333231342>373836363132377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034322<2022706?776572223:203235382>33397=7=2<202274223:20313730373235333230382>393234363033377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203234392>3635357=7=2<202274223:20313730373235333230392>3435393234357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034322<2022706?776572223:203234352>3738317=7=2<202274223:20313730373235333230392>393933303131377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203235342>3435357=7=2<202274223:20313730373235333231302>3630353339327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203236312>3430317=7=2<202274223:20313730373235333231312>313836353639357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203235372>3437317=7=2<202274223:20313730373235333231312>3732323236327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203235372>387=7=2<202274223:20313730373235333231322>323536353931367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203235352>3337347=7=2<202274223:20313730373235333231322>373935303931347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203235362>3239327=7=2<202274223:20313730373235333231332>333238383539387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203235372>3739397=7=2<202274223:20313730373235333231332>383633333839377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034322<2022706?776572223:203235352>3130377=7=2<202274223:20313730373235333231342>343530353738327=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =5.212910890579224, total / elapsed =420.6862626336451 in_token_count =186 out_token_count =2007 +[7;227461736;223:2022747261696>222<202272617465223:203432302>363836323632363333363435312<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333231352>353732353133367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034342<2022706?776572223:203232372>3333377=7=2<202274223:20313730373235333231302>343131323432377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203235392>3532317=7=2<202274223:20313730373235333231302>393435363534397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203236372>3335347=7=2<202274223:20313730373235333231312>343831303432317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034322<2022706?776572223:203235392>3739377=7=2<202274223:20313730373235333231322>3032333636337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034322<2022706?776572223:203236332>3134327=7=2<202274223:20313730373235333231322>363036393733347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034322<2022706?776572223:203236332>34317=7=2<202274223:20313730373235333231332>313733363331327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034322<2022706?776572223:203235362>3439387=7=2<202274223:20313730373235333231332>3731373932347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034322<2022706?776572223:203236342>3932327=7=2<202274223:20313730373235333231342>323934383534347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034322<2022706?776572223:203236392>3134317=7=2<202274223:20313730373235333231342>383333333239327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034322<2022706?776572223:203236342>3932327=7=2<202274223:20313730373235333231352>343034313534337=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =5.289351940155029, total / elapsed =407.98948990653656 in_token_count =186 out_token_count =1972 +[7;227461736;223:2022747261696>222<202272617465223:203430372>39383934383939303635333635362<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333232302>303737303038357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034362<2022706?776572223:203336372>3733367=7=2<202274223:20313730373235333231352>303239363530347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203235362>3238357=7=2<202274223:20313730373235333231352>353633363637387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203235342>3138397=7=2<202274223:20313730373235333231362>3136383530347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034322<2022706?776572223:203235362>3631337=7=2<202274223:20313730373235333231362>373530343438327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203235382>3635387=7=2<202274223:20313730373235333231372>323835303237377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203236312>3038357=7=2<202274223:20313730373235333231372>383232303734327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203235382>3036387=7=2<202274223:20313730373235333231382>333539303235327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203235372>3437317=7=2<202274223:20313730373235333231382>393234343838387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203235362>3838317=7=2<202274223:20313730373235333231392>343834353037337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034322<2022706?776572223:203235352>3130377=7=2<202274223:20313730373235333232302>303639353938347=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =6.7940802574157715, total / elapsed =291.7245491524239 in_token_count =117 out_token_count =1865 +[7;227461736;223:2022747261696>222<202272617465223:203239312>373234353439313532343233392<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333232322>3336373634337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203235382>3030397=7=2<202274223:20313730373235333231352>393632313834377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203236342>3333317=7=2<202274223:20313730373235333231362>343935363939327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203235352>3633397=7=2<202274223:20313730373235333231372>303330303532327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203236322>38327=7=2<202274223:20313730373235333231372>363031373733337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203235382>3630387=7=2<202274223:20313730373235333231382>313833393837347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034322<2022706?776572223:203236332>3134327=7=2<202274223:20313730373235333231382>373138363832337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034322<2022706?776572223:203235392>3139397=7=2<202274223:20313730373235333231392>3235333038357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203235372>3431397=7=2<202274223:20313730373235333231392>3738393934387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034322<2022706?776572223:203236332>3134327=7=2<202274223:20313730373235333232302>333233323431377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034322<2022706?776572223:203235362>3439387=7=2<202274223:20313730373235333232302>3835363935377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034322<2022706?776572223:203236322>3535317=7=2<202274223:20313730373235333232312>343238393338347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034322<2022706?776572223:203236382>3534337=7=2<202274223:20313730373235333232312>393633343531367=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =6.898130893707275, total / elapsed =289.78864431574647 in_token_count =117 out_token_count =1882 +[7;227461736;223:2022747261696>222<202272617465223:203238392>37383836343433313537343634372<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333232362>393736313433387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034322<2022706?776572223:203235352>3130367=7=2<202274223:20313730373235333232302>363034373332387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034322<2022706?776572223:203235372>31357=7=2<202274223:20313730373235333232312>313338363435327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034322<2022706?776572223:203235342>3435357=7=2<202274223:20313730373235333232312>373134383933367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034322<2022706?776572223:203235352>3936337=7=2<202274223:20313730373235333232322>323735313539387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203235392>3537377=7=2<202274223:20313730373235333232322>383039373634347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203235392>3839387=7=2<202274223:20313730373235333232332>3334343432327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203236302>3136367=7=2<202274223:20313730373235333232332>3837383433337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203235392>3632377=7=2<202274223:20313730373235333232342>3431333639367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203235362>3631337=7=2<202274223:20313730373235333232342>393437343736347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203235382>33397=7=2<202274223:20313730373235333232352>343832373731367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203235382>33397=7=2<202274223:20313730373235333232362>303231343332397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034322<2022706?776572223:203236302>3439357=7=2<202274223:20313730373235333232362>353535343536327=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =9.357624053955078, total / elapsed =214.90497891396203 in_token_count =6 out_token_count =2005 +[7;227461736;223:2022747261696>222<202272617465223:203231342>39303439373839313339363230332<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333233312>373236333737377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034322<2022706?776572223:203235382>3630387=7=2<202274223:20313730373235333232322>343937323931387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034322<2022706?776572223:203235352>3330397=7=2<202274223:20313730373235333232332>303330393335357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034312<2022706?776572223:203236312>3330387=7=2<202274223:20313730373235333232332>3536353233317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034312<2022706?776572223:203236332>34317=7=2<202274223:20313730373235333232342>313135303334387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034312<2022706?776572223:203235372>3431387=7=2<202274223:20313730373235333232342>363738303339367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203236322>3535317=7=2<202274223:20313730373235333232352>3236313335387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203235382>39337=7=2<202274223:20313730373235333232352>383235313831327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203235382>39337=7=2<202274223:20313730373235333232362>333539303533317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203235392>3739377=7=2<202274223:20313730373235333232362>393235323131377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203235352>3633397=7=2<202274223:20313730373235333232372>343538343834367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203236352>35327=7=2<202274223:20313730373235333232372>393935373831327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203236342>3634367=7=2<202274223:20313730373235333232382>353239393932387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203235332>3230377=7=2<202274223:20313730373235333232392>303633353534337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203236342>3333317=7=2<202274223:20313730373235333232392>3539393430337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203236322>3534367=7=2<202274223:20313730373235333233302>313332393131347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034312<2022706?776572223:203235372>31357=7=2<202274223:20313730373235333233302>373132323939387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034312<2022706?776572223:203236392>3733327=7=2<202274223:20313730373235333233312>333030333230317=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =9.623156785964966, total / elapsed =199.72655987515128 in_token_count =6 out_token_count =1916 +[7;227461736;223:2022747261696>222<202272617465223:203139392>37323635353938373531353132382<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333233362>363030323535357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034322<2022706?776572223:203235332>367=7=2<202274223:20313730373235333232372>313530353537387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>38392<202274656=7065726174757265223:2034322<2022706?776572223:203235342>3737367=7=2<202274223:20313730373235333232372>373139303233357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>38392<202274656=7065726174757265223:2034312<2022706?776572223:203235312>31377=7=2<202274223:20313730373235333232382>323831313735347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034322<2022706?776572223:203235342>3435357=7=2<202274223:20313730373235333232382>3837323838397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034312<2022706?776572223:203234362>39367=7=2<202274223:20313730373235333232392>343438343038387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034312<2022706?776572223:203235302>3235327=7=2<202274223:20313730373235333232392>3938323034317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034312<2022706?776572223:203235362>35367=7=2<202274223:20313730373235333233302>353136323031337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034312<2022706?776572223:203235382>3635387=7=2<202274223:20313730373235333233312>303530373533367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034312<2022706?776572223:203235372>3533317=7=2<202274223:20313730373235333233312>353835343532387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203235372>3739397=7=2<202274223:20313730373235333233322>313230343839317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203234382>3739377=7=2<202274223:20313730373235333233322>363737353637327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203236322>3237327=7=2<202274223:20313730373235333233332>3234353632397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203235302>3537337=7=2<202274223:20313730373235333233332>373931323532317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203235332>3236387=7=2<202274223:20313730373235333233342>333638393234347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>36322<202274656=7065726174757265223:2034312<2022706?776572223:203235302>3235327=7=2<202274223:20313730373235333233342>3934313538337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203236332>31397=7=2<202274223:20313730373235333233352>343734383934357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203236312>3430317=7=2<202274223:20313730373235333233362>3030383933317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203235392>3839387=7=2<202274223:20313730373235333233362>353436353938347=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =7.514356374740601, total / elapsed =274.8073017858811 in_token_count =91 out_token_count =1974 +[7;227461736;223:2022747261696>222<202272617465223:203237342>383037333031373835383831312<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333233392>323431373535377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034342<2022706?776572223:203338372>3233317=7=2<202274223:20313730373235333233312>383634313135327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203236302>3434317=7=2<202274223:20313730373235333233322>343032313638357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203236322>3232317=7=2<202274223:20313730373235333233322>39343237357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203236342>3932327=7=2<202274223:20313730373235333233332>343736383839367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203235362>3439387=7=2<202274223:20313730373235333233342>303132373230337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>37342<202274656=7065726174757265223:2034312<2022706?776572223:203235372>3039367=7=2<202274223:20313730373235333233342>353630303436377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203235382>3630387=7=2<202274223:20313730373235333233352>303934383733327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203235372>3638377=7=2<202274223:20313730373235333233352>3633333834337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203235392>32357=7=2<202274223:20313730373235333233362>313934353233387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203235352>3633397=7=2<202274223:20313730373235333233362>373632393937327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203235392>3532367=7=2<202274223:20313730373235333233372>333236393132347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034312<2022706?776572223:203236332>3134327=7=2<202274223:20313730373235333233372>383835383331347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034312<2022706?776572223:203235382>3030397=7=2<202274223:20313730373235333233382>343438383535367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203236302>3131397=7=2<202274223:20313730373235333233382>393833323336387=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =7.501948118209839, total / elapsed =264.06474275547487 in_token_count =91 out_token_count =1890 +[7;227461736;223:2022747261696>222<202272617465223:203236342>30363437343237353534373438372<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333234342>313033313735367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034322<2022706?776572223:203235342>3737367=7=2<202274223:20313730373235333233372>303831373139367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034312<2022706?776572223:203235342>3435357=7=2<202274223:20313730373235333233372>363137353139367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034312<2022706?776572223:203235372>3437317=7=2<202274223:20313730373235333233382>3231323135397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034312<2022706?776572223:203235332>35397=7=2<202274223:20313730373235333233382>373737353237337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203235372>3230327=7=2<202274223:20313730373235333233392>333337333532357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203235352>3936337=7=2<202274223:20313730373235333233392>383734323536317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203235382>3036387=7=2<202274223:20313730373235333234302>343431383338337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203235372>3437317=7=2<202274223:20313730373235333234302>393831383535367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034312<2022706?776572223:203235392>3839387=7=2<202274223:20313730373235333234312>3535333632367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203235372>387=7=2<202274223:20313730373235333234322>313330383536357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203236312>3038357=7=2<202274223:20313730373235333234322>36363439337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203236302>3232337=7=2<202274223:20313730373235333234332>313939343834367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203236322>3931357=7=2<202274223:20313730373235333234332>373536323838337=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =9.270289182662964, total / elapsed =217.79255859416742 in_token_count =9 out_token_count =2010 +[7;227461736;223:2022747261696>222<202272617465223:203231372>37393235353835393431363734322<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333234382>353133313034347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034312<2022706?776572223:203235352>3633397=7=2<202274223:20313730373235333233392>353137303738397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034312<2022706?776572223:203235302>3737357=7=2<202274223:20313730373235333234302>303733327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034312<2022706?776572223:203235372>3431397=7=2<202274223:20313730373235333234302>36313030377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034312<2022706?776572223:203235392>3532317=7=2<202274223:20313730373235333234312>313433363131347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203234382>3339367=7=2<202274223:20313730373235333234312>363930323735347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203235362>3232397=7=2<202274223:20313730373235333234322>323236353834377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203236302>3131397=7=2<202274223:20313730373235333234322>3735393632357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203235352>3930377=7=2<202274223:20313730373235333234332>323935393035387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203236312>3033367=7=2<202274223:20313730373235333234332>383239393934377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203235332>3739377=7=2<202274223:20313730373235333234342>3339343838387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203235372>3638377=7=2<202274223:20313730373235333234342>3936303835377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203236312>3839397=7=2<202274223:20313730373235333234352>353436333836327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203235372>37347=7=2<202274223:20313730373235333234362>313430303937367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203236312>3633317=7=2<202274223:20313730373235333234362>373230303539397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034312<2022706?776572223:203235342>31327=7=2<202274223:20313730373235333234372>323535343238337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034312<2022706?776572223:203235392>3532317=7=2<202274223:20313730373235333234372>373930303534387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034312<2022706?776572223:203235392>3139397=7=2<202274223:20313730373235333234382>333235383137367=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =3.2675912380218506, total / elapsed =604.4207662876568 in_token_count =273 out_token_count =1702 +[7;227461736;223:2022747261696>222<202272617465223:203630342>343230373636323837363536382<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333235312>3738313739327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2034332<2022706?776572223:203236332>3134327=7=2<202274223:20313730373235333234382>383637353635397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203236362>3434317=7=2<202274223:20313730373235333234392>343031303335337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203235382>39337=7=2<202274223:20313730373235333234392>3933333635357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034312<2022706?776572223:203236332>34317=7=2<202274223:20313730373235333235302>353332333435337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034312<2022706?776572223:203235332>3533337=7=2<202274223:20313730373235333235312>313235393637357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39362<202274656=7065726174757265223:2034312<2022706?776572223:203235392>3532317=7=2<202274223:20313730373235333235312>3730343138377=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =9.397299528121948, total / elapsed =211.55013672287427 in_token_count =9 out_token_count =1979 +[7;227461736;223:2022747261696>222<202272617465223:203231312>35353031333637323238373432372<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333235332>3530313537387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>38382<202274656=7065726174757265223:2034312<2022706?776572223:203235322>3637397=7=2<202274223:20313730373235333234342>323932323038347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>38392<202274656=7065726174757265223:2034312<2022706?776572223:203233372>3936347=7=2<202274223:20313730373235333234342>383535313639387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034312<2022706?776572223:203235302>3537337=7=2<202274223:20313730373235333234352>343633333738377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034312<2022706?776572223:203234372>3837387=7=2<202274223:20313730373235333234362>3034303137357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034312<2022706?776572223:203235312>37367=7=2<202274223:20313730373235333234362>3630353637397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034312<2022706?776572223:203235352>3130367=7=2<202274223:20313730373235333234372>3134323337347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034312<2022706?776572223:203235342>3435357=7=2<202274223:20313730373235333234372>363832313634347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034312<2022706?776572223:203235332>367=7=2<202274223:20313730373235333234382>3231373038337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203235392>3839387=7=2<202274223:20313730373235333234382>3737323731367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203235352>3936337=7=2<202274223:20313730373235333234392>333039333634337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203235382>31327=7=2<202274223:20313730373235333234392>383435303538327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203234332>3934337=7=2<202274223:20313730373235333235302>3431343033397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203235312>31377=7=2<202274223:20313730373235333235312>303332303937367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203235342>3138377=7=2<202274223:20313730373235333235312>363231303030357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203235362>3238357=7=2<202274223:20313730373235333235322>313834363639357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203235372>3533317=7=2<202274223:20313730373235333235322>373637333038327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203236312>3335337=7=2<202274223:20313730373235333235332>333037303633367=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =3.349956512451172, total / elapsed =618.8140031952775 in_token_count =269 out_token_count =1804 +[7;227461736;223:2022747261696>222<202272617465223:203631382>383134303033313935323737352<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333235352>313332373337367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39362<202274656=7065726174757265223:2034322<2022706?776572223:203235352>3330397=7=2<202274223:20313730373235333235322>323634363333377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203236312>3839397=7=2<202274223:20313730373235333235322>383034313038397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203235382>3630387=7=2<202274223:20313730373235333235332>333339333436347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39362<202274656=7065726174757265223:2034312<2022706?776572223:203236352>3235327=7=2<202274223:20313730373235333235332>383734333835367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203236342>3030397=7=2<202274223:20313730373235333235342>343037353839377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034312<2022706?776572223:203236372>3632327=7=2<202274223:20313730373235333235342>393433323331337=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =3.3059465885162354, total / elapsed =569.2771947790824 in_token_count =273 out_token_count =1609 +[7;227461736;223:2022747261696>222<202272617465223:203536392>323737313934373739303832342<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333235362>383038353438327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2034342<2022706?776572223:203334382>3335397=7=2<202274223:20313730373235333235332>383431383030377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203235382>3036387=7=2<202274223:20313730373235333235342>333737353231357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203235302>3839357=7=2<202274223:20313730373235333235342>3931303634347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203235362>3031377=7=2<202274223:20313730373235333235352>343439343632347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203235392>3537377=7=2<202274223:20313730373235333235352>393836313036347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203235382>3635387=7=2<202274223:20313730373235333235362>3631363933357=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =4.61845588684082, total / elapsed =382.5954048916309 in_token_count =213 out_token_count =1554 +[7;227461736;223:2022747261696>222<202272617465223:203338322>353935343034383931363330392<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333235392>373532323839337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39382<202274656=7065726174757265223:2034332<2022706?776572223:203235342>3938377=7=2<202274223:20313730373235333235352>343834383039367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203236302>3131397=7=2<202274223:20313730373235333235362>303739323336337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203235342>31327=7=2<202274223:20313730373235333235362>373034353039357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203236332>34317=7=2<202274223:20313730373235333235372>323735393432337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034312<2022706?776572223:203235332>3739377=7=2<202274223:20313730373235333235372>383236343038367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034312<2022706?776572223:203236312>3633317=7=2<202274223:20313730373235333235382>333632383737367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034312<2022706?776572223:203236372>3033327=7=2<202274223:20313730373235333235382>393033383635337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39362<202274656=7065726174757265223:2034312<2022706?776572223:203236332>34317=7=2<202274223:20313730373235333235392>343337363039347=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =3.3998870849609375, total / elapsed =618.2558265825909 in_token_count =269 out_token_count =1833 +[7;227461736;223:2022747261696>222<202272617465223:203631382>323535383236353832353930392<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333236302>323038353930337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034342<2022706?776572223:203238372>3439387=7=2<202274223:20313730373235333235372>313838363435367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034322<2022706?776572223:203235392>3537377=7=2<202274223:20313730373235333235372>373539343131367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203236302>3136367=7=2<202274223:20313730373235333235382>323933323635387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203235392>3235357=7=2<202274223:20313730373235333235382>383634343831347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203235382>3635387=7=2<202274223:20313730373235333235392>333939353234377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203235392>3839387=7=2<202274223:20313730373235333235392>393333303530327=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =4.692413330078125, total / elapsed =384.4503612749657 in_token_count =213 out_token_count =1591 +[7;227461736;223:2022747261696>222<202272617465223:203338342>343530333631323734393635372<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333236342>393032303739387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39362<202274656=7065726174757265223:2034352<2022706?776572223:203335392>3434387=7=2<202274223:20313730373235333236302>343637343933387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034322<2022706?776572223:203235372>387=7=2<202274223:20313730373235333236312>303034353335327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203235352>3432387=7=2<202274223:20313730373235333236312>353433303337347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203236302>3736337=7=2<202274223:20313730373235333236322>3135333830337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203235342>3833397=7=2<202274223:20313730373235333236322>373532323935357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203235342>3138377=7=2<202274223:20313730373235333236332>333437373137337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203234392>3338377=7=2<202274223:20313730373235333236332>383833373232337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203234392>3036357=7=2<202274223:20313730373235333236342>343232333734327=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =9.24860954284668, total / elapsed =209.22063917128193 in_token_count =11 out_token_count =1924 +[7;227461736;223:2022747261696>222<202272617465223:203230392>32323036333931373132383139332<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333236392>303031393234387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203235322>3837377=7=2<202274223:20313730373235333235392>393730393936367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034312<2022706?776572223:203235392>3139397=7=2<202274223:20313730373235333236302>353037383334327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203234372>3831357=7=2<202274223:20313730373235333236312>3034313839327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034312<2022706?776572223:203235342>3938377=7=2<202274223:20313730373235333236312>353735323837337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034312<2022706?776572223:203234352>3936347=7=2<202274223:20313730373235333236322>313937373836387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203235372>37347=7=2<202274223:20313730373235333236322>383131313935367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203236302>3131397=7=2<202274223:20313730373235333236332>333935343036327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203235342>3938377=7=2<202274223:20313730373235333236332>393239383331337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203235382>3333397=7=2<202274223:20313730373235333236342>3436363338397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203236312>3839397=7=2<202274223:20313730373235333236352>3030303137397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203236312>30347=7=2<202274223:20313730373235333236352>353334343635387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203235342>3731387=7=2<202274223:20313730373235333236362>303733393135377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203236302>3434317=7=2<202274223:20313730373235333236362>3630363735377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034312<2022706?776572223:203235392>3532367=7=2<202274223:20313730373235333236372>31373530347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034312<2022706?776572223:203235372>3039367=7=2<202274223:20313730373235333236372>373434323738327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203235362>3439387=7=2<202274223:20313730373235333236382>323738383734367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034312<2022706?776572223:203236312>3633317=7=2<202274223:20313730373235333236382>383138343137357=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =9.50097393989563, total / elapsed =212.82028692967998 in_token_count =11 out_token_count =2011 +[7;227461736;223:2022747261696>222<202272617465223:203231322>38323032383639323936373939382<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333237342>343034313631327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203235382>33397=7=2<202274223:20313730373235333236342>393535363239367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>38382<202274656=7065726174757265223:2034312<2022706?776572223:203235392>3537377=7=2<202274223:20313730373235333236352>3439383735347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>38392<202274656=7065726174757265223:2034312<2022706?776572223:203235342>3833397=7=2<202274223:20313730373235333236362>303334343037347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034312<2022706?776572223:203235322>3637397=7=2<202274223:20313730373235333236362>353637383733357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034312<2022706?776572223:203235372>3437317=7=2<202274223:20313730373235333236372>31323736387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034312<2022706?776572223:203235302>3839357=7=2<202274223:20313730373235333236372>373034393932357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034312<2022706?776572223:203234362>39367=7=2<202274223:20313730373235333236382>323339393534327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034312<2022706?776572223:203235382>33397=7=2<202274223:20313730373235333236382>3737343033387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203234372>3238397=7=2<202274223:20313730373235333236392>333038303933387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034312<2022706?776572223:203235312>3831387=7=2<202274223:20313730373235333236392>383832373533387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203234392>3635357=7=2<202274223:20313730373235333237302>343232343730367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034302<2022706?776572223:203139382>3934317=7=2<202274223:20313730373235333237302>393930323632357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>37342<202274656=7065726174757265223:2034312<2022706?776572223:203235352>3130377=7=2<202274223:20313730373235333237312>353734323330327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203235302>3839357=7=2<202274223:20313730373235333237322>313936383437327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203235312>31377=7=2<202274223:20313730373235333237322>37333133397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203235332>35397=7=2<202274223:20313730373235333237332>323635393236367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203235372>3437317=7=2<202274223:20313730373235333237332>383031313238397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203236312>3637347=7=2<202274223:20313730373235333237342>333335393734327=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =6.228442430496216, total / elapsed =304.24942048457314 in_token_count =148 out_token_count =1747 +[7;227461736;223:2022747261696>222<202272617465223:203330342>32343934323034383435373331342<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333237352>323331333033377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034312<2022706?776572223:203235392>3532317=7=2<202274223:20313730373235333236392>333734383736377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203235362>3232397=7=2<202274223:20313730373235333236392>393739363231347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203236332>3134327=7=2<202274223:20313730373235333237302>353534363334387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>36382<202274656=7065726174757265223:2034302<2022706?776572223:203235362>3439387=7=2<202274223:20313730373235333237312>313233313831387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>38362<202274656=7065726174757265223:2034302<2022706?776572223:203235332>3236357=7=2<202274223:20313730373235333237312>3639363637357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203236312>3632367=7=2<202274223:20313730373235333237322>323731383837337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203236342>3635337=7=2<202274223:20313730373235333237322>383131313430357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034312<2022706?776572223:203235372>3431397=7=2<202274223:20313730373235333237332>333435323339367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203236312>3839397=7=2<202274223:20313730373235333237332>3838343638387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034312<2022706?776572223:203236322>3535317=7=2<202274223:20313730373235333237342>343137323637367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034312<2022706?776572223:203236302>37317=7=2<202274223:20313730373235333237342>393933303630347=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =2.3958606719970703, total / elapsed =449.10791874349684 in_token_count =110 out_token_count =966 +[7;227461736;223:2022747261696>222<202272617465223:203434392>31303739313837343334393638342<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333237372>363238313739367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203235302>3137367=7=2<202274223:20313730373235333237352>363034313434367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203235382>3030397=7=2<202274223:20313730373235333237362>313836393136387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203235382>3630387=7=2<202274223:20313730373235333237362>373331313934337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203235302>3737357=7=2<202274223:20313730373235333237372>323637313232357=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =6.1853368282318115, total / elapsed =318.98020347002137 in_token_count =148 out_token_count =1825 +[7;227461736;223:2022747261696>222<202272617465223:203331382>39383032303334373030323133372<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333238302>353930353533357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034322<2022706?776572223:203235312>37367=7=2<202274223:20313730373235333237342>383732313532367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034312<2022706?776572223:203235342>35317=7=2<202274223:20313730373235333237352>343738323633317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203235372>3533317=7=2<202274223:20313730373235333237362>313334323938337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203235382>3938347=7=2<202274223:20313730373235333237362>363936393436347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203234362>3639327=7=2<202274223:20313730373235333237372>323332323236367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203235352>3432387=7=2<202274223:20313730373235333237372>373730323733327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203236302>3439357=7=2<202274223:20313730373235333237382>3330333638357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203235312>37367=7=2<202274223:20313730373235333237382>383434353930377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203235362>3631337=7=2<202274223:20313730373235333237392>333934343437387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203235332>307=7=2<202274223:20313730373235333237392>393330313137367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203236312>3038357=7=2<202274223:20313730373235333238302>343634343139387=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =9.361125946044922, total / elapsed =212.04714170507054 in_token_count =6 out_token_count =1979 +[7;227461736;223:2022747261696>222<202272617465223:203231322>30343731343137303530373035342<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333238362>393930333737327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034312<2022706?776572223:203235382>39337=7=2<202274223:20313730373235333237372>3830303233387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034302<2022706?776572223:203234372>3830367=7=2<202274223:20313730373235333237382>333334333731387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034302<2022706?776572223:203235312>3039377=7=2<202274223:20313730373235333237382>383730313138397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034302<2022706?776572223:203236302>3131397=7=2<202274223:20313730373235333237392>343437363939357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034302<2022706?776572223:203235322>3837377=7=2<202274223:20313730373235333238302>303430313131337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034302<2022706?776572223:203235382>39337=7=2<202274223:20313730373235333238302>363034343130347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034302<2022706?776572223:203234382>3339367=7=2<202274223:20313730373235333238312>313636323338337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034302<2022706?776572223:203235322>3630387=7=2<202274223:20313730373235333238312>373430333337387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034302<2022706?776572223:203235382>3333387=7=2<202274223:20313730373235333238322>333032313230327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034302<2022706?776572223:203235372>3039367=7=2<202274223:20313730373235333238322>383338383938377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034302<2022706?776572223:203235342>31327=7=2<202274223:20313730373235333238332>333736343233347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034302<2022706?776572223:203235392>32357=7=2<202274223:20313730373235333238332>3931323235367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203236322>3836387=7=2<202274223:20313730373235333238342>343437363533357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034302<2022706?776572223:203235382>3630387=7=2<202274223:20313730373235333238352>303333333735337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203236322>3836387=7=2<202274223:20313730373235333238352>363236393431327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034312<2022706?776572223:203235322>3238367=7=2<202274223:20313730373235333238362>323232373335347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034312<2022706?776572223:203236302>3434317=7=2<202274223:20313730373235333238362>383130363138397=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =7.067157506942749, total / elapsed =294.4606792696545 in_token_count =110 out_token_count =1971 +[7;227461736;223:2022747261696>222<202272617465223:203239342>343630363739323639363534352<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333238372>363538373831337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034312<2022706?776572223:203235332>35397=7=2<202274223:20313730373235333238312>303036333635357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034312<2022706?776572223:203235362>3239327=7=2<202274223:20313730373235333238312>3539323537337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034312<2022706?776572223:203235342>3737367=7=2<202274223:20313730373235333238322>313635383830327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203235352>3639357=7=2<202274223:20313730373235333238322>373239363230327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034312<2022706?776572223:203235372>3437317=7=2<202274223:20313730373235333238332>333037393230377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203235372>3437317=7=2<202274223:20313730373235333238332>383730353237377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203235352>3337347=7=2<202274223:20313730373235333238342>3430343332347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203235322>3637397=7=2<202274223:20313730373235333238342>393838363932337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203235382>3730397=7=2<202274223:20313730373235333238352>3533363839337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203235352>3639357=7=2<202274223:20313730373235333238362>313736373233357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203235342>3138377=7=2<202274223:20313730373235333238362>373632353033397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203235372>387=7=2<202274223:20313730373235333238372>333539383532367=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =3.143883228302002, total / elapsed =651.4236857028931 in_token_count =278 out_token_count =1770 +[7;227461736;223:2022747261696>222<202272617465223:203635312>343233363835373032383933312<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333239302>31333532317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39372<202274656=7065726174757265223:2034322<2022706?776572223:203236322>3535317=7=2<202274223:20313730373235333238372>333836353833367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203236312>3839397=7=2<202274223:20313730373235333238372>3932323937327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203235352>3330397=7=2<202274223:20313730373235333238382>343536353339397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203236332>3134327=7=2<202274223:20313730373235333238382>393932383036327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034312<2022706?776572223:203236312>3839397=7=2<202274223:20313730373235333238392>353237373036397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034312<2022706?776572223:203236312>3839397=7=2<202274223:20313730373235333239302>303632343731347=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =9.491772890090942, total / elapsed =214.08013271380864 in_token_count =6 out_token_count =2026 +[7;227461736;223:2022747261696>222<202272617465223:203231342>30383031333237313338303836342<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333239372>3135313630397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034312<2022706?776572223:203234382>3437357=7=2<202274223:20313730373235333238372>383936313132327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>38392<202274656=7065726174757265223:2034312<2022706?776572223:203234372>3535377=7=2<202274223:20313730373235333238382>3432393131327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>38392<202274656=7065726174757265223:2034312<2022706?776572223:203234372>3535377=7=2<202274223:20313730373235333238382>3936363930377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>38392<202274656=7065726174757265223:2034312<2022706?776572223:203234352>3138337=7=2<202274223:20313730373235333238392>35303235387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034312<2022706?776572223:203235322>3038317=7=2<202274223:20313730373235333239302>303336383436327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034312<2022706?776572223:203235362>3631337=7=2<202274223:20313730373235333239302>363039323638347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034312<2022706?776572223:203235332>3836357=7=2<202274223:20313730373235333239312>313635363639327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034312<2022706?776572223:203235362>35367=7=2<202274223:20313730373235333239312>373331383337357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034312<2022706?776572223:203235362>3238357=7=2<202274223:20313730373235333239322>333332353232347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203235372>3533317=7=2<202274223:20313730373235333239322>393038323134337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203234332>3038367=7=2<202274223:20313730373235333239332>343732353130387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203235372>3230327=7=2<202274223:20313730373235333239342>303336373131377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203235322>3637397=7=2<202274223:20313730373235333239342>363430383430357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203235332>35397=7=2<202274223:20313730373235333239352>323331343533347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203235342>35317=7=2<202274223:20313730373235333239352>3737313130337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203235352>3639357=7=2<202274223:20313730373235333239362>333430373839337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203235332>3030337=7=2<202274223:20313730373235333239362>383933323435357=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =9.360047101974487, total / elapsed =210.78953754236971 in_token_count =6 out_token_count =1967 +[7;227461736;223:2022747261696>222<202272617465223:203231302>37383935333735343233363937312<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333239392>343936333234387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034302<2022706?776572223:203235322>3630387=7=2<202274223:20313730373235333239302>363735353637347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034302<2022706?776572223:203235342>3435327=7=2<202274223:20313730373235333239312>3234313232387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034302<2022706?776572223:203235352>3633397=7=2<202274223:20313730373235333239312>383038383035327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034302<2022706?776572223:203236302>31377=7=2<202274223:20313730373235333239322>343036373935337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034302<2022706?776572223:203235332>3532397=7=2<202274223:20313730373235333239322>393937393133317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034302<2022706?776572223:203235372>3431397=7=2<202274223:20313730373235333239332>353733323235337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034302<2022706?776572223:203235382>3630387=7=2<202274223:20313730373235333239342>313131383039357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034302<2022706?776572223:203235352>3633397=7=2<202274223:20313730373235333239342>363832383834357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034302<2022706?776572223:203235352>3330397=7=2<202274223:20313730373235333239352>3233393639317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034302<2022706?776572223:203235392>3139397=7=2<202274223:20313730373235333239352>3738363631347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034302<2022706?776572223:203235362>3232397=7=2<202274223:20313730373235333239362>333831343634377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034302<2022706?776572223:203236332>34317=7=2<202274223:20313730373235333239362>393531333835357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39362<202274656=7065726174757265223:2034312<2022706?776572223:203235302>3530367=7=2<202274223:20313730373235333239372>353131343230357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034312<2022706?776572223:203236322>3232317=7=2<202274223:20313730373235333239382>313431323430387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203235362>3233317=7=2<202274223:20313730373235333239382>373430323835327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034312<2022706?776572223:203235392>3532317=7=2<202274223:20313730373235333239392>323734343231377=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =3.183913230895996, total / elapsed =642.9195306380716 in_token_count =278 out_token_count =1769 +[7;227461736;223:2022747261696>222<202272617465223:203634322>393139353330363338303731362<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333330302>333336353331327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2034372<2022706?776572223:203334352>3933347=7=2<202274223:20313730373235333239372>343633343336367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203235372>387=7=2<202274223:20313730373235333239382>313038333136327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203235332>3332357=7=2<202274223:20313730373235333239382>373038303433367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203236302>3439357=7=2<202274223:20313730373235333239392>323432383039387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203235372>31357=7=2<202274223:20313730373235333239392>373735343431327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203234362>39367=7=2<202274223:20313730373235333330302>333130313938357=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =1.6214604377746582, total / elapsed =1375.9200952580086 in_token_count =344 out_token_count =1887 +[7;227461736;223:2022747261696>222<202272617465223:20313337352>393230303935323538303038362<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333330312>313138383339357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034362<2022706?776572223:203334302>3037357=7=2<202274223:20313730373235333239392>383131383030357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034312<2022706?776572223:203236342>3635337=7=2<202274223:20313730373235333330302>333435303530337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034312<2022706?776572223:203236342>3333317=7=2<202274223:20313730373235333330302>383834353530387=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =7.208719730377197, total / elapsed =292.28491033174777 in_token_count =105 out_token_count =2002 +[7;227461736;223:2022747261696>222<202272617465223:203239322>32383439313033333137343737372<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333330382>333238353938377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203235332>3532397=7=2<202274223:20313730373235333330312>343434383334327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203235352>3930377=7=2<202274223:20313730373235333330322>3033343631327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203236322>3232317=7=2<202274223:20313730373235333330322>353638353632357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203235342>3339367=7=2<202274223:20313730373235333330332>3130333731377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034302<2022706?776572223:203236302>3131397=7=2<202274223:20313730373235333330332>3633393939347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203235342>31327=7=2<202274223:20313730373235333330342>323133323633357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203236312>3633317=7=2<202274223:20313730373235333330342>373534303530377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>35362<202274656=7065726174757265223:2033392<2022706?776572223:203139362>3635367=7=2<202274223:20313730373235333330352>3332323738337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034302<2022706?776572223:203236332>3436357=7=2<202274223:20313730373235333330352>3836353632337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034302<2022706?776572223:203235392>3739377=7=2<202274223:20313730373235333330362>3433373838387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034302<2022706?776572223:203236322>3535317=7=2<202274223:20313730373235333330362>393832303932347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034312<2022706?776572223:203236342>3333317=7=2<202274223:20313730373235333330372>353139313031397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034312<2022706?776572223:203236342>3634367=7=2<202274223:20313730373235333330382>303535383038387=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =9.606995105743408, total / elapsed =200.16664720172088 in_token_count =6 out_token_count =1917 +[7;227461736;223:2022747261696>222<202272617465223:203230302>31363636343732303137323038382<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333330392>393434353636327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>38392<202274656=7065726174757265223:2034312<2022706?776572223:203234352>3138337=7=2<202274223:20313730373235333330302>383438323934357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034312<2022706?776572223:203234392>3338377=7=2<202274223:20313730373235333330312>3338323339377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034312<2022706?776572223:203234332>3934337=7=2<202274223:20313730373235333330312>393137353035337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034312<2022706?776572223:203234332>3637357=7=2<202274223:20313730373235333330322>343834323930387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034312<2022706?776572223:203235332>3932317=7=2<202274223:20313730373235333330332>303139333431327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034312<2022706?776572223:203234392>3635357=7=2<202274223:20313730373235333330332>363131303738377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034312<2022706?776572223:203235322>3733367=7=2<202274223:20313730373235333330342>313938383239347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034312<2022706?776572223:203235352>3639357=7=2<202274223:20313730373235333330342>37343239337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>36362<202274656=7065726174757265223:2033392<2022706?776572223:203135352>3837387=7=2<202274223:20313730373235333330352>3330353733327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203235322>3733367=7=2<202274223:20313730373235333330352>383533383031337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203235362>35367=7=2<202274223:20313730373235333330362>343232363335387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203235382>39387=7=2<202274223:20313730373235333330362>393639373939357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203235382>3730397=7=2<202274223:20313730373235333330372>353130303339337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203236322>3836317=7=2<202274223:20313730373235333330382>303434353030387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203235352>3639357=7=2<202274223:20313730373235333330382>3633383635367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203235352>3130367=7=2<202274223:20313730373235333330392>323436393133327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203235302>3537337=7=2<202274223:20313730373235333330392>383536323538397=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =1.6482946872711182, total / elapsed =1330.4659760996285 in_token_count =344 out_token_count =1849 +[7;227461736;223:2022747261696>222<202272617465223:20313333302>343635393736303939363238352<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333331312>353937313938327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2034332<2022706?776572223:203235322>3334397=7=2<202274223:20313730373235333331302>333936343434367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034322<2022706?776572223:203232372>3138347=7=2<202274223:20313730373235333331302>393333333133367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203236302>3439357=7=2<202274223:20313730373235333331312>343639323934337=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =9.086302757263184, total / elapsed =208.4456187073473 in_token_count =17 out_token_count =1877 +[7;227461736;223:2022747261696>222<202272617465223:203230382>343435363138373037333437332<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333331372>343136303133357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>38392<202274656=7065726174757265223:2034302<2022706?776572223:203234382>3636357=7=2<202274223:20313730373235333330382>363532343130337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034302<2022706?776572223:203235382>39337=7=2<202274223:20313730373235333330392>32353437327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034302<2022706?776572223:203235342>31327=7=2<202274223:20313730373235333330392>383639313537337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034302<2022706?776572223:203235312>3039377=7=2<202274223:20313730373235333331302>343034353931367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034302<2022706?776572223:203235342>3731387=7=2<202274223:20313730373235333331302>3934333134357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034302<2022706?776572223:203235382>3030397=7=2<202274223:20313730373235333331312>3438323332347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034302<2022706?776572223:203234312>3233327=7=2<202274223:20313730373235333331322>303137343539327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034302<2022706?776572223:203235352>3330397=7=2<202274223:20313730373235333331322>363137373639327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034302<2022706?776572223:203235362>3439387=7=2<202274223:20313730373235333331332>323234383432387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034302<2022706?776572223:203235382>39337=7=2<202274223:20313730373235333331332>383037343833327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034302<2022706?776572223:203236312>3839397=7=2<202274223:20313730373235333331342>333433393731337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034302<2022706?776572223:203235362>3535327=7=2<202274223:20313730373235333331342>383839313235337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034302<2022706?776572223:203236352>35327=7=2<202274223:20313730373235333331352>343234383531327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034312<2022706?776572223:203236342>3932327=7=2<202274223:20313730373235333331352>393632323330377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034312<2022706?776572223:203235392>32357=7=2<202274223:20313730373235333331362>353932393531337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034312<2022706?776572223:203236342>3030397=7=2<202274223:20313730373235333331372>323032333438357=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =7.176941156387329, total / elapsed =287.3090297201145 in_token_count =105 out_token_count =1957 +[7;227461736;223:2022747261696>222<202272617465223:203238372>333039303239373230313134352<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333331382>373735313639317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203235302>3930387=7=2<202274223:20313730373235333331322>303039383633317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034312<2022706?776572223:203235342>3737367=7=2<202274223:20313730373235333331322>353937353133377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034312<2022706?776572223:203235372>31357=7=2<202274223:20313730373235333331332>313934393630367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034312<2022706?776572223:203235332>3836357=7=2<202274223:20313730373235333331332>373733303137327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034312<2022706?776572223:203235302>3839357=7=2<202274223:20313730373235333331342>3331343036337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203235372>3437317=7=2<202274223:20313730373235333331342>383738373037327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203235302>3839357=7=2<202274223:20313730373235333331352>343134353339387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39322<202274656=7065726174757265223:2034312<2022706?776572223:203235342>3138397=7=2<202274223:20313730373235333331352>393533363038357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203236312>30387=7=2<202274223:20313730373235333331362>353736393434367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203235382>3036387=7=2<202274223:20313730373235333331372>3138383837367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034312<2022706?776572223:203235332>3932317=7=2<202274223:20313730373235333331372>37373839367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203235372>3739397=7=2<202274223:20313730373235333331382>333535363939357=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =4.548511266708374, total / elapsed =464.7674537980953 in_token_count =216 out_token_count =1898 +[7;227461736;223:2022747261696>222<202272617465223:203436342>373637343533373938303935332<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333332312>393635363630337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39362<202274656=7065726174757265223:2034322<2022706?776572223:203235382>3630387=7=2<202274223:20313730373235333331372>373933393636387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203236342>3634367=7=2<202274223:20313730373235333331382>333635343637337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203235392>3139397=7=2<202274223:20313730373235333331382>3934323834337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203236322>3232317=7=2<202274223:20313730373235333331392>343739333330387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034312<2022706?776572223:203236342>3333317=7=2<202274223:20313730373235333332302>303133383933317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034312<2022706?776572223:203235382>3030397=7=2<202274223:20313730373235333332302>353437393638317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034312<2022706?776572223:203236312>3633317=7=2<202274223:20313730373235333332312>303832363335347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034312<2022706?776572223:203236332>37347=7=2<202274223:20313730373235333332312>363137373735347=z[0:zelapsed =9.142436742782593, total / elapsed =221.93207971625006 in_token_count =17 out_token_count =2012 +[7;227461736;223:2022747261696>222<202272617465223:203232312>39333230373937313632353030362<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333332372>3931383639337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203234392>3938347=7=2<202274223:20313730373235333331382>393336353838337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>38392<202274656=7065726174757265223:2034312<2022706?776572223:203234382>3533377=7=2<202274223:20313730373235333331392>343731333136387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034312<2022706?776572223:203235372>3437317=7=2<202274223:20313730373235333332302>30303532377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034312<2022706?776572223:203235332>3836357=7=2<202274223:20313730373235333332302>35333938317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>392<202274656=7065726174757265223:2034312<2022706?776572223:203235352>3130367=7=2<202274223:20313730373235333332312>303734313934327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034312<2022706?776572223:203235342>3737367=7=2<202274223:20313730373235333332312>363039313834337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39312<202274656=7065726174757265223:2034312<2022706?776572223:203235392>3839347=7=2<202274223:20313730373235333332322>313531373538347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>38392<202274656=7065726174757265223:2034312<2022706?776572223:203234352>3435317=7=2<202274223:20313730373235333332322>363833323736327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034312<2022706?776572223:203236312>3038357=7=2<202274223:20313730373235333332332>323432393430347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203235312>37367=7=2<202274223:20313730373235333332332>383037323537327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203235392>3537377=7=2<202274223:20313730373235333332342>333338373236387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203236312>3038357=7=2<202274223:20313730373235333332342>383637303338357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203235312>37367=7=2<202274223:20313730373235333332352>343038363539327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203236312>3335337=7=2<202274223:20313730373235333332362>303037383331387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203235392>3532367=7=2<202274223:20313730373235333332362>353632363731347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034312<2022706?776572223:203236312>3038357=7=2<202274223:20313730373235333332372>303938353131327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034312<2022706?776572223:203235372>387=7=2<202274223:20313730373235333332372>363938343734367=z[0:zSetting `pad_token_id` to `eos_token_id`:2 for open-end generation. +elapsed =4.550089597702026, total / elapsed =468.12264995303246 in_token_count =216 out_token_count =1914 +[7;227461736;223:2022747261696>222<202272617465223:203436382>31323236343939353330333234362<2022756>697473223:2022546?6;2?73222<202274223:20313730373235333333322>343639383436357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39382<202274656=7065726174757265223:2034332<2022706?776572223:203334382>3033387=7=2<202274223:20313730373235333332382>32333436327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39332<202274656=7065726174757265223:2034322<2022706?776572223:203235392>3839387=7=2<202274223:20313730373235333332382>373730393534387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203236312>3038357=7=2<202274223:20313730373235333332392>333232333734367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203235352>3936337=7=2<202274223:20313730373235333332392>393534333638367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39342<202274656=7065726174757265223:2034312<2022706?776572223:203235392>3235357=7=2<202274223:20313730373235333333302>353231393131367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034312<2022706?776572223:203234382>3739377=7=2<202274223:20313730373235333333312>303537313139317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034312<2022706?776572223:203236302>3736337=7=2<202274223:20313730373235333333312>3630373635327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;32383433302>37352<2038313932302>305=2<20226<6?6164223:20302>39352<202274656=7065726174757265223:2034312<2022706?776572223:203235392>3839347=7=2<202274223:20313730373235333333322>313436393239377=z[0:z +real 5m39.632s +user 10m44.081s +sys 0m51.995s +--- +fp16 +==== +[7;227461736;223:2022747261696>222<202272617465223:203230392>35373635323437323935383032332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333333362>3533353434327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;3837342>352<2038313932302>305=2<20226<6?6164223:20302<202274656=7065726174757265223:2033352<2022706?776572223:2039312>3139387=7=2<202274223:20313730373235333333352>3136353538397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;3839332>3837352<2038313932302>305=2<20226<6?6164223:20302<202274656=7065726174757265223:2033342<2022706?776572223:2039312>3032357=7=2<202274223:20313730373235333333352>393638393335377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203231302>31323534333736383135303932352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333333362>353636333536377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;3837332>393337352<2038313932302>305=2<20226<6?6164223:20302<202274656=7065726174757265223:2033302<2022706?776572223:2036342>3436347=7=2<202274223:20313730373235333333352>313834373930317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;3839332>383132352<2038313932302>305=2<20226<6?6164223:20302<202274656=7065726174757265223:2033302<2022706?776572223:2037342>30327=7=2<202274223:20313730373235333333362>303535383339337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203238382>35393635333330303239353932332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333333362>373636303430367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20302>37322<202274656=7065726174757265223:2034322<2022706?776572223:203338362>32317=7=2<202274223:20313730373235333333362>353431373238357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>323736303934333734343537332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333333362>373930333632347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20302>38392<202274656=7065726174757265223:2034302<2022706?776572223:203338352>3931367=7=2<202274223:20313730373235333333362>363135343932387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239332>34343838373533313737373935342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333333362>393932303137357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>30323233343336363938383639342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333333372>303134323537377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239332>343635303539313434313936342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333333372>3231373036347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2034372<2022706?776572223:203339352>3332347=7=2<202274223:20313730373235333333372>313438333330357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>30363438313439323734363932332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333333372>323338313131377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2034342<2022706?776572223:203339342>3931327=7=2<202274223:20313730373235333333372>313638383434377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239332>34303337353637363731323534362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333333372>343432323733397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>3038373738353936313039332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333333372>343632303331367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239332>333836303234333038303431362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333333372>3636373237397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>313134383532333135383933342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333333372>36383537347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239332>33373832343735383938393036332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333333372>38393331387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2034392<2022706?776572223:203339382>3630397=7=2<202274223:20313730373235333333372>373436303037347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>3039353936383238383933342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333333372>393039353033327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2034352<2022706?776572223:203339352>3833317=7=2<202274223:20313730373235333333372>3737303934397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239332>35303137393036303333363038362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333333382>313138323535317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>303737343031333532323536342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333333382>313333333639377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239312>363632383833373134343235392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333333382>333434363235357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035302<2022706?776572223:203430332>3037317=7=2<202274223:20313730373235333333382>323737363630387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>303736343537333333313530362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333333382>333537323236387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2034362<2022706?776572223:203339362>34327=7=2<202274223:20313730373235333333382>333030373435327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239312>38333636383732313436353730352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333333382>353731313239337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239342>373537343130353631383430352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333333382>3538313335327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239332>333336323630343334393036382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333333382>373936313533337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>313538363039353938323630392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333333382>383035303236387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239332>35303137393036303333363038362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333333392>303231393438337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035302<2022706?776572223:203430332>3037317=7=2<202274223:20313730373235333333382>383037393738397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>313337353136333338373737372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333333392>303238383632327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2034362<2022706?776572223:203430322>3436317=7=2<202274223:20313730373235333333382>383331373633337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239312>373333393138313735323938322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333333392>323438343538347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239332>373536333631373130313734332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333333392>3235333736397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239312>39373334313434393737373835352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333333392>3437343534357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035302<2022706?776572223:203338392>3131357=7=2<202274223:20313730373235333333392>333431303831397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239342>39353431303036373136303438362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333333392>343737363533337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2034372<2022706?776572223:203430302>3335357=7=2<202274223:20313730373235333333392>333633303632347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239322>333530363933373431363332392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333333392>373030343632337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239342>30313434393838383731303936352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333333392>373032343334337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>3034353330383039303838362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333333392>393236323035327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239332>343436303734343532313033372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333333392>393236323638337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2035312<2022706?776572223:203430332>3838357=7=2<202274223:20313730373235333333392>383732383736367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239332>39363332373233383637333732332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334302>313530383137367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2034372<2022706?776572223:203430322>3930347=7=2<202274223:20313730373235333333392>3932393035387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239322>373031303830323535363538332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334302>3135323030327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239342>33313139303234313031362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334302>333735333839387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239312>303138333932393835333433322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334302>333738383336327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239332>353336363632383637373630382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334302>363030333236337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2034372<2022706?776572223:203339392>3434347=7=2<202274223:20313730373235333334302>343836363032357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239312>343430343731353131383835342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334302>363035343737367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035312<2022706?776572223:203339302>3033337=7=2<202274223:20313730373235333334302>343035353339357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>323330343132323338353539372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334302>383234303637347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239332>343739363838333639343130392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334302>383330363239337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>31383030323037363536313231342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334312>303438373838337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2034382<2022706?776572223:203430332>3634377=7=2<202274223:20313730373235333334312>3033383535367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239322>38343239353737383135313833352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334312>3035363036347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203430352>3539367=7=2<202274223:20313730373235333334302>3936363336327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239332>383439303134313736393533362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334312>323733363930357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203238392>343138383032313037383637322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334312>323834333131337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239332>353130383139323333393933332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334312>353032313131327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239312>3332383437323337353132362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334312>3531313130387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239342>353333333930373132393639332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334312>373236333235387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2034382<2022706?776572223:203339372>3333397=7=2<202274223:20313730373235333334312>3633303138347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239332>383532373538393339343139332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334312>373335383733377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2035312<2022706?776572223:203339342>3038367=7=2<202274223:20313730373235333334312>353632363935377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>313939353435343139383331362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334312>393530383837377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239322>34333638393831353836363237362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334312>393631373332347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239332>38353336393531343439343931342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334322>313735353731377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2034382<2022706?776572223:203339302>3131397=7=2<202274223:20313730373235333334322>313732363036327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239302>373835393630363833323538322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334322>3138383732387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203339302>3830397=7=2<202274223:20313730373235333334322>313135383731377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239332>37383331383433363032373132362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334322>3430303538387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239312>303432383831313630353933392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334322>343135373338337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239342>34363334393334393638363738342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334322>363234383036327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239322>37303335353732383630323736362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334322>363431323430317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239342>34373437373531303637363231342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334322>383439303232327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2034382<2022706?776572223:203339382>3235377=7=2<202274223:20313730373235333334322>373035393237367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239332>35333139393139393436323239362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334322>383636383734377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203430362>3038317=7=2<202274223:20313730373235333334322>363436313132327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239332>373237303439353331373531332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334332>3037333839337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239312>3130303133383334383933352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334332>3039333739377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239342>32343634393038363238313039362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334332>323938333530387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2034392<2022706?776572223:203430342>3833347=7=2<202274223:20313730373235333334332>323531393236327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239302>393639313233303232313537382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334332>3332303832317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203339322>3133367=7=2<202274223:20313730373235333334332>323338393632347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239342>323930393239393931323138342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334332>353232383432327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239312>34353438393935373731333735352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334332>3534373532327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239332>35323633383731343330373132352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334332>373437373836387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239332>3531333330393938383437332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334332>373732343733337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>323235303537333237363637382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334332>393732333134317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2034392<2022706?776572223:203430332>3332367=7=2<202274223:20313730373235333334332>373839343039367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239312>363533363630393937363731392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334332>393938383233327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203430362>34317=7=2<202274223:20313730373235333334332>373831313830317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239342>333434343632353334343138392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334342>313936373534327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239302>32323936333530383539303234332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334342>323236333635387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239342>3036373631383337363438352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334342>3432313239327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2034392<2022706?776572223:203430332>3332367=7=2<202274223:20313730373235333334342>333233373331377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239312>34343031363435343732393335332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334342>343533303034367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203339362>3030367=7=2<202274223:20313730373235333334342>333136373030357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239322>393330303733303130353735322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334342>363436393431347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239332>363134383434323036313337392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334342>3637373934347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>323330373237323339333637372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334342>383731333737377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239322>333638333031323635353630392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334342>393033373235367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>303535333735383133343937372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334352>303935313339337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2035302<2022706?776572223:203430352>3235377=7=2<202274223:20313730373235333334342>393230373330387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239302>3131323137363639373835352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334352>313331323831347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203339392>3032377=7=2<202274223:20313730373235333334342>3930383238367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239332>34363437343738393939333130372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334352>333230323339387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239302>36313337313133303730343534332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334352>333538353835347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239332>33393238363831363130363234342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334352>353435323930357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035302<2022706?776572223:203430352>3432337=7=2<202274223:20313730373235333334352>343738333231337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239322>34363939373231323236303536372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334352>353834333236377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203430352>3137327=7=2<202274223:20313730373235333334352>3437313237357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239342>303831333730303737323036322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334352>3737303030387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239332>353831353130383134343532372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334352>3830393239387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>323239313532323432303439382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334352>3939343433347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239302>38373439313339313036383330362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334362>303336323837357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203339312>3830377=7=2<202274223:20313730373235333334362>303039383039357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239332>32333436303830303930313536332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334362>3231393539327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2035302<2022706?776572223:203430352>3135367=7=2<202274223:20313730373235333334362>3031373530387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239302>30363632353338313634393139352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334362>323633393737337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239342>32333833353535373436303036332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334362>343434303930387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239322>30383839393334353930353331342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334362>343839393634357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239332>353431393536373033363930372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334362>363639303235347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035302<2022706?776572223:203339312>3330367=7=2<202274223:20313730373235333334362>353439353037347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239332>383332373837393735373833342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334362>373134383239377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203431332>3536317=7=2<202274223:20313730373235333334362>353432353137347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>313631313238333937393035312<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334362>383933353832367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239302>34353335353630373838363533352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334362>3934323235367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239332>373835363739373339353336362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334372>3131383335347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035302<2022706?776572223:203339342>3035347=7=2<202274223:20313730373235333334372>303830343139337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239312>39313237333336353634383235342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334372>313638343437337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203430312>33397=7=2<202274223:20313730373235333334372>303733313232337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239342>30323537343631313834333336332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334372>333433313339347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239302>323236323836353039353631392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334372>3339363036347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239322>363134313031313534363334362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334372>3536383739327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239332>313933393034363238383233392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334372>363231323030367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203430382>3238387=7=2<202274223:20313730373235333334372>363035313139357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239342>35333930333430383830383539342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334372>373932393537387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035312<2022706?776572223:203338372>3135367=7=2<202274223:20313730373235333334372>3631323236317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239312>383131373537353334323833362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334372>383437363237397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>303330323037373935313233312<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334382>303137373633347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239312>34353234343336333533353937372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334382>3037343136367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239332>34383539313430313430313930342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334382>323432373236337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2035312<2022706?776572223:203338362>3530367=7=2<202274223:20313730373235333334382>313636303832317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239302>32303635303130343437363334362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334382>3330313731377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203339382>3639387=7=2<202274223:20313730373235333334382>313531393530347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239322>383131333438363939373535312<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334382>343638333039327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239322>35353430383136383339333231372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334382>353237353030347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239342>363830313838373833373135332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334382>363932333631387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239322>333332343730363433343137342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334382>373533333133357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>32333534353233333231353130362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334382>3931363832317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035312<2022706?776572223:203430362>3434357=7=2<202274223:20313730373235333334382>383030303135377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239302>393130393939383031393730332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334382>393830323733357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203339382>3238317=7=2<202274223:20313730373235333334382>373634303239357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239322>36343533353831353339343436342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334392>313432353639337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239312>303637333733343537333739312<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334392>323037313932377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239332>30303335383737323239363131332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334392>333637393037337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239312>303334333039383330343834382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334392>343333393839337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203339322>3939327=7=2<202274223:20313730373235333334392>333539333135367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239332>32303735373437333238303130352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334392>353933303930387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035312<2022706?776572223:203339332>3232357=7=2<202274223:20313730373235333334392>333939303931357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239332>363234383134353431333633392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334392>363538393831337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>3138343131343433303732332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334392>383136383931347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239312>333432323735383335343739342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333334392>383836333036387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239332>303236323338393238383437322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335302>303432323135337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035312<2022706?776572223:203430372>3236317=7=2<202274223:20313730373235333334392>393330323238357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239302>33303038383637343730383339352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335302>313133373035397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203339342>3439397=7=2<202274223:20313730373235333334392>3839383733357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239332>303031373236313335373533372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335302>323637373033337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239302>323137343538383135303335392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335302>333431333233397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239322>323830393032333233303732332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335302>343933353938327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035312<2022706?776572223:203339322>3935367=7=2<202274223:20313730373235333335302>343836353232327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239332>3531323036343630353934392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335302>353636343134347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203430362>3833357=7=2<202274223:20313730373235333335302>343439303233327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>333234393432363338323939382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335302>373137323634327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239312>38343036383836373131343737352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335302>373932373435387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239332>383434303231333038373938362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335302>393432383237377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239302>323337323435373734303533362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335312>303230323633377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203339332>3133367=7=2<202274223:20313730373235333335302>393831383735347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239322>35333538333332323231323336342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335312>313638353537327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035312<2022706?776572223:203339312>3834377=7=2<202274223:20313730373235333335312>303138323432367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239302>323339393835373139353030382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335312>323437393034357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239322>303433363735363033343731372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335312>3339343738317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239322>363130333837383935353232392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335312>343733363131347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239342>323338363638343631393832382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335312>363139313733337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203339332>3033377=7=2<202274223:20313730373235333335312>3535333136397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239312>37373233373131363538343337372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335312>363939393931327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203430362>3032317=7=2<202274223:20313730373235333335312>353130393639397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239342>3237353238303837393738342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335312>383433363538377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239322>3132313036333536373039362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335312>393236383537327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239322>353230333730323036303134332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335322>303639333636357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239302>31363438303832303634323132342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335322>3135343536357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203339332>3430347=7=2<202274223:20313730373235333335322>303832323139387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239332>313139303532333436363330342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335322>323934363235337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203339332>3633357=7=2<202274223:20313730373235333335322>313436343537347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239302>383130313034313136393832382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335322>33383137387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239322>34353934363138323738353135362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335322>353230353033387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239322>37313930333936373537333934352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335322>363037333937337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239342>383935363331373936323035362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335322>373434353032387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203430382>3131327=7=2<202274223:20313730373235333335322>373239353430337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239312>35383937333238363537363934362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335322>383333393033387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203430302>3633317=7=2<202274223:20313730373235333335322>3635373939337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239322>3632393537343038323037392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335322>3937313133317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239302>32383539363336333136373835362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335332>303631353237377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239322>32323834323633303931353338362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335332>313937303939347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239302>323631393037313435353737352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335332>323839303537377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203339342>3332327=7=2<202274223:20313730373235333335332>323134313438337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239322>39353134373232323132323639342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335332>343232343932337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203339332>3633357=7=2<202274223:20313730373235333335332>32373032397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239332>323337373135363031353632322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335332>353134333635327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239342>33343033393231323439303435352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335332>36343639337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239302>37353639333237343835373438352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335332>3734313338377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239322>353236353535323136323839332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335332>383732363532337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203339362>3536367=7=2<202274223:20313730373235333335332>383030363331387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239312>343235373337393430383432322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335332>393638363433377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203339332>3732357=7=2<202274223:20313730373235333335332>3736323137387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239332>30373532373638323136372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335342>303938303337357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239302>333238333030353438343837362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335342>313936303935357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239322>3430353337363637303438352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335342>333233383338357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239322>323134353338373533353239342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335342>3432313938337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203339322>3831347=7=2<202274223:20313730373235333335342>323933333933347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239342>343637383830363836383836362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335342>353438303630347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203339332>3935377=7=2<202274223:20313730373235333335342>3333343139397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239312>313439343532363935363635372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335342>3634383738397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239322>31353836393332343830303839342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335342>373734313831347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239322>333231393730323238373537342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335342>3837343539337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035352<2022706?776572223:203430332>3332367=7=2<202274223:20313730373235333335342>383233333637347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239342>333135393732303331373433312<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335342>393939393933387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2035322<2022706?776572223:203338342>3631337=7=2<202274223:20313730373235333335342>3836393233377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239302>32373238363931303034333430342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335352>313032303738377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239322>34313331303138393637362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335352>3232363031377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239302>353835303232393135353234312<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335352>333239323339347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239332>3031353036383033333437352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335352>343531333538387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203430312>3436387=7=2<202274223:20313730373235333335352>343035313131387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239322>333038333832353736353533322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335352>3535353138397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203430322>30347=7=2<202274223:20313730373235333335352>333533373333387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239332>353933363539343931383234342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335352>3637363334377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239312>333231343137373738323633322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335352>373831393938347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239322>38323635333236303330323637352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335352>393032353530327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239312>353130343736333233383437342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335362>3030383432327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035352<2022706?776572223:203430322>3436317=7=2<202274223:20313730373235333335352>393234333435357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239322>393730333932393637393338392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335362>313237393230327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203339392>3236347=7=2<202274223:20313730373235333335352>393932303432337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239302>323930323237323232333737322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335362>323335393137367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239322>313437323739393433353338312<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335362>333534303035337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239312>38313038333432393435383234332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335362>343632313135337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239342>33373935333533343135303637372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335362>353738323838367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203430382>3836377=7=2<202274223:20313730373235333335362>353531303035347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239302>393837343832353438383632322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333335362>363838393538347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035352<2022706?776572223:203430302>3935327=7=2<202274223:20313730373235333335362>3436343331397=z[0:z +real 0m24.048s +user 0m43.572s +sys 0m4.630s +--- +bf16 +==== +[7;227461736;223:2022747261696>222<202272617465223:203131332>33353434393730323731323732342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336302>313531373033387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;3837342>3132352<2038313932302>305=2<20226<6?6164223:20302<202274656=7065726174757265223:2033382<2022706?776572223:2037352>3138367=7=2<202274223:20313730373235333335382>393930383734337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;3839332>363837352<2038313932302>305=2<20226<6?6164223:20302<202274656=7065726174757265223:2033372<2022706?776572223:2037342>3933347=7=2<202274223:20313730373235333335392>373131343730387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203236392>393535323439333738393133362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336302>323334373735387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203133342>31363032383532383234353231382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336302>323531343935367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;3837332>393337352<2038313932302>305=2<20226<6?6164223:20302<202274656=7065726174757265223:2033362<2022706?776572223:2036362>3936337=7=2<202274223:20313730373235333335392>313530343539387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;3839332>3837352<2038313932302>305=2<20226<6?6164223:20302<202274656=7065726174757265223:2033362<2022706?776572223:2037352>36397=7=2<202274223:20313730373235333335392>3835343831387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239342>3732343434353039363633382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336302>3330393630387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20302>36342<202274656=7065726174757265223:2034332<2022706?776572223:203231342>3436397=7=2<202274223:20313730373235333336302>3234343739357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203238332>39363239343535313132303132372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336302>3332393534367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239342>363136313831383934323730312<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336302>333834373437337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>353833383435353235383530382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336302>343033383439347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20302>35392<202274656=7065726174757265223:2034342<2022706?776572223:203337302>3531397=7=2<202274223:20313730373235333336302>333836383533327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239342>313532393632323030303037352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336302>34353938317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>3634303132333635373339392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336302>343738313832367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>313131303735333137313533322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336302>353334343239387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>39343135303139313038373730342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336302>3535323632377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>31343132393430313433363638352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336302>363039313133357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>373339333737383130343235372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336302>363236383835377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>30373631343236363134353735342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336302>3638333835337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>373333363439383033393034392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336302>373031303936387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239342>393138353736343934323730392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336302>373539333732357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>37363939333039313337353530352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336302>373735333434387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239342>38343132373032353832383431372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336302>3833343138317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035302<2022706?776572223:203338342>3430387=7=2<202274223:20313730373235333336302>373736303739347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>363336333037353135393434382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336302>383439353733317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239342>393130303839363833303332342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336302>393039303933397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>353731343438313330333738362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336302>3932343031357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2034382<2022706?776572223:203338342>3032327=7=2<202274223:20313730373235333336302>3931363935387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239342>393832373134383539303331382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336302>393833383730337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>3634303132333635373339392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336302>3939383433397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>313235323339353630393534362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336312>303538353138347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>3738323334343930393233372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336312>303732363333357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>30303235323739333335383731352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336312>3133333234397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>363838373838303639303638332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336312>3134363930337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239342>393336343934363939393531392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336312>323038303336377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>373632323932303438303934342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336312>323231303938347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>303136363831373539333036332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336312>323832373832337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>373236393637343039313137322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336312>323935333631337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>303338333836393330313234342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336312>333537343237347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035312<2022706?776572223:203338352>3035317=7=2<202274223:20313730373235333336312>333035343638367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>373235303538323038373433392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336312>333639363134317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239342>383334363732383232393435382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336312>3433323437357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>3639303639363830323732372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336312>343433383634367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>30303235323739333335383731352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336312>353037323437347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>373033313034313730313731322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336312>3531383135347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035302<2022706?776572223:203337392>3231327=7=2<202274223:20313730373235333336312>343637383436327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239342>393632393034343435363834352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336312>353832303239367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>373230323835333135323935362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336312>353932343638337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239342>39383436303137303338343935332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336312>363536383237377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>333939383938333439393833312<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336312>363636383232347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>30363030393532393439393330362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336312>373331353734387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>373236393637343039313137322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336312>3734313130337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>313434313237333334353232392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336312>3830363833317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>363937333737353633393432372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336312>383135333330337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>313232343036363033343232332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336312>3838313437347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>363734343733333439343139362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336312>383839363930347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239332>373535373337393835383930312<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336312>393536353631387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2035322<2022706?776572223:203338362>3233387=7=2<202274223:20313730373235333336312>393032373638317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>37383432353438343638373635342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336312>393633383839367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239342>39323134303535333938393831362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336322>303331353833337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>373333363439383033393034392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336322>3033383134317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>313439373934313338303335332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336322>313036313939337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>373739343830303438383639352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336322>3131323334367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035302<2022706?776572223:203338362>3434367=7=2<202274223:20313730373235333336322>303434363238347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>31393839313535353139363031372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336322>313830383539337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>37353834373237363237333036362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336322>3138363636397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>31313031333130383235373432342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336322>3235353535327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>373335353539313134383430392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336322>323630383934337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>313530373338363236343433362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336322>333330313532337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>373335353539313134383430392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336322>3333353038377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>313631313238333937393035312<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336322>343034383038387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>373132363439303035313436342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336322>343039333136337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>31303732393834313530393039352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336322>343739343536347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203338362>3233387=7=2<202274223:20313730373235333336322>343637373437327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>363231393937383539393137352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336322>343833353530337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239342>383738393735353533363437392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336322>35353433367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>35393333383236383932323730342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336322>353537393239337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239342>39313736333334393131323239362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336322>363239313633357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>363836383739333539393638392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336322>363332323132367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035312<2022706?776572223:203338362>3732337=7=2<202274223:20313730373235333336322>353735333437377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>3039323139313737333534362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336322>373033373836317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>373839393834383037323934362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336322>3730363532317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239342>353637323534323037383538332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336322>373739353439387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>373037383736353130383936352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336322>3738303739317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>32313837353736383131393633342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336322>383534313333367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>37393437353939343333323633372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336322>383534393736327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>31373234363335323833313833362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336322>393238373339337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>373139333330373535303331352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336322>393239323237387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>32303734313839393530323232342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336332>303033333234377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2035332<2022706?776572223:203338372>3734367=7=2<202274223:20313730373235333336322>393938343439337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>363932363035353630393435332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336332>303033343838337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>373632323932303438303934342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336332>303737373135367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>32333836303234373830333430372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336332>3037383030377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>36303637333537343834353830352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336332>313532303038357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035312<2022706?776572223:203338372>3034357=7=2<202274223:20313730373235333336332>313035393934327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>32313539323239323739393534352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336332>3135323538397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>363535333839323035313337362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336332>323236343239327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>313937303235393634343733332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336332>323237313737317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>373037383736353130383936352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336332>3330303732317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>30373730383636373835352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336332>3330313931327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>36373633383138393838393539352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336332>333734393936347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239342>353535303234383235333834332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336332>333736373837347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>373435313036303338303932332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336332>343439323030397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239342>39303633313739323337303937362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336332>343531353632327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>363837383333373131343438382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336332>353233343637387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239342>39313239313835363538333935362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336332>353236333536327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>373735363630333231303831392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336332>353937363632347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>303433313035383638313438342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336332>363031303831367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203338352>3931367=7=2<202274223:20313730373235333336332>353436323437377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>363830313939303731353137342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336332>363731393333347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239342>393134383034353137383631392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336332>363735393238387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>36383937343234333238323737362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336332>373436323231337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035312<2022706?776572223:203338372>3633357=7=2<202274223:20313730373235333336332>363931333938367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>30313935313236383734333132352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336332>373530383138377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>363835393235303134363238372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336332>383231333239387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>313132303139353537373734362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336332>383235343435377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>3732373932323031383531372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336332>383935353932377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>3036363730323832323733362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336332>3930303130387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>36313533323034393238393532352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336332>393639383236357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>31383039363534343734383239352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336332>393734373038367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>34393839393137383531313932342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336342>303434333034387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>303536333139363937373138362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336342>303439333933327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>363936343233313531303632392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336342>313138353534367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>313336353731393334393930352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336342>313234303338327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203338352>3331397=7=2<202274223:20313730373235333336342>303737343937327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>373833323939383734393833392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336342>313932373438357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>31323333353039313635353635352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336342>313938373532397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>36363131313431393036313633332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336342>323637303332367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203338372>3633357=7=2<202274223:20313730373235333336342>323438343034377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>30313338353038383535313034362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336342>323733363135317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>37303530313330383830333838372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336342>333431333632357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>303734323534363435333933332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336342>333438323435397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>363939323836343038313233362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336342>3431353635347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>303131393633363636343935332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336342>343233303139347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>373238383736363334303539312<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336342>343839383934347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>313139353733373030323737362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336342>343937363630397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>37323331343930333239333838362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336342>353634313134337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>313139353733373030323737362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336342>3537323238337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>363933353539393439323634352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336342>363338333737327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>313133393038303537313434362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336342>3634363934347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203338352>3035317=7=2<202274223:20313730373235333336342>363036393833327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>36383430313633343233363730342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336342>373132353934337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>323131313938343630333032372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336342>373231363432377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>35393234323839343532383739362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336342>373837363936367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>30353732363335383739373836342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336342>373936333036347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>37383532303938323439313439342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336342>383631383934347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203338372>3936357=7=2<202274223:20313730373235333336342>3739343034337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>303037323435373234353931332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336342>383731303139367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>373232313934343534323439332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336342>393336323437337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>3039393734343930303938352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336342>393435363533377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>353834373939323134353837372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336352>303130353339387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>303439373132363334393837392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336352>303230333230347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>373230323835333135323935362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336352>303834373433357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>31333934303531363434383430362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336352>303934393139327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>363936343233313531303632392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336352>313539303130367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>303834363339303332373434322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336352>313639363038367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203338372>39337=7=2<202274223:20313730373235333336352>3136333335397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>373830343334393936313739382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336352>3233333139337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>31303931383638353430333735352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336352>323434333332337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>363934353134333433373233382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336352>333037343539387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239342>38313438383232383833313939352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336352>3331393034397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>3636303136303031313032352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336352>3338313737337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203338372>3633357=7=2<202274223:20313730373235333336352>3335353736357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239342>37393332303939383930393339352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336352>3339333933367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>37333635313337373935323238352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336352>343536303735327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>303534343331393335333135372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336352>3436383536397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>333438343732313039353633312<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336352>3533303432327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>313139353733373030323737362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336352>353433323138367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>3136303036313830363538332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336352>3630343736317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>313530373338363236343433362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336352>363137383237377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>363932363035353630393435332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336352>3637393031347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>303833363934393637333237392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336352>363932343735367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>363134333636363037383632312<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336352>3735333239397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>30323233343336363938383639342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336352>373637393138387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203338392>3131357=7=2<202274223:20313730373235333336352>373335363234367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>36323438353936383036373438332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336352>383237363731337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>303337343433313630363333352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336352>383432373230337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>373139333330373535303331352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336352>393031393530317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203338382>3233347=7=2<202274223:20313730373235333336352>383930323537317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>30323332383733343237373932372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336352>393137333938357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>373434313531333138313233332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336352>393736323635347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>303131303230303636303432322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336352>393932303536387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>373038383330393937343634332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336362>3035303532397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>303538323037343834323737362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336362>303636373038367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>37353137383932343938393036332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336362>313234373636337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>303532353434313937303638332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336362>313431333835367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>373535363038333633323231342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336362>313938393633397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>31343630313632343438343838352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336362>323135393837347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>373235303538323038373433392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336362>323733323232327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>313136373430383531353138392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336362>323930363234397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203338382>3933327=7=2<202274223:20313730373235333336362>323635323832367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>37393039333938323232303835342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336362>3334373430377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>303639353334373130393333362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336362>333635343432387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>373333363439383033393034392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336362>343231363535327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203338372>3633357=7=2<202274223:20313730373235333336362>3432303138367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>31303931383638353430333735352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336362>343430303838357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>37333635313337373935323238352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336362>343936303030357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>303132393037323732393834372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336362>353134373838327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>373437303135343936343630312<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336362>353730323138387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>303535333735383133343937372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336362>353839343137327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>373230323835333135323935362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336362>363434343736377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>30333535353536333937363531362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336362>363634303838327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>37353735313739353637353032332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336362>373138363636387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>3231323134333334313734342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336362>373338363731337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>36333433393934383230333731372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336362>373933373736337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239352>313731353138393030383634392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336362>383133333030347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;313739322>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035352<2022706?776572223:203338382>3933327=7=2<202274223:20313730373235333336362>373934343634367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203239362>363336333037353135393434382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333336362>383638303837387=z[0:z +real 0m10.267s +user 0m16.169s +sys 0m2.974s +--- +tf32 +==== +[7;227461736;223:2022747261696>222<202272617465223:2039332>30333233303937313531343235352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337302>353538383834347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;3837352>303632352<2038313932302>305=2<20226<6?6164223:20302<202274656=7065726174757265223:2033392<2022706?776572223:2037352>3533337=7=2<202274223:20313730373235333336392>343234333538317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;3839332>37352<2038313932302>305=2<20226<6?6164223:20302<202274656=7065726174757265223:2033382<2022706?776572223:2037352>3236347=7=2<202274223:20313730373235333337302>303334383333327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2039312>33363633373933323935373231332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337302>373030303136377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;3837342>303632352<2038313932302>305=2<20226<6?6164223:20302<202274656=7065726174757265223:2033372<2022706?776572223:2036362>3936337=7=2<202274223:20313730373235333336392>363232323439347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;3839362>37352<2038313932302>305=2<20226<6?6164223:20302<202274656=7065726174757265223:2033372<2022706?776572223:2037362>3031337=7=2<202274223:20313730373235333337302>333430353934357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203133352>31313432353633323831323232382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337302>373233337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20302>34322<202274656=7065726174757265223:2034332<2022706?776572223:203236342>3937357=7=2<202274223:20313730373235333337302>3538393031327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134312>38373239333037343037383835382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337302>3835363337337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>373239393535343232363032372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337302>383732353537367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>39373433313138383739323033382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337312>303035313730337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2034382<2022706?776572223:203339342>3534387=7=2<202274223:20313730373235333337302>3937353030367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>35353731393030393238383138382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337312>303231373231367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>35393530393831303338343630332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337312>313533343238367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>383038373931313937313330342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337312>313730363432317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035312<2022706?776572223:203339352>3234317=7=2<202274223:20313730373235333337312>313330333731387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>35333933333934363437323535372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337312>333031363931357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>38313335323837353730383539322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337312>333139363732387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>353736313838313234323837362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337312>343530303234367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>38353636353435313331303534372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337312>343638353439377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>36313335333339383235393134332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337312>353938313931337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035312<2022706?776572223:203430332>35377=7=2<202274223:20313730373235333337312>353330323734327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>38343838333331343032353037382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337312>363137343539337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>32323439353635393930353934382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337312>373436383639367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>343037363130393937343236352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337312>37363737397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203430322>3732397=7=2<202274223:20313730373235333337312>363631387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>31303239383736363433373031352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337312>383937333031347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>39383031353237373234373536332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337312>393137373534377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>35373436363039343830343839372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337322>303436343835377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>33363639333135323432373131342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337322>303637313039387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>39363530353338313939333332352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337322>313935323739347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2035322<2022706?776572223:203430322>32337=7=2<202274223:20313730373235333337322>303733393132317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>33313536313939313835383731372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337322>323136353134367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203339362>3030367=7=2<202274223:20313730373235333337322>313934363834377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>35393030373039333037323931332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337322>333433353436397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>33373036343335393735333737342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337322>333634393839387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>35383532383334363330333932352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337322>343931383837387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>333038353631343835333034352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337322>353134353232337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>33373439333938363530343338372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337322>3634303237387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203430342>3735397=7=2<202274223:20313730373235333337322>363034333731337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>36353332303531303637333432382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337322>363634363039347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>31323738363039313533383039382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337322>373930303332317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>373636333835323331353738322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337322>383134353730347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203430302>3231327=7=2<202274223:20313730373235333337322>373234333630327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>30333430343335383136343436322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337322>393430363533367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>32303237363630393436393230342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337322>393634343230337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>3036323230323530383636392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337332>303839353233367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>36393432353634373234363233342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337332>313134353833377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>30343230303231383337383036352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337332>3233383238337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203338372>3936357=7=2<202274223:20313730373235333337332>3136313739357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>39303139363432343434333636372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337332>323634343532377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>363232383733333830383439312<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337332>333836353933367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>36373632363237303434373830362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337332>343133353034387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035352<2022706?776572223:203339362>3135327=7=2<202274223:20313730373235333337332>323830313935327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>35343334303632373633393836382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337332>353334387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>38343139363034393536363239332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337332>3536323439327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>33363130343533353133353237372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337332>3638343330397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>30393539323932393232313239332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337332>373133313531327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>30343433353736333132333137382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337332>383334303634377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203339302>3036377=7=2<202274223:20313730373235333337332>363933323633387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>31313037333033323230333833362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337332>383633353232337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>383334313430363737323638342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337332>3938333133317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>31323830393536303837343336382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337342>3031333235397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035352<2022706?776572223:203339382>3834377=7=2<202274223:20313730373235333337332>383639393339367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>35383632333137363431353931382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337342>313332333131337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>31373835393032333836393339342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337342>313633393634357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>39373530323430393439383334372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337342>323831313232347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203339362>3333367=7=2<202274223:20313730373235333337342>3233313230347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>3836333736353537303139342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337342>333132383139327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>32353432363137343539373633352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337342>343239373539357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>38393431313337363731353935352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337342>343631363530347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035352<2022706?776572223:203430332>3439337=7=2<202274223:20313730373235333337342>343534333834367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>35383938333135353030313735352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337342>353738303631387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>34383837363338323732343431382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337342>363132303230337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>32333534323838393135363839322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337342>373237363033327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>31383332363933313935393434372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337342>3736313539377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>32383338363232393435303131352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337342>383737383239387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203338332>3734367=7=2<202274223:20313730373235333337342>373630333334337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>37323639323733383332373832322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337342>393131363934357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>30393132303535353234323939332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337352>3032363632357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>313531323537373835383835352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337352>303632323936347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035352<2022706?776572223:203339332>3732357=7=2<202274223:20313730373235333337342>393834353231327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>39323830333331323937373538362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337352>313735343436377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>30383931343637363139343930322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337352>323132303533337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>30393530313132333331303134352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337352>333235323133347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>38373533383137363738373230332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337352>333630393032357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>343439363836393833313237332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337352>343733353531357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203339322>3434367=7=2<202274223:20313730373235333337352>333433303936357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>39373435333136353937353532392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337352>353130363933387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>39393134303637343938333633362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337352>363232343336357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>31363630383038393834363234342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337352>3636313236397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035362<2022706?776572223:203339342>3931327=7=2<202274223:20313730373235333337352>3532313334387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>3034343832363438363034392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337352>373732313638347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>323934363831383732383435352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337352>3831303830367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>383831333039313032353135312<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337352>393231393336387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203339342>3837387=7=2<202274223:20313730373235333337352>393034313437397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>313634393232373334353135372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337352>393631353037337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>373437373033383839343530342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337362>303731303538357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>32303333383335393035343532332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337362>313132303633367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035362<2022706?776572223:203339302>3839377=7=2<202274223:20313730373235333337362>303531373533387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>373234393836363135393932362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337362>3232303231367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>38343532373832343433313033382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337362>323631313135337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>353635363838393131303937342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337362>333639333835357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>32383336323731303339323931352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337362>343130353630387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>30363433343136383933353135322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337362>3531383038317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203339362>3333367=7=2<202274223:20313730373235333337362>343438323736387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>373834363033373034373933352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337362>353630343935397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>30313237313638343138363039342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337362>363638303132397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>32393135303237353938383231382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337362>373130393536337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035362<2022706?776572223:203339322>3430347=7=2<202274223:20313730373235333337362>353834313031377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>313138303034343730323232332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337362>383137363632377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>353130323238313731313036352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337362>3836313038337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>30343132383933333138333931352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337362>393636333832337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>31373434323032323037313531382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337372>30313137327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>39363631303037393637383039352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337372>313136313839377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035352<2022706?776572223:203430362>3030327=7=2<202274223:20313730373235333337372>303038333834357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>343036363831343030323038382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337372>313632313532387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035362<2022706?776572223:203339332>3133367=7=2<202274223:20313730373235333337372>3134343135387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>38343035333836343839363832322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337372>323637343733377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>343531303337343034383935372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337372>333131353536337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>3937313235323837353838332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337372>3431383333387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>30343237313636363239313636332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337372>343631323634367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>383934383235323032343335362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337372>353637313735347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2035352<2022706?776572223:203430362>3736377=7=2<202274223:20313730373235333337372>353339323034367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>353134313237393933343233322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337372>363131343737397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>34393339353138373031383230332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337372>373136353234387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>30363130303338303833393237342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337372>3736313136377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035362<2022706?776572223:203339342>3332327=7=2<202274223:20313730373235333337372>363738303437347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>37373434353239363734363236352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337372>383636323135327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>373539363132383439383934392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337372>393131323635397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>31333337323834373430383139382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337382>303135383038367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>323131343935333931303234372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337382>3036313738347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>303235383430323537313937362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337382>313635353330347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035352<2022706?776572223:203339342>3837387=7=2<202274223:20313730373235333337382>3036393538387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>32353136343831383231333533342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337382>323131333639387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>32323933313832303136333030342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337382>333135333235357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>33393036343737303631333831372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337382>333631373430347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035372<2022706?776572223:203431352>3636377=7=2<202274223:20313730373235333337382>3231373831367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>34313032373431363636363033372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337382>343633363338387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>31323835363439393737313533332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337382>353131343538347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>373038313839373932353539392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337382>363132363531367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>333034373239373937373335312<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337382>363631393230387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>32343435393538373736313733342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337382>3736323132337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035352<2022706?776572223:203430352>3038327=7=2<202274223:20313730373235333337382>363239343739327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>34383532323534373830323838342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337382>383131313835387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035372<2022706?776572223:203430362>36317=7=2<202274223:20313730373235333337382>373535343839337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>33393136343939333734393139362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337382>3931313339377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>32313234323235313132353136322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337382>393631383038327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>30313232343831393137383532362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337392>3036313132327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>33383133353434313839353433322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337392>313132313532337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>303834343535353231373030322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337392>3231303737367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035352<2022706?776572223:203339332>3633357=7=2<202274223:20313730373235333337392>3139353430387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>37343233333434333139383334372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337392>323632313139357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>32343738383638363839393337332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337392>3336303337317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>35363332353234303131313833322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337392>3431323333317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035372<2022706?776572223:203339382>3834377=7=2<202274223:20313730373235333337392>3238383634347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>39363637313534333931333830362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337392>353039323332337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>373531323036363234383534382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337392>353632353430387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>373331333735313433303238382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337392>363538323435387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>33323434353837373133333632332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337392>373132393333357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>383638303332353332373737362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337392>383037313430367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035362<2022706?776572223:203339332>3935377=7=2<202274223:20313730373235333337392>373331323434367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>39313037313537303731393835362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337392>38363137347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035372<2022706?776572223:203430342>3530357=7=2<202274223:20313730373235333337392>383139393331357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>35393034383237323337343134372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333337392>393537323237377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>35333838303234383838393438372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338302>3031323033347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>30363633393730343032313132362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338302>313036393431327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>343138393939353231343531322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338302>3136323339327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>39313838313232323232313531342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338302>323536373431337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>31383731363236383935333833382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338302>333132393631387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>373539373735323833303732342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338302>343035373332327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035362<2022706?776572223:203339322>3434367=7=2<202274223:20313730373235333338302>323631303532387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>32313033333635303732373439372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338302>3436333438337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035372<2022706?776572223:203339322>3231377=7=2<202274223:20313730373235333338302>333531393831367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>36323534343433343436363338332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338302>353534393737347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>383937323834393336333435362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338302>363133343039357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>37303431363835383437303036382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338302>373034303432377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>38393936323435353331323737352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338302>373633323432327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>34303135353137333437363734322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338302>3835333430357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035362<2022706?776572223:203339392>3335387=7=2<202274223:20313730373235333338302>373935343738387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>31393835313639343232383334322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338302>393133383535387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035382<2022706?776572223:203339332>3430347=7=2<202274223:20313730373235333338302>3839303336387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>37363236313538393736353435342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338312>303033343631367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>31393636353831313535393435342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338312>303633353332387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>303538363539303438333730392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338312>3135333230367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>37303938393030323134303633352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338312>323133373234347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>30363636333135333735323435362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338312>3330323931377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>31393137393638363533393232362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338312>3336343237397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>37383339323339383838373938322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338312>343531393033367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035362<2022706?776572223:203339352>3134367=7=2<202274223:20313730373235333338312>333330393235327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>36333532353233353831383032382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338312>353134333832367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035382<2022706?776572223:203339342>3332327=7=2<202274223:20313730373235333338312>343532303236317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>32373538363632333634313339322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338312>363031353031327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>313937313236353330383539342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338312>363635313036387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>37303239383539313831373435332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338312>373530353232347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>313933383832333430333833322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338312>383135373130357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>38303231353931323333363238382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338312>383939343832377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>31373935313639343136363634362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338312>393637323230337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>34343739373330343135303937352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338322>303438383033367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035372<2022706?776572223:203431332>3531337=7=2<202274223:20313730373235333338312>393034383638347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>3230303833343335333432392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338322>313137373733357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2035382<2022706?776572223:203339352>3833317=7=2<202274223:20313730373235333338322>303033373039367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>30353432303432313033313534382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338322>313938363531337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>31363139313135393431343736352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338322>323638343539367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>38373939373430383831303439342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338322>333438353335357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>31353931333231393030373634362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338322>343139313232377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>34383030333733303139323235352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338322>343937383937347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035372<2022706?776572223:203339362>3635387=7=2<202274223:20313730373235333338322>343731363234367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>313835373732343934303732372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338322>353639373135337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035382<2022706?776572223:203339352>3530397=7=2<202274223:20313730373235333338322>353432353133317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>313031353739393935393933332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338322>3634373638337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>31373438383335343432393732342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338322>373230353035377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>34363138383135353936393130352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338322>373937303032387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>31383632333538383936323334322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338322>383731303731387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>38333137373131393836343638332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338322>393436363733367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>31363533383539393738393139352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338332>303231363535337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>35313238323332373537313039362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338332>303935393037327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2035372<2022706?776572223:203430392>3738367=7=2<202274223:20313730373235333338332>303031373433367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>31353030393938353638333132322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338332>313732333034367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035382<2022706?776572223:203339342>3634347=7=2<202274223:20313730373235333338332>3037343535317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>303731333231363430383336372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338332>3234353637337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>31383634363735383835303034352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338332>3332333030347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>30363731303035333433393436382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338332>333935333437347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>31373637333638363739393733332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338332>343733363437387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>30343639333633363937323733322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338332>3534353132337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035372<2022706?776572223:203339362>3036377=7=2<202274223:20313730373235333338332>353331363430337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>30313234333731383134383237342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338332>363234333833327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035382<2022706?776572223:203339332>3331347=7=2<202274223:20313730373235333338332>3630383830357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>34363633363131333235393430372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338332>3639343531397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>32313435303835373437353138322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338332>373735303138357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134372>31323331363732303533353931382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338332>383434313438397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134362>313933313837313735343431382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338332>3932353631317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:203134382>33343438373132313634313338382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338332>3939333335347=z[0:z +real 0m16.878s +user 0m29.884s +sys 0m3.904s +--- +fp32 +==== +[7;227461736;223:2022747261696>222<202272617465223:2031382>3038383439343231303437333434322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338382>353039363236397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;3837342>303632352<2038313932302>305=2<20226<6?6164223:20302<202274656=7065726174757265223:2034322<2022706?776572223:2037382>3339397=7=2<202274223:20313730373235333338362>30303434367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;3838352>313837352<2038313932302>305=2<20226<6?6164223:20302<202274656=7065726174757265223:2034312<2022706?776572223:2037372>3230367=7=2<202274223:20313730373235333338362>373935373130387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20302>30322<202274656=7065726174757265223:2034302<2022706?776572223:2037372>35337=7=2<202274223:20313730373235333338372>333539353839387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2034392<2022706?776572223:203237332>3033397=7=2<202274223:20313730373235333338372>383931363837367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035302<2022706?776572223:203238332>3538347=7=2<202274223:20313730373235333338382>343231313838387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031382>32383831383931333135373636312<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338382>353936303038387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;3837332>393337352<2038313932302>305=2<20226<6?6164223:20302<202274656=7065726174757265223:2034322<2022706?776572223:2037322>3135357=7=2<202274223:20313730373235333338362>333837363739337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;3839332>383132352<2038313932302>305=2<20226<6?6164223:20302<202274656=7065726174757265223:2034312<2022706?776572223:2037362>3435347=7=2<202274223:20313730373235333338372>3138323839397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20302>38342<202274656=7065726174757265223:2034382<2022706?776572223:203237362>3038387=7=2<202274223:20313730373235333338372>3735383830337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035302<2022706?776572223:203237342>3537387=7=2<202274223:20313730373235333338382>333034393038387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136313336333238353135363831372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338392>363539313439367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035302<2022706?776572223:203238362>3238377=7=2<202274223:20313730373235333338392>3031303130357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035312<2022706?776572223:203238352>3336367=7=2<202274223:20313730373235333338392>353534343739367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3036353637333031363835353733372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333338392>373530323739327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2035312<2022706?776572223:203237312>3539377=7=2<202274223:20313730373235333338382>383934363231387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035312<2022706?776572223:203237332>39387=7=2<202274223:20313730373235333338392>3437393837337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136303134353235383139353038372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333339302>383038333330387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035312<2022706?776572223:203237332>3633387=7=2<202274223:20313730373235333339302>303834333235367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035312<2022706?776572223:203238372>387=7=2<202274223:20313730373235333339302>3632383537357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3037303039353932373332343337342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333339302>393033383736357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203238342>3138317=7=2<202274223:20313730373235333339302>30323936337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203238312>3830357=7=2<202274223:20313730373235333339302>3630323337337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136303738363039363231333833372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333339312>3935373531367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035312<2022706?776572223:203238352>3336367=7=2<202274223:20313730373235333339312>313630393932317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035312<2022706?776572223:203237342>3535327=7=2<202274223:20313730373235333339312>363930303031377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3037313732383432383636323530372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333339322>3035373434327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203238342>3230367=7=2<202274223:20313730373235333339312>313533313631337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203238342>3530337=7=2<202274223:20313730373235333339312>3638333136327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136313330333537343334333234372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333339332>313036353630377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2035312<2022706?776572223:203237342>3535327=7=2<202274223:20313730373235333339322>3238363539357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035312<2022706?776572223:203238352>3336367=7=2<202274223:20313730373235333339322>383632353033357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3037333832323639383236363835322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333339332>3231303836337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203237352>3136387=7=2<202274223:20313730373235333339322>323735383534367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203237332>3635387=7=2<202274223:20313730373235333339322>3833303434337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136323634313138353736383638352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333339342>323535353235347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2035312<2022706?776572223:203238362>3238377=7=2<202274223:20313730373235333339332>333933303336367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035312<2022706?776572223:203237352>3135317=7=2<202274223:20313730373235333339332>3932323533327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3037333432343331373737393337342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333339342>3336343335357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203238332>3236317=7=2<202274223:20313730373235333339332>333632373038367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203238332>3835397=7=2<202274223:20313730373235333339332>383933393538337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136303130353435363030353335382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333339352>343034353631357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2035312<2022706?776572223:203238322>3939337=7=2<202274223:20313730373235333339342>343538303934317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035312<2022706?776572223:203238352>3936357=7=2<202274223:20313730373235333339352>303237343134387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3037303730373039363738353030342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333339352>353137393736387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203237362>3935347=7=2<202274223:20313730373235333339342>343234393432377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203237382>3738367=7=2<202274223:20313730373235333339342>3939333130317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363036333838313930383636312<2022756>697473223:202254666<6?7073222<202274223:20313730373235333339362>353533373031367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2035312<2022706?776572223:203238342>3137357=7=2<202274223:20313730373235333339352>353931333535387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035312<2022706?776572223:203237362>3636347=7=2<202274223:20313730373235333339362>313534363939367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>30363936313838343830363737362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333339362>3637313636337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203237362>3335367=7=2<202274223:20313730373235333339352>3534383232367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203238372>3230317=7=2<202274223:20313730373235333339362>313231383131327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238372>3436397=7=2<202274223:20313730373235333339362>363531353338317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363531393335313630383537362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333339372>373032353336337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035312<2022706?776572223:203238342>3137357=7=2<202274223:20313730373235333339362>363832383635397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035312<2022706?776572223:203238352>3336367=7=2<202274223:20313730373235333339372>323136343737367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3037313932353630393537363539322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333339372>38323532327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203237362>3637387=7=2<202274223:20313730373235333339372>3138323032397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203238302>3536347=7=2<202274223:20313730373235333339372>3737353530337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136343237333634333138343030342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333339382>383531323530367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2035312<2022706?776572223:203238362>3238377=7=2<202274223:20313730373235333339372>3832333237347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203237352>3135317=7=2<202274223:20313730373235333339382>333935353335357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>30373536333733313439363432322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333339382>393739323338377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238332>3538337=7=2<202274223:20313730373235333339382>333536323533367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237372>3330387=7=2<202274223:20313730373235333339382>393031393337357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136363639343937303139373037382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333339392>3939393930397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2035322<2022706?776572223:203237342>3535327=7=2<202274223:20313730373235333339382>393333383739317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203238382>3939317=7=2<202274223:20313730373235333339392>343635383537357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203237342>3535327=7=2<202274223:20313730373235333339392>393936373932387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3037323433343335353136353039372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333430302>3133323733387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237342>3235367=7=2<202274223:20313730373235333339392>3433333534347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238352>3336397=7=2<202274223:20313730373235333339392>3936343131317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136343236313639373336333531382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333430312>3134383738367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203237372>3835357=7=2<202274223:20313730373235333430302>3532363438337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203238352>3039377=7=2<202274223:20313730373235333430312>303834343938367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3036383536363230333930353637352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333430312>323836343833357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237372>3539387=7=2<202274223:20313730373235333430302>34393332327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237382>3439357=7=2<202274223:20313730373235333430312>303335393732387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136333930333332393637333934332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333430322>3239373535337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203238362>3238377=7=2<202274223:20313730373235333430312>363936333139337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203238342>3137357=7=2<202274223:20313730373235333430322>323539313035327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3037373434343338353038303330352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333430322>343339353837387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238322>3939337=7=2<202274223:20313730373235333430312>353934333934327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238302>3239357=7=2<202274223:20313730373235333430322>3133393639337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363339373530303231333936332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333430332>343436343637327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203237352>3734337=7=2<202274223:20313730373235333430322>373837333634327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203238342>3435327=7=2<202274223:20313730373235333430332>3331363934387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>303734313831363439333933372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333430332>353932393830367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238342>3530337=7=2<202274223:20313730373235333430322>3639353434327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238372>3436397=7=2<202274223:20313730373235333430332>3234393832377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136323337303436333632313638382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333430342>3539353236377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203238372>3437387=7=2<202274223:20313730373235333430332>383438343930327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203237362>3636347=7=2<202274223:20313730373235333430342>3338323436367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3037363433303333313936353236332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333430342>373436323330347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237332>33397=7=2<202274223:20313730373235333430332>373831333731367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238332>3835397=7=2<202274223:20313730373235333430342>333130313531337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136333332353938373639373933382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333430352>373434343239337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2035322<2022706?776572223:203238332>3835337=7=2<202274223:20313730373235333430342>3931313538387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203238352>3639367=7=2<202274223:20313730373235333430352>3434323733397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3037383437383237373833363538342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333430352>383939323438387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237362>3038387=7=2<202274223:20313730373235333430342>383339303637357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237382>3738367=7=2<202274223:20313730373235333430352>333735303132397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136333339333637343236373339332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333430362>3839333331397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203237342>3832397=7=2<202274223:20313730373235333430362>303232313635357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203237382>3736397=7=2<202274223:20313730373235333430362>353935373838357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3037363132323538363139353931352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333430372>303533323430357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238322>3939337=7=2<202274223:20313730373235333430352>393338303034357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237372>3537367=7=2<202274223:20313730373235333430362>3439353239397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136313238373635313532323437352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333430382>303432323835377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203237372>3235367=7=2<202274223:20313730373235333430372>3137393630317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203238322>3939337=7=2<202274223:20313730373235333430372>3734373830327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3037363730363532323532303132362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333430382>323036343833317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237352>387=7=2<202274223:20313730373235333430372>313035303937387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238382>3036377=7=2<202274223:20313730373235333430372>363333393535357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238352>3639317=7=2<202274223:20313730373235333430382>313739393936377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363031323533353730373935352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333430392>313931333632317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2035322<2022706?776572223:203238362>3238377=7=2<202274223:20313730373235333430382>323830303734387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203237372>3533327=7=2<202274223:20313730373235333430382>383038363333337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3037363637383930333130343735332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333430392>333539373035377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238302>3030337=7=2<202274223:20313730373235333430382>373039313533377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238342>3530337=7=2<202274223:20313730373235333430392>3233383037387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363031363531353933353139362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333431302>333430333732387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203238362>35387=7=2<202274223:20313730373235333430392>333337363337347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203238372>387=7=2<202274223:20313730373235333430392>383835363038377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3037313430393030343233343233372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333431302>353133323931317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238332>3236317=7=2<202274223:20313730373235333430392>373636383136397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238382>3036377=7=2<202274223:20313730373235333431302>323936353337397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363230323830393036383432332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333431312>3439303036317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2035322<2022706?776572223:203236392>3134367=7=2<202274223:20313730373235333431302>3434393638347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203237352>34327=7=2<202274223:20313730373235333431312>303430313430367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3036393633343631383930313334332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333431312>3636363834317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237352>387=7=2<202274223:20313730373235333431302>3832353138397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238372>3436397=7=2<202274223:20313730373235333431312>333538383030327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136323433303138313038343737362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333431322>363338393631337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203237352>3135317=7=2<202274223:20313730373235333431312>3538333139387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203238362>3535367=7=2<202274223:20313730373235333431322>313133323433337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>30373532353436333838303334392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333431322>3832303133357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238382>3338397=7=2<202274223:20313730373235333431312>393138303831387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238342>3530337=7=2<202274223:20313730373235333431322>3531353933337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363138393237333733313630322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333431332>3738383033367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203237372>3235367=7=2<202274223:20313730373235333431322>363432303338337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203238372>3437387=7=2<202274223:20313730373235333431332>313735303834367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203238352>3639367=7=2<202274223:20313730373235333431332>373033383131367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3037333733393836353330393939362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333431332>3937333435317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237382>3736337=7=2<202274223:20313730373235333431332>303437303837347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238312>3830357=7=2<202274223:20313730373235333431332>353736303539387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136333332353938373639373933382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333431342>393336383438397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203238352>3936357=7=2<202274223:20313730373235333431342>323839333833367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203237362>3036357=7=2<202274223:20313730373235333431342>3836353130337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>303732323333323139393434322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333431352>313237363034377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2035332<2022706?776572223:203237392>3035347=7=2<202274223:20313730373235333431342>313432383338357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238382>3637377=7=2<202274223:20313730373235333431342>363733333138397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363033393630313537393239382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333431362>303835373434317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203237352>3734337=7=2<202274223:20313730373235333431352>343230393334347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203238352>3639367=7=2<202274223:20313730373235333431352>393531393439347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>30373636333135353537323136312<2022756>697473223:202254666<6?7073222<202274223:20313730373235333431362>323830383630327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238372>3439387=7=2<202274223:20313730373235333431352>323231313933337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237362>3637387=7=2<202274223:20313730373235333431352>383138353537357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363332383231393037363037322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333431372>3233343637357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237372>3835357=7=2<202274223:20313730373235333431362>343830333833367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203237372>3835357=7=2<202274223:20313730373235333431372>303039343039327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>30383031353536333232393731372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333431372>34333337397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237352>3736367=7=2<202274223:20313730373235333431362>343035323030357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237392>3337367=7=2<202274223:20313730373235333431362>393336313238317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136333539363733363834343730332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333431382>333833343439387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2035322<2022706?776572223:203238362>3238377=7=2<202274223:20313730373235333431372>3538353832317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203237392>3034357=7=2<202274223:20313730373235333431382>313537383538347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>30373836353538363631313334342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333431382>353836373735337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238302>3838367=7=2<202274223:20313730373235333431372>3436343630327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238352>3336397=7=2<202274223:20313730373235333431372>3939363238347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238372>3436397=7=2<202274223:20313730373235333431382>353235333236337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363339333132303232333537382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333431392>3533323331337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238312>3437327=7=2<202274223:20313730373235333431382>363836343738347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238312>3734387=7=2<202274223:20313730373235333431392>3231393438337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3037373233353235323436323237372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333431392>3733393933357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237362>3038387=7=2<202274223:20313730373235333431392>303839343533327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237352>3437387=7=2<202274223:20313730373235333431392>363530383131377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136343136363133313333353738372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333432302>363831323836367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2035332<2022706?776572223:203238322>3939337=7=2<202274223:20313730373235333431392>373739333632327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203238332>3538347=7=2<202274223:20313730373235333432302>333130333834387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3037363339303837363832343534372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333432302>383933323039377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238382>3430397=7=2<202274223:20313730373235333432302>313838303338387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237342>3235367=7=2<202274223:20313730373235333432302>3731373130347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136323838343034353936383233372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333432312>383330303331367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035322<2022706?776572223:203238332>3538347=7=2<202274223:20313730373235333432302>3834313334367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238322>3339347=7=2<202274223:20313730373235333432312>343333303530397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>30373630373532343135373432332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333432322>303437313735367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237392>3035347=7=2<202274223:20313730373235333432312>323437323334337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238352>3938327=7=2<202274223:20313730373235333432312>373735383339387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136323532393731313031373035342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333432322>393738303035327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238312>3734387=7=2<202274223:20313730373235333432312>3939313134317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238352>3639367=7=2<202274223:20313730373235333432322>353236313831377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3037383035363032353635343438332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333432332>323031303435357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2035332<2022706?776572223:203238322>3936367=7=2<202274223:20313730373235333432322>333034363533347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238302>3239357=7=2<202274223:20313730373235333432322>383438323333357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363237343436393931393933382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333432342>313236373634387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2035332<2022706?776572223:203238352>3336367=7=2<202274223:20313730373235333432332>3037353334377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237362>3636347=7=2<202274223:20313730373235333432332>363035323436337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3037383037353735363634383536362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333432342>333534303930327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237382>3138387=7=2<202274223:20313730373235333432332>343339303432337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237382>3138387=7=2<202274223:20313730373235333432332>393934353435377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363232353839393230313937372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333432352>323735363934317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238382>3636387=7=2<202274223:20313730373235333432342>3133373838387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238352>3039377=7=2<202274223:20313730373235333432342>363636363637357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237362>3334327=7=2<202274223:20313730373235333432352>3139353837397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3037373134383434343034323934382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333432352>353037333230367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238392>3839387=7=2<202274223:20313730373235333432342>353234383633327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237362>3038387=7=2<202274223:20313730373235333432352>303533353338337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136343431333031323139303034322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333432362>343234343037327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238362>3837397=7=2<202274223:20313730373235333432352>3732353833377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238382>3036397=7=2<202274223:20313730373235333432362>3238333934397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>30373737323435353130353630392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333432362>363630343130327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237352>3736367=7=2<202274223:20313730373235333432352>353832373034357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238372>3436397=7=2<202274223:20313730373235333432362>31313638377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237372>3836367=7=2<202274223:20313730373235333432362>363435353838327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136323035353935373739313532372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333432372>353733323435387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237352>3734337=7=2<202274223:20313730373235333432362>383132383439387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238392>3931327=7=2<202274223:20313730373235333432372>333630363236327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3037343633353238383237343836362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333432372>383133373438367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238352>3935397=7=2<202274223:20313730373235333432372>323138383738377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237392>3035347=7=2<202274223:20313730373235333432372>373438323737327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363433353732363433343433382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333432382>373231393130327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238352>3336367=7=2<202274223:20313730373235333432372>383839363936387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237362>3334327=7=2<202274223:20313730373235333432382>343533363333357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3036393738383338353839353836322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333432382>393637323931367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238372>3739397=7=2<202274223:20313730373235333432382>323737383331337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238392>3537377=7=2<202274223:20313730373235333432382>383535383139377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136343736333433343634363634382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333432392>3837303531387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2035332<2022706?776572223:203237362>3334327=7=2<202274223:20313730373235333432392>303135353931367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238342>3737347=7=2<202274223:20313730373235333432392>353434393233337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>30363733393534323136343231372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333433302>313232303132347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238342>3737317=7=2<202274223:20313730373235333432392>343336323438337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237392>3730357=7=2<202274223:20313730373235333432392>393637323039387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136353232393335373037373031332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333433312>303139313536357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2035332<2022706?776572223:203237362>3933337=7=2<202274223:20313730373235333433302>303733373032387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237342>3832397=7=2<202274223:20313730373235333433302>3630323834317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3037353836363133383937323837372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333433312>3237353232397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238302>3838367=7=2<202274223:20313730373235333433302>343939313131377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237392>3035347=7=2<202274223:20313730373235333433312>3032383039377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363833323031353131343332322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333433322>313637373230367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2035332<2022706?776572223:203238352>3936357=7=2<202274223:20313730373235333433312>3133323235327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237362>3636347=7=2<202274223:20313730373235333433312>363631353537377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3037323832303836323230333931352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333433322>343238363139397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238382>3731317=7=2<202274223:20313730373235333433312>353539313931327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237352>3133337=7=2<202274223:20313730373235333433322>303838323331367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363739343936383132333538362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333433332>333136333034327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238362>3837397=7=2<202274223:20313730373235333433322>313839393133337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238372>3437387=7=2<202274223:20313730373235333433322>3737313938337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3037373434383333313032323833332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333433332>353831373134397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237362>3935347=7=2<202274223:20313730373235333433322>363236383534327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238392>3330387=7=2<202274223:20313730373235333433332>313636343236327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363832323435343436333438382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333433342>343634383636367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238382>3036397=7=2<202274223:20313730373235333433332>33333338337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237352>3131357=7=2<202274223:20313730373235333433332>383633393531327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237382>3736397=7=2<202274223:20313730373235333433342>34313131397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3037373835383731373935383333322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333433342>3733343930357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237362>3935347=7=2<202274223:20313730373235333433332>363935343937357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238312>3438337=7=2<202274223:20313730373235333433342>3232373132387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136373035333434323330333337372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333433352>363133363531387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238372>3437387=7=2<202274223:20313730373235333433342>393834323633347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238382>3339397=7=2<202274223:20313730373235333433352>353336353631377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3037383932383137343535393230362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333433352>3838373839357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238322>3939337=7=2<202274223:20313730373235333433342>373536383032367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238322>3939337=7=2<202274223:20313730373235333433352>3238363838347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237372>3237367=7=2<202274223:20313730373235333433352>383135363338337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136363934313931363231313138362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333433362>3736323239327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237352>3734337=7=2<202274223:20313730373235333433362>303638393430347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238362>3837397=7=2<202274223:20313730373235333433362>353937373939357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3037373533353134323137313339322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333433372>303431373834337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237362>3335367=7=2<202274223:20313730373235333433362>333435323331387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238362>3837397=7=2<202274223:20313730373235333433362>383834353736337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136353331323938363537373931332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333433372>393130313035327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238382>3036397=7=2<202274223:20313730373235333433372>313236333536347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237372>3835357=7=2<202274223:20313730373235333433372>363535303230377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3037373434303433393133393431362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333433382>3139353736357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2035342<2022706?776572223:203238352>3938327=7=2<202274223:20313730373235333433372>343532303737327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237382>3738367=7=2<202274223:20313730373235333433372>393832363437327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136343735393435323530313239332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333433392>303538373036387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237382>3137377=7=2<202274223:20313730373235333433382>323335353632387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238352>3639367=7=2<202274223:20313730373235333433382>373634323638397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3038303136373437333439343632362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333433392>333438363834337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238322>3637317=7=2<202274223:20313730373235333433382>3531323933387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237382>3436347=7=2<202274223:20313730373235333433392>303630373032387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136383036353230323537333638332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333434302>3230373133347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2035332<2022706?776572223:203237362>3636347=7=2<202274223:20313730373235333433392>323936353333387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237392>3336387=7=2<202274223:20313730373235333433392>383532373934367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3038343834353839363235303639352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333434302>353031333136337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238372>3136397=7=2<202274223:20313730373235333433392>363133323239337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238382>3430397=7=2<202274223:20313730373235333434302>3136383233327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136383138383639323434303133362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333434312>333535373339367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2035332<2022706?776572223:203238362>3238377=7=2<202274223:20313730373235333434302>333831333335377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237382>3434367=7=2<202274223:20313730373235333434302>393234353934347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3038313031323138333439383739362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333434312>363534323934357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237342>3834367=7=2<202274223:20313730373235333434302>3639383433397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238372>3436397=7=2<202274223:20313730373235333434312>323237383732367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363839313337323935353638382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333434322>353034323833377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237382>3434367=7=2<202274223:20313730373235333434312>353032353934377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238322>3037317=7=2<202274223:20313730373235333434322>30353833387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3037383733303834383832323938352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333434322>3830373335357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238372>3136397=7=2<202274223:20313730373235333434312>3735393836317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237382>3436347=7=2<202274223:20313730373235333434322>323838383733377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136373733303539323836383034372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333434332>363532383435367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2035332<2022706?776572223:203238322>3939337=7=2<202274223:20313730373235333434322>353839343438377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238322>3636327=7=2<202274223:20313730373235333434332>313138353938357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238302>3238397=7=2<202274223:20313730373235333434332>363438393836367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3037373138333935363438323634322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333434332>393630343531317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238342>3138317=7=2<202274223:20313730373235333434322>383137333439347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237392>3337367=7=2<202274223:20313730373235333434332>3431363532397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363834333936363036313938322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333434342>383031333339397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238312>3134397=7=2<202274223:20313730373235333434342>3230303834327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238362>3535367=7=2<202274223:20313730373235333434342>373631333437357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3037373936313331373435312<2022756>697473223:202254666<6?7073222<202274223:20313730373235333434352>313134323437337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237382>3138387=7=2<202274223:20313730373235333434332>393738353137387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238392>3537377=7=2<202274223:20313730373235333434342>353037383831367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237352>34397=7=2<202274223:20313730373235333434352>303533323133367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363632353238373330363535382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333434352>393439313137377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238342>3737347=7=2<202274223:20313730373235333434352>333033323837357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237362>3933337=7=2<202274223:20313730373235333434352>383332353938347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3037383731353036323934303431352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333434362>323638323030327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237382>3436347=7=2<202274223:20313730373235333434352>3539343637337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238352>3336397=7=2<202274223:20313730373235333434362>3135303331317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363531313738353232313131322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333434372>303937383139387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238372>3437387=7=2<202274223:20313730373235333434362>333633373531347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238352>3639367=7=2<202274223:20313730373235333434362>383934393339347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>30383139343737363733373936342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333434372>3432313030357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238342>3138317=7=2<202274223:20313730373235333434362>373036333935397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238352>3935397=7=2<202274223:20313730373235333434372>323439373931317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136373534373335393137303038362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333434382>323436333539387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237372>3235367=7=2<202274223:20313730373235333434372>3432343531337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237372>3533327=7=2<202274223:20313730373235333434372>393933313833397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3038333434303135343333303630362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333434382>353733383439377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237352>3736367=7=2<202274223:20313730373235333434372>373830343930347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237382>3436347=7=2<202274223:20313730373235333434382>3331333337337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136363337323335363736353631372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333434392>3339343839377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2035332<2022706?776572223:203238372>3230397=7=2<202274223:20313730373235333434382>353234323137347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237362>3636347=7=2<202274223:20313730373235333434392>3035343139347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3037343337383838313033383537332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333434392>3732373135317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238382>3731317=7=2<202274223:20313730373235333434382>383931373434317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238352>3639317=7=2<202274223:20313730373235333434392>343536323232337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136343630343135303132333230372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333435302>353433353335377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238382>3339397=7=2<202274223:20313730373235333434392>353834353935377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238352>3639367=7=2<202274223:20313730373235333435302>313133393237347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3037363930333830363338343332332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333435302>383830323539357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237392>3730357=7=2<202274223:20313730373235333434392>393931393834367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238312>3830357=7=2<202274223:20313730373235333435302>3533363632327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3135303738343335393130333236362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333435312>363933303438377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2035332<2022706?776572223:203237352>3133337=7=2<202274223:20313730373235333435302>363632303833397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237362>3936377=7=2<202274223:20313730373235333435312>323038373339387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3037393837353339343931343036322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333435322>303333323133347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238342>3230367=7=2<202274223:20313730373235333435312>3037343736387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238362>3930317=7=2<202274223:20313730373235333435312>363033333338377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363536383333353435363934392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333435322>383434333431337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238312>3737377=7=2<202274223:20313730373235333435312>3830323530327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238362>3235387=7=2<202274223:20313730373235333435322>333739373833347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3037383437303338353130313031372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333435332>313837313833397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238362>3837397=7=2<202274223:20313730373235333435322>313331373232377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237372>3537367=7=2<202274223:20313730373235333435322>363631343435397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136343938363433373432373734332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333435332>393932313930387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238332>3236317=7=2<202274223:20313730373235333435322>393438353035347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237392>3633367=7=2<202274223:20313730373235333435332>343739383033367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3037353631373538393031333539362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333435342>333431343737397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238392>3836347=7=2<202274223:20313730373235333435332>313931373832377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238342>3138317=7=2<202274223:20313730373235333435332>373337323333397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238332>3538337=7=2<202274223:20313730373235333435342>333138383936357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136363433323039393137343238372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333435352>313430383034387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238382>3339397=7=2<202274223:20313730373235333435342>3030393935377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238352>3936357=7=2<202274223:20313730373235333435342>353930353338377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238382>3636387=7=2<202274223:20313730373235333435352>313430313939347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>30373839353937343730353537392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333435352>343934353438337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238322>3939337=7=2<202274223:20313730373235333435342>3834373930347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237392>3337367=7=2<202274223:20313730373235333435352>333737373131387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363430353436333838343133382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333435362>323839353238347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203237362>3334327=7=2<202274223:20313730373235333435352>3637303139347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238372>3230397=7=2<202274223:20313730373235333435362>323136383539367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>30373537313632313931373436372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333435362>363437383832357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238382>3937397=7=2<202274223:20313730373235333435352>393234363535347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238382>3036377=7=2<202274223:20313730373235333435362>353033383237367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363438373039353331393637392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333435372>343338333132337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238372>3437387=7=2<202274223:20313730373235333435362>373436323339327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237382>3434367=7=2<202274223:20313730373235333435372>323735323836327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3037383732363930323334393839322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333435372>383030393237327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238382>3937397=7=2<202274223:20313730373235333435372>303630343730337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237382>3138387=7=2<202274223:20313730373235333435372>3538393838317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363630373336353033303837352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333435382>353836393337327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2035332<2022706?776572223:203237382>3434367=7=2<202274223:20313730373235333435372>383335353236377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035332<2022706?776572223:203238382>3939317=7=2<202274223:20313730373235333435382>343035313134377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3038333536363530343638343136342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333435382>393533363437397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238342>3138317=7=2<202274223:20313730373235333435382>313334363033357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238322>3939337=7=2<202274223:20313730373235333435382>363637333830367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363633303836333139343032312<2022756>697473223:202254666<6?7073222<202274223:20313730373235333435392>3733353439337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238372>3437387=7=2<202274223:20313730373235333435382>393432363138317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237362>3636347=7=2<202274223:20313730373235333435392>343732363933347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3037383036373836343234363033342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333436302>313037343631327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238362>3238317=7=2<202274223:20313730373235333435392>3232363730317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238392>3030367=7=2<202274223:20313730373235333435392>373539313236327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363538363235373030323730322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333436302>383833323734337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237362>3634357=7=2<202274223:20313730373235333436302>313036323339337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237362>3334327=7=2<202274223:20313730373235333436302>363634343936347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3037393437323831343737313234372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333436312>3236313232327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2035342<2022706?776572223:203237362>3036387=7=2<202274223:20313730373235333436302>323930373830387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238362>3238317=7=2<202274223:20313730373235333436302>383139323435387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136363330343634393135323639332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333436322>3033313031377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238392>32387=7=2<202274223:20313730373235333436312>313933343537387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237362>3334327=7=2<202274223:20313730373235333436312>373236313431357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3038323135333035353434313437372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333436322>3431343837337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237362>3938367=7=2<202274223:20313730373235333436312>333438363636347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238302>3539327=7=2<202274223:20313730373235333436312>383831363331397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238352>3037317=7=2<202274223:20313730373235333436322>34313037357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363333323939363932343736312<2022756>697473223:202254666<6?7073222<202274223:20313730373235333436332>313830313537327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2035342<2022706?776572223:203237362>3933337=7=2<202274223:20313730373235333436322>323638353139347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238392>3931327=7=2<202274223:20313730373235333436322>3739373537387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3037383537363933373538323233382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333436332>353637393932327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238362>3631317=7=2<202274223:20313730373235333436322>39343132367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238322>3430337=7=2<202274223:20313730373235333436332>3533373938327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363230373538363239313737392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333436342>333239303834397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2035342<2022706?776572223:203237352>3135317=7=2<202274223:20313730373235333436332>3332393437397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238382>3939317=7=2<202274223:20313730373235333436332>383538343238377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3037333634393134343332353538362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333436342>373231343339387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238382>3731317=7=2<202274223:20313730373235333436342>3132313331377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237362>3637387=7=2<202274223:20313730373235333436342>363532343231357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136323832303334343333363732362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333436352>343737383933387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238372>387=7=2<202274223:20313730373235333436342>333837353437337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237372>3235367=7=2<202274223:20313730373235333436342>393433303530347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3037333936303735343739333733352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333436352>383734363834387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238352>3336397=7=2<202274223:20313730373235333436352>313831343334367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238382>3036377=7=2<202274223:20313730373235333436352>373130393838357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363632363038333835393932342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333436362>363236343238347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2035342<2022706?776572223:203237382>3137377=7=2<202274223:20313730373235333436352>3533333631347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237372>3235367=7=2<202274223:20313730373235333436362>303836383531317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238352>3639367=7=2<202274223:20313730373235333436362>363135393932387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>30383034303832343736393732332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333436372>303237343337327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237382>3738367=7=2<202274223:20313730373235333436362>323435333831387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238332>3538337=7=2<202274223:20313730373235333436362>373734343137367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363238303034333736363337332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333436372>373735303232357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237372>3235367=7=2<202274223:20313730373235333436372>313739303139377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237372>3835357=7=2<202274223:20313730373235333436372>373130333037387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>30373832353333333734333138382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333436382>313831313731327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2035342<2022706?776572223:203238312>3136327=7=2<202274223:20313730373235333436372>3332303433327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238372>3436397=7=2<202274223:20313730373235333436372>383735323038347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136363338303332323339383538342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333436382>393232363231357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238302>3238397=7=2<202274223:20313730373235333436382>3330383935347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238302>3236367=7=2<202274223:20313730373235333436382>3839343431317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>30373735373436303230343535352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333436392>333334393235327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2035342<2022706?776572223:203239302>3439367=7=2<202274223:20313730373235333436382>3430353334357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237362>3636357=7=2<202274223:20313730373235333436382>393735343632377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136373937333538323038383036332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333437302>3037303130337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238342>3437387=7=2<202274223:20313730373235333436392>343634303337377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238332>3837397=7=2<202274223:20313730373235333436392>393933313134377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>303737323331333036363037392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333437302>343838363139337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2035342<2022706?776572223:203237382>3137337=7=2<202274223:20313730373235333436392>353336343836397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238372>3739397=7=2<202274223:20313730373235333437302>3036343934377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136373237363439383338313430352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333437312>323138353535357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238312>3435357=7=2<202274223:20313730373235333437302>353235383734347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238322>3037317=7=2<202274223:20313730373235333437312>3035393439327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3038333133323138323335333039372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333437312>363431323039317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237362>3036387=7=2<202274223:20313730373235333437302>3539333337367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238332>3236317=7=2<202274223:20313730373235333437312>3132353033367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363833343430353239313933322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333437322>333636383733377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238332>3538347=7=2<202274223:20313730373235333437312>353838363534387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238342>3737347=7=2<202274223:20313730373235333437322>313137343633387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3038313337313430353237373638322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333437322>373933393134367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238312>3136327=7=2<202274223:20313730373235333437312>363534343132357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238332>3835397=7=2<202274223:20313730373235333437322>313939303837317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238392>3537377=7=2<202274223:20313730373235333437322>373633323739347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363635333136373036383330352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333437332>353135303733337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238312>3734387=7=2<202274223:20313730373235333437322>373030363632397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238322>3636327=7=2<202274223:20313730373235333437332>323537313535347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>30383033313734363332363738342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333437332>393436373535327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237362>3335367=7=2<202274223:20313730373235333437332>333235333736337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237372>3237367=7=2<202274223:20313730373235333437332>383732353732377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136363837303232313535313535352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333437342>363633333633327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238322>3339347=7=2<202274223:20313730373235333437332>383434383437327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237382>3434367=7=2<202274223:20313730373235333437342>343531303531327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>30383537333834313239323138362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333437352>313030343138337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237392>3035347=7=2<202274223:20313730373235333437342>3435393434327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238322>3639387=7=2<202274223:20313730373235333437352>303032323731377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136353836363535323633303831332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333437352>383130393936357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238372>387=7=2<202274223:20313730373235333437342>3939343130337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238382>3936397=7=2<202274223:20313730373235333437352>353331323537367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>30383634373639373433343438352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333437362>3235343235347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238382>3338397=7=2<202274223:20313730373235333437352>353338313933327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238382>3731317=7=2<202274223:20313730373235333437362>303732373035377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136353530383132343931383336352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333437362>393538363239387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238302>3838317=7=2<202274223:20313730373235333437362>303633383231387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238372>387=7=2<202274223:20313730373235333437362>363133313938387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3038393538353837383135363437332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333437372>343037393738357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2035342<2022706?776572223:203237372>3537367=7=2<202274223:20313730373235333437362>363432393332377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237372>3539387=7=2<202274223:20313730373235333437372>323139343239357=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136353530303136303031303335372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333437382>3130373535397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2035342<2022706?776572223:203238362>3837397=7=2<202274223:20313730373235333437372>313833313938377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238372>3137387=7=2<202274223:20313730373235333437372>373433353130377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3038373032393934353434373535382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333437382>353630333535347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238302>3237317=7=2<202274223:20313730373235333437372>373738353635347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238382>3038387=7=2<202274223:20313730373235333437382>333037343136377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136343739313330393731303437332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333437392>3235363631377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2035342<2022706?776572223:203237392>3636377=7=2<202274223:20313730373235333437382>323737303634367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238362>35387=7=2<202274223:20313730373235333437382>3830383330347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3038363430393833303033353332322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333437392>373132373631397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238332>3538337=7=2<202274223:20313730373235333437382>383336387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238342>3530367=7=2<202274223:20313730373235333437392>333638303136327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136353138353535313433393234372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333438302>3430353730367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237382>3437387=7=2<202274223:20313730373235333437392>333430373937377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237392>3935397=7=2<202274223:20313730373235333437392>393332343533327=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3039303232323030343837323137382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333438302>3836343933347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238312>3136327=7=2<202274223:20313730373235333437392>393732313435367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035352<2022706?776572223:203238302>3536347=7=2<202274223:20313730373235333438302>353436373731387=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136373534333337353836373733342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333438312>353534353739337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237382>3434367=7=2<202274223:20313730373235333438302>353233353632327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237392>3633367=7=2<202274223:20313730373235333438312>303931353437377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>30383830363039323731323639382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333438322>303137323237347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035352<2022706?776572223:203237382>3738367=7=2<202274223:20313730373235333438312>313130343135377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237382>3138387=7=2<202274223:20313730373235333438312>363830343632347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>313638353935303235313637332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333438322>373033353732357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2035342<2022706?776572223:203236312>3930337=7=2<202274223:20313730373235333438312>3634363837357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238382>3036397=7=2<202274223:20313730373235333438322>3137373235337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3038363135373035353639353231372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333438332>3137313039347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2035342<2022706?776572223:203238392>3839387=7=2<202274223:20313730373235333438322>323130383033377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035352<2022706?776572223:203237392>3937347=7=2<202274223:20313730373235333438322>37333939347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136373938393531363032323634342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333438332>383531303632337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237382>3736397=7=2<202274223:20313730373235333438322>373036373536347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238352>3639367=7=2<202274223:20313730373235333438332>323335383736387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237372>3533327=7=2<202274223:20313730373235333438332>373634383233347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>30383830323533373431383035322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333438342>33323437337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238312>3438337=7=2<202274223:20313730373235333438332>323638383939377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238322>3037347=7=2<202274223:20313730373235333438332>383634363332367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363633323835343539303236332<2022756>697473223:202254666<6?7073222<202274223:20313730373235333438342>393938373331367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237372>3235367=7=2<202274223:20313730373235333438342>323934373634337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238352>3936357=7=2<202274223:20313730373235333438342>383336373232347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3038353739373635333730383139352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333438352>343738353932347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237372>3836367=7=2<202274223:20313730373235333438342>343231343638337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238392>3537377=7=2<202274223:20313730373235333438342>393634343231377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363537373839333537323937352<2022756>697473223:202254666<6?7073222<202274223:20313730373235333438362>313437363330357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203239312>3130337=7=2<202274223:20313730373235333438352>343136353530397=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237362>3933337=7=2<202274223:20313730373235333438352>3936313833337=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3038363531363437313231383139372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333438362>3633313034377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238352>3639317=7=2<202274223:20313730373235333438352>353133353734347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237382>3436347=7=2<202274223:20313730373235333438362>3034343932337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238392>3330387=7=2<202274223:20313730373235333438362>3537343233397=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136363437393839333336393337372<2022756>697473223:202254666<6?7073222<202274223:20313730373235333438372>3239363738317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237362>3334327=7=2<202274223:20313730373235333438362>343933333534387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203239302>3737327=7=2<202274223:20313730373235333438372>303237353938317=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>30383936353639393538303835392<2022756>697473223:202254666<6?7073222<202274223:20313730373235333438372>373833333139357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238332>3835397=7=2<202274223:20313730373235333438372>313033363036357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238322>3639387=7=2<202274223:20313730373235333438372>363336323732377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136353839383431333532303732322<2022756>697473223:202254666<6?7073222<202274223:20313730373235333438382>343435373833367=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2035342<2022706?776572223:203237362>3035347=7=2<202274223:20313730373235333438372>353631333032347=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237372>3838387=7=2<202274223:20313730373235333438382>313932313134347=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>30383334353938393634363330362<2022756>697473223:202254666<6?7073222<202274223:20313730373235333438382>393335383834327=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238352>3639317=7=2<202274223:20313730373235333438382>323239303132337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238302>3539327=7=2<202274223:20313730373235333438382>373537353630377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>31363630383935383130383437342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333438392>3539343738337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2035342<2022706?776572223:203237382>3437387=7=2<202274223:20313730373235333438382>373336383739387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238352>3639367=7=2<202274223:20313730373235333438392>3236373438367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>30383338303334313631303637312<2022756>697473223:202254666<6?7073222<202274223:20313730373235333439302>303838343333357=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238382>3731317=7=2<202274223:20313730373235333438392>3238393430387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238372>3436397=7=2<202274223:20313730373235333438392>383231353536367=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3136333739313834303233373334342<2022756>697473223:202254666<6?7073222<202274223:20313730373235333439302>373433393438377=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20302>39392<202274656=7065726174757265223:2035342<2022706?776572223:203237392>3935397=7=2<202274223:20313730373235333438392>3739393032317=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2231223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237382>3434367=7=2<202274223:20313730373235333439302>333238323239377=z[0:z[7;227461736;223:2022747261696>222<202272617465223:2031392>3038343432333336323136333533382<2022756>697473223:202254666<6?7073222<202274223:20313730373235333439312>323432333530387=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203237372>3836367=7=2<202274223:20313730373235333439302>3335323933337=z[0:z[7;227461736;223:20226=61696>222<202267707564617461223:207;2230223:207;226=656=6?7279223:205;323137302>37352<2038313932302>305=2<20226<6?6164223:20312>302<202274656=7065726174757265223:2035342<2022706?776572223:203238372>3739397=7=2<202274223:20313730373235333439302>383934363032387=z[0:z +real 1m47.137s +user 3m29.898s +sys 0m13.491s +--- +resnet50 +======== +/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/argparse_ext.py:234: UserWarning: Configuration blocks {'options'} were not used. Valid blocks are: set(). Did you forget a nesting level? + warnings.warn( +/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/argparse_ext.py:234: UserWarning: Configuration blocks {'options'} were not used. Valid blocks are: set(). Did you forget a nesting level? + warnings.warn( +/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/torch/utils/data/dataloader.py:557: UserWarning: This DataLoader will create 8 worker processes in total. Our suggested max number of worker in current system is 4, which is smaller than what this DataLoader is going to create. Please be aware that excessive worker creation might get DataLoader running slow or even freeze, lower the worker number to avoid potential slowness/freeze if necessary. + warnings.warn(_create_warning_msg( +/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/torch/utils/data/dataloader.py:557: UserWarning: This DataLoader will create 8 worker processes in total. Our suggested max number of worker in current system is 4, which is smaller than what this DataLoader is going to create. Please be aware that excessive worker creation might get DataLoader running slow or even freeze, lower the worker number to avoid potential slowness/freeze if necessary. + warnings.warn(_create_warning_msg( + +real 9m33.515s +user 32m33.873s +sys 3m58.891s +--- +regnet_y_128gf +============== +/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/argparse_ext.py:234: UserWarning: Configuration blocks {'options'} were not used. Valid blocks are: set(). Did you forget a nesting level? + warnings.warn( +/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/argparse_ext.py:234: UserWarning: Configuration blocks {'options'} were not used. Valid blocks are: set(). Did you forget a nesting level? + warnings.warn( +/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/torch/utils/data/dataloader.py:557: UserWarning: This DataLoader will create 8 worker processes in total. Our suggested max number of worker in current system is 4, which is smaller than what this DataLoader is going to create. Please be aware that excessive worker creation might get DataLoader running slow or even freeze, lower the worker number to avoid potential slowness/freeze if necessary. + warnings.warn(_create_warning_msg( +/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/torch/utils/data/dataloader.py:557: UserWarning: This DataLoader will create 8 worker processes in total. Our suggested max number of worker in current system is 4, which is smaller than what this DataLoader is going to create. Please be aware that excessive worker creation might get DataLoader running slow or even freeze, lower the worker number to avoid potential slowness/freeze if necessary. + warnings.warn(_create_warning_msg( + +real 36m19.622s +user 86m32.453s +sys 10m25.931s +--- +bert-fp32 +========= +/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/argparse_ext.py:234: UserWarning: Configuration blocks {'options'} were not used. Valid blocks are: set(). Did you forget a nesting level? + warnings.warn( +Traceback (most recent call last): + File "/Tmp/slurm.4115546.0/base/venv/torch/bin/voir", line 8, in + /Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/argparse_ext.py:234: UserWarning: Configuration blocks {'options'} were not used. Valid blocks are: set(). Did you forget a nesting level? + warnings.warn( +sys.exit(main()) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/cli.py", line 124, in main + ov(sys.argv[1:] if argv is None else argv) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/phase.py", line 334, in __call__ + self._run(*args, **kwargs) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/overseer.py", line 238, in _run + script, argv, func = _resolve_function(self.options) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/overseer.py", line 280, in _resolve_function +Traceback (most recent call last): + File "/Tmp/slurm.4115546.0/base/venv/torch/bin/voir", line 8, in +script = Path(pkgutil.get_loader(module_name).get_filename()) +AttributeError : sys.exit(main())'NoneType' object has no attribute 'get_filename' + + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/cli.py", line 124, in main + ov(sys.argv[1:] if argv is None else argv) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/phase.py", line 334, in __call__ + self._run(*args, **kwargs) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/overseer.py", line 238, in _run + script, argv, func = _resolve_function(self.options) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/overseer.py", line 280, in _resolve_function + script = Path(pkgutil.get_loader(module_name).get_filename()) +AttributeError: 'NoneType' object has no attribute 'get_filename' + +real 0m0.203s +user 0m0.350s +sys 0m0.053s +--- +bert-fp16 +========= +/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/argparse_ext.py:234: UserWarning: Configuration blocks {'options'} were not used. Valid blocks are: set(). Did you forget a nesting level? + warnings.warn( +Traceback (most recent call last): + File "/Tmp/slurm.4115546.0/base/venv/torch/bin/voir", line 8, in + sys.exit(main()) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/cli.py", line 124, in main + ov(sys.argv[1:] if argv is None else argv) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/phase.py", line 334, in __call__ + self._run(*args, **kwargs) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/overseer.py", line 238, in _run + script, argv, func = _resolve_function(self.options) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/overseer.py", line 280, in _resolve_function + script = Path(pkgutil.get_loader(module_name).get_filename()) +AttributeError/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/argparse_ext.py:234: UserWarning: Configuration blocks {'options'} were not used. Valid blocks are: set(). Did you forget a nesting level? + warnings.warn( +: 'NoneType' object has no attribute 'get_filename' +Traceback (most recent call last): + File "/Tmp/slurm.4115546.0/base/venv/torch/bin/voir", line 8, in + sys.exit(main()) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/cli.py", line 124, in main + ov(sys.argv[1:] if argv is None else argv) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/phase.py", line 334, in __call__ + self._run(*args, **kwargs) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/overseer.py", line 238, in _run + script, argv, func = _resolve_function(self.options) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/overseer.py", line 280, in _resolve_function + script = Path(pkgutil.get_loader(module_name).get_filename()) +AttributeError: 'NoneType' object has no attribute 'get_filename' + +real 0m0.200s +user 0m0.348s +sys 0m0.048s +--- +bert-tf32 +========= +/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/argparse_ext.py:234: UserWarning: Configuration blocks {'options'} were not used. Valid blocks are: set(). Did you forget a nesting level? + warnings.warn( +/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/argparse_ext.py:234: UserWarning: Configuration blocks {'options'} were not used. Valid blocks are: set(). Did you forget a nesting level? + warnings.warn( +Traceback (most recent call last): + File "/Tmp/slurm.4115546.0/base/venv/torch/bin/voir", line 8, in +Traceback (most recent call last): + File "/Tmp/slurm.4115546.0/base/venv/torch/bin/voir", line 8, in + sys.exit(main()) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/cli.py", line 124, in main +sys.exit(main()) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/cli.py", line 124, in main + ov(sys.argv[1:] if argv is None else argv) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/phase.py", line 334, in __call__ +ov(sys.argv[1:] if argv is None else argv) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/phase.py", line 334, in __call__ + self._run(*args, **kwargs) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/overseer.py", line 238, in _run +self._run(*args, **kwargs) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/overseer.py", line 238, in _run + script, argv, func = _resolve_function(self.options) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/overseer.py", line 280, in _resolve_function +script, argv, func = _resolve_function(self.options) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/overseer.py", line 280, in _resolve_function + script = Path(pkgutil.get_loader(module_name).get_filename()) +AttributeError : script = Path(pkgutil.get_loader(module_name).get_filename())'NoneType' object has no attribute 'get_filename' + +AttributeError: 'NoneType' object has no attribute 'get_filename' + +real 0m0.207s +user 0m0.367s +sys 0m0.045s +--- +bert-tf32-fp16 +============== +/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/argparse_ext.py:234: UserWarning: Configuration blocks {'options'} were not used. Valid blocks are: set(). Did you forget a nesting level? + warnings.warn( +Traceback (most recent call last): + File "/Tmp/slurm.4115546.0/base/venv/torch/bin/voir", line 8, in + sys.exit(main()) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/cli.py", line 124, in main + ov(sys.argv[1:] if argv is None else argv) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/phase.py", line 334, in __call__ + /Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/argparse_ext.py:234: UserWarning: Configuration blocks {'options'} were not used. Valid blocks are: set(). Did you forget a nesting level? + warnings.warn( +self._run(*args, **kwargs) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/overseer.py", line 238, in _run + script, argv, func = _resolve_function(self.options) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/overseer.py", line 280, in _resolve_function + script = Path(pkgutil.get_loader(module_name).get_filename()) +AttributeError: 'NoneType' object has no attribute 'get_filename' +Traceback (most recent call last): + File "/Tmp/slurm.4115546.0/base/venv/torch/bin/voir", line 8, in + sys.exit(main()) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/cli.py", line 124, in main + ov(sys.argv[1:] if argv is None else argv) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/phase.py", line 334, in __call__ + self._run(*args, **kwargs) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/overseer.py", line 238, in _run + script, argv, func = _resolve_function(self.options) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/overseer.py", line 280, in _resolve_function + script = Path(pkgutil.get_loader(module_name).get_filename()) +AttributeError: 'NoneType' object has no attribute 'get_filename' + +real 0m0.201s +user 0m0.323s +sys 0m0.072s +--- +t5 +== +/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/argparse_ext.py:234: UserWarning: Configuration blocks {'options'} were not used. Valid blocks are: set(). Did you forget a nesting level? + warnings.warn( +/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/argparse_ext.py:234: UserWarning: Configuration blocks {'options'} were not used. Valid blocks are: set(). Did you forget a nesting level? + warnings.warn( +Traceback (most recent call last): + File "/Tmp/slurm.4115546.0/base/venv/torch/bin/voir", line 8, in +Traceback (most recent call last): + File "/Tmp/slurm.4115546.0/base/venv/torch/bin/voir", line 8, in + sys.exit(main()) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/cli.py", line 124, in main +sys.exit(main()) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/cli.py", line 124, in main + ov(sys.argv[1:] if argv is None else argv) +ov(sys.argv[1:] if argv is None else argv) File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/phase.py", line 334, in __call__ + + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/phase.py", line 334, in __call__ + self._run(*args, **kwargs) +self._run(*args, **kwargs) File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/overseer.py", line 238, in _run + + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/overseer.py", line 238, in _run + script, argv, func = _resolve_function(self.options) +script, argv, func = _resolve_function(self.options) File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/overseer.py", line 280, in _resolve_function + + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/overseer.py", line 280, in _resolve_function + script = Path(pkgutil.get_loader(module_name).get_filename()) +script = Path(pkgutil.get_loader(module_name).get_filename())AttributeError +: AttributeError'NoneType' object has no attribute 'get_filename': +'NoneType' object has no attribute 'get_filename' + +real 0m0.208s +user 0m0.349s +sys 0m0.064s +--- +reformer +======== +/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/argparse_ext.py:234: UserWarning: Configuration blocks {'options'} were not used. Valid blocks are: set(). Did you forget a nesting level? + warnings.warn( +/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/argparse_ext.py:234: UserWarning: Configuration blocks {'options'} were not used. Valid blocks are: set(). Did you forget a nesting level? + warnings.warn( +Traceback (most recent call last): + File "/Tmp/slurm.4115546.0/base/venv/torch/bin/voir", line 8, in + sys.exit(main()) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/cli.py", line 124, in main + ov(sys.argv[1:] if argv is None else argv) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/phase.py", line 334, in __call__ + self._run(*args, **kwargs) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/overseer.py", line 238, in _run + script, argv, func = _resolve_function(self.options)Traceback (most recent call last): + + File "/Tmp/slurm.4115546.0/base/venv/torch/bin/voir", line 8, in + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/overseer.py", line 280, in _resolve_function + sys.exit(main()) +script = Path(pkgutil.get_loader(module_name).get_filename()) File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/cli.py", line 124, in main + +AttributeError: 'NoneType' object has no attribute 'get_filename'ov(sys.argv[1:] if argv is None else argv) + + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/phase.py", line 334, in __call__ + self._run(*args, **kwargs) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/overseer.py", line 238, in _run + script, argv, func = _resolve_function(self.options) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/overseer.py", line 280, in _resolve_function + script = Path(pkgutil.get_loader(module_name).get_filename()) +AttributeError: 'NoneType' object has no attribute 'get_filename' + +real 0m0.200s +user 0m0.360s +sys 0m0.036s +--- +whisper +======= +/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/argparse_ext.py:234: UserWarning: Configuration blocks {'options'} were not used. Valid blocks are: set(). Did you forget a nesting level? + warnings.warn( +/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/argparse_ext.py:234: UserWarning: Configuration blocks {'options'} were not used. Valid blocks are: set(). Did you forget a nesting level? + warnings.warn( +Traceback (most recent call last): + File "/Tmp/slurm.4115546.0/base/venv/torch/bin/voir", line 8, in +Traceback (most recent call last): + File "/Tmp/slurm.4115546.0/base/venv/torch/bin/voir", line 8, in + sys.exit(main()) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/cli.py", line 124, in main +sys.exit(main()) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/cli.py", line 124, in main + ov(sys.argv[1:] if argv is None else argv) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/phase.py", line 334, in __call__ +ov(sys.argv[1:] if argv is None else argv) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/phase.py", line 334, in __call__ + self._run(*args, **kwargs) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/overseer.py", line 238, in _run + self._run(*args, **kwargs) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/overseer.py", line 238, in _run +script, argv, func = _resolve_function(self.options) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/overseer.py", line 280, in _resolve_function + script, argv, func = _resolve_function(self.options) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/overseer.py", line 280, in _resolve_function + script = Path(pkgutil.get_loader(module_name).get_filename()) +AttributeError : script = Path(pkgutil.get_loader(module_name).get_filename())'NoneType' object has no attribute 'get_filename' + +AttributeError: 'NoneType' object has no attribute 'get_filename' + +real 0m0.207s +user 0m0.377s +sys 0m0.036s +--- +resnet152 +========= +/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/argparse_ext.py:234: UserWarning: Configuration blocks {'options'} were not used. Valid blocks are: set(). Did you forget a nesting level? + warnings.warn( +/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/argparse_ext.py:234: UserWarning: Configuration blocks {'options'} were not used. Valid blocks are: set(). Did you forget a nesting level? + warnings.warn( +Traceback (most recent call last): + File "/Tmp/slurm.4115546.0/base/venv/torch/bin/voir", line 8, in + sys.exit(main()) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/cli.py", line 124, in main + ov(sys.argv[1:] if argv is None else argv) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/phase.py", line 334, in __call__ + self._run(*args, **kwargs) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/overseer.py", line 238, in _run + script, argv, func = _resolve_function(self.options) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/overseer.py", line 271, in _resolve_function + return script, options.ARGV, resolve_script(script) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/scriptutils.py", line 36, in resolve_script + exec(prep, glb, glb) + File "/Tmp/slurm.4115546.0/milabench/benchmarks/timm/pytorch-image-models/train.py", line 32, in + from timm import utils +ModuleNotFoundError: No module named 'timm' +Traceback (most recent call last): + File "/Tmp/slurm.4115546.0/base/venv/torch/bin/voir", line 8, in + sys.exit(main()) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/cli.py", line 124, in main + ov(sys.argv[1:] if argv is None else argv) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/phase.py", line 334, in __call__ + self._run(*args, **kwargs) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/overseer.py", line 238, in _run + script, argv, func = _resolve_function(self.options) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/overseer.py", line 271, in _resolve_function + return script, options.ARGV, resolve_script(script) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/scriptutils.py", line 36, in resolve_script + exec(prep, glb, glb) + File "/Tmp/slurm.4115546.0/milabench/benchmarks/timm/pytorch-image-models/train.py", line 32, in + from timm import utils +ModuleNotFoundError: No module named 'timm' + +real 0m2.144s +user 0m3.901s +sys 0m0.562s +--- +resnet152-multi +=============== +[W socket.cpp:436] [c10d] The server socket has failed to bind to [::]:29500 (errno: 98 - Address already in use). +[W socket.cpp:436] [c10d] The server socket has failed to bind to 0.0.0.0:29500 (errno: 98 - Address already in use). +[E socket.cpp:472] [c10d] The server socket has failed to listen on any local network address. +Traceback (most recent call last): + File "/Tmp/slurm.4115546.0/base/venv/torch/bin/torchrun", line 8, in + sys.exit(main()) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 346, in wrapper + return f(*args, **kwargs) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/run.py", line 806, in main + run(args) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/run.py", line 797, in run + elastic_launch( + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/launcher/api.py", line 134, in __call__ + return launch_agent(self._config, self._entrypoint, list(args)) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/launcher/api.py", line 255, in launch_agent + result = agent.run() + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/elastic/metrics/api.py", line 124, in wrapper + result = f(*args, **kwargs) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/elastic/agent/server/api.py", line 736, in run + result = self._invoke_run(role) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/elastic/agent/server/api.py", line 871, in _invoke_run + self._initialize_workers(self._worker_group) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/elastic/metrics/api.py", line 124, in wrapper + result = f(*args, **kwargs) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/elastic/agent/server/api.py", line 705, in _initialize_workers + self._rendezvous(worker_group) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/elastic/metrics/api.py", line 124, in wrapper + result = f(*args, **kwargs) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/elastic/agent/server/api.py", line 546, in _rendezvous + store, group_rank, group_world_size = spec.rdzv_handler.next_rendezvous() + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/elastic/rendezvous/static_tcp_rendezvous.py", line 54, in next_rendezvous + self._store = TCPStore( # type: ignore[call-arg] +RuntimeError: The server socket has failed to listen on any local network address. The server socket has failed to bind to [::]:29500 (errno: 98 - Address already in use). The server socket has failed to bind to 0.0.0.0:29500 (errno: 98 - Address already in use). + +real 0m1.447s +user 0m1.321s +sys 0m0.450s +--- +davit_large +=========== +/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/argparse_ext.py:234: UserWarning: Configuration blocks {'options'} were not used. Valid blocks are: set(). Did you forget a nesting level? + warnings.warn( +/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/argparse_ext.py:234: UserWarning: Configuration blocks {'options'} were not used. Valid blocks are: set(). Did you forget a nesting level? + warnings.warn( +Traceback (most recent call last): +Traceback (most recent call last): + File "/Tmp/slurm.4115546.0/base/venv/torch/bin/voir", line 8, in + File "/Tmp/slurm.4115546.0/base/venv/torch/bin/voir", line 8, in + sys.exit(main())sys.exit(main()) + + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/cli.py", line 124, in main + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/cli.py", line 124, in main + ov(sys.argv[1:] if argv is None else argv)ov(sys.argv[1:] if argv is None else argv) + + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/phase.py", line 334, in __call__ + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/phase.py", line 334, in __call__ + self._run(*args, **kwargs)self._run(*args, **kwargs) + + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/overseer.py", line 238, in _run + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/overseer.py", line 238, in _run + script, argv, func = _resolve_function(self.options)script, argv, func = _resolve_function(self.options) + + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/overseer.py", line 271, in _resolve_function + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/overseer.py", line 271, in _resolve_function + return script, options.ARGV, resolve_script(script)return script, options.ARGV, resolve_script(script) + + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/scriptutils.py", line 36, in resolve_script + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/scriptutils.py", line 36, in resolve_script + exec(prep, glb, glb)exec(prep, glb, glb) + + File "/Tmp/slurm.4115546.0/milabench/benchmarks/timm/pytorch-image-models/train.py", line 32, in + File "/Tmp/slurm.4115546.0/milabench/benchmarks/timm/pytorch-image-models/train.py", line 32, in + from timm import utilsfrom timm import utils + +ModuleNotFoundErrorModuleNotFoundError: : No module named 'timm'No module named 'timm' + + +real 0m2.208s +user 0m3.895s +sys 0m0.707s +--- +davit_large-multi +================= +[W socket.cpp:436] [c10d] The server socket has failed to bind to [::]:29500 (errno: 98 - Address already in use). +[W socket.cpp:436] [c10d] The server socket has failed to bind to 0.0.0.0:29500 (errno: 98 - Address already in use). +[E socket.cpp:472] [c10d] The server socket has failed to listen on any local network address. +Traceback (most recent call last): + File "/Tmp/slurm.4115546.0/base/venv/torch/bin/torchrun", line 8, in + sys.exit(main()) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 346, in wrapper + return f(*args, **kwargs) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/run.py", line 806, in main + run(args) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/run.py", line 797, in run + elastic_launch( + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/launcher/api.py", line 134, in __call__ + return launch_agent(self._config, self._entrypoint, list(args)) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/launcher/api.py", line 255, in launch_agent + result = agent.run() + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/elastic/metrics/api.py", line 124, in wrapper + result = f(*args, **kwargs) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/elastic/agent/server/api.py", line 736, in run + result = self._invoke_run(role) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/elastic/agent/server/api.py", line 871, in _invoke_run + self._initialize_workers(self._worker_group) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/elastic/metrics/api.py", line 124, in wrapper + result = f(*args, **kwargs) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/elastic/agent/server/api.py", line 705, in _initialize_workers + self._rendezvous(worker_group) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/elastic/metrics/api.py", line 124, in wrapper + result = f(*args, **kwargs) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/elastic/agent/server/api.py", line 546, in _rendezvous + store, group_rank, group_world_size = spec.rdzv_handler.next_rendezvous() + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/elastic/rendezvous/static_tcp_rendezvous.py", line 54, in next_rendezvous + self._store = TCPStore( # type: ignore[call-arg] +RuntimeError: The server socket has failed to listen on any local network address. The server socket has failed to bind to [::]:29500 (errno: 98 - Address already in use). The server socket has failed to bind to 0.0.0.0:29500 (errno: 98 - Address already in use). + +real 0m1.431s +user 0m1.321s +sys 0m0.384s +--- +focalnet +======== +/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/argparse_ext.py:234: UserWarning: Configuration blocks {'options'} were not used. Valid blocks are: set(). Did you forget a nesting level? + warnings.warn( +/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/argparse_ext.py:234: UserWarning: Configuration blocks {'options'} were not used. Valid blocks are: set(). Did you forget a nesting level? + warnings.warn( +Traceback (most recent call last): + File "/Tmp/slurm.4115546.0/base/venv/torch/bin/voir", line 8, in + sys.exit(main()) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/cli.py", line 124, in main + ov(sys.argv[1:] if argv is None else argv) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/phase.py", line 334, in __call__ + self._run(*args, **kwargs) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/overseer.py", line 238, in _run + script, argv, func = _resolve_function(self.options) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/overseer.py", line 271, in _resolve_function + return script, options.ARGV, resolve_script(script) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/scriptutils.py", line 36, in resolve_script + exec(prep, glb, glb) + File "/Tmp/slurm.4115546.0/milabench/benchmarks/timm/pytorch-image-models/train.py", line 32, in + from timm import utils +ModuleNotFoundError: No module named 'timm' +Traceback (most recent call last): + File "/Tmp/slurm.4115546.0/base/venv/torch/bin/voir", line 8, in + sys.exit(main()) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/cli.py", line 124, in main + ov(sys.argv[1:] if argv is None else argv) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/phase.py", line 334, in __call__ + self._run(*args, **kwargs) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/overseer.py", line 238, in _run + script, argv, func = _resolve_function(self.options) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/overseer.py", line 271, in _resolve_function + return script, options.ARGV, resolve_script(script) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/scriptutils.py", line 36, in resolve_script + exec(prep, glb, glb) + File "/Tmp/slurm.4115546.0/milabench/benchmarks/timm/pytorch-image-models/train.py", line 32, in + from timm import utils +ModuleNotFoundError: No module named 'timm' + +real 0m2.364s +user 0m4.178s +sys 0m0.662s +--- +opt-1_3b +======== +Traceback (most recent call last): + File "/Tmp/slurm.4115546.0/base/venv/torch/bin/accelerate", line 8, in + sys.exit(main()) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/accelerate/commands/accelerate_cli.py", line 47, in main + args.func(args) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/accelerate/commands/launch.py", line 985, in launch_command + multi_gpu_launcher(args) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/accelerate/commands/launch.py", line 644, in multi_gpu_launcher + current_env = prepare_multi_gpu_env(args) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/accelerate/utils/launch.py", line 132, in prepare_multi_gpu_env + raise ConnectionError( +ConnectionError: Tried to launch distributed communication on port `22`, but another process is utilizing it. Please specify a different port (such as using the `----main_process_port` flag or specifying a different `main_process_port` in your config file) and rerun your script. To automatically use the next open port (on a single node), you can set this to `0`. + +real 0m2.164s +user 0m1.960s +sys 0m0.528s +--- +opt-6_7b +======== +The following values were not passed to `accelerate launch` and had defaults used instead: + More than one GPU was found, enabling multi-GPU training. + If this was unintended please pass in `--num_processes=1`. +To avoid this warning pass in values for each of the problematic parameters or run `accelerate config`. +Traceback (most recent call last): + File "/Tmp/slurm.4115546.0/base/venv/torch/bin/accelerate", line 8, in + sys.exit(main()) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/accelerate/commands/accelerate_cli.py", line 47, in main + args.func(args) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/accelerate/commands/launch.py", line 979, in launch_command + deepspeed_launcher(args) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/accelerate/commands/launch.py", line 670, in deepspeed_launcher + cmd, current_env = prepare_deepspeed_cmd_env(args) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/accelerate/utils/launch.py", line 276, in prepare_deepspeed_cmd_env + raise ConnectionError( +ConnectionError: Tried to launch distributed communication on port `22`, but another process is utilizing it. Please specify a different port (such as using the `----main_process_port` flag or specifying a different `main_process_port` in your config file) and rerun your script. To automatically use the next open port (on a single node), you can set this to `0`. + +real 0m2.147s +user 0m1.976s +sys 0m0.385s +--- +stargan +======= +/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/argparse_ext.py:234: UserWarning: Configuration blocks {'options'} were not used. Valid blocks are: set(). Did you forget a nesting level? + warnings.warn( +/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/argparse_ext.py:234: UserWarning: Configuration blocks {'options'} were not used. Valid blocks are: set(). Did you forget a nesting level? + warnings.warn( +Traceback (most recent call last): + File "/Tmp/slurm.4115546.0/base/venv/torch/bin/voir", line 8, in + sys.exit(main()) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/cli.py", line 124, in main + ov(sys.argv[1:] if argv is None else argv) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/phase.py", line 334, in __call__ + self._run(*args, **kwargs) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/overseer.py", line 238, in _run + script, argv, func = _resolve_function(self.options) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/overseer.py", line 271, in _resolve_function + return script, options.ARGV, resolve_script(script) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/scriptutils.py", line 36, in resolve_script + exec(prep, glb, glb)Traceback (most recent call last): + + File "/Tmp/slurm.4115546.0/base/venv/torch/bin/voir", line 8, in + File "/Tmp/slurm.4115546.0/milabench/benchmarks/stargan/stargan/main.py", line 4, in + sys.exit(main())from solver import Solver + + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/cli.py", line 124, in main +ModuleNotFoundError: No module named 'solver' +ov(sys.argv[1:] if argv is None else argv) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/phase.py", line 334, in __call__ + self._run(*args, **kwargs) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/overseer.py", line 238, in _run + script, argv, func = _resolve_function(self.options) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/overseer.py", line 271, in _resolve_function + return script, options.ARGV, resolve_script(script) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/scriptutils.py", line 36, in resolve_script + exec(prep, glb, glb) + File "/Tmp/slurm.4115546.0/milabench/benchmarks/stargan/stargan/main.py", line 4, in + from solver import Solver +ModuleNotFoundError: No module named 'solver' + +real 0m0.204s +user 0m0.361s +sys 0m0.044s +--- +super-slomo +=========== +/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/argparse_ext.py:234: UserWarning: Configuration blocks {'options'} were not used. Valid blocks are: set(). Did you forget a nesting level? + warnings.warn( +/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/argparse_ext.py:234: UserWarning: Configuration blocks {'options'} were not used. Valid blocks are: set(). Did you forget a nesting level? + warnings.warn( +Traceback (most recent call last): + File "/Tmp/slurm.4115546.0/base/venv/torch/bin/voir", line 8, in + sys.exit(main()) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/cli.py", line 124, in main + ov(sys.argv[1:] if argv is None else argv) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/phase.py", line 334, in __call__ + self._run(*args, **kwargs) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/overseer.py", line 238, in _run + script, argv, func = _resolve_function(self.options) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/overseer.py", line 271, in _resolve_function + return script, options.ARGV, resolve_script(script) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/scriptutils.py", line 36, in resolve_script + exec(prep, glb, glb) + File "/Tmp/slurm.4115546.0/milabench/benchmarks/super-slomo/slomo/train.py", line 10, in + import model +ModuleNotFoundError: No module named 'model' +Traceback (most recent call last): + File "/Tmp/slurm.4115546.0/base/venv/torch/bin/voir", line 8, in + sys.exit(main()) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/cli.py", line 124, in main + ov(sys.argv[1:] if argv is None else argv) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/phase.py", line 334, in __call__ + self._run(*args, **kwargs) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/overseer.py", line 238, in _run + script, argv, func = _resolve_function(self.options) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/overseer.py", line 271, in _resolve_function + return script, options.ARGV, resolve_script(script) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/scriptutils.py", line 36, in resolve_script + exec(prep, glb, glb) + File "/Tmp/slurm.4115546.0/milabench/benchmarks/super-slomo/slomo/train.py", line 10, in + import model +ModuleNotFoundError: No module named 'model' + +real 0m2.224s +user 0m3.888s +sys 0m0.719s +--- +dlrm +==== +/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/argparse_ext.py:234: UserWarning: Configuration blocks {'options'} were not used. Valid blocks are: set(). Did you forget a nesting level? + warnings.warn( +Traceback (most recent call last): + File "/Tmp/slurm.4115546.0/base/venv/torch/bin/voir", line 8, in + sys.exit(main()) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/cli.py", line 124, in main + ov(sys.argv[1:] if argv is None else argv) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/phase.py", line 334, in __call__ + self._run(*args, **kwargs) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/overseer.py", line 238, in _run + script, argv, func = _resolve_function(self.options) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/overseer.py", line 271, in _resolve_function + return script, options.ARGV, resolve_script(script) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/scriptutils.py", line 36, in resolve_script + exec(prep, glb, glb) + File "/Tmp/slurm.4115546.0/milabench/benchmarks/dlrm/dlrm/dlrm_s_pytorch.py", line 71, in + import dlrm_data_pytorch as dp +ModuleNotFoundError: No module named 'dlrm_data_pytorch' + +real 0m0.210s +user 0m0.202s +sys 0m0.008s +--- +rwkv +==== +/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/argparse_ext.py:234: UserWarning: Configuration blocks {'options'} were not used. Valid blocks are: set(). Did you forget a nesting level? + warnings.warn( +/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/argparse_ext.py:234: UserWarning: Configuration blocks {'options'} were not used. Valid blocks are: set(). Did you forget a nesting level? + warnings.warn( +[2024-02-06 16:51:04,996] [INFO] [real_accelerator.py:158:get_accelerator] Setting ds_accelerator to cuda (auto detect) +[2024-02-06 16:51:05,003] [INFO] [real_accelerator.py:158:get_accelerator] Setting ds_accelerator to cuda (auto detect) +########## work in progress ########## +########## WARNING: GLOBAL SEED 1234 THIS WILL AFFECT MULTIGPU SAMPLING ########## +########## WARNING: GLOBAL SEED 1234 THIS WILL AFFECT MULTIGPU SAMPLING ########## +########## WARNING: GLOBAL SEED 1234 THIS WILL AFFECT MULTIGPU SAMPLING ########## + +[rank: 0] Global seed set to 1234 + +############################################################################ +# +# RWKV-4 TF32 on 1x1 GPU, bsz 1x1x16=16, ddp_find_unused_parameters_false +# +# Data = (dummy), ProjDir = /Tmp/slurm.4115546.0/base/proj/rwkv/ +# +# Epoch = 0 to 19 (will continue afterwards), save every 0 epoch +# +# Each "epoch" = 1000 steps, 16000 samples, 2048000 tokens +# +# Model = 12 n_layer, 768 n_embd, 128 ctx_len +# +# Adam = lr 0.0006 to 1e-05, warmup 0 steps, beta (0.9, 0.99), eps 1e-08 +# +# Found torch 2.1.0+cu118, recommend 1.13.1+cu117 or newer +# Found deepspeed 0.12.2, recommend 0.7.0 (faster than newer versions) +# Found pytorch_lightning 1.9.5, recommend 1.9.1 or newer +# +############################################################################ + +{'load_model': '', 'wandb': '', 'proj_dir': '/Tmp/slurm.4115546.0/base/proj/rwkv/', 'random_seed': 1234, 'data_file': '', 'data_type': 'dummy', 'vocab_size': 0, 'ctx_len': 128, 'epoch_steps': 1000, 'epoch_count': 20, 'epoch_begin': 0, 'epoch_save': 0, 'micro_bsz': 16, 'n_layer': 12, 'n_embd': 768, 'dim_att': 768, 'dim_ffn': 3072, 'pre_ffn': 0, 'head_qk': 0, 'tiny_att_dim': 0, 'tiny_att_layer': -999, 'lr_init': 0.0006, 'lr_final': 1e-05, 'warmup_steps': 0, 'beta1': 0.9, 'beta2': 0.99, 'adam_eps': 1e-08, 'grad_cp': 0, 'my_pile_version': 1, 'my_pile_stage': 0, 'my_pile_shift': -1, 'my_pile_edecay': 0, 'layerwise_lr': 1, 'ds_bucket_mb': 200, 'my_img_version': 0, 'my_img_size': 0, 'my_img_bit': 0, 'my_img_clip': 'x', 'my_img_clip_scale': 1, 'my_img_l1_scale': 0, 'my_img_encoder': 'x', 'my_sample_len': 0, 'my_ffn_shift': 1, 'my_att_shift': 1, 'my_pos_emb': 0, 'load_partial': 0, 'magic_prime': 0, 'my_qa_mask': 0, 'my_testing': '', 'logger': False, 'enable_checkpointing': False, 'default_root_dir': None, 'gradient_clip_val': 1.0, 'gradient_clip_algorithm': None, 'num_nodes': 1, 'num_processes': None, 'devices': '1', 'gpus': None, 'auto_select_gpus': None, 'tpu_cores': None, 'ipus': None, 'enable_progress_bar': False, 'overfit_batches': 0.0, 'track_grad_norm': -1, 'check_val_every_n_epoch': 100000000000000000000, 'fast_dev_run': False, 'accumulate_grad_batches': None, 'max_epochs': -1, 'min_epochs': None, 'max_steps': -1, 'min_steps': None, 'max_time': None, 'limit_train_batches': None, 'limit_val_batches': None, 'limit_test_batches': None, 'limit_predict_batches': None, 'val_check_interval': None, 'log_every_n_steps': 100000000000000000000, 'accelerator': 'gpu', 'strategy': 'ddp_find_unused_parameters_false', 'sync_batchnorm': False, 'precision': 'tf32', 'enable_model_summary': True, 'num_sanity_val_steps': 0, 'resume_from_checkpoint': None, 'profiler': None, 'benchmark': None, 'reload_dataloaders_every_n_epochs': 0, 'auto_lr_find': False, 'replace_sampler_ddp': False, 'detect_anomaly': False, 'auto_scale_batch_size': False, 'plugins': None, 'amp_backend': None, 'amp_level': None, 'move_metrics_to_cpu': False, 'multiple_trainloader_mode': 'max_size_cycle', 'inference_mode': True, 'my_timestamp': '2024-02-06-16-51-06', 'betas': (0.9, 0.99), 'real_bsz': 16, 'run_name': '0 ctx128 L12 D768'} + +Traceback (most recent call last): + File "/Tmp/slurm.4115546.0/base/venv/torch/bin/voir", line 8, in + sys.exit(main()) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/cli.py", line 124, in main + ov(sys.argv[1:] if argv is None else argv) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/phase.py", line 334, in __call__ + self._run(*args, **kwargs) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/overseer.py", line 242, in _run + set_value(func()) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/scriptutils.py", line 37, in + return lambda: exec(mainsection, glb, glb) + File "/Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/rwkv-v4neo/train.py", line 342, in + from src.trainer import train_callback, generate_init_weight +ModuleNotFoundError: No module named 'src' +########## work in progress ########## +########## WARNING: GLOBAL SEED 1234 THIS WILL AFFECT MULTIGPU SAMPLING ########## +########## WARNING: GLOBAL SEED 1234 THIS WILL AFFECT MULTIGPU SAMPLING ########## +########## WARNING: GLOBAL SEED 1234 THIS WILL AFFECT MULTIGPU SAMPLING ########## + +[rank: 0] Global seed set to 1234 + +############################################################################ +# +# RWKV-4 TF32 on 1x1 GPU, bsz 1x1x16=16, ddp_find_unused_parameters_false +# +# Data = (dummy), ProjDir = /Tmp/slurm.4115546.0/base/proj/rwkv/ +# +# Epoch = 0 to 19 (will continue afterwards), save every 0 epoch +# +# Each "epoch" = 1000 steps, 16000 samples, 2048000 tokens +# +# Model = 12 n_layer, 768 n_embd, 128 ctx_len +# +# Adam = lr 0.0006 to 1e-05, warmup 0 steps, beta (0.9, 0.99), eps 1e-08 +# +# Found torch 2.1.0+cu118, recommend 1.13.1+cu117 or newer +# Found deepspeed 0.12.2, recommend 0.7.0 (faster than newer versions) +# Found pytorch_lightning 1.9.5, recommend 1.9.1 or newer +# +############################################################################ + +{'load_model': '', 'wandb': '', 'proj_dir': '/Tmp/slurm.4115546.0/base/proj/rwkv/', 'random_seed': 1234, 'data_file': '', 'data_type': 'dummy', 'vocab_size': 0, 'ctx_len': 128, 'epoch_steps': 1000, 'epoch_count': 20, 'epoch_begin': 0, 'epoch_save': 0, 'micro_bsz': 16, 'n_layer': 12, 'n_embd': 768, 'dim_att': 768, 'dim_ffn': 3072, 'pre_ffn': 0, 'head_qk': 0, 'tiny_att_dim': 0, 'tiny_att_layer': -999, 'lr_init': 0.0006, 'lr_final': 1e-05, 'warmup_steps': 0, 'beta1': 0.9, 'beta2': 0.99, 'adam_eps': 1e-08, 'grad_cp': 0, 'my_pile_version': 1, 'my_pile_stage': 0, 'my_pile_shift': -1, 'my_pile_edecay': 0, 'layerwise_lr': 1, 'ds_bucket_mb': 200, 'my_img_version': 0, 'my_img_size': 0, 'my_img_bit': 0, 'my_img_clip': 'x', 'my_img_clip_scale': 1, 'my_img_l1_scale': 0, 'my_img_encoder': 'x', 'my_sample_len': 0, 'my_ffn_shift': 1, 'my_att_shift': 1, 'my_pos_emb': 0, 'load_partial': 0, 'magic_prime': 0, 'my_qa_mask': 0, 'my_testing': '', 'logger': False, 'enable_checkpointing': False, 'default_root_dir': None, 'gradient_clip_val': 1.0, 'gradient_clip_algorithm': None, 'num_nodes': 1, 'num_processes': None, 'devices': '1', 'gpus': None, 'auto_select_gpus': None, 'tpu_cores': None, 'ipus': None, 'enable_progress_bar': False, 'overfit_batches': 0.0, 'track_grad_norm': -1, 'check_val_every_n_epoch': 100000000000000000000, 'fast_dev_run': False, 'accumulate_grad_batches': None, 'max_epochs': -1, 'min_epochs': None, 'max_steps': -1, 'min_steps': None, 'max_time': None, 'limit_train_batches': None, 'limit_val_batches': None, 'limit_test_batches': None, 'limit_predict_batches': None, 'val_check_interval': None, 'log_every_n_steps': 100000000000000000000, 'accelerator': 'gpu', 'strategy': 'ddp_find_unused_parameters_false', 'sync_batchnorm': False, 'precision': 'tf32', 'enable_model_summary': True, 'num_sanity_val_steps': 0, 'resume_from_checkpoint': None, 'profiler': None, 'benchmark': None, 'reload_dataloaders_every_n_epochs': 0, 'auto_lr_find': False, 'replace_sampler_ddp': False, 'detect_anomaly': False, 'auto_scale_batch_size': False, 'plugins': None, 'amp_backend': None, 'amp_level': None, 'move_metrics_to_cpu': False, 'multiple_trainloader_mode': 'max_size_cycle', 'inference_mode': True, 'my_timestamp': '2024-02-06-16-51-07', 'betas': (0.9, 0.99), 'real_bsz': 16, 'run_name': '0 ctx128 L12 D768'} + +Traceback (most recent call last): + File "/Tmp/slurm.4115546.0/base/venv/torch/bin/voir", line 8, in + sys.exit(main()) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/cli.py", line 124, in main + ov(sys.argv[1:] if argv is None else argv) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/phase.py", line 334, in __call__ + self._run(*args, **kwargs) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/overseer.py", line 242, in _run + set_value(func()) + File "/Tmp/slurm.4115546.0/base/venv/torch/lib/python3.9/site-packages/voir/scriptutils.py", line 37, in + return lambda: exec(mainsection, glb, glb) + File "/Tmp/slurm.4115546.0/milabench/benchmarks/rwkv/rwkv-v4neo/train.py", line 342, in + from src.trainer import train_callback, generate_init_weight +ModuleNotFoundError: No module named 'src' + +real 0m4.899s +user 0m6.740s +sys 0m1.965s +---- +Done after 3738 + + +======== GPU REPORT ======== + +==============NVSMI LOG============== + +Timestamp : Tue Feb 6 16:51:07 2024 +Driver Version : 535.104.12 +CUDA Version : 12.2 + +Attached GPUs : 2 +GPU 00000000:0F:00.0 + Accounting Mode : Enabled + Accounting Mode Buffer Size : 4000 + Accounted Processes + Process ID : 3218898 + GPU Utilization : 1 % + Memory Utilization : 0 % + Max memory usage : 4712 MiB + Time : 56278 ms + Is Running : 0 + Process ID : 3222118 + GPU Utilization : 69 % + Memory Utilization : 51 % + Max memory usage : 27548 MiB + Time : 338047 ms + Is Running : 0 + Process ID : 3238759 + GPU Utilization : 88 % + Memory Utilization : 19 % + Max memory usage : 910 MiB + Time : 22584 ms + Is Running : 0 + Process ID : 3239995 + GPU Utilization : 74 % + Memory Utilization : 17 % + Max memory usage : 910 MiB + Time : 8963 ms + Is Running : 0 + Process ID : 3240402 + GPU Utilization : 85 % + Memory Utilization : 23 % + Max memory usage : 1288 MiB + Time : 15627 ms + Is Running : 0 + Process ID : 3241371 + GPU Utilization : 97 % + Memory Utilization : 4 % + Max memory usage : 1288 MiB + Time : 105809 ms + Is Running : 0 + Process ID : 3246639 + GPU Utilization : 25 % + Memory Utilization : 12 % + Max memory usage : 3852 MiB + Time : 571242 ms + Is Running : 0 + Process ID : 3327573 + GPU Utilization : 90 % + Memory Utilization : 46 % + Max memory usage : 30676 MiB + Time : 2169709 ms + Is Running : 0 + +GPU 00000000:47:00.0 + Accounting Mode : Enabled + Accounting Mode Buffer Size : 4000 + Accounted Processes + Process ID : 3222119 + GPU Utilization : 69 % + Memory Utilization : 51 % + Max memory usage : 27548 MiB + Time : 327570 ms + Is Running : 0 + Process ID : 3238760 + GPU Utilization : 88 % + Memory Utilization : 20 % + Max memory usage : 910 MiB + Time : 22674 ms + Is Running : 0 + Process ID : 3239996 + GPU Utilization : 74 % + Memory Utilization : 17 % + Max memory usage : 910 MiB + Time : 8445 ms + Is Running : 0 + Process ID : 3240403 + GPU Utilization : 89 % + Memory Utilization : 24 % + Max memory usage : 1288 MiB + Time : 15167 ms + Is Running : 0 + Process ID : 3241372 + GPU Utilization : 97 % + Memory Utilization : 4 % + Max memory usage : 1288 MiB + Time : 105394 ms + Is Running : 0 + Process ID : 3246640 + GPU Utilization : 25 % + Memory Utilization : 12 % + Max memory usage : 3852 MiB + Time : 571575 ms + Is Running : 0 + Process ID : 3327574 + GPU Utilization : 90 % + Memory Utilization : 46 % + Max memory usage : 30676 MiB + Time : 2177695 ms + Is Running : 0 + +Tue Feb 6 16:51:07 2024 ++---------------------------------------------------------------------------------------+ +| NVIDIA-SMI 535.104.12 Driver Version: 535.104.12 CUDA Version: 12.2 | +|-----------------------------------------+----------------------+----------------------+ +| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC | +| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. | +| | | MIG M. | +|=========================================+======================+======================| +| 0 NVIDIA A100-SXM4-80GB On | 00000000:0F:00.0 Off | 0 | +| N/A 29C P0 63W / 400W | 4MiB / 81920MiB | 0% Default | +| | | Disabled | ++-----------------------------------------+----------------------+----------------------+ +| 1 NVIDIA A100-SXM4-80GB On | 00000000:47:00.0 Off | 0 | +| N/A 30C P0 64W / 400W | 4MiB / 81920MiB | 0% Default | +| | | Disabled | ++-----------------------------------------+----------------------+----------------------+ + ++---------------------------------------------------------------------------------------+ +| Processes: | +| GPU GI CI PID Type Process name GPU Memory | +| ID ID Usage | +|=======================================================================================| +| No running processes found | ++---------------------------------------------------------------------------------------+ diff --git a/scripts/interactive.sh b/scripts/interactive.sh new file mode 100644 index 000000000..6d25f6f86 --- /dev/null +++ b/scripts/interactive.sh @@ -0,0 +1,40 @@ + +# source scripts/interactive.sh + +# Intereactive session do not have SLURM_TMPDIR set +export SLURM_TMPDIR="/Tmp/slurm.$SLURM_JOB_ID.0" +export ENV="$SLURM_TMPDIR/env" +export MILABENCH_SOURCE="$HOME/milabench" +export BASE="$SLURM_TMPDIR/base" +export ARCH="cuda" + +if [ ! -d "$ENV" ] && [ "$ENV" != "base" ] && [ ! -d "$CONDA_ENVS/$ENV" ]; then + conda create --prefix $ENV python=$PYTHON -y +fi +conda activate $ENV + +export HF_HOME=$BASE/cache +export HF_DATASETS_CACHE=$BASE/cache +export TORCH_HOME=$BASE/cache +export XDG_CACHE_HOME=$BASE/cache +export MILABENCH_GPU_ARCH=$ARCH + +export MILABENCH_DASH=no +export PYTHONUNBUFFERED=1 +export MILABENCH_BASE=$BASE +export MILABENCH_CONFIG="$MILABENCH_SOURCE/config/standard.yaml" + +python -m pip install -e $MILABENCH_SOURCE + +module load gcc/9.3.0 +module load cuda/11.8 + +if [ ! -f "$BASE/install" ]; then + milabench install --config $MILABENCH_CONFIG --base $BASE --select resnet50 +fi + +if [ ! -f "$BASE/prepare" ]; then + milabench prepare --config $MILABENCH_CONFIG --base $BASE --select resnet50 +fi + +exec bash diff --git a/scripts/run.sh b/scripts/run.sh index b6608cc4b..d4386dd1a 100644 --- a/scripts/run.sh +++ b/scripts/run.sh @@ -1,5 +1,5 @@ -OUTPUT="barebone.out" +OUTPUT="barebone_voir.out" rm -rf $OUTPUT touch $OUTPUT diff --git a/scripts/slurm.sh b/scripts/slurm.sh index abd3f9447..7f377459d 100644 --- a/scripts/slurm.sh +++ b/scripts/slurm.sh @@ -89,6 +89,7 @@ if [ ! -d "$ENV" ] && [ "$ENV" != "base" ] && [ ! -d "$CONDA_ENVS/$ENV" ]; then fi conda activate $ENV + export HF_HOME=$BASE/cache export HF_DATASETS_CACHE=$BASE/cache export TORCH_HOME=$BASE/cache diff --git a/scripts/slurm_barebone.sh b/scripts/slurm_barebone.sh index 8c929a345..3d75bc2fb 100644 --- a/scripts/slurm_barebone.sh +++ b/scripts/slurm_barebone.sh @@ -108,20 +108,23 @@ python -m pip install -e ./milabench module load gcc/9.3.0 module load cuda/11.8 +EXCLUDE="--exclude multinode,convnext_large-fp32,convnext_large-fp16,convnext_large-tf32,convnext_large-tf32-fp16" +SELECT="--select resnet50" + echo "" echo "Install" echo "-------" -milabench install --config $CONFIG --base $BASE $REMAINING_ARGS +milabench install --config $CONFIG --base $BASE $SELECT echo "" echo "Prepare" echo "-------" -milabench prepare --config $CONFIG --base $BASE $REMAINING_ARGS +milabench prepare --config $CONFIG --base $BASE $SELECT # # Generate bash commands to execute # -milabench dry --config $CONFIG --base $BASE --no-usevoir --ngpu 2 --nnodes 1 --exclude multinode > commands.sh +milabench dry --config $CONFIG --base $BASE --ngpu 2 --nnodes 1 $SELECT > commands.sh # Run the commands bash commands.sh diff --git a/test.out b/test.out new file mode 100644 index 000000000..6a9b71594 --- /dev/null +++ b/test.out @@ -0,0 +1,21141 @@ + PYTHON: 3.9 + branch: new_pytorch_stable + origin: https://github.com/mila-iqia/milabench.git + config: /Tmp/slurm.4112514.0/milabench/config/standard.yaml + env: ./env + args: --exclude opt-6_7b +Retrieving notices: ...working... done +Collecting package metadata (current_repodata.json): ...working... done +Solving environment: ...working... done + + +==> WARNING: A newer version of conda exists. <== + current version: 23.5.2 + latest version: 24.1.0 + +Please update conda by running + + $ conda update -n base -c defaults conda + +Or to minimize the number of packages updated during conda update use + + conda install conda=24.1.0 + + + +## Package Plan ## + + environment location: /Tmp/slurm.4112514.0/env + + added / updated specs: + - python=3.9 + + +The following packages will be downloaded: + + package | build + ---------------------------|----------------- + openssl-3.0.13 | h7f8727e_0 5.2 MB + ------------------------------------------------------------ + Total: 5.2 MB + +The following NEW packages will be INSTALLED: + + _libgcc_mutex pkgs/main/linux-64::_libgcc_mutex-0.1-main + _openmp_mutex pkgs/main/linux-64::_openmp_mutex-5.1-1_gnu + ca-certificates pkgs/main/linux-64::ca-certificates-2023.12.12-h06a4308_0 + ld_impl_linux-64 pkgs/main/linux-64::ld_impl_linux-64-2.38-h1181459_1 + libffi pkgs/main/linux-64::libffi-3.4.4-h6a678d5_0 + libgcc-ng pkgs/main/linux-64::libgcc-ng-11.2.0-h1234567_1 + libgomp pkgs/main/linux-64::libgomp-11.2.0-h1234567_1 + libstdcxx-ng pkgs/main/linux-64::libstdcxx-ng-11.2.0-h1234567_1 + ncurses pkgs/main/linux-64::ncurses-6.4-h6a678d5_0 + openssl pkgs/main/linux-64::openssl-3.0.13-h7f8727e_0 + pip pkgs/main/linux-64::pip-23.3.1-py39h06a4308_0 + python pkgs/main/linux-64::python-3.9.18-h955ad1f_0 + readline pkgs/main/linux-64::readline-8.2-h5eee18b_0 + setuptools pkgs/main/linux-64::setuptools-68.2.2-py39h06a4308_0 + sqlite pkgs/main/linux-64::sqlite-3.41.2-h5eee18b_0 + tk pkgs/main/linux-64::tk-8.6.12-h1ccaba5_0 + tzdata pkgs/main/noarch::tzdata-2023d-h04d1e81_0 + wheel pkgs/main/linux-64::wheel-0.41.2-py39h06a4308_0 + xz pkgs/main/linux-64::xz-5.4.5-h5eee18b_0 + zlib pkgs/main/linux-64::zlib-1.2.13-h5eee18b_0 + + + +Downloading and Extracting Packages + openssl-3.0.13 | 5.2 MB | | 0% openssl-3.0.13 | 5.2 MB | 3 | 3% openssl-3.0.13 | 5.2 MB | ########## | 100% openssl-3.0.13 | 5.2 MB | ########## | 100% +Preparing transaction: ...working... done +Verifying transaction: ...working... done +Executing transaction: ...working... done +# +# To activate this environment, use +# +# $ conda activate /Tmp/slurm.4112514.0/env +# +# To deactivate an active environment, use +# +# $ conda deactivate + +Cloning into 'milabench'... +Obtaining file:///Tmp/slurm.4112514.0/milabench + Installing build dependencies: started + Installing build dependencies: finished with status 'done' + Checking if build backend supports build_editable: started + Checking if build backend supports build_editable: finished with status 'done' + Getting requirements to build editable: started + Getting requirements to build editable: finished with status 'done' + Preparing editable metadata (pyproject.toml): started + Preparing editable metadata (pyproject.toml): finished with status 'done' +Collecting GitPython<4.0.0,>=3.1.24 (from milabench==0.1.0) + Downloading GitPython-3.1.41-py3-none-any.whl.metadata (14 kB) +Collecting PyYAML<7.0,>=6.0 (from milabench==0.1.0) + Downloading PyYAML-6.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (2.1 kB) +Collecting blessed<2.0.0,>=1.19.1 (from milabench==0.1.0) + Downloading blessed-1.20.0-py2.py3-none-any.whl (58 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58.4/58.4 kB 5.0 MB/s eta 0:00:00 +Collecting coleo<0.4.0,>=0.3.0 (from milabench==0.1.0) + Downloading coleo-0.3.3-py3-none-any.whl.metadata (13 kB) +Collecting cp-template<0.4.0,>=0.3.0 (from milabench==0.1.0) + Downloading cp_template-0.3.0-py3-none-any.whl (3.3 kB) +Collecting giving<0.5.0,>=0.4.0 (from milabench==0.1.0) + Downloading giving-0.4.2-py3-none-any.whl (28 kB) +Collecting hrepr<0.5.0,>=0.4.0 (from milabench==0.1.0) + Downloading hrepr-0.4.1-py3-none-any.whl (21 kB) +Collecting nox<2022.0.0,>=2021.10.1 (from milabench==0.1.0) + Downloading nox-2021.10.1-py3-none-any.whl (49 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 49.7/49.7 kB 40.0 MB/s eta 0:00:00 +Collecting numpy>=1.23.0 (from milabench==0.1.0) + Downloading numpy-1.26.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (61 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 61.2/61.2 kB 34.7 MB/s eta 0:00:00 +Collecting omegaconf<3.0.0,>=2.3.0 (from milabench==0.1.0) + Downloading omegaconf-2.3.0-py3-none-any.whl (79 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 79.5/79.5 kB 38.5 MB/s eta 0:00:00 +Collecting ovld<0.4.0,>=0.3.2 (from milabench==0.1.0) + Downloading ovld-0.3.2-py3-none-any.whl (16 kB) +Collecting pandas<2.0.0,>=1.4.2 (from milabench==0.1.0) + Downloading pandas-1.5.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.2 MB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 12.2/12.2 MB 94.4 MB/s eta 0:00:00 +Collecting pathspec<0.10.0,>=0.9.0 (from milabench==0.1.0) + Downloading pathspec-0.9.0-py2.py3-none-any.whl (31 kB) +Collecting pip-tools<7.0.0,>=6.12.3 (from milabench==0.1.0) + Downloading pip_tools-6.14.0-py3-none-any.whl.metadata (23 kB) +Collecting ptera<2.0.0,>=1.2.0 (from milabench==0.1.0) + Downloading ptera-1.4.1-py3-none-any.whl (39 kB) +Collecting pynvml<12.0.0,>=11.4.1 (from milabench==0.1.0) + Downloading pynvml-11.5.0-py3-none-any.whl (53 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 53.1/53.1 kB 39.4 MB/s eta 0:00:00 +Collecting requests<3.0.0,>=2.26.0 (from milabench==0.1.0) + Downloading requests-2.31.0-py3-none-any.whl.metadata (4.6 kB) +Collecting rich<14.0.0,>=13.3.2 (from milabench==0.1.0) + Downloading rich-13.7.0-py3-none-any.whl.metadata (18 kB) +Collecting tqdm<5.0.0,>=4.64.1 (from milabench==0.1.0) + Downloading tqdm-4.66.1-py3-none-any.whl.metadata (57 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 57.6/57.6 kB 42.4 MB/s eta 0:00:00 +Collecting voir<0.3.0,>=0.2.9 (from milabench==0.1.0) + Downloading voir-0.2.12-py3-none-any.whl.metadata (791 bytes) +Collecting wcwidth>=0.1.4 (from blessed<2.0.0,>=1.19.1->milabench==0.1.0) + Downloading wcwidth-0.2.13-py2.py3-none-any.whl.metadata (14 kB) +Collecting six>=1.9.0 (from blessed<2.0.0,>=1.19.1->milabench==0.1.0) + Downloading six-1.16.0-py2.py3-none-any.whl (11 kB) +Collecting pystache<0.7.0,>=0.6.0 (from cp-template<0.4.0,>=0.3.0->milabench==0.1.0) + Downloading pystache-0.6.5-py3-none-any.whl.metadata (14 kB) +Collecting gitdb<5,>=4.0.1 (from GitPython<4.0.0,>=3.1.24->milabench==0.1.0) + Downloading gitdb-4.0.11-py3-none-any.whl.metadata (1.2 kB) +Collecting asttokens<3.0.0,>=2.2.1 (from giving<0.5.0,>=0.4.0->milabench==0.1.0) + Downloading asttokens-2.4.1-py2.py3-none-any.whl.metadata (5.2 kB) +Collecting reactivex<5.0.0,>=4.0.0 (from giving<0.5.0,>=0.4.0->milabench==0.1.0) + Downloading reactivex-4.0.4-py3-none-any.whl (217 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 217.8/217.8 kB 100.6 MB/s eta 0:00:00 +Collecting varname<0.11.0,>=0.10.0 (from giving<0.5.0,>=0.4.0->milabench==0.1.0) + Downloading varname-0.10.0-py3-none-any.whl (22 kB) +Collecting argcomplete<2.0,>=1.9.4 (from nox<2022.0.0,>=2021.10.1->milabench==0.1.0) + Downloading argcomplete-1.12.3-py2.py3-none-any.whl (38 kB) +Collecting colorlog<7.0.0,>=2.6.1 (from nox<2022.0.0,>=2021.10.1->milabench==0.1.0) + Downloading colorlog-6.8.2-py3-none-any.whl.metadata (10 kB) +Collecting packaging>=20.9 (from nox<2022.0.0,>=2021.10.1->milabench==0.1.0) + Downloading packaging-23.2-py3-none-any.whl.metadata (3.2 kB) +Collecting py<2.0.0,>=1.4.0 (from nox<2022.0.0,>=2021.10.1->milabench==0.1.0) + Downloading py-1.11.0-py2.py3-none-any.whl (98 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 98.7/98.7 kB 71.4 MB/s eta 0:00:00 +Collecting virtualenv>=14.0.0 (from nox<2022.0.0,>=2021.10.1->milabench==0.1.0) + Downloading virtualenv-20.25.0-py3-none-any.whl.metadata (4.5 kB) +Collecting antlr4-python3-runtime==4.9.* (from omegaconf<3.0.0,>=2.3.0->milabench==0.1.0) + Downloading antlr4-python3-runtime-4.9.3.tar.gz (117 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 117.0/117.0 kB 84.5 MB/s eta 0:00:00 + Preparing metadata (setup.py): started + Preparing metadata (setup.py): finished with status 'done' +Collecting python-dateutil>=2.8.1 (from pandas<2.0.0,>=1.4.2->milabench==0.1.0) + Downloading python_dateutil-2.8.2-py2.py3-none-any.whl (247 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 247.7/247.7 kB 117.8 MB/s eta 0:00:00 +Collecting pytz>=2020.1 (from pandas<2.0.0,>=1.4.2->milabench==0.1.0) + Downloading pytz-2024.1-py2.py3-none-any.whl.metadata (22 kB) +Collecting build (from pip-tools<7.0.0,>=6.12.3->milabench==0.1.0) + Downloading build-1.0.3-py3-none-any.whl.metadata (4.2 kB) +Collecting click>=8 (from pip-tools<7.0.0,>=6.12.3->milabench==0.1.0) + Downloading click-8.1.7-py3-none-any.whl.metadata (3.0 kB) +Requirement already satisfied: pip>=22.2 in ./env/lib/python3.9/site-packages (from pip-tools<7.0.0,>=6.12.3->milabench==0.1.0) (23.3.1) +Requirement already satisfied: setuptools in ./env/lib/python3.9/site-packages (from pip-tools<7.0.0,>=6.12.3->milabench==0.1.0) (68.2.2) +Requirement already satisfied: wheel in ./env/lib/python3.9/site-packages (from pip-tools<7.0.0,>=6.12.3->milabench==0.1.0) (0.41.2) +Collecting tomli (from pip-tools<7.0.0,>=6.12.3->milabench==0.1.0) + Downloading tomli-2.0.1-py3-none-any.whl (12 kB) +Collecting codefind<0.2.0,>=0.1.2 (from ptera<2.0.0,>=1.2.0->milabench==0.1.0) + Downloading codefind-0.1.3-py3-none-any.whl (3.1 kB) +Collecting charset-normalizer<4,>=2 (from requests<3.0.0,>=2.26.0->milabench==0.1.0) + Downloading charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (33 kB) +Collecting idna<4,>=2.5 (from requests<3.0.0,>=2.26.0->milabench==0.1.0) + Downloading idna-3.6-py3-none-any.whl.metadata (9.9 kB) +Collecting urllib3<3,>=1.21.1 (from requests<3.0.0,>=2.26.0->milabench==0.1.0) + Downloading urllib3-2.2.0-py3-none-any.whl.metadata (6.4 kB) +Collecting certifi>=2017.4.17 (from requests<3.0.0,>=2.26.0->milabench==0.1.0) + Downloading certifi-2024.2.2-py3-none-any.whl.metadata (2.2 kB) +Collecting markdown-it-py>=2.2.0 (from rich<14.0.0,>=13.3.2->milabench==0.1.0) + Downloading markdown_it_py-3.0.0-py3-none-any.whl.metadata (6.9 kB) +Collecting pygments<3.0.0,>=2.13.0 (from rich<14.0.0,>=13.3.2->milabench==0.1.0) + Downloading pygments-2.17.2-py3-none-any.whl.metadata (2.6 kB) +Collecting smmap<6,>=3.0.1 (from gitdb<5,>=4.0.1->GitPython<4.0.0,>=3.1.24->milabench==0.1.0) + Downloading smmap-5.0.1-py3-none-any.whl.metadata (4.3 kB) +Collecting mdurl~=0.1 (from markdown-it-py>=2.2.0->rich<14.0.0,>=13.3.2->milabench==0.1.0) + Downloading mdurl-0.1.2-py3-none-any.whl (10.0 kB) +Collecting importlib-metadata>=4.6 (from pystache<0.7.0,>=0.6.0->cp-template<0.4.0,>=0.3.0->milabench==0.1.0) + Downloading importlib_metadata-7.0.1-py3-none-any.whl.metadata (4.9 kB) +Collecting typing-extensions<5.0.0,>=4.1.1 (from reactivex<5.0.0,>=4.0.0->giving<0.5.0,>=0.4.0->milabench==0.1.0) + Downloading typing_extensions-4.9.0-py3-none-any.whl.metadata (3.0 kB) +Collecting executing<2.0,>=1.1 (from varname<0.11.0,>=0.10.0->giving<0.5.0,>=0.4.0->milabench==0.1.0) + Downloading executing-1.2.0-py2.py3-none-any.whl (24 kB) +Collecting distlib<1,>=0.3.7 (from virtualenv>=14.0.0->nox<2022.0.0,>=2021.10.1->milabench==0.1.0) + Downloading distlib-0.3.8-py2.py3-none-any.whl.metadata (5.1 kB) +Collecting filelock<4,>=3.12.2 (from virtualenv>=14.0.0->nox<2022.0.0,>=2021.10.1->milabench==0.1.0) + Downloading filelock-3.13.1-py3-none-any.whl.metadata (2.8 kB) +Collecting platformdirs<5,>=3.9.1 (from virtualenv>=14.0.0->nox<2022.0.0,>=2021.10.1->milabench==0.1.0) + Downloading platformdirs-4.2.0-py3-none-any.whl.metadata (11 kB) +Collecting pyproject_hooks (from build->pip-tools<7.0.0,>=6.12.3->milabench==0.1.0) + Downloading pyproject_hooks-1.0.0-py3-none-any.whl (9.3 kB) +Collecting zipp>=0.5 (from importlib-metadata>=4.6->pystache<0.7.0,>=0.6.0->cp-template<0.4.0,>=0.3.0->milabench==0.1.0) + Downloading zipp-3.17.0-py3-none-any.whl.metadata (3.7 kB) +Downloading coleo-0.3.3-py3-none-any.whl (12 kB) +Downloading GitPython-3.1.41-py3-none-any.whl (196 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 196.4/196.4 kB 108.7 MB/s eta 0:00:00 +Downloading numpy-1.26.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.2 MB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 18.2/18.2 MB 102.2 MB/s eta 0:00:00 +Downloading pip_tools-6.14.0-py3-none-any.whl (55 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 55.9/55.9 kB 36.8 MB/s eta 0:00:00 +Downloading PyYAML-6.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (738 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 738.9/738.9 kB 111.7 MB/s eta 0:00:00 +Downloading requests-2.31.0-py3-none-any.whl (62 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 62.6/62.6 kB 50.1 MB/s eta 0:00:00 +Downloading rich-13.7.0-py3-none-any.whl (240 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 240.6/240.6 kB 116.8 MB/s eta 0:00:00 +Downloading tqdm-4.66.1-py3-none-any.whl (78 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 78.3/78.3 kB 60.4 MB/s eta 0:00:00 +Downloading voir-0.2.12-py3-none-any.whl (35 kB) +Downloading asttokens-2.4.1-py2.py3-none-any.whl (27 kB) +Downloading certifi-2024.2.2-py3-none-any.whl (163 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 163.8/163.8 kB 86.9 MB/s eta 0:00:00 +Downloading charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (142 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 142.3/142.3 kB 91.5 MB/s eta 0:00:00 +Downloading click-8.1.7-py3-none-any.whl (97 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 97.9/97.9 kB 62.1 MB/s eta 0:00:00 +Downloading colorlog-6.8.2-py3-none-any.whl (11 kB) +Downloading gitdb-4.0.11-py3-none-any.whl (62 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 62.7/62.7 kB 50.8 MB/s eta 0:00:00 +Downloading idna-3.6-py3-none-any.whl (61 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 61.6/61.6 kB 49.9 MB/s eta 0:00:00 +Downloading markdown_it_py-3.0.0-py3-none-any.whl (87 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 87.5/87.5 kB 69.7 MB/s eta 0:00:00 +Downloading packaging-23.2-py3-none-any.whl (53 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 53.0/53.0 kB 43.5 MB/s eta 0:00:00 +Downloading pygments-2.17.2-py3-none-any.whl (1.2 MB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.2/1.2 MB 113.2 MB/s eta 0:00:00 +Downloading pystache-0.6.5-py3-none-any.whl (81 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 81.3/81.3 kB 64.9 MB/s eta 0:00:00 +Downloading pytz-2024.1-py2.py3-none-any.whl (505 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 505.5/505.5 kB 144.9 MB/s eta 0:00:00 +Downloading urllib3-2.2.0-py3-none-any.whl (120 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 120.9/120.9 kB 27.4 MB/s eta 0:00:00 +Downloading virtualenv-20.25.0-py3-none-any.whl (3.8 MB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 3.8/3.8 MB 74.7 MB/s eta 0:00:00 +Downloading wcwidth-0.2.13-py2.py3-none-any.whl (34 kB) +Downloading build-1.0.3-py3-none-any.whl (18 kB) +Downloading distlib-0.3.8-py2.py3-none-any.whl (468 kB) + ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 468.9/468.9 kB 103.7 MB/s eta 0:00:00 +Downloading filelock-3.13.1-py3-none-any.whl (11 kB) +Downloading importlib_metadata-7.0.1-py3-none-any.whl (23 kB) +Downloading platformdirs-4.2.0-py3-none-any.whl (17 kB) +Downloading smmap-5.0.1-py3-none-any.whl (24 kB) +Downloading typing_extensions-4.9.0-py3-none-any.whl (32 kB) +Downloading zipp-3.17.0-py3-none-any.whl (7.4 kB) +Building wheels for collected packages: milabench, antlr4-python3-runtime + Building editable for milabench (pyproject.toml): started + Building editable for milabench (pyproject.toml): finished with status 'done' + Created wheel for milabench: filename=milabench-0.1.0-py3-none-any.whl size=2407 sha256=36ad1d0b1285e68dcea126d71746224c1d8d666bb7952f9cdff7c59b08da3141 + Stored in directory: /tmp/pip-ephem-wheel-cache-h2wtdsj0/wheels/2b/c1/5d/4302c2fe879e61c9fa75a2f8f376953fcde91551f55df14fa8 + Building wheel for antlr4-python3-runtime (setup.py): started + Building wheel for antlr4-python3-runtime (setup.py): finished with status 'done' + Created wheel for antlr4-python3-runtime: filename=antlr4_python3_runtime-4.9.3-py3-none-any.whl size=144554 sha256=a5b64a7a3b06dbed49dd08c4508d5bf9ac4f90fb944d345aea7bc0af099c54be + Stored in directory: /Tmp/slurm.4112514.0/base/cache/pip/wheels/23/cf/80/f3efa822e6ab23277902ee9165fe772eeb1dfb8014f359020a +Successfully built milabench antlr4-python3-runtime +Installing collected packages: wcwidth, pytz, executing, distlib, argcomplete, antlr4-python3-runtime, zipp, varname, urllib3, typing-extensions, tqdm, tomli, smmap, six, PyYAML, pynvml, pygments, py, platformdirs, pathspec, packaging, ovld, numpy, mdurl, idna, filelock, colorlog, codefind, click, charset-normalizer, certifi, virtualenv, requests, reactivex, python-dateutil, pyproject_hooks, omegaconf, markdown-it-py, importlib-metadata, hrepr, gitdb, blessed, asttokens, rich, pystache, pandas, nox, giving, GitPython, build, ptera, pip-tools, voir, coleo, cp-template, milabench +Successfully installed GitPython-3.1.41 PyYAML-6.0.1 antlr4-python3-runtime-4.9.3 argcomplete-1.12.3 asttokens-2.4.1 blessed-1.20.0 build-1.0.3 certifi-2024.2.2 charset-normalizer-3.3.2 click-8.1.7 codefind-0.1.3 coleo-0.3.3 colorlog-6.8.2 cp-template-0.3.0 distlib-0.3.8 executing-1.2.0 filelock-3.13.1 gitdb-4.0.11 giving-0.4.2 hrepr-0.4.1 idna-3.6 importlib-metadata-7.0.1 markdown-it-py-3.0.0 mdurl-0.1.2 milabench-0.1.0 nox-2021.10.1 numpy-1.26.3 omegaconf-2.3.0 ovld-0.3.2 packaging-23.2 pandas-1.5.3 pathspec-0.9.0 pip-tools-6.14.0 platformdirs-4.2.0 ptera-1.4.1 py-1.11.0 pygments-2.17.2 pynvml-11.5.0 pyproject_hooks-1.0.0 pystache-0.6.5 python-dateutil-2.8.2 pytz-2024.1 reactivex-4.0.4 requests-2.31.0 rich-13.7.0 six-1.16.0 smmap-5.0.1 tomli-2.0.1 tqdm-4.66.1 typing-extensions-4.9.0 urllib3-2.2.0 varname-0.10.0 virtualenv-20.25.0 voir-0.2.12 wcwidth-0.2.13 zipp-3.17.0 + +The following have been reloaded with a version change: + 1) gcc/7.4.0 => gcc/9.3.0 + +[=== Module cudatoolkit/11.8 loaded ===] + +Install +------- +resnet50 [start] pip install -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt [at 2024-02-05 09:10:08.165918] +resnet50 [stdout] Looking in indexes: https://pypi.org/simple, https://download.pytorch.org/whl/cu118 +resnet50 [stdout] Collecting antlr4-python3-runtime==4.9.3 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 9)) +resnet50 [stdout] Using cached antlr4_python3_runtime-4.9.3-py3-none-any.whl +resnet50 [stdout] Collecting asttokens==2.4.1 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 13)) +resnet50 [stdout] Using cached asttokens-2.4.1-py2.py3-none-any.whl.metadata (5.2 kB) +resnet50 [stdout] Collecting certifi==2024.2.2 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 17)) +resnet50 [stdout] Using cached certifi-2024.2.2-py3-none-any.whl.metadata (2.2 kB) +resnet50 [stdout] Collecting charset-normalizer==3.3.2 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 21)) +resnet50 [stdout] Using cached charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (33 kB) +resnet50 [stdout] Collecting codefind==0.1.3 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 25)) +resnet50 [stdout] Using cached codefind-0.1.3-py3-none-any.whl (3.1 kB) +resnet50 [stdout] Collecting executing==1.2.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 29)) +resnet50 [stdout] Using cached executing-1.2.0-py2.py3-none-any.whl (24 kB) +resnet50 [stdout] Collecting filelock==3.13.1 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 33)) +resnet50 [stdout] Using cached filelock-3.13.1-py3-none-any.whl.metadata (2.8 kB) +resnet50 [stdout] Collecting fsspec==2023.10.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 38)) +resnet50 [stdout] Downloading fsspec-2023.10.0-py3-none-any.whl.metadata (6.8 kB) +resnet50 [stdout] Collecting giving==0.4.2 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 42)) +resnet50 [stdout] Using cached giving-0.4.2-py3-none-any.whl (28 kB) +resnet50 [stdout] Collecting idna==3.6 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 47)) +resnet50 [stdout] Using cached idna-3.6-py3-none-any.whl.metadata (9.9 kB) +resnet50 [stdout] Collecting jinja2==3.1.3 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 51)) +resnet50 [stdout] Downloading Jinja2-3.1.3-py3-none-any.whl.metadata (3.3 kB) +resnet50 [stdout] Collecting markdown-it-py==3.0.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 55)) +resnet50 [stdout] Using cached markdown_it_py-3.0.0-py3-none-any.whl.metadata (6.9 kB) +resnet50 [stdout] Collecting markupsafe==2.1.5 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 59)) +resnet50 [stdout] Downloading MarkupSafe-2.1.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (3.0 kB) +resnet50 [stdout] Collecting mdurl==0.1.2 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 63)) +resnet50 [stdout] Using cached mdurl-0.1.2-py3-none-any.whl (10.0 kB) +resnet50 [stdout] Collecting mpmath==1.3.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 67)) +resnet50 [stdout] Downloading https://download.pytorch.org/whl/mpmath-1.3.0-py3-none-any.whl (536 kB) +resnet50 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 536.2/536.2 kB 14.9 MB/s eta 0:00:00 +resnet50 [stdout] +resnet50 [stdout] Collecting networkx==3.2.1 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 71)) +resnet50 [stdout] Downloading https://download.pytorch.org/whl/networkx-3.2.1-py3-none-any.whl (1.6 MB) +resnet50 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.6/1.6 MB 81.5 MB/s eta 0:00:00 +resnet50 [stdout] +resnet50 [stdout] Collecting numpy==1.26.3 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 75)) +resnet50 [stdout] Using cached numpy-1.26.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (61 kB) +resnet50 [stdout] Collecting nvidia-cublas-cu11==11.11.3.6 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 79)) +resnet50 [stdout] Downloading https://download.pytorch.org/whl/cu118/nvidia_cublas_cu11-11.11.3.6-py3-none-manylinux1_x86_64.whl (417.9 MB) +resnet50 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 417.9/417.9 MB 25.4 MB/s eta 0:00:00 +resnet50 [stdout] +resnet50 [stdout] Collecting nvidia-cuda-cupti-cu11==11.8.87 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 85)) +resnet50 [stdout] Downloading https://download.pytorch.org/whl/cu118/nvidia_cuda_cupti_cu11-11.8.87-py3-none-manylinux1_x86_64.whl (13.1 MB) +resnet50 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 13.1/13.1 MB 104.2 MB/s eta 0:00:00 +resnet50 [stdout] +resnet50 [stdout] Collecting nvidia-cuda-nvrtc-cu11==11.8.89 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 89)) +resnet50 [stdout] Downloading https://download.pytorch.org/whl/cu118/nvidia_cuda_nvrtc_cu11-11.8.89-py3-none-manylinux1_x86_64.whl (23.2 MB) +resnet50 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 23.2/23.2 MB 96.9 MB/s eta 0:00:00 +resnet50 [stdout] +resnet50 [stdout] Collecting nvidia-cuda-runtime-cu11==11.8.89 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 93)) +resnet50 [stdout] Downloading https://download.pytorch.org/whl/cu118/nvidia_cuda_runtime_cu11-11.8.89-py3-none-manylinux1_x86_64.whl (875 kB) +resnet50 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 875.6/875.6 kB 116.5 MB/s eta 0:00:00 +resnet50 [stdout] +resnet50 [stdout] Collecting nvidia-cudnn-cu11==8.7.0.84 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 97)) +resnet50 [stdout] Downloading https://download.pytorch.org/whl/cu118/nvidia_cudnn_cu11-8.7.0.84-py3-none-manylinux1_x86_64.whl (728.5 MB) +resnet50 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 728.5/728.5 MB 16.6 MB/s eta 0:00:00 +resnet50 [stdout] +resnet50 [stdout] Collecting nvidia-cufft-cu11==10.9.0.58 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 101)) +resnet50 [stdout] Downloading https://download.pytorch.org/whl/cu118/nvidia_cufft_cu11-10.9.0.58-py3-none-manylinux1_x86_64.whl (168.4 MB) +resnet50 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 168.4/168.4 MB 45.7 MB/s eta 0:00:00 +resnet50 [stdout] +resnet50 [stdout] Collecting nvidia-curand-cu11==10.3.0.86 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 105)) +resnet50 [stdout] Downloading https://download.pytorch.org/whl/cu118/nvidia_curand_cu11-10.3.0.86-py3-none-manylinux1_x86_64.whl (58.1 MB) +resnet50 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58.1/58.1 MB 77.0 MB/s eta 0:00:00 +resnet50 [stdout] +resnet50 [stdout] Collecting nvidia-cusolver-cu11==11.4.1.48 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 109)) +resnet50 [stdout] Downloading https://download.pytorch.org/whl/cu118/nvidia_cusolver_cu11-11.4.1.48-py3-none-manylinux1_x86_64.whl (128.2 MB) +resnet50 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 128.2/128.2 MB 53.3 MB/s eta 0:00:00 +resnet50 [stdout] +resnet50 [stdout] Collecting nvidia-cusparse-cu11==11.7.5.86 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 113)) +resnet50 [stdout] Downloading https://download.pytorch.org/whl/cu118/nvidia_cusparse_cu11-11.7.5.86-py3-none-manylinux1_x86_64.whl (204.1 MB) +resnet50 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 204.1/204.1 MB 37.1 MB/s eta 0:00:00 +resnet50 [stdout] +resnet50 [stdout] Collecting nvidia-nccl-cu11==2.19.3 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 117)) +resnet50 [stdout] Downloading https://download.pytorch.org/whl/cu118/nvidia_nccl_cu11-2.19.3-py3-none-manylinux1_x86_64.whl (135.3 MB) +resnet50 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 135.3/135.3 MB 54.0 MB/s eta 0:00:00 +resnet50 [stdout] +resnet50 [stdout] Collecting nvidia-nvtx-cu11==11.8.86 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 121)) +resnet50 [stdout] Downloading https://download.pytorch.org/whl/cu118/nvidia_nvtx_cu11-11.8.86-py3-none-manylinux1_x86_64.whl (99 kB) +resnet50 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 99.1/99.1 kB 69.0 MB/s eta 0:00:00 +resnet50 [stdout] +resnet50 [stdout] Collecting omegaconf==2.3.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 125)) +resnet50 [stdout] Using cached omegaconf-2.3.0-py3-none-any.whl (79 kB) +resnet50 [stdout] Collecting ovld==0.3.2 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 129)) +resnet50 [stdout] Using cached ovld-0.3.2-py3-none-any.whl (16 kB) +resnet50 [stdout] Collecting pillow==10.2.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 133)) +resnet50 [stdout] Downloading https://download.pytorch.org/whl/pillow-10.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.4 MB) +resnet50 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 4.4/4.4 MB 26.3 MB/s eta 0:00:00 +resnet50 [stdout] +resnet50 [stdout] Collecting ptera==1.4.1 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 137)) +resnet50 [stdout] Using cached ptera-1.4.1-py3-none-any.whl (39 kB) +resnet50 [stdout] Collecting pygments==2.17.2 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 141)) +resnet50 [stdout] Using cached pygments-2.17.2-py3-none-any.whl.metadata (2.6 kB) +resnet50 [stdout] Collecting pynvml==11.5.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 145)) +resnet50 [stdout] Using cached pynvml-11.5.0-py3-none-any.whl (53 kB) +resnet50 [stdout] Collecting pyyaml==6.0.1 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 149)) +resnet50 [stdout] Using cached PyYAML-6.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (2.1 kB) +resnet50 [stdout] Collecting reactivex==4.0.4 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 153)) +resnet50 [stdout] Using cached reactivex-4.0.4-py3-none-any.whl (217 kB) +resnet50 [stdout] Collecting requests==2.31.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 157)) +resnet50 [stdout] Using cached requests-2.31.0-py3-none-any.whl.metadata (4.6 kB) +resnet50 [stdout] Collecting rich==13.7.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 161)) +resnet50 [stdout] Using cached rich-13.7.0-py3-none-any.whl.metadata (18 kB) +resnet50 [stdout] Collecting six==1.16.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 165)) +resnet50 [stdout] Using cached six-1.16.0-py2.py3-none-any.whl (11 kB) +resnet50 [stdout] Collecting sympy==1.12 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 169)) +resnet50 [stdout] Downloading https://download.pytorch.org/whl/sympy-1.12-py3-none-any.whl (5.7 MB) +resnet50 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 5.7/5.7 MB 109.0 MB/s eta 0:00:00 +resnet50 [stdout] +resnet50 [stdout] Collecting torch==2.2.0+cu118 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 173)) +resnet50 [stdout] Downloading https://download.pytorch.org/whl/cu118/torch-2.2.0%2Bcu118-cp39-cp39-linux_x86_64.whl (811.7 MB) +resnet50 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 811.7/811.7 MB 14.8 MB/s eta 0:00:00 +resnet50 [stdout] +resnet50 [stdout] Collecting torchvision==0.17.0+cu118 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 177)) +resnet50 [stdout] Downloading https://download.pytorch.org/whl/cu118/torchvision-0.17.0%2Bcu118-cp39-cp39-linux_x86_64.whl (6.2 MB) +resnet50 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 6.2/6.2 MB 34.7 MB/s eta 0:00:00 +resnet50 [stdout] +resnet50 [stdout] Collecting tqdm==4.66.1 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 179)) +resnet50 [stdout] Using cached tqdm-4.66.1-py3-none-any.whl.metadata (57 kB) +resnet50 [stdout] Collecting triton==2.2.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 181)) +resnet50 [stdout] Downloading https://download.pytorch.org/whl/triton-2.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (167.9 MB) +resnet50 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 167.9/167.9 MB 43.9 MB/s eta 0:00:00 +resnet50 [stdout] +resnet50 [stdout] Collecting typing-extensions==4.9.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 185)) +resnet50 [stdout] Using cached typing_extensions-4.9.0-py3-none-any.whl.metadata (3.0 kB) +resnet50 [stdout] Collecting urllib3==1.26.18 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 190)) +resnet50 [stdout] Downloading urllib3-1.26.18-py2.py3-none-any.whl.metadata (48 kB) +resnet50 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 48.9/48.9 kB 5.7 MB/s eta 0:00:00 +resnet50 [stdout] +resnet50 [stdout] Collecting varname==0.10.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 194)) +resnet50 [stdout] Using cached varname-0.10.0-py3-none-any.whl (22 kB) +resnet50 [stdout] Collecting voir==0.2.12 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 198)) +resnet50 [stdout] Using cached voir-0.2.12-py3-none-any.whl.metadata (791 bytes) +resnet50 [stdout] Using cached asttokens-2.4.1-py2.py3-none-any.whl (27 kB) +resnet50 [stdout] Using cached certifi-2024.2.2-py3-none-any.whl (163 kB) +resnet50 [stdout] Using cached charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (142 kB) +resnet50 [stdout] Using cached filelock-3.13.1-py3-none-any.whl (11 kB) +resnet50 [stdout] Downloading fsspec-2023.10.0-py3-none-any.whl (166 kB) +resnet50 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 166.4/166.4 kB 14.7 MB/s eta 0:00:00 +resnet50 [stdout] +resnet50 [stdout] Using cached idna-3.6-py3-none-any.whl (61 kB) +resnet50 [stdout] Downloading Jinja2-3.1.3-py3-none-any.whl (133 kB) +resnet50 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 133.2/133.2 kB 77.7 MB/s eta 0:00:00 +resnet50 [stdout] +resnet50 [stdout] Using cached markdown_it_py-3.0.0-py3-none-any.whl (87 kB) +resnet50 [stdout] Downloading MarkupSafe-2.1.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (25 kB) +resnet50 [stdout] Using cached numpy-1.26.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.2 MB) +resnet50 [stdout] Using cached pygments-2.17.2-py3-none-any.whl (1.2 MB) +resnet50 [stdout] Using cached PyYAML-6.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (738 kB) +resnet50 [stdout] Using cached requests-2.31.0-py3-none-any.whl (62 kB) +resnet50 [stdout] Using cached rich-13.7.0-py3-none-any.whl (240 kB) +resnet50 [stdout] Using cached tqdm-4.66.1-py3-none-any.whl (78 kB) +resnet50 [stdout] Using cached typing_extensions-4.9.0-py3-none-any.whl (32 kB) +resnet50 [stdout] Downloading urllib3-1.26.18-py2.py3-none-any.whl (143 kB) +resnet50 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 143.8/143.8 kB 76.2 MB/s eta 0:00:00 +resnet50 [stdout] +resnet50 [stdout] Using cached voir-0.2.12-py3-none-any.whl (35 kB) +resnet50 [stdout] Installing collected packages: mpmath, executing, antlr4-python3-runtime, varname, urllib3, typing-extensions, tqdm, sympy, six, pyyaml, pynvml, pygments, pillow, ovld, nvidia-nvtx-cu11, nvidia-nccl-cu11, nvidia-cusparse-cu11, nvidia-curand-cu11, nvidia-cufft-cu11, nvidia-cuda-runtime-cu11, nvidia-cuda-nvrtc-cu11, nvidia-cuda-cupti-cu11, nvidia-cublas-cu11, numpy, networkx, mdurl, markupsafe, idna, fsspec, filelock, codefind, charset-normalizer, certifi, triton, requests, reactivex, omegaconf, nvidia-cusolver-cu11, nvidia-cudnn-cu11, markdown-it-py, jinja2, asttokens, torch, rich, giving, torchvision, ptera, voir +resnet50 [stdout] Successfully installed antlr4-python3-runtime-4.9.3 asttokens-2.4.1 certifi-2024.2.2 charset-normalizer-3.3.2 codefind-0.1.3 executing-1.2.0 filelock-3.13.1 fsspec-2023.10.0 giving-0.4.2 idna-3.6 jinja2-3.1.3 markdown-it-py-3.0.0 markupsafe-2.1.5 mdurl-0.1.2 mpmath-1.3.0 networkx-3.2.1 numpy-1.26.3 nvidia-cublas-cu11-11.11.3.6 nvidia-cuda-cupti-cu11-11.8.87 nvidia-cuda-nvrtc-cu11-11.8.89 nvidia-cuda-runtime-cu11-11.8.89 nvidia-cudnn-cu11-8.7.0.84 nvidia-cufft-cu11-10.9.0.58 nvidia-curand-cu11-10.3.0.86 nvidia-cusolver-cu11-11.4.1.48 nvidia-cusparse-cu11-11.7.5.86 nvidia-nccl-cu11-2.19.3 nvidia-nvtx-cu11-11.8.86 omegaconf-2.3.0 ovld-0.3.2 pillow-10.2.0 ptera-1.4.1 pygments-2.17.2 pynvml-11.5.0 pyyaml-6.0.1 reactivex-4.0.4 requests-2.31.0 rich-13.7.0 six-1.16.0 sympy-1.12 torch-2.2.0+cu118 torchvision-0.17.0+cu118 tqdm-4.66.1 triton-2.2.0 typing-extensions-4.9.0 urllib3-1.26.18 varname-0.10.0 voir-0.2.12 +resnet50 [stderr] +resnet50 [stderr] [notice] A new release of pip is available: 23.3.2 -> 24.0 +resnet50 [stderr] [notice] To update, run: pip install --upgrade pip +resnet50 [end] pip install -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt [at 2024-02-05 09:11:34.293664] +convnext_large-fp32 [message] Benchmark convnext_large-fp32 is already installed +convnext_large-fp16 [message] Benchmark convnext_large-fp16 is already installed +convnext_large-tf32 [message] Benchmark convnext_large-tf32 is already installed +convnext_large-tf32-fp16 [message] Benchmark convnext_large-tf32-fp16 is already installed +regnet_y_128gf [message] Benchmark regnet_y_128gf is already installed +bert-fp32 [start] pip install -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt [at 2024-02-05 09:11:34.298894] +bert-fp32 [stdout] Looking in indexes: https://pypi.org/simple, https://download.pytorch.org/whl/cu118 +bert-fp32 [stdout] Requirement already satisfied: antlr4-python3-runtime==4.9.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 9)) (4.9.3) +bert-fp32 [stdout] Requirement already satisfied: asttokens==2.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 13)) (2.4.1) +bert-fp32 [stdout] Requirement already satisfied: certifi==2024.2.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 17)) (2024.2.2) +bert-fp32 [stdout] Requirement already satisfied: charset-normalizer==3.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 21)) (3.3.2) +bert-fp32 [stdout] Requirement already satisfied: codefind==0.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 25)) (0.1.3) +bert-fp32 [stdout] Requirement already satisfied: executing==1.2.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 29)) (1.2.0) +bert-fp32 [stdout] Requirement already satisfied: filelock==3.13.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 33)) (3.13.1) +bert-fp32 [stdout] Requirement already satisfied: fsspec==2023.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 40)) (2023.10.0) +bert-fp32 [stdout] Requirement already satisfied: giving==0.4.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 45)) (0.4.2) +bert-fp32 [stdout] Collecting huggingface-hub==0.20.3 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 50)) +bert-fp32 [stdout] Downloading huggingface_hub-0.20.3-py3-none-any.whl.metadata (12 kB) +bert-fp32 [stdout] Requirement already satisfied: idna==3.6 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 55)) (3.6) +bert-fp32 [stdout] Requirement already satisfied: jinja2==3.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 59)) (3.1.3) +bert-fp32 [stdout] Requirement already satisfied: markdown-it-py==3.0.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 63)) (3.0.0) +bert-fp32 [stdout] Requirement already satisfied: markupsafe==2.1.5 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 67)) (2.1.5) +bert-fp32 [stdout] Requirement already satisfied: mdurl==0.1.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 71)) (0.1.2) +bert-fp32 [stdout] Requirement already satisfied: mpmath==1.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 75)) (1.3.0) +bert-fp32 [stdout] Requirement already satisfied: networkx==3.2.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 79)) (3.2.1) +bert-fp32 [stdout] Requirement already satisfied: numpy==1.26.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 83)) (1.26.3) +bert-fp32 [stdout] Requirement already satisfied: nvidia-cublas-cu11==11.11.3.6 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 87)) (11.11.3.6) +bert-fp32 [stdout] Requirement already satisfied: nvidia-cuda-cupti-cu11==11.8.87 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 93)) (11.8.87) +bert-fp32 [stdout] Requirement already satisfied: nvidia-cuda-nvrtc-cu11==11.8.89 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 97)) (11.8.89) +bert-fp32 [stdout] Requirement already satisfied: nvidia-cuda-runtime-cu11==11.8.89 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 101)) (11.8.89) +bert-fp32 [stdout] Requirement already satisfied: nvidia-cudnn-cu11==8.7.0.84 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 105)) (8.7.0.84) +bert-fp32 [stdout] Requirement already satisfied: nvidia-cufft-cu11==10.9.0.58 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 109)) (10.9.0.58) +bert-fp32 [stdout] Requirement already satisfied: nvidia-curand-cu11==10.3.0.86 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 113)) (10.3.0.86) +bert-fp32 [stdout] Requirement already satisfied: nvidia-cusolver-cu11==11.4.1.48 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 117)) (11.4.1.48) +bert-fp32 [stdout] Requirement already satisfied: nvidia-cusparse-cu11==11.7.5.86 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 121)) (11.7.5.86) +bert-fp32 [stdout] Requirement already satisfied: nvidia-nccl-cu11==2.19.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 125)) (2.19.3) +bert-fp32 [stdout] Requirement already satisfied: nvidia-nvtx-cu11==11.8.86 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 129)) (11.8.86) +bert-fp32 [stdout] Requirement already satisfied: omegaconf==2.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 133)) (2.3.0) +bert-fp32 [stdout] Requirement already satisfied: ovld==0.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 137)) (0.3.2) +bert-fp32 [stdout] Collecting packaging==23.2 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 141)) +bert-fp32 [stdout] Using cached packaging-23.2-py3-none-any.whl.metadata (3.2 kB) +bert-fp32 [stdout] Requirement already satisfied: ptera==1.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 146)) (1.4.1) +bert-fp32 [stdout] Requirement already satisfied: pygments==2.17.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 150)) (2.17.2) +bert-fp32 [stdout] Requirement already satisfied: pynvml==11.5.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 154)) (11.5.0) +bert-fp32 [stdout] Requirement already satisfied: pyyaml==6.0.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 158)) (6.0.1) +bert-fp32 [stdout] Requirement already satisfied: reactivex==4.0.4 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 164)) (4.0.4) +bert-fp32 [stdout] Collecting regex==2023.12.25 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 168)) +bert-fp32 [stdout] Downloading regex-2023.12.25-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (40 kB) +bert-fp32 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 40.9/40.9 kB 5.0 MB/s eta 0:00:00 +bert-fp32 [stdout] +bert-fp32 [stdout] Requirement already satisfied: requests==2.31.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 172)) (2.31.0) +bert-fp32 [stdout] Requirement already satisfied: rich==13.7.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 177)) (13.7.0) +bert-fp32 [stdout] Collecting safetensors==0.4.2 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 181)) +bert-fp32 [stdout] Downloading safetensors-0.4.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (3.8 kB) +bert-fp32 [stdout] Requirement already satisfied: six==1.16.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 185)) (1.16.0) +bert-fp32 [stdout] Requirement already satisfied: sympy==1.12 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 189)) (1.12) +bert-fp32 [stdout] Collecting tokenizers==0.15.1 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 193)) +bert-fp32 [stdout] Downloading tokenizers-0.15.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (6.7 kB) +bert-fp32 [stdout] Requirement already satisfied: torch==2.2.0+cu118 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 197)) (2.2.0+cu118) +bert-fp32 [stdout] Requirement already satisfied: tqdm==4.66.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 199)) (4.66.1) +bert-fp32 [stdout] Collecting transformers==4.37.2 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 204)) +bert-fp32 [stdout] Downloading transformers-4.37.2-py3-none-any.whl.metadata (129 kB) +bert-fp32 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 129.4/129.4 kB 14.2 MB/s eta 0:00:00 +bert-fp32 [stdout] +bert-fp32 [stdout] Requirement already satisfied: triton==2.2.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 206)) (2.2.0) +bert-fp32 [stdout] Requirement already satisfied: typing-extensions==4.9.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 210)) (4.9.0) +bert-fp32 [stdout] Requirement already satisfied: urllib3==1.26.18 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 216)) (1.26.18) +bert-fp32 [stdout] Requirement already satisfied: varname==0.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 220)) (0.10.0) +bert-fp32 [stdout] Requirement already satisfied: voir==0.2.12 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 224)) (0.2.12) +bert-fp32 [stdout] Downloading huggingface_hub-0.20.3-py3-none-any.whl (330 kB) +bert-fp32 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 330.1/330.1 kB 35.1 MB/s eta 0:00:00 +bert-fp32 [stdout] +bert-fp32 [stdout] Using cached packaging-23.2-py3-none-any.whl (53 kB) +bert-fp32 [stdout] Downloading regex-2023.12.25-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (773 kB) +bert-fp32 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 773.4/773.4 kB 75.6 MB/s eta 0:00:00 +bert-fp32 [stdout] +bert-fp32 [stdout] Downloading safetensors-0.4.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB) +bert-fp32 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.3/1.3 MB 8.2 MB/s eta 0:00:00 +bert-fp32 [stdout] +bert-fp32 [stdout] Downloading tokenizers-0.15.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.6 MB) +bert-fp32 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 3.6/3.6 MB 97.8 MB/s eta 0:00:00 +bert-fp32 [stdout] +bert-fp32 [stdout] Downloading transformers-4.37.2-py3-none-any.whl (8.4 MB) +bert-fp32 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 8.4/8.4 MB 79.9 MB/s eta 0:00:00 +bert-fp32 [stdout] +bert-fp32 [stdout] Installing collected packages: safetensors, regex, packaging, huggingface-hub, tokenizers, transformers +bert-fp32 [stdout] Successfully installed huggingface-hub-0.20.3 packaging-23.2 regex-2023.12.25 safetensors-0.4.2 tokenizers-0.15.1 transformers-4.37.2 +bert-fp32 [stderr] +bert-fp32 [stderr] [notice] A new release of pip is available: 23.3.2 -> 24.0 +bert-fp32 [stderr] [notice] To update, run: pip install --upgrade pip +bert-fp32 [end] pip install -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt [at 2024-02-05 09:11:41.002117] +bert-fp16 [message] Benchmark bert-fp16 is already installed +bert-tf32 [message] Benchmark bert-tf32 is already installed +bert-tf32-fp16 [message] Benchmark bert-tf32-fp16 is already installed +t5 [message] Benchmark t5 is already installed +reformer [message] Benchmark reformer is already installed +whisper [message] Benchmark whisper is already installed +resnet152 [start] pip install -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt [at 2024-02-05 09:11:41.008325] +resnet152 [stdout] Looking in indexes: https://pypi.org/simple, https://download.pytorch.org/whl/cu118 +resnet152 [stdout] Requirement already satisfied: antlr4-python3-runtime==4.9.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 9)) (4.9.3) +resnet152 [stdout] Requirement already satisfied: asttokens==2.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 13)) (2.4.1) +resnet152 [stdout] Requirement already satisfied: certifi==2024.2.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 17)) (2024.2.2) +resnet152 [stdout] Requirement already satisfied: charset-normalizer==3.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 21)) (3.3.2) +resnet152 [stdout] Requirement already satisfied: codefind==0.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 25)) (0.1.3) +resnet152 [stdout] Requirement already satisfied: executing==1.2.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 29)) (1.2.0) +resnet152 [stdout] Requirement already satisfied: filelock==3.13.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 33)) (3.13.1) +resnet152 [stdout] Requirement already satisfied: fsspec==2023.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 39)) (2023.10.0) +resnet152 [stdout] Requirement already satisfied: giving==0.4.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 44)) (0.4.2) +resnet152 [stdout] Requirement already satisfied: huggingface-hub==0.20.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 49)) (0.20.3) +resnet152 [stdout] Requirement already satisfied: idna==3.6 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 51)) (3.6) +resnet152 [stdout] Requirement already satisfied: jinja2==3.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 55)) (3.1.3) +resnet152 [stdout] Requirement already satisfied: markdown-it-py==3.0.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 59)) (3.0.0) +resnet152 [stdout] Requirement already satisfied: markupsafe==2.1.5 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 63)) (2.1.5) +resnet152 [stdout] Requirement already satisfied: mdurl==0.1.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 67)) (0.1.2) +resnet152 [stdout] Requirement already satisfied: mpmath==1.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 71)) (1.3.0) +resnet152 [stdout] Requirement already satisfied: networkx==3.2.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 75)) (3.2.1) +resnet152 [stdout] Requirement already satisfied: numpy==1.26.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 79)) (1.26.3) +resnet152 [stdout] Requirement already satisfied: nvidia-cublas-cu11==11.11.3.6 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 83)) (11.11.3.6) +resnet152 [stdout] Requirement already satisfied: nvidia-cuda-cupti-cu11==11.8.87 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 89)) (11.8.87) +resnet152 [stdout] Requirement already satisfied: nvidia-cuda-nvrtc-cu11==11.8.89 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 93)) (11.8.89) +resnet152 [stdout] Requirement already satisfied: nvidia-cuda-runtime-cu11==11.8.89 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 97)) (11.8.89) +resnet152 [stdout] Requirement already satisfied: nvidia-cudnn-cu11==8.7.0.84 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 101)) (8.7.0.84) +resnet152 [stdout] Requirement already satisfied: nvidia-cufft-cu11==10.9.0.58 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 105)) (10.9.0.58) +resnet152 [stdout] Requirement already satisfied: nvidia-curand-cu11==10.3.0.86 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 109)) (10.3.0.86) +resnet152 [stdout] Requirement already satisfied: nvidia-cusolver-cu11==11.4.1.48 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 113)) (11.4.1.48) +resnet152 [stdout] Requirement already satisfied: nvidia-cusparse-cu11==11.7.5.86 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 117)) (11.7.5.86) +resnet152 [stdout] Requirement already satisfied: nvidia-nccl-cu11==2.19.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 121)) (2.19.3) +resnet152 [stdout] Requirement already satisfied: nvidia-nvtx-cu11==11.8.86 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 125)) (11.8.86) +resnet152 [stdout] Requirement already satisfied: omegaconf==2.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 129)) (2.3.0) +resnet152 [stdout] Requirement already satisfied: ovld==0.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 133)) (0.3.2) +resnet152 [stdout] Requirement already satisfied: packaging==23.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 137)) (23.2) +resnet152 [stdout] Requirement already satisfied: pillow==10.2.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 141)) (10.2.0) +resnet152 [stdout] Requirement already satisfied: ptera==1.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 145)) (1.4.1) +resnet152 [stdout] Requirement already satisfied: pygments==2.17.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 149)) (2.17.2) +resnet152 [stdout] Requirement already satisfied: pynvml==11.5.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 153)) (11.5.0) +resnet152 [stdout] Requirement already satisfied: pyyaml==6.0.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 157)) (6.0.1) +resnet152 [stdout] Requirement already satisfied: reactivex==4.0.4 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 162)) (4.0.4) +resnet152 [stdout] Requirement already satisfied: requests==2.31.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 166)) (2.31.0) +resnet152 [stdout] Requirement already satisfied: rich==13.7.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 171)) (13.7.0) +resnet152 [stdout] Requirement already satisfied: safetensors==0.4.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 175)) (0.4.2) +resnet152 [stdout] Requirement already satisfied: six==1.16.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 177)) (1.16.0) +resnet152 [stdout] Requirement already satisfied: sympy==1.12 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 181)) (1.12) +resnet152 [stdout] Requirement already satisfied: torch==2.2.0+cu118 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 185)) (2.2.0+cu118) +resnet152 [stdout] Requirement already satisfied: torchvision==0.17.0+cu118 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 189)) (0.17.0+cu118) +resnet152 [stdout] Requirement already satisfied: tqdm==4.66.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 191)) (4.66.1) +resnet152 [stdout] Requirement already satisfied: triton==2.2.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 195)) (2.2.0) +resnet152 [stdout] Requirement already satisfied: typing-extensions==4.9.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 199)) (4.9.0) +resnet152 [stdout] Requirement already satisfied: urllib3==1.26.18 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 205)) (1.26.18) +resnet152 [stdout] Requirement already satisfied: varname==0.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 209)) (0.10.0) +resnet152 [stdout] Requirement already satisfied: voir==0.2.12 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 213)) (0.2.12) +resnet152 [stderr] +resnet152 [stderr] [notice] A new release of pip is available: 23.3.2 -> 24.0 +resnet152 [stderr] [notice] To update, run: pip install --upgrade pip +resnet152 [end] pip install -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt [at 2024-02-05 09:11:42.105521] +resnet152-multi [message] Benchmark resnet152-multi is already installed +davit_large [message] Benchmark davit_large is already installed +davit_large-multi [message] Benchmark davit_large-multi is already installed +focalnet [message] Benchmark focalnet is already installed +opt-1_3b [start] pip install -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt [at 2024-02-05 09:11:42.815259] +opt-1_3b [stdout] Looking in indexes: https://pypi.org/simple, https://download.pytorch.org/whl/cu118 +opt-1_3b [stdout] Collecting accelerate==0.26.1 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 9)) +opt-1_3b [stdout] Downloading accelerate-0.26.1-py3-none-any.whl.metadata (18 kB) +opt-1_3b [stdout] Collecting aiohttp==3.9.3 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 11)) +opt-1_3b [stdout] Downloading aiohttp-3.9.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (7.4 kB) +opt-1_3b [stdout] Collecting aiosignal==1.3.1 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 16)) +opt-1_3b [stdout] Downloading aiosignal-1.3.1-py3-none-any.whl (7.6 kB) +opt-1_3b [stdout] Collecting annotated-types==0.6.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 20)) +opt-1_3b [stdout] Downloading annotated_types-0.6.0-py3-none-any.whl.metadata (12 kB) +opt-1_3b [stdout] Requirement already satisfied: antlr4-python3-runtime==4.9.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 24)) (4.9.3) +opt-1_3b [stdout] Requirement already satisfied: asttokens==2.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 28)) (2.4.1) +opt-1_3b [stdout] Collecting async-timeout==4.0.3 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 32)) +opt-1_3b [stdout] Downloading async_timeout-4.0.3-py3-none-any.whl.metadata (4.2 kB) +opt-1_3b [stdout] Collecting asyncssh==2.14.2 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 36)) +opt-1_3b [stdout] Downloading asyncssh-2.14.2-py3-none-any.whl.metadata (9.9 kB) +opt-1_3b [stdout] Collecting attrs==23.2.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 38)) +opt-1_3b [stdout] Downloading attrs-23.2.0-py3-none-any.whl.metadata (9.5 kB) +opt-1_3b [stdout] Requirement already satisfied: certifi==2024.2.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 42)) (2024.2.2) +opt-1_3b [stdout] Collecting cffi==1.16.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 46)) +opt-1_3b [stdout] Downloading cffi-1.16.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (1.5 kB) +opt-1_3b [stdout] Requirement already satisfied: charset-normalizer==3.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 50)) (3.3.2) +opt-1_3b [stdout] Requirement already satisfied: codefind==0.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 54)) (0.1.3) +opt-1_3b [stdout] Collecting cryptography==42.0.2 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 58)) +opt-1_3b [stdout] Downloading cryptography-42.0.2-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (5.3 kB) +opt-1_3b [stdout] Collecting datasets==2.16.1 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 62)) +opt-1_3b [stdout] Downloading datasets-2.16.1-py3-none-any.whl.metadata (20 kB) +opt-1_3b [stdout] Collecting deepspeed==0.13.1 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 66)) +opt-1_3b [stdout] Downloading deepspeed-0.13.1.tar.gz (1.3 MB) +opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.3/1.3 MB 30.8 MB/s eta 0:00:00 +opt-1_3b [stdout] +opt-1_3b [stdout] Preparing metadata (setup.py): started +opt-1_3b [stdout] Preparing metadata (setup.py): finished with status 'done' +opt-1_3b [stdout] Collecting dill==0.3.7 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 68)) +opt-1_3b [stdout] Downloading dill-0.3.7-py3-none-any.whl.metadata (9.9 kB) +opt-1_3b [stdout] Collecting evaluate==0.4.1 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 74)) +opt-1_3b [stdout] Downloading evaluate-0.4.1-py3-none-any.whl.metadata (9.4 kB) +opt-1_3b [stdout] Requirement already satisfied: executing==1.2.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 76)) (1.2.0) +opt-1_3b [stdout] Requirement already satisfied: filelock==3.13.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 80)) (3.13.1) +opt-1_3b [stdout] Collecting frozenlist==1.4.1 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 88)) +opt-1_3b [stdout] Downloading frozenlist-1.4.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (12 kB) +opt-1_3b [stdout] Requirement already satisfied: fsspec==2023.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from fsspec[http]==2023.10.0->-r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 93)) (2023.10.0) +opt-1_3b [stdout] Requirement already satisfied: giving==0.4.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 100)) (0.4.2) +opt-1_3b [stdout] Collecting hjson==3.1.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 105)) +opt-1_3b [stdout] Downloading hjson-3.1.0-py3-none-any.whl (54 kB) +opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54.0/54.0 kB 41.7 MB/s eta 0:00:00 +opt-1_3b [stdout] +opt-1_3b [stdout] Requirement already satisfied: huggingface-hub==0.20.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 109)) (0.20.3) +opt-1_3b [stdout] Requirement already satisfied: idna==3.6 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 117)) (3.6) +opt-1_3b [stdout] Requirement already satisfied: jinja2==3.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 122)) (3.1.3) +opt-1_3b [stdout] Requirement already satisfied: markdown-it-py==3.0.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 126)) (3.0.0) +opt-1_3b [stdout] Requirement already satisfied: markupsafe==2.1.5 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 130)) (2.1.5) +opt-1_3b [stdout] Requirement already satisfied: mdurl==0.1.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 134)) (0.1.2) +opt-1_3b [stdout] Requirement already satisfied: mpmath==1.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 138)) (1.3.0) +opt-1_3b [stdout] Collecting multidict==6.0.5 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 142)) +opt-1_3b [stdout] Downloading multidict-6.0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (4.2 kB) +opt-1_3b [stdout] Collecting multiprocess==0.70.15 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 147)) +opt-1_3b [stdout] Downloading multiprocess-0.70.15-py39-none-any.whl.metadata (7.2 kB) +opt-1_3b [stdout] Requirement already satisfied: networkx==3.2.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 152)) (3.2.1) +opt-1_3b [stdout] Collecting ninja==1.11.1.1 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 156)) +opt-1_3b [stdout] Downloading ninja-1.11.1.1-py2.py3-none-manylinux1_x86_64.manylinux_2_5_x86_64.whl.metadata (5.3 kB) +opt-1_3b [stdout] Requirement already satisfied: numpy==1.26.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 160)) (1.26.3) +opt-1_3b [stdout] Requirement already satisfied: nvidia-cublas-cu11==11.11.3.6 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 171)) (11.11.3.6) +opt-1_3b [stdout] Requirement already satisfied: nvidia-cuda-cupti-cu11==11.8.87 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 177)) (11.8.87) +opt-1_3b [stdout] Requirement already satisfied: nvidia-cuda-nvrtc-cu11==11.8.89 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 181)) (11.8.89) +opt-1_3b [stdout] Requirement already satisfied: nvidia-cuda-runtime-cu11==11.8.89 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 185)) (11.8.89) +opt-1_3b [stdout] Requirement already satisfied: nvidia-cudnn-cu11==8.7.0.84 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 189)) (8.7.0.84) +opt-1_3b [stdout] Requirement already satisfied: nvidia-cufft-cu11==10.9.0.58 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 193)) (10.9.0.58) +opt-1_3b [stdout] Requirement already satisfied: nvidia-curand-cu11==10.3.0.86 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 197)) (10.3.0.86) +opt-1_3b [stdout] Requirement already satisfied: nvidia-cusolver-cu11==11.4.1.48 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 201)) (11.4.1.48) +opt-1_3b [stdout] Requirement already satisfied: nvidia-cusparse-cu11==11.7.5.86 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 205)) (11.7.5.86) +opt-1_3b [stdout] Requirement already satisfied: nvidia-nccl-cu11==2.19.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 209)) (2.19.3) +opt-1_3b [stdout] Requirement already satisfied: nvidia-nvtx-cu11==11.8.86 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 213)) (11.8.86) +opt-1_3b [stdout] Requirement already satisfied: omegaconf==2.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 217)) (2.3.0) +opt-1_3b [stdout] Requirement already satisfied: ovld==0.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 221)) (0.3.2) +opt-1_3b [stdout] Requirement already satisfied: packaging==23.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 225)) (23.2) +opt-1_3b [stdout] Collecting pandas==2.2.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 234)) +opt-1_3b [stdout] Downloading pandas-2.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (19 kB) +opt-1_3b [stdout] Requirement already satisfied: pillow==10.2.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 239)) (10.2.0) +opt-1_3b [stdout] Collecting psutil==5.9.8 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 243)) +opt-1_3b [stdout] Downloading psutil-5.9.8-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (21 kB) +opt-1_3b [stdout] Requirement already satisfied: ptera==1.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 248)) (1.4.1) +opt-1_3b [stdout] Collecting py-cpuinfo==9.0.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 252)) +opt-1_3b [stdout] Downloading py_cpuinfo-9.0.0-py3-none-any.whl (22 kB) +opt-1_3b [stdout] Collecting pyarrow==15.0.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 256)) +opt-1_3b [stdout] Downloading pyarrow-15.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (3.0 kB) +opt-1_3b [stdout] Collecting pyarrow-hotfix==0.6 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 260)) +opt-1_3b [stdout] Downloading pyarrow_hotfix-0.6-py3-none-any.whl.metadata (3.6 kB) +opt-1_3b [stdout] Collecting pycparser==2.21 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 264)) +opt-1_3b [stdout] Downloading pycparser-2.21-py2.py3-none-any.whl (118 kB) +opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 118.7/118.7 kB 69.2 MB/s eta 0:00:00 +opt-1_3b [stdout] +opt-1_3b [stdout] Collecting pydantic==2.6.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 268)) +opt-1_3b [stdout] Downloading pydantic-2.6.0-py3-none-any.whl.metadata (81 kB) +opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 81.8/81.8 kB 40.5 MB/s eta 0:00:00 +opt-1_3b [stdout] +opt-1_3b [stdout] Collecting pydantic-core==2.16.1 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 272)) +opt-1_3b [stdout] Downloading pydantic_core-2.16.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (6.5 kB) +opt-1_3b [stdout] Requirement already satisfied: pygments==2.17.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 276)) (2.17.2) +opt-1_3b [stdout] Requirement already satisfied: pynvml==11.5.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 280)) (11.5.0) +opt-1_3b [stdout] Collecting python-dateutil==2.8.2 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 285)) +opt-1_3b [stdout] Using cached python_dateutil-2.8.2-py2.py3-none-any.whl (247 kB) +opt-1_3b [stdout] Collecting pytz==2024.1 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 289)) +opt-1_3b [stdout] Using cached pytz-2024.1-py2.py3-none-any.whl.metadata (22 kB) +opt-1_3b [stdout] Requirement already satisfied: pyyaml==6.0.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 293)) (6.0.1) +opt-1_3b [stdout] Requirement already satisfied: reactivex==4.0.4 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 301)) (4.0.4) +opt-1_3b [stdout] Requirement already satisfied: regex==2023.12.25 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 305)) (2023.12.25) +opt-1_3b [stdout] Requirement already satisfied: requests==2.31.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 309)) (2.31.0) +opt-1_3b [stdout] Collecting responses==0.18.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 319)) +opt-1_3b [stdout] Downloading responses-0.18.0-py3-none-any.whl (38 kB) +opt-1_3b [stdout] Requirement already satisfied: rich==13.7.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 323)) (13.7.0) +opt-1_3b [stdout] Requirement already satisfied: safetensors==0.4.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 327)) (0.4.2) +opt-1_3b [stdout] Requirement already satisfied: six==1.16.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 332)) (1.16.0) +opt-1_3b [stdout] Requirement already satisfied: sympy==1.12 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 337)) (1.12) +opt-1_3b [stdout] Requirement already satisfied: tokenizers==0.15.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 341)) (0.15.1) +opt-1_3b [stdout] Requirement already satisfied: torch==2.2.0+cu118 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 345)) (2.2.0+cu118) +opt-1_3b [stdout] Collecting torchaudio==2.2.0+cu118 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 352)) +opt-1_3b [stdout] Downloading https://download.pytorch.org/whl/cu118/torchaudio-2.2.0%2Bcu118-cp39-cp39-linux_x86_64.whl (3.3 MB) +opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 3.3/3.3 MB 7.7 MB/s eta 0:00:00 +opt-1_3b [stdout] +opt-1_3b [stdout] Requirement already satisfied: torchvision==0.17.0+cu118 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 354)) (0.17.0+cu118) +opt-1_3b [stdout] Requirement already satisfied: tqdm==4.66.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 356)) (4.66.1) +opt-1_3b [stdout] Requirement already satisfied: transformers==4.37.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 364)) (4.37.2) +opt-1_3b [stdout] Requirement already satisfied: triton==2.2.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 366)) (2.2.0) +opt-1_3b [stdout] Requirement already satisfied: typing-extensions==4.9.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 370)) (4.9.0) +opt-1_3b [stdout] Collecting tzdata==2023.4 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 379)) +opt-1_3b [stdout] Downloading tzdata-2023.4-py2.py3-none-any.whl.metadata (1.4 kB) +opt-1_3b [stdout] Requirement already satisfied: urllib3==1.26.18 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 383)) (1.26.18) +opt-1_3b [stdout] Requirement already satisfied: varname==0.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 388)) (0.10.0) +opt-1_3b [stdout] Requirement already satisfied: voir==0.2.12 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 392)) (0.2.12) +opt-1_3b [stdout] Collecting xxhash==3.4.1 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 394)) +opt-1_3b [stdout] Downloading xxhash-3.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (12 kB) +opt-1_3b [stdout] Collecting yarl==1.9.4 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 399)) +opt-1_3b [stdout] Downloading yarl-1.9.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (31 kB) +opt-1_3b [stdout] Downloading accelerate-0.26.1-py3-none-any.whl (270 kB) +opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 270.9/270.9 kB 83.1 MB/s eta 0:00:00 +opt-1_3b [stdout] +opt-1_3b [stdout] Downloading aiohttp-3.9.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB) +opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.2/1.2 MB 8.1 MB/s eta 0:00:00 +opt-1_3b [stdout] +opt-1_3b [stdout] Downloading annotated_types-0.6.0-py3-none-any.whl (12 kB) +opt-1_3b [stdout] Downloading async_timeout-4.0.3-py3-none-any.whl (5.7 kB) +opt-1_3b [stdout] Downloading asyncssh-2.14.2-py3-none-any.whl (352 kB) +opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 352.5/352.5 kB 133.6 MB/s eta 0:00:00 +opt-1_3b [stdout] +opt-1_3b [stdout] Downloading attrs-23.2.0-py3-none-any.whl (60 kB) +opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 60.8/60.8 kB 40.4 MB/s eta 0:00:00 +opt-1_3b [stdout] +opt-1_3b [stdout] Downloading cffi-1.16.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (443 kB) +opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 443.4/443.4 kB 110.8 MB/s eta 0:00:00 +opt-1_3b [stdout] +opt-1_3b [stdout] Downloading cryptography-42.0.2-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.6 MB) +opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 4.6/4.6 MB 108.8 MB/s eta 0:00:00 +opt-1_3b [stdout] +opt-1_3b [stdout] Downloading datasets-2.16.1-py3-none-any.whl (507 kB) +opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 507.1/507.1 kB 113.2 MB/s eta 0:00:00 +opt-1_3b [stdout] +opt-1_3b [stdout] Downloading dill-0.3.7-py3-none-any.whl (115 kB) +opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 115.3/115.3 kB 80.4 MB/s eta 0:00:00 +opt-1_3b [stdout] +opt-1_3b [stdout] Downloading evaluate-0.4.1-py3-none-any.whl (84 kB) +opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 84.1/84.1 kB 60.9 MB/s eta 0:00:00 +opt-1_3b [stdout] +opt-1_3b [stdout] Downloading frozenlist-1.4.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (240 kB) +opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 240.7/240.7 kB 114.9 MB/s eta 0:00:00 +opt-1_3b [stdout] +opt-1_3b [stdout] Downloading multidict-6.0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (123 kB) +opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 123.8/123.8 kB 83.4 MB/s eta 0:00:00 +opt-1_3b [stdout] +opt-1_3b [stdout] Downloading multiprocess-0.70.15-py39-none-any.whl (133 kB) +opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 133.3/133.3 kB 86.8 MB/s eta 0:00:00 +opt-1_3b [stdout] +opt-1_3b [stdout] Downloading ninja-1.11.1.1-py2.py3-none-manylinux1_x86_64.manylinux_2_5_x86_64.whl (307 kB) +opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 307.2/307.2 kB 116.1 MB/s eta 0:00:00 +opt-1_3b [stdout] +opt-1_3b [stdout] Downloading pandas-2.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.0 MB) +opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 13.0/13.0 MB 105.5 MB/s eta 0:00:00 +opt-1_3b [stdout] +opt-1_3b [stdout] Downloading psutil-5.9.8-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (288 kB) +opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 288.2/288.2 kB 124.1 MB/s eta 0:00:00 +opt-1_3b [stdout] +opt-1_3b [stdout] Downloading pyarrow-15.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (38.4 MB) +opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 38.4/38.4 MB 87.1 MB/s eta 0:00:00 +opt-1_3b [stdout] +opt-1_3b [stdout] Downloading pyarrow_hotfix-0.6-py3-none-any.whl (7.9 kB) +opt-1_3b [stdout] Downloading pydantic-2.6.0-py3-none-any.whl (394 kB) +opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 394.2/394.2 kB 135.5 MB/s eta 0:00:00 +opt-1_3b [stdout] +opt-1_3b [stdout] Downloading pydantic_core-2.16.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB) +opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2.2/2.2 MB 82.1 MB/s eta 0:00:00 +opt-1_3b [stdout] +opt-1_3b [stdout] Using cached pytz-2024.1-py2.py3-none-any.whl (505 kB) +opt-1_3b [stdout] Downloading tzdata-2023.4-py2.py3-none-any.whl (346 kB) +opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 346.6/346.6 kB 130.4 MB/s eta 0:00:00 +opt-1_3b [stdout] +opt-1_3b [stdout] Downloading xxhash-3.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (193 kB) +opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 193.8/193.8 kB 106.5 MB/s eta 0:00:00 +opt-1_3b [stdout] +opt-1_3b [stdout] Downloading yarl-1.9.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (304 kB) +opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 304.3/304.3 kB 114.3 MB/s eta 0:00:00 +opt-1_3b [stdout] +opt-1_3b [stdout] Building wheels for collected packages: deepspeed +opt-1_3b [stdout] Building wheel for deepspeed (setup.py): started +opt-1_3b [stdout] Building wheel for deepspeed (setup.py): finished with status 'done' +opt-1_3b [stdout] Created wheel for deepspeed: filename=deepspeed-0.13.1-py3-none-any.whl size=1350302 sha256=a487f1ee03eacf22b7f39412c26191aababed54613e4deab1318c3bec161b23e +opt-1_3b [stdout] Stored in directory: /Tmp/slurm.4112514.0/base/cache/pip/wheels/bf/b3/11/0d933b61a5b4edfb429f8b10c510a961d0c76f61aae9337639 +opt-1_3b [stdout] Successfully built deepspeed +opt-1_3b [stdout] Installing collected packages: pytz, py-cpuinfo, ninja, hjson, xxhash, tzdata, python-dateutil, pydantic-core, pycparser, pyarrow-hotfix, pyarrow, psutil, multidict, frozenlist, dill, attrs, async-timeout, annotated-types, yarl, responses, pydantic, pandas, multiprocess, cffi, aiosignal, torchaudio, deepspeed, cryptography, aiohttp, accelerate, asyncssh, datasets, evaluate +opt-1_3b [stdout] Successfully installed accelerate-0.26.1 aiohttp-3.9.3 aiosignal-1.3.1 annotated-types-0.6.0 async-timeout-4.0.3 asyncssh-2.14.2 attrs-23.2.0 cffi-1.16.0 cryptography-42.0.2 datasets-2.16.1 deepspeed-0.13.1 dill-0.3.7 evaluate-0.4.1 frozenlist-1.4.1 hjson-3.1.0 multidict-6.0.5 multiprocess-0.70.15 ninja-1.11.1.1 pandas-2.2.0 psutil-5.9.8 py-cpuinfo-9.0.0 pyarrow-15.0.0 pyarrow-hotfix-0.6 pycparser-2.21 pydantic-2.6.0 pydantic-core-2.16.1 python-dateutil-2.8.2 pytz-2024.1 responses-0.18.0 torchaudio-2.2.0+cu118 tzdata-2023.4 xxhash-3.4.1 yarl-1.9.4 +opt-1_3b [stderr] +opt-1_3b [stderr] [notice] A new release of pip is available: 23.3.2 -> 24.0 +opt-1_3b [stderr] [notice] To update, run: pip install --upgrade pip +opt-1_3b [end] pip install -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt [at 2024-02-05 09:12:03.456654] +opt-1_3b-multinode [message] Benchmark opt-1_3b-multinode is already installed +opt-6_7b-multinode [message] Benchmark opt-6_7b-multinode is already installed +stargan [start] pip install -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt [at 2024-02-05 09:12:03.461082] +stargan [stdout] Looking in indexes: https://pypi.org/simple, https://download.pytorch.org/whl/cu118 +stargan [stdout] Requirement already satisfied: antlr4-python3-runtime==4.9.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 9)) (4.9.3) +stargan [stdout] Requirement already satisfied: asttokens==2.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 13)) (2.4.1) +stargan [stdout] Requirement already satisfied: certifi==2024.2.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 17)) (2024.2.2) +stargan [stdout] Requirement already satisfied: charset-normalizer==3.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 21)) (3.3.2) +stargan [stdout] Requirement already satisfied: codefind==0.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 25)) (0.1.3) +stargan [stdout] Requirement already satisfied: executing==1.2.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 29)) (1.2.0) +stargan [stdout] Requirement already satisfied: filelock==3.13.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 33)) (3.13.1) +stargan [stdout] Requirement already satisfied: fsspec==2023.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 38)) (2023.10.0) +stargan [stdout] Requirement already satisfied: giving==0.4.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 42)) (0.4.2) +stargan [stdout] Requirement already satisfied: idna==3.6 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 47)) (3.6) +stargan [stdout] Requirement already satisfied: jinja2==3.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 51)) (3.1.3) +stargan [stdout] Requirement already satisfied: markdown-it-py==3.0.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 55)) (3.0.0) +stargan [stdout] Requirement already satisfied: markupsafe==2.1.5 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 59)) (2.1.5) +stargan [stdout] Requirement already satisfied: mdurl==0.1.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 63)) (0.1.2) +stargan [stdout] Requirement already satisfied: mpmath==1.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 67)) (1.3.0) +stargan [stdout] Requirement already satisfied: networkx==3.2.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 71)) (3.2.1) +stargan [stdout] Requirement already satisfied: numpy==1.26.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 75)) (1.26.3) +stargan [stdout] Requirement already satisfied: nvidia-cublas-cu11==11.11.3.6 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 79)) (11.11.3.6) +stargan [stdout] Requirement already satisfied: nvidia-cuda-cupti-cu11==11.8.87 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 85)) (11.8.87) +stargan [stdout] Requirement already satisfied: nvidia-cuda-nvrtc-cu11==11.8.89 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 89)) (11.8.89) +stargan [stdout] Requirement already satisfied: nvidia-cuda-runtime-cu11==11.8.89 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 93)) (11.8.89) +stargan [stdout] Requirement already satisfied: nvidia-cudnn-cu11==8.7.0.84 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 97)) (8.7.0.84) +stargan [stdout] Requirement already satisfied: nvidia-cufft-cu11==10.9.0.58 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 101)) (10.9.0.58) +stargan [stdout] Requirement already satisfied: nvidia-curand-cu11==10.3.0.86 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 105)) (10.3.0.86) +stargan [stdout] Requirement already satisfied: nvidia-cusolver-cu11==11.4.1.48 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 109)) (11.4.1.48) +stargan [stdout] Requirement already satisfied: nvidia-cusparse-cu11==11.7.5.86 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 113)) (11.7.5.86) +stargan [stdout] Requirement already satisfied: nvidia-nccl-cu11==2.19.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 117)) (2.19.3) +stargan [stdout] Requirement already satisfied: nvidia-nvtx-cu11==11.8.86 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 121)) (11.8.86) +stargan [stdout] Requirement already satisfied: omegaconf==2.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 125)) (2.3.0) +stargan [stdout] Requirement already satisfied: ovld==0.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 129)) (0.3.2) +stargan [stdout] Requirement already satisfied: pillow==10.2.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 133)) (10.2.0) +stargan [stdout] Requirement already satisfied: ptera==1.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 137)) (1.4.1) +stargan [stdout] Requirement already satisfied: pygments==2.17.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 141)) (2.17.2) +stargan [stdout] Requirement already satisfied: pynvml==11.5.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 145)) (11.5.0) +stargan [stdout] Requirement already satisfied: pyyaml==6.0.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 149)) (6.0.1) +stargan [stdout] Requirement already satisfied: reactivex==4.0.4 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 153)) (4.0.4) +stargan [stdout] Requirement already satisfied: requests==2.31.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 157)) (2.31.0) +stargan [stdout] Requirement already satisfied: rich==13.7.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 161)) (13.7.0) +stargan [stdout] Requirement already satisfied: six==1.16.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 165)) (1.16.0) +stargan [stdout] Requirement already satisfied: sympy==1.12 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 169)) (1.12) +stargan [stdout] Requirement already satisfied: torch==2.2.0+cu118 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 173)) (2.2.0+cu118) +stargan [stdout] Requirement already satisfied: torchvision==0.17.0+cu118 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 177)) (0.17.0+cu118) +stargan [stdout] Requirement already satisfied: triton==2.2.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 179)) (2.2.0) +stargan [stdout] Requirement already satisfied: typing-extensions==4.9.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 183)) (4.9.0) +stargan [stdout] Requirement already satisfied: urllib3==1.26.18 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 188)) (1.26.18) +stargan [stdout] Requirement already satisfied: varname==0.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 192)) (0.10.0) +stargan [stdout] Requirement already satisfied: voir==0.2.12 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 196)) (0.2.12) +stargan [stderr] +stargan [stderr] [notice] A new release of pip is available: 23.3.2 -> 24.0 +stargan [stderr] [notice] To update, run: pip install --upgrade pip +stargan [end] pip install -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt [at 2024-02-05 09:12:04.858546] +super-slomo [start] pip install -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt [at 2024-02-05 09:12:04.862213] +super-slomo [stdout] Looking in indexes: https://pypi.org/simple, https://download.pytorch.org/whl/cu118 +super-slomo [stdout] Requirement already satisfied: antlr4-python3-runtime==4.9.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 9)) (4.9.3) +super-slomo [stdout] Requirement already satisfied: asttokens==2.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 13)) (2.4.1) +super-slomo [stdout] Requirement already satisfied: certifi==2024.2.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 17)) (2024.2.2) +super-slomo [stdout] Requirement already satisfied: charset-normalizer==3.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 21)) (3.3.2) +super-slomo [stdout] Requirement already satisfied: codefind==0.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 25)) (0.1.3) +super-slomo [stdout] Requirement already satisfied: executing==1.2.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 29)) (1.2.0) +super-slomo [stdout] Requirement already satisfied: filelock==3.13.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 33)) (3.13.1) +super-slomo [stdout] Requirement already satisfied: fsspec==2023.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 38)) (2023.10.0) +super-slomo [stdout] Requirement already satisfied: giving==0.4.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 42)) (0.4.2) +super-slomo [stdout] Requirement already satisfied: idna==3.6 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 47)) (3.6) +super-slomo [stdout] Requirement already satisfied: jinja2==3.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 51)) (3.1.3) +super-slomo [stdout] Requirement already satisfied: markdown-it-py==3.0.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 55)) (3.0.0) +super-slomo [stdout] Requirement already satisfied: markupsafe==2.1.5 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 59)) (2.1.5) +super-slomo [stdout] Requirement already satisfied: mdurl==0.1.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 63)) (0.1.2) +super-slomo [stdout] Requirement already satisfied: mpmath==1.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 67)) (1.3.0) +super-slomo [stdout] Requirement already satisfied: networkx==3.2.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 71)) (3.2.1) +super-slomo [stdout] Requirement already satisfied: numpy==1.26.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 75)) (1.26.3) +super-slomo [stdout] Requirement already satisfied: nvidia-cublas-cu11==11.11.3.6 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 80)) (11.11.3.6) +super-slomo [stdout] Requirement already satisfied: nvidia-cuda-cupti-cu11==11.8.87 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 86)) (11.8.87) +super-slomo [stdout] Requirement already satisfied: nvidia-cuda-nvrtc-cu11==11.8.89 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 90)) (11.8.89) +super-slomo [stdout] Requirement already satisfied: nvidia-cuda-runtime-cu11==11.8.89 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 94)) (11.8.89) +super-slomo [stdout] Requirement already satisfied: nvidia-cudnn-cu11==8.7.0.84 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 98)) (8.7.0.84) +super-slomo [stdout] Requirement already satisfied: nvidia-cufft-cu11==10.9.0.58 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 102)) (10.9.0.58) +super-slomo [stdout] Requirement already satisfied: nvidia-curand-cu11==10.3.0.86 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 106)) (10.3.0.86) +super-slomo [stdout] Requirement already satisfied: nvidia-cusolver-cu11==11.4.1.48 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 110)) (11.4.1.48) +super-slomo [stdout] Requirement already satisfied: nvidia-cusparse-cu11==11.7.5.86 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 114)) (11.7.5.86) +super-slomo [stdout] Requirement already satisfied: nvidia-nccl-cu11==2.19.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 118)) (2.19.3) +super-slomo [stdout] Requirement already satisfied: nvidia-nvtx-cu11==11.8.86 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 122)) (11.8.86) +super-slomo [stdout] Requirement already satisfied: omegaconf==2.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 126)) (2.3.0) +super-slomo [stdout] Collecting opencv-python==4.9.0.80 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 130)) +super-slomo [stdout] Downloading opencv_python-4.9.0.80-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (20 kB) +super-slomo [stdout] Requirement already satisfied: ovld==0.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 132)) (0.3.2) +super-slomo [stdout] Requirement already satisfied: pillow==10.2.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 136)) (10.2.0) +super-slomo [stdout] Requirement already satisfied: ptera==1.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 140)) (1.4.1) +super-slomo [stdout] Requirement already satisfied: pygments==2.17.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 144)) (2.17.2) +super-slomo [stdout] Requirement already satisfied: pynvml==11.5.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 148)) (11.5.0) +super-slomo [stdout] Requirement already satisfied: pyyaml==6.0.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 152)) (6.0.1) +super-slomo [stdout] Requirement already satisfied: reactivex==4.0.4 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 156)) (4.0.4) +super-slomo [stdout] Requirement already satisfied: requests==2.31.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 160)) (2.31.0) +super-slomo [stdout] Requirement already satisfied: rich==13.7.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 164)) (13.7.0) +super-slomo [stdout] Requirement already satisfied: six==1.16.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 168)) (1.16.0) +super-slomo [stdout] Requirement already satisfied: sympy==1.12 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 172)) (1.12) +super-slomo [stdout] Requirement already satisfied: torch==2.2.0+cu118 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 176)) (2.2.0+cu118) +super-slomo [stdout] Requirement already satisfied: torchvision==0.17.0+cu118 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 180)) (0.17.0+cu118) +super-slomo [stdout] Requirement already satisfied: tqdm==4.66.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 182)) (4.66.1) +super-slomo [stdout] Requirement already satisfied: triton==2.2.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 184)) (2.2.0) +super-slomo [stdout] Requirement already satisfied: typing-extensions==4.9.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 188)) (4.9.0) +super-slomo [stdout] Requirement already satisfied: urllib3==1.26.18 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 193)) (1.26.18) +super-slomo [stdout] Requirement already satisfied: varname==0.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 197)) (0.10.0) +super-slomo [stdout] Requirement already satisfied: voir==0.2.12 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 201)) (0.2.12) +super-slomo [stdout] Downloading opencv_python-4.9.0.80-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (62.2 MB) +super-slomo [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 62.2/62.2 MB 75.8 MB/s eta 0:00:00 +super-slomo [stdout] +super-slomo [stdout] Installing collected packages: opencv-python +super-slomo [stdout] Successfully installed opencv-python-4.9.0.80 +super-slomo [stderr] +super-slomo [stderr] [notice] A new release of pip is available: 23.3.2 -> 24.0 +super-slomo [stderr] [notice] To update, run: pip install --upgrade pip +super-slomo [end] pip install -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt [at 2024-02-05 09:12:08.052145] +dlrm [start] pip install -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt [at 2024-02-05 09:12:08.467956] +dlrm [stdout] Looking in indexes: https://pypi.org/simple, https://download.pytorch.org/whl/cu118 +dlrm [stdout] Collecting absl-py==2.1.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 9)) +dlrm [stdout] Downloading absl_py-2.1.0-py3-none-any.whl.metadata (2.3 kB) +dlrm [stdout] Requirement already satisfied: antlr4-python3-runtime==4.9.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 13)) (4.9.3) +dlrm [stdout] Requirement already satisfied: asttokens==2.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 17)) (2.4.1) +dlrm [stdout] Collecting cachetools==5.3.2 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 21)) +dlrm [stdout] Downloading cachetools-5.3.2-py3-none-any.whl.metadata (5.2 kB) +dlrm [stdout] Requirement already satisfied: certifi==2024.2.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 25)) (2024.2.2) +dlrm [stdout] Requirement already satisfied: charset-normalizer==3.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 29)) (3.3.2) +dlrm [stdout] Requirement already satisfied: codefind==0.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 33)) (0.1.3) +dlrm [stdout] Collecting docker==7.0.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 37)) +dlrm [stdout] Downloading docker-7.0.0-py3-none-any.whl.metadata (3.5 kB) +dlrm [stdout] Collecting docstring-parser==0.8.1 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 41)) +dlrm [stdout] Downloading docstring_parser-0.8.1.tar.gz (14 kB) +dlrm [stdout] Installing build dependencies: started +dlrm [stdout] Installing build dependencies: finished with status 'done' +dlrm [stdout] Getting requirements to build wheel: started +dlrm [stdout] Getting requirements to build wheel: finished with status 'done' +dlrm [stdout] Preparing metadata (pyproject.toml): started +dlrm [stdout] Preparing metadata (pyproject.toml): finished with status 'done' +dlrm [stdout] Requirement already satisfied: executing==1.2.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 45)) (1.2.0) +dlrm [stdout] Collecting fbgemm-gpu==0.6.0+cu118 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 49)) +dlrm [stdout] Downloading https://download.pytorch.org/whl/cu118/fbgemm_gpu-0.6.0%2Bcu118-cp39-cp39-manylinux2014_x86_64.whl (231.2 MB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 231.2/231.2 MB 38.5 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Requirement already satisfied: filelock==3.13.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 53)) (3.13.1) +dlrm [stdout] Requirement already satisfied: fsspec==2023.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 59)) (2023.10.0) +dlrm [stdout] Collecting future==0.18.3 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 64)) +dlrm [stdout] Downloading future-0.18.3.tar.gz (840 kB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 840.9/840.9 kB 23.1 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Preparing metadata (setup.py): started +dlrm [stdout] Preparing metadata (setup.py): finished with status 'done' +dlrm [stdout] Requirement already satisfied: giving==0.4.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 66)) (0.4.2) +dlrm [stdout] Collecting google-auth==2.27.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 71)) +dlrm [stdout] Downloading google_auth-2.27.0-py2.py3-none-any.whl.metadata (4.7 kB) +dlrm [stdout] Collecting google-auth-oauthlib==1.2.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 76)) +dlrm [stdout] Downloading google_auth_oauthlib-1.2.0-py2.py3-none-any.whl.metadata (2.7 kB) +dlrm [stdout] Collecting graphviz==0.20.1 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 80)) +dlrm [stdout] Downloading graphviz-0.20.1-py3-none-any.whl (47 kB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 47.0/47.0 kB 37.5 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Collecting grpcio==1.60.1 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 84)) +dlrm [stdout] Downloading grpcio-1.60.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (4.0 kB) +dlrm [stdout] Requirement already satisfied: idna==3.6 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 88)) (3.6) +dlrm [stdout] Collecting importlib-metadata==7.0.1 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 92)) +dlrm [stdout] Using cached importlib_metadata-7.0.1-py3-none-any.whl.metadata (4.9 kB) +dlrm [stdout] Requirement already satisfied: jinja2==3.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 97)) (3.1.3) +dlrm [stdout] Collecting joblib==1.3.2 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 101)) +dlrm [stdout] Downloading joblib-1.3.2-py3-none-any.whl.metadata (5.4 kB) +dlrm [stdout] Collecting lightning-utilities==0.10.1 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 105)) +dlrm [stdout] Downloading lightning_utilities-0.10.1-py3-none-any.whl.metadata (4.8 kB) +dlrm [stdout] Collecting markdown==3.5.2 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 109)) +dlrm [stdout] Downloading Markdown-3.5.2-py3-none-any.whl.metadata (7.0 kB) +dlrm [stdout] Requirement already satisfied: markdown-it-py==3.0.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 113)) (3.0.0) +dlrm [stdout] Requirement already satisfied: markupsafe==2.1.5 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 117)) (2.1.5) +dlrm [stdout] Requirement already satisfied: mdurl==0.1.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 122)) (0.1.2) +dlrm [stdout] Requirement already satisfied: mpmath==1.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 126)) (1.3.0) +dlrm [stdout] Collecting mypy-extensions==1.0.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 130)) +dlrm [stdout] Downloading mypy_extensions-1.0.0-py3-none-any.whl (4.7 kB) +dlrm [stdout] Requirement already satisfied: networkx==3.2.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 134)) (3.2.1) +dlrm [stdout] Requirement already satisfied: numpy==1.26.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 138)) (1.26.3) +dlrm [stdout] Requirement already satisfied: nvidia-cublas-cu11==11.11.3.6 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 147)) (11.11.3.6) +dlrm [stdout] Requirement already satisfied: nvidia-cuda-cupti-cu11==11.8.87 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 153)) (11.8.87) +dlrm [stdout] Requirement already satisfied: nvidia-cuda-nvrtc-cu11==11.8.89 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 157)) (11.8.89) +dlrm [stdout] Requirement already satisfied: nvidia-cuda-runtime-cu11==11.8.89 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 161)) (11.8.89) +dlrm [stdout] Requirement already satisfied: nvidia-cudnn-cu11==8.7.0.84 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 165)) (8.7.0.84) +dlrm [stdout] Requirement already satisfied: nvidia-cufft-cu11==10.9.0.58 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 169)) (10.9.0.58) +dlrm [stdout] Requirement already satisfied: nvidia-curand-cu11==10.3.0.86 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 173)) (10.3.0.86) +dlrm [stdout] Requirement already satisfied: nvidia-cusolver-cu11==11.4.1.48 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 177)) (11.4.1.48) +dlrm [stdout] Requirement already satisfied: nvidia-cusparse-cu11==11.7.5.86 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 181)) (11.7.5.86) +dlrm [stdout] Requirement already satisfied: nvidia-nccl-cu11==2.19.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 185)) (2.19.3) +dlrm [stdout] Requirement already satisfied: nvidia-nvtx-cu11==11.8.86 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 189)) (11.8.86) +dlrm [stdout] Collecting oauthlib==3.2.2 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 193)) +dlrm [stdout] Downloading oauthlib-3.2.2-py3-none-any.whl (151 kB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 151.7/151.7 kB 100.3 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Requirement already satisfied: omegaconf==2.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 197)) (2.3.0) +dlrm [stdout] Collecting onnx==1.15.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 201)) +dlrm [stdout] Downloading onnx-1.15.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (15 kB) +dlrm [stdout] Requirement already satisfied: ovld==0.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 203)) (0.3.2) +dlrm [stdout] Requirement already satisfied: packaging==23.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 207)) (23.2) +dlrm [stdout] Collecting protobuf==4.23.4 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 213)) +dlrm [stdout] Downloading protobuf-4.23.4-cp37-abi3-manylinux2014_x86_64.whl.metadata (540 bytes) +dlrm [stdout] Requirement already satisfied: ptera==1.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 218)) (1.4.1) +dlrm [stdout] Collecting pyasn1==0.5.1 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 222)) +dlrm [stdout] Downloading pyasn1-0.5.1-py2.py3-none-any.whl.metadata (8.6 kB) +dlrm [stdout] Collecting pyasn1-modules==0.3.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 227)) +dlrm [stdout] Downloading pyasn1_modules-0.3.0-py2.py3-none-any.whl (181 kB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 181.3/181.3 kB 100.1 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Collecting pydot==2.0.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 231)) +dlrm [stdout] Downloading pydot-2.0.0-py3-none-any.whl.metadata (9.6 kB) +dlrm [stdout] Requirement already satisfied: pygments==2.17.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 233)) (2.17.2) +dlrm [stdout] Requirement already satisfied: pynvml==11.5.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 237)) (11.5.0) +dlrm [stdout] Collecting pyparsing==3.1.1 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 241)) +dlrm [stdout] Downloading pyparsing-3.1.1-py3-none-any.whl.metadata (5.1 kB) +dlrm [stdout] Collecting pyre-extensions==0.0.30 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 245)) +dlrm [stdout] Downloading pyre_extensions-0.0.30-py3-none-any.whl (12 kB) +dlrm [stdout] Requirement already satisfied: pyyaml==6.0.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 249)) (6.0.1) +dlrm [stdout] Requirement already satisfied: reactivex==4.0.4 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 254)) (4.0.4) +dlrm [stdout] Requirement already satisfied: requests==2.31.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 258)) (2.31.0) +dlrm [stdout] Collecting requests-oauthlib==1.3.1 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 264)) +dlrm [stdout] Downloading requests_oauthlib-1.3.1-py2.py3-none-any.whl (23 kB) +dlrm [stdout] Requirement already satisfied: rich==13.7.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 268)) (13.7.0) +dlrm [stdout] Collecting rsa==4.9 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 272)) +dlrm [stdout] Downloading rsa-4.9-py3-none-any.whl (34 kB) +dlrm [stdout] Collecting scikit-learn==1.4.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 276)) +dlrm [stdout] Downloading scikit_learn-1.4.0-1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (11 kB) +dlrm [stdout] Collecting scipy==1.12.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 278)) +dlrm [stdout] Downloading scipy-1.12.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (60 kB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 60.4/60.4 kB 38.2 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Requirement already satisfied: six==1.16.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 282)) (1.16.0) +dlrm [stdout] Requirement already satisfied: sympy==1.12 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 287)) (1.12) +dlrm [stdout] Collecting tabulate==0.9.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 291)) +dlrm [stdout] Downloading tabulate-0.9.0-py3-none-any.whl (35 kB) +dlrm [stdout] Collecting tensorboard==2.15.1 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 295)) +dlrm [stdout] Downloading tensorboard-2.15.1-py3-none-any.whl.metadata (1.7 kB) +dlrm [stdout] Collecting tensorboard-data-server==0.7.2 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 297)) +dlrm [stdout] Downloading tensorboard_data_server-0.7.2-py3-none-any.whl.metadata (1.1 kB) +dlrm [stdout] Collecting threadpoolctl==3.2.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 301)) +dlrm [stdout] Downloading threadpoolctl-3.2.0-py3-none-any.whl.metadata (10.0 kB) +dlrm [stdout] Requirement already satisfied: torch==2.2.0+cu118 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 305)) (2.2.0+cu118) +dlrm [stdout] Collecting torchmetrics==1.0.3 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 310)) +dlrm [stdout] Downloading https://download.pytorch.org/whl/torchmetrics-1.0.3-py3-none-any.whl (731 kB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 731.6/731.6 kB 105.5 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Collecting torchrec==0.6.0+cu118 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 314)) +dlrm [stdout] Downloading https://download.pytorch.org/whl/cu118/torchrec-0.6.0%2Bcu118-py3-none-any.whl (429 kB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 429.6/429.6 kB 12.2 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Collecting torchviz==0.0.2 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 316)) +dlrm [stdout] Downloading torchviz-0.0.2.tar.gz (4.9 kB) +dlrm [stdout] Preparing metadata (setup.py): started +dlrm [stdout] Preparing metadata (setup.py): finished with status 'done' +dlrm [stdout] Collecting torchx==0.5.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 318)) +dlrm [stdout] Downloading torchx-0.5.0-py3-none-any.whl (251 kB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 251.2/251.2 kB 70.4 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Requirement already satisfied: tqdm==4.66.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 320)) (4.66.1) +dlrm [stdout] Requirement already satisfied: triton==2.2.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 324)) (2.2.0) +dlrm [stdout] Requirement already satisfied: typing-extensions==4.9.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 328)) (4.9.0) +dlrm [stdout] Collecting typing-inspect==0.9.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 336)) +dlrm [stdout] Downloading typing_inspect-0.9.0-py3-none-any.whl.metadata (1.5 kB) +dlrm [stdout] Requirement already satisfied: urllib3==1.26.18 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 340)) (1.26.18) +dlrm [stdout] Requirement already satisfied: varname==0.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 346)) (0.10.0) +dlrm [stdout] Requirement already satisfied: voir==0.2.12 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 350)) (0.2.12) +dlrm [stdout] Collecting werkzeug==3.0.1 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 352)) +dlrm [stdout] Downloading werkzeug-3.0.1-py3-none-any.whl.metadata (4.1 kB) +dlrm [stdout] Collecting zipp==3.17.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 356)) +dlrm [stdout] Using cached zipp-3.17.0-py3-none-any.whl.metadata (3.7 kB) +dlrm [stdout] Requirement already satisfied: setuptools in ./base/venv/torch/lib/python3.9/site-packages (from lightning-utilities==0.10.1->-r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 105)) (69.0.3) +dlrm [stdout] Downloading absl_py-2.1.0-py3-none-any.whl (133 kB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 133.7/133.7 kB 85.2 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Downloading cachetools-5.3.2-py3-none-any.whl (9.3 kB) +dlrm [stdout] Downloading docker-7.0.0-py3-none-any.whl (147 kB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 147.6/147.6 kB 94.8 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Downloading google_auth-2.27.0-py2.py3-none-any.whl (186 kB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 186.8/186.8 kB 84.8 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Downloading google_auth_oauthlib-1.2.0-py2.py3-none-any.whl (24 kB) +dlrm [stdout] Downloading grpcio-1.60.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.4 MB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 5.4/5.4 MB 98.9 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Using cached importlib_metadata-7.0.1-py3-none-any.whl (23 kB) +dlrm [stdout] Downloading joblib-1.3.2-py3-none-any.whl (302 kB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 302.2/302.2 kB 107.3 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Downloading lightning_utilities-0.10.1-py3-none-any.whl (24 kB) +dlrm [stdout] Downloading Markdown-3.5.2-py3-none-any.whl (103 kB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 103.9/103.9 kB 72.3 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Downloading onnx-1.15.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.7 MB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 15.7/15.7 MB 103.8 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Downloading protobuf-4.23.4-cp37-abi3-manylinux2014_x86_64.whl (304 kB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 304.5/304.5 kB 125.6 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Downloading pyasn1-0.5.1-py2.py3-none-any.whl (84 kB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 84.9/84.9 kB 5.5 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Downloading pydot-2.0.0-py3-none-any.whl (22 kB) +dlrm [stdout] Downloading pyparsing-3.1.1-py3-none-any.whl (103 kB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 103.1/103.1 kB 75.1 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Downloading scikit_learn-1.4.0-1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.1 MB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 12.1/12.1 MB 106.7 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Downloading scipy-1.12.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (38.5 MB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 38.5/38.5 MB 89.3 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Downloading tensorboard-2.15.1-py3-none-any.whl (5.5 MB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 5.5/5.5 MB 109.2 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Downloading tensorboard_data_server-0.7.2-py3-none-any.whl (2.4 kB) +dlrm [stdout] Downloading threadpoolctl-3.2.0-py3-none-any.whl (15 kB) +dlrm [stdout] Downloading typing_inspect-0.9.0-py3-none-any.whl (8.8 kB) +dlrm [stdout] Downloading werkzeug-3.0.1-py3-none-any.whl (226 kB) +dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 226.7/226.7 kB 98.2 MB/s eta 0:00:00 +dlrm [stdout] +dlrm [stdout] Using cached zipp-3.17.0-py3-none-any.whl (7.4 kB) +dlrm [stdout] Building wheels for collected packages: docstring-parser, future, torchviz +dlrm [stdout] Building wheel for docstring-parser (pyproject.toml): started +dlrm [stdout] Building wheel for docstring-parser (pyproject.toml): finished with status 'done' +dlrm [stdout] Created wheel for docstring-parser: filename=docstring_parser-0.8.1-py3-none-any.whl size=19661 sha256=fcea89bef83d23ba122797c1d9d24b608a5e78bb6b542cc8fa2e6074066675b0 +dlrm [stdout] Stored in directory: /Tmp/slurm.4112514.0/base/cache/pip/wheels/35/b6/65/eda0a6497d7e3275201108c17e12c945989eb0d6e9dcc8eca2 +dlrm [stdout] Building wheel for future (setup.py): started +dlrm [stdout] Building wheel for future (setup.py): finished with status 'done' +dlrm [stdout] Created wheel for future: filename=future-0.18.3-py3-none-any.whl size=492024 sha256=24d10f57b8f6fec1548a3a73b10d59b3e1c4a3ff0512b3674faf8983242e4f84 +dlrm [stdout] Stored in directory: /Tmp/slurm.4112514.0/base/cache/pip/wheels/bf/5d/6a/2e53874f7ec4e2bede522385439531fafec8fafe005b5c3d1b +dlrm [stdout] Building wheel for torchviz (setup.py): started +dlrm [stdout] Building wheel for torchviz (setup.py): finished with status 'done' +dlrm [stdout] Created wheel for torchviz: filename=torchviz-0.0.2-py3-none-any.whl size=4131 sha256=c7041bab0501ef994420e186abddaa461334bf39157996f51667f2b5d2e3cb66 +dlrm [stdout] Stored in directory: /Tmp/slurm.4112514.0/base/cache/pip/wheels/29/65/6e/db2515eb1dc760fecd36b40d54df65c1e18534013f1c037e2e +dlrm [stdout] Successfully built docstring-parser future torchviz +dlrm [stdout] Installing collected packages: zipp, werkzeug, threadpoolctl, tensorboard-data-server, tabulate, scipy, pyparsing, pyasn1, protobuf, oauthlib, mypy-extensions, lightning-utilities, joblib, grpcio, graphviz, future, fbgemm-gpu, docstring-parser, cachetools, absl-py, typing-inspect, scikit-learn, rsa, requests-oauthlib, pydot, pyasn1-modules, onnx, importlib-metadata, docker, torchviz, torchmetrics, pyre-extensions, markdown, google-auth, torchx, torchrec, google-auth-oauthlib, tensorboard +dlrm [stdout] Successfully installed absl-py-2.1.0 cachetools-5.3.2 docker-7.0.0 docstring-parser-0.8.1 fbgemm-gpu-0.6.0+cu118 future-0.18.3 google-auth-2.27.0 google-auth-oauthlib-1.2.0 graphviz-0.20.1 grpcio-1.60.1 importlib-metadata-7.0.1 joblib-1.3.2 lightning-utilities-0.10.1 markdown-3.5.2 mypy-extensions-1.0.0 oauthlib-3.2.2 onnx-1.15.0 protobuf-4.23.4 pyasn1-0.5.1 pyasn1-modules-0.3.0 pydot-2.0.0 pyparsing-3.1.1 pyre-extensions-0.0.30 requests-oauthlib-1.3.1 rsa-4.9 scikit-learn-1.4.0 scipy-1.12.0 tabulate-0.9.0 tensorboard-2.15.1 tensorboard-data-server-0.7.2 threadpoolctl-3.2.0 torchmetrics-1.0.3 torchrec-0.6.0+cu118 torchviz-0.0.2 torchx-0.5.0 typing-inspect-0.9.0 werkzeug-3.0.1 zipp-3.17.0 +dlrm [stderr] +dlrm [stderr] [notice] A new release of pip is available: 23.3.2 -> 24.0 +dlrm [stderr] [notice] To update, run: pip install --upgrade pip +dlrm [end] pip install -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt [at 2024-02-05 09:12:33.592261] +[DONE] Reports directory: /Tmp/slurm.4112514.0/base/runs/install.2024-02-05_09:10:07.243596 + +Prepare +------- +resnet50 [start] /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/prepare.py --precision tf32-fp16 --lr 0.01 --no-stdout --epochs 50 --model resnet50 --batch-size 64 [at 2024-02-05 09:12:34.806258] +resnet50 [stdout] Generating fake data into /Tmp/slurm.4112514.0/base/data/FakeImageNet... +resnet50 [stdout] Generating train +resnet50 [stderr] 0%| | 0/4096 [00:00", +opt-1_3b [stderr] "torch_dtype": "float16", +opt-1_3b [stderr] "transformers_version": "4.37.2", +opt-1_3b [stderr] "use_cache": true, +opt-1_3b [stderr] "vocab_size": 50272, +opt-1_3b [stderr] "word_embed_proj_dim": 2048 +opt-1_3b [stderr] } +opt-1_3b [stderr] +opt-1_3b [stderr] tokenizer_config.json: 0%| | 0.00/685 [00:00", +opt-1_3b [stderr] "torch_dtype": "float16", +opt-1_3b [stderr] "transformers_version": "4.37.2", +opt-1_3b [stderr] "use_cache": true, +opt-1_3b [stderr] "vocab_size": 50272, +opt-1_3b [stderr] "word_embed_proj_dim": 2048 +opt-1_3b [stderr] } +opt-1_3b [stderr] +opt-1_3b [stderr] vocab.json: 0%| | 0.00/899k [00:00", +opt-1_3b [stderr] "torch_dtype": "float16", +opt-1_3b [stderr] "transformers_version": "4.37.2", +opt-1_3b [stderr] "use_cache": true, +opt-1_3b [stderr] "vocab_size": 50272, +opt-1_3b [stderr] "word_embed_proj_dim": 2048 +opt-1_3b [stderr] } +opt-1_3b [stderr] +opt-1_3b [stderr] loading configuration file config.json from cache at /Tmp/slurm.4112514.0/base/cache/hub/models--facebook--opt-1.3b/snapshots/3f5c25d0bc631cb57ac65913f76e22c2dfb61d62/config.json +opt-1_3b [stderr] Model config OPTConfig { +opt-1_3b [stderr] "_name_or_path": "facebook/opt-1.3b", +opt-1_3b [stderr] "_remove_final_layer_norm": false, +opt-1_3b [stderr] "activation_dropout": 0.0, +opt-1_3b [stderr] "activation_function": "relu", +opt-1_3b [stderr] "architectures": [ +opt-1_3b [stderr] "OPTForCausalLM" +opt-1_3b [stderr] ], +opt-1_3b [stderr] "attention_dropout": 0.0, +opt-1_3b [stderr] "bos_token_id": 2, +opt-1_3b [stderr] "do_layer_norm_before": true, +opt-1_3b [stderr] "dropout": 0.1, +opt-1_3b [stderr] "enable_bias": true, +opt-1_3b [stderr] "eos_token_id": 2, +opt-1_3b [stderr] "ffn_dim": 8192, +opt-1_3b [stderr] "hidden_size": 2048, +opt-1_3b [stderr] "init_std": 0.02, +opt-1_3b [stderr] "layer_norm_elementwise_affine": true, +opt-1_3b [stderr] "layerdrop": 0.0, +opt-1_3b [stderr] "max_position_embeddings": 2048, +opt-1_3b [stderr] "model_type": "opt", +opt-1_3b [stderr] "num_attention_heads": 32, +opt-1_3b [stderr] "num_hidden_layers": 24, +opt-1_3b [stderr] "pad_token_id": 1, +opt-1_3b [stderr] "prefix": "", +opt-1_3b [stderr] "torch_dtype": "float16", +opt-1_3b [stderr] "transformers_version": "4.37.2", +opt-1_3b [stderr] "use_cache": true, +opt-1_3b [stderr] "vocab_size": 50272, +opt-1_3b [stderr] "word_embed_proj_dim": 2048 +opt-1_3b [stderr] } +opt-1_3b [stderr] +opt-1_3b [stderr] Running tokenizer on dataset (num_proc=8): 0%| | 0/4358 [00:00", +opt-1_3b-multinode [stderr] "torch_dtype": "float16", +opt-1_3b-multinode [stderr] "transformers_version": "4.37.2", +opt-1_3b-multinode [stderr] "use_cache": true, +opt-1_3b-multinode [stderr] "vocab_size": 50272, +opt-1_3b-multinode [stderr] "word_embed_proj_dim": 2048 +opt-1_3b-multinode [stderr] } +opt-1_3b-multinode [stderr] +opt-1_3b-multinode [stderr] loading configuration file config.json from cache at /Tmp/slurm.4112514.0/base/cache/hub/models--facebook--opt-1.3b/snapshots/3f5c25d0bc631cb57ac65913f76e22c2dfb61d62/config.json +opt-1_3b-multinode [stderr] Model config OPTConfig { +opt-1_3b-multinode [stderr] "_name_or_path": "facebook/opt-1.3b", +opt-1_3b-multinode [stderr] "_remove_final_layer_norm": false, +opt-1_3b-multinode [stderr] "activation_dropout": 0.0, +opt-1_3b-multinode [stderr] "activation_function": "relu", +opt-1_3b-multinode [stderr] "architectures": [ +opt-1_3b-multinode [stderr] "OPTForCausalLM" +opt-1_3b-multinode [stderr] ], +opt-1_3b-multinode [stderr] "attention_dropout": 0.0, +opt-1_3b-multinode [stderr] "bos_token_id": 2, +opt-1_3b-multinode [stderr] "do_layer_norm_before": true, +opt-1_3b-multinode [stderr] "dropout": 0.1, +opt-1_3b-multinode [stderr] "enable_bias": true, +opt-1_3b-multinode [stderr] "eos_token_id": 2, +opt-1_3b-multinode [stderr] "ffn_dim": 8192, +opt-1_3b-multinode [stderr] "hidden_size": 2048, +opt-1_3b-multinode [stderr] "init_std": 0.02, +opt-1_3b-multinode [stderr] "layer_norm_elementwise_affine": true, +opt-1_3b-multinode [stderr] "layerdrop": 0.0, +opt-1_3b-multinode [stderr] "max_position_embeddings": 2048, +opt-1_3b-multinode [stderr] "model_type": "opt", +opt-1_3b-multinode [stderr] "num_attention_heads": 32, +opt-1_3b-multinode [stderr] "num_hidden_layers": 24, +opt-1_3b-multinode [stderr] "pad_token_id": 1, +opt-1_3b-multinode [stderr] "prefix": "", +opt-1_3b-multinode [stderr] "torch_dtype": "float16", +opt-1_3b-multinode [stderr] "transformers_version": "4.37.2", +opt-1_3b-multinode [stderr] "use_cache": true, +opt-1_3b-multinode [stderr] "vocab_size": 50272, +opt-1_3b-multinode [stderr] "word_embed_proj_dim": 2048 +opt-1_3b-multinode [stderr] } +opt-1_3b-multinode [stderr] +opt-1_3b-multinode [stderr] loading file vocab.json from cache at /Tmp/slurm.4112514.0/base/cache/hub/models--facebook--opt-1.3b/snapshots/3f5c25d0bc631cb57ac65913f76e22c2dfb61d62/vocab.json +opt-1_3b-multinode [stderr] loading file merges.txt from cache at /Tmp/slurm.4112514.0/base/cache/hub/models--facebook--opt-1.3b/snapshots/3f5c25d0bc631cb57ac65913f76e22c2dfb61d62/merges.txt +opt-1_3b-multinode [stderr] loading file tokenizer.json from cache at None +opt-1_3b-multinode [stderr] loading file added_tokens.json from cache at None +opt-1_3b-multinode [stderr] loading file special_tokens_map.json from cache at /Tmp/slurm.4112514.0/base/cache/hub/models--facebook--opt-1.3b/snapshots/3f5c25d0bc631cb57ac65913f76e22c2dfb61d62/special_tokens_map.json +opt-1_3b-multinode [stderr] loading file tokenizer_config.json from cache at /Tmp/slurm.4112514.0/base/cache/hub/models--facebook--opt-1.3b/snapshots/3f5c25d0bc631cb57ac65913f76e22c2dfb61d62/tokenizer_config.json +opt-1_3b-multinode [stderr] loading configuration file config.json from cache at /Tmp/slurm.4112514.0/base/cache/hub/models--facebook--opt-1.3b/snapshots/3f5c25d0bc631cb57ac65913f76e22c2dfb61d62/config.json +opt-1_3b-multinode [stderr] Model config OPTConfig { +opt-1_3b-multinode [stderr] "_name_or_path": "facebook/opt-1.3b", +opt-1_3b-multinode [stderr] "_remove_final_layer_norm": false, +opt-1_3b-multinode [stderr] "activation_dropout": 0.0, +opt-1_3b-multinode [stderr] "activation_function": "relu", +opt-1_3b-multinode [stderr] "architectures": [ +opt-1_3b-multinode [stderr] "OPTForCausalLM" +opt-1_3b-multinode [stderr] ], +opt-1_3b-multinode [stderr] "attention_dropout": 0.0, +opt-1_3b-multinode [stderr] "bos_token_id": 2, +opt-1_3b-multinode [stderr] "do_layer_norm_before": true, +opt-1_3b-multinode [stderr] "dropout": 0.1, +opt-1_3b-multinode [stderr] "enable_bias": true, +opt-1_3b-multinode [stderr] "eos_token_id": 2, +opt-1_3b-multinode [stderr] "ffn_dim": 8192, +opt-1_3b-multinode [stderr] "hidden_size": 2048, +opt-1_3b-multinode [stderr] "init_std": 0.02, +opt-1_3b-multinode [stderr] "layer_norm_elementwise_affine": true, +opt-1_3b-multinode [stderr] "layerdrop": 0.0, +opt-1_3b-multinode [stderr] "max_position_embeddings": 2048, +opt-1_3b-multinode [stderr] "model_type": "opt", +opt-1_3b-multinode [stderr] "num_attention_heads": 32, +opt-1_3b-multinode [stderr] "num_hidden_layers": 24, +opt-1_3b-multinode [stderr] "pad_token_id": 1, +opt-1_3b-multinode [stderr] "prefix": "", +opt-1_3b-multinode [stderr] "torch_dtype": "float16", +opt-1_3b-multinode [stderr] "transformers_version": "4.37.2", +opt-1_3b-multinode [stderr] "use_cache": true, +opt-1_3b-multinode [stderr] "vocab_size": 50272, +opt-1_3b-multinode [stderr] "word_embed_proj_dim": 2048 +opt-1_3b-multinode [stderr] } +opt-1_3b-multinode [stderr] +opt-1_3b-multinode [stderr] loading configuration file config.json from cache at /Tmp/slurm.4112514.0/base/cache/hub/models--facebook--opt-1.3b/snapshots/3f5c25d0bc631cb57ac65913f76e22c2dfb61d62/config.json +opt-1_3b-multinode [stderr] Model config OPTConfig { +opt-1_3b-multinode [stderr] "_name_or_path": "facebook/opt-1.3b", +opt-1_3b-multinode [stderr] "_remove_final_layer_norm": false, +opt-1_3b-multinode [stderr] "activation_dropout": 0.0, +opt-1_3b-multinode [stderr] "activation_function": "relu", +opt-1_3b-multinode [stderr] "architectures": [ +opt-1_3b-multinode [stderr] "OPTForCausalLM" +opt-1_3b-multinode [stderr] ], +opt-1_3b-multinode [stderr] "attention_dropout": 0.0, +opt-1_3b-multinode [stderr] "bos_token_id": 2, +opt-1_3b-multinode [stderr] "do_layer_norm_before": true, +opt-1_3b-multinode [stderr] "dropout": 0.1, +opt-1_3b-multinode [stderr] "enable_bias": true, +opt-1_3b-multinode [stderr] "eos_token_id": 2, +opt-1_3b-multinode [stderr] "ffn_dim": 8192, +opt-1_3b-multinode [stderr] "hidden_size": 2048, +opt-1_3b-multinode [stderr] "init_std": 0.02, +opt-1_3b-multinode [stderr] "layer_norm_elementwise_affine": true, +opt-1_3b-multinode [stderr] "layerdrop": 0.0, +opt-1_3b-multinode [stderr] "max_position_embeddings": 2048, +opt-1_3b-multinode [stderr] "model_type": "opt", +opt-1_3b-multinode [stderr] "num_attention_heads": 32, +opt-1_3b-multinode [stderr] "num_hidden_layers": 24, +opt-1_3b-multinode [stderr] "pad_token_id": 1, +opt-1_3b-multinode [stderr] "prefix": "", +opt-1_3b-multinode [stderr] "torch_dtype": "float16", +opt-1_3b-multinode [stderr] "transformers_version": "4.37.2", +opt-1_3b-multinode [stderr] "use_cache": true, +opt-1_3b-multinode [stderr] "vocab_size": 50272, +opt-1_3b-multinode [stderr] "word_embed_proj_dim": 2048 +opt-1_3b-multinode [stderr] } +opt-1_3b-multinode [stderr] +opt-1_3b-multinode [stdout] [02/05/24 09:15:37] WARNING [0/1] __main__ - The tokenizer picked logging.py:61 +opt-1_3b-multinode [stdout] seems to have a very large +opt-1_3b-multinode [stdout] `model_max_length` +opt-1_3b-multinode [stdout] (1000000000000000019884624838656). +opt-1_3b-multinode [stdout] Picking 1024 instead. You can change +opt-1_3b-multinode [stdout] that default value by passing +opt-1_3b-multinode [stdout] --block_size xxx. +opt-1_3b-multinode [end] accelerate launch --mixed_precision=fp16 --num_machines=1 --dynamo_backend=no --num_processes=1 --num_cpu_threads_per_process=8 /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/main.py [at 2024-02-05 09:15:38.743545] +opt-6_7b-multinode [start] accelerate launch --mixed_precision=fp16 --num_machines=1 --dynamo_backend=no --num_processes=1 --num_cpu_threads_per_process=8 /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/main.py [at 2024-02-05 09:15:38.748106] +opt-6_7b-multinode [stderr] The following values were not passed to `accelerate launch` and had defaults used instead: +opt-6_7b-multinode [stderr] More than one GPU was found, enabling multi-GPU training. +opt-6_7b-multinode [stderr] If this was unintended please pass in `--num_processes=1`. +opt-6_7b-multinode [stderr] To avoid this warning pass in values for each of the problematic parameters or run `accelerate config`. +opt-6_7b-multinode [stderr] Detected kernel version 4.15.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher. +opt-6_7b-multinode [stdout] [02/05/24 09:15:43] INFO [0/1] __main__ - Distributed logging.py:61 +opt-6_7b-multinode [stdout] environment: MULTI_GPU Backend: nccl +opt-6_7b-multinode [stdout] Num processes: 1 +opt-6_7b-multinode [stdout] Process index: 0 +opt-6_7b-multinode [stdout] Local process index: 0 +opt-6_7b-multinode [stdout] Device: cuda:0 +opt-6_7b-multinode [stdout] +opt-6_7b-multinode [stdout] Mixed precision type: fp16 +opt-6_7b-multinode [stdout] +opt-6_7b-multinode [stderr] libibverbs: Warning: couldn't load driver 'libbnxt_re-rdmav34.so': libbnxt_re-rdmav34.so: cannot open shared object file: No such file or directory +opt-6_7b-multinode [stderr] libibverbs: Warning: couldn't load driver 'libcxgb4-rdmav34.so': libcxgb4-rdmav34.so: cannot open shared object file: No such file or directory +opt-6_7b-multinode [stderr] libibverbs: Warning: couldn't load driver 'libipathverbs-rdmav34.so': libipathverbs-rdmav34.so: cannot open shared object file: No such file or directory +opt-6_7b-multinode [stderr] libibverbs: Warning: couldn't load driver 'libhfi1verbs-rdmav34.so': libhfi1verbs-rdmav34.so: cannot open shared object file: No such file or directory +opt-6_7b-multinode [stderr] libibverbs: Warning: couldn't load driver 'libqedr-rdmav34.so': libqedr-rdmav34.so: cannot open shared object file: No such file or directory +opt-6_7b-multinode [stderr] libibverbs: Warning: couldn't load driver 'libmthca-rdmav34.so': libmthca-rdmav34.so: cannot open shared object file: No such file or directory +opt-6_7b-multinode [stderr] libibverbs: Warning: couldn't load driver 'libvmw_pvrdma-rdmav34.so': libvmw_pvrdma-rdmav34.so: cannot open shared object file: No such file or directory +opt-6_7b-multinode [stderr] libibverbs: Warning: couldn't load driver 'librxe-rdmav34.so': librxe-rdmav34.so: cannot open shared object file: No such file or directory +opt-6_7b-multinode [stderr] libibverbs: Warning: couldn't load driver 'libocrdma-rdmav34.so': libocrdma-rdmav34.so: cannot open shared object file: No such file or directory +opt-6_7b-multinode [stderr] libibverbs: Warning: couldn't load driver 'libi40iw-rdmav34.so': libi40iw-rdmav34.so: cannot open shared object file: No such file or directory +opt-6_7b-multinode [stderr] libibverbs: Warning: couldn't load driver 'libmlx4-rdmav34.so': libmlx4-rdmav34.so: cannot open shared object file: No such file or directory +opt-6_7b-multinode [stderr] libibverbs: Warning: couldn't load driver 'libhns-rdmav34.so': libhns-rdmav34.so: cannot open shared object file: No such file or directory +opt-6_7b-multinode [stderr] /Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/datasets/load.py:1429: FutureWarning: The repository for wikitext contains custom code which must be executed to correctly load the dataset. You can inspect the repository content at https://hf.co/datasets/wikitext +opt-6_7b-multinode [stderr] You can avoid this message in future by passing the argument `trust_remote_code=True`. +opt-6_7b-multinode [stderr] Passing `trust_remote_code=True` will be mandatory to load this dataset from the next major release of `datasets`. +opt-6_7b-multinode [stderr] warnings.warn( +opt-6_7b-multinode [stderr] config.json: 0%| | 0.00/651 [00:00", +opt-6_7b-multinode [stderr] "torch_dtype": "float16", +opt-6_7b-multinode [stderr] "transformers_version": "4.37.2", +opt-6_7b-multinode [stderr] "use_cache": true, +opt-6_7b-multinode [stderr] "vocab_size": 50272, +opt-6_7b-multinode [stderr] "word_embed_proj_dim": 4096 +opt-6_7b-multinode [stderr] } +opt-6_7b-multinode [stderr] +opt-6_7b-multinode [stderr] tokenizer_config.json: 0%| | 0.00/685 [00:00", +opt-6_7b-multinode [stderr] "torch_dtype": "float16", +opt-6_7b-multinode [stderr] "transformers_version": "4.37.2", +opt-6_7b-multinode [stderr] "use_cache": true, +opt-6_7b-multinode [stderr] "vocab_size": 50272, +opt-6_7b-multinode [stderr] "word_embed_proj_dim": 4096 +opt-6_7b-multinode [stderr] } +opt-6_7b-multinode [stderr] +opt-6_7b-multinode [stderr] vocab.json: 0%| | 0.00/899k [00:00", +opt-6_7b-multinode [stderr] "torch_dtype": "float16", +opt-6_7b-multinode [stderr] "transformers_version": "4.37.2", +opt-6_7b-multinode [stderr] "use_cache": true, +opt-6_7b-multinode [stderr] "vocab_size": 50272, +opt-6_7b-multinode [stderr] "word_embed_proj_dim": 4096 +opt-6_7b-multinode [stderr] } +opt-6_7b-multinode [stderr] +opt-6_7b-multinode [stderr] loading configuration file config.json from cache at /Tmp/slurm.4112514.0/base/cache/hub/models--facebook--opt-6.7b/snapshots/a45aa65bbeb77c1558bc99bedc6779195462dab0/config.json +opt-6_7b-multinode [stderr] Model config OPTConfig { +opt-6_7b-multinode [stderr] "_name_or_path": "facebook/opt-6.7b", +opt-6_7b-multinode [stderr] "_remove_final_layer_norm": false, +opt-6_7b-multinode [stderr] "activation_dropout": 0.0, +opt-6_7b-multinode [stderr] "activation_function": "relu", +opt-6_7b-multinode [stderr] "architectures": [ +opt-6_7b-multinode [stderr] "OPTForCausalLM" +opt-6_7b-multinode [stderr] ], +opt-6_7b-multinode [stderr] "attention_dropout": 0.0, +opt-6_7b-multinode [stderr] "bos_token_id": 2, +opt-6_7b-multinode [stderr] "do_layer_norm_before": true, +opt-6_7b-multinode [stderr] "dropout": 0.1, +opt-6_7b-multinode [stderr] "enable_bias": true, +opt-6_7b-multinode [stderr] "eos_token_id": 2, +opt-6_7b-multinode [stderr] "ffn_dim": 16384, +opt-6_7b-multinode [stderr] "hidden_size": 4096, +opt-6_7b-multinode [stderr] "init_std": 0.02, +opt-6_7b-multinode [stderr] "layer_norm_elementwise_affine": true, +opt-6_7b-multinode [stderr] "layerdrop": 0.0, +opt-6_7b-multinode [stderr] "max_position_embeddings": 2048, +opt-6_7b-multinode [stderr] "model_type": "opt", +opt-6_7b-multinode [stderr] "num_attention_heads": 32, +opt-6_7b-multinode [stderr] "num_hidden_layers": 32, +opt-6_7b-multinode [stderr] "pad_token_id": 1, +opt-6_7b-multinode [stderr] "prefix": "", +opt-6_7b-multinode [stderr] "torch_dtype": "float16", +opt-6_7b-multinode [stderr] "transformers_version": "4.37.2", +opt-6_7b-multinode [stderr] "use_cache": true, +opt-6_7b-multinode [stderr] "vocab_size": 50272, +opt-6_7b-multinode [stderr] "word_embed_proj_dim": 4096 +opt-6_7b-multinode [stderr] } +opt-6_7b-multinode [stderr] +opt-6_7b-multinode [stderr] Running tokenizer on dataset (num_proc=8): 0%| | 0/4358 [00:00 +resnet152-multi.0 [stderr] sys.exit(main()) +resnet152-multi.0 [stderr] File "/Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 347, in wrapper +resnet152-multi.0 [stderr] return f(*args, **kwargs) +resnet152-multi.0 [stderr] File "/Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/run.py", line 812, in main +resnet152-multi.0 [stderr] run(args) +resnet152-multi.0 [stderr] File "/Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/run.py", line 803, in run +resnet152-multi.0 [stderr] elastic_launch( +resnet152-multi.0 [stderr] File "/Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/launcher/api.py", line 135, in __call__ +resnet152-multi.0 [stderr] return launch_agent(self._config, self._entrypoint, list(args)) +resnet152-multi.0 [stderr] File "/Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/launcher/api.py", line 259, in launch_agent +resnet152-multi.0 [stderr] result = agent.run() +resnet152-multi.0 [stderr] File "/Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/elastic/metrics/api.py", line 123, in wrapper +resnet152-multi.0 [stderr] result = f(*args, **kwargs) +resnet152-multi.0 [stderr] File "/Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/elastic/agent/server/api.py", line 727, in run +resnet152-multi.0 [stderr] result = self._invoke_run(role) +resnet152-multi.0 [stderr] File "/Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/elastic/agent/server/api.py", line 868, in _invoke_run +resnet152-multi.0 [stderr] time.sleep(monitor_interval) +resnet152-multi.0 [stderr] File "/Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 62, in _terminate_process_handler +resnet152-multi.0 [stderr] raise SignalException(f"Process {os.getpid()} got signal: {sigval}", sigval=sigval) +resnet152-multi.0 [stderr] torch.distributed.elastic.multiprocessing.api.SignalException: Process 46850 got signal: 15 +resnet152-multi.0 [end] torchrun --nproc_per_node=2 -m voir --config /Tmp/slurm.4112514.0/base/extra/timm/voirconf-resnet152-multi.0-0efae956f1553a76c1e03985181900f5.json /Tmp/slurm.4112514.0/milabench/benchmarks/timm/pytorch-image-models/train.py --amp --model resnet152 --batch-size 256 --data-dir /Tmp/slurm.4112514.0/base/data --dataset FakeImageNet --output /Tmp/slurm.4112514.0/base/extra/timm/jenadogo.2024-02-05_09:17:41.183394/resnet152-multi.0 --checkpoint-hist 1 [at 2024-02-05 09:39:43.488466] +davit_large.D0 [config.dirs.base] /Tmp/slurm.4112514.0/base +davit_large.D0 [config.dirs.venv] /Tmp/slurm.4112514.0/base/venv/torch +davit_large.D0 [config.dirs.data] /Tmp/slurm.4112514.0/base/data +davit_large.D0 [config.dirs.runs] /Tmp/slurm.4112514.0/base/runs +davit_large.D0 [config.dirs.extra] /Tmp/slurm.4112514.0/base/extra/timm +davit_large.D0 [config.dirs.cache] /Tmp/slurm.4112514.0/base/cache +davit_large.D0 [config.arch] cuda +davit_large.D0 [config.group] timm +davit_large.D0 [config.install_group] torch +davit_large.D0 [config.install_variant] cuda +davit_large.D0 [config.run_name] jenadogo.2024-02-05_09:17:41.183394 +davit_large.D0 [config.enabled] True +davit_large.D0 [config.capabilities.nodes] 1 +davit_large.D0 [config.max_duration] 600 +davit_large.D0 [config.voir.options.stop] 60 +davit_large.D0 [config.voir.options.interval] 1s +davit_large.D0 [config.config_base] /Tmp/slurm.4112514.0/milabench/config +davit_large.D0 [config.config_file] /Tmp/slurm.4112514.0/milabench/config/standard.yaml +davit_large.D0 [config.definition] /Tmp/slurm.4112514.0/milabench/benchmarks/timm +davit_large.D0 [config.plan.method] per_gpu +davit_large.D0 [config.argv.--amp] True +davit_large.D0 [config.argv.--model] davit_large +davit_large.D0 [config.argv.--batch-size] 128 +davit_large.D0 [config.argv.--lr-base] 0.01 +davit_large.D0 [config.tags] ['classification', 'transformer', 'vision'] +davit_large.D0 [config.weight] 1.0 +davit_large.D0 [config.name] davit_large +davit_large.D0 [config.tag] ['davit_large', 'D0'] +davit_large.D0 [config.device] 0 +davit_large.D0 [config.devices] ['0'] +davit_large.D0 [config.env.CUDA_VISIBLE_DEVICES] 0 +davit_large.D1 [config.dirs.base] /Tmp/slurm.4112514.0/base +davit_large.D1 [config.dirs.venv] /Tmp/slurm.4112514.0/base/venv/torch +davit_large.D1 [config.dirs.data] /Tmp/slurm.4112514.0/base/data +davit_large.D1 [config.dirs.runs] /Tmp/slurm.4112514.0/base/runs +davit_large.D1 [config.dirs.extra] /Tmp/slurm.4112514.0/base/extra/timm +davit_large.D1 [config.dirs.cache] /Tmp/slurm.4112514.0/base/cache +davit_large.D1 [config.arch] cuda +davit_large.D1 [config.group] timm +davit_large.D1 [config.install_group] torch +davit_large.D1 [config.install_variant] cuda +davit_large.D1 [config.run_name] jenadogo.2024-02-05_09:17:41.183394 +davit_large.D1 [config.enabled] True +davit_large.D1 [config.capabilities.nodes] 1 +davit_large.D1 [config.max_duration] 600 +davit_large.D1 [config.voir.options.stop] 60 +davit_large.D1 [config.voir.options.interval] 1s +davit_large.D1 [config.config_base] /Tmp/slurm.4112514.0/milabench/config +davit_large.D1 [config.config_file] /Tmp/slurm.4112514.0/milabench/config/standard.yaml +davit_large.D1 [config.definition] /Tmp/slurm.4112514.0/milabench/benchmarks/timm +davit_large.D1 [config.plan.method] per_gpu +davit_large.D1 [config.argv.--amp] True +davit_large.D1 [config.argv.--model] davit_large +davit_large.D1 [config.argv.--batch-size] 128 +davit_large.D1 [config.argv.--lr-base] 0.01 +davit_large.D1 [config.tags] ['classification', 'transformer', 'vision'] +davit_large.D1 [config.weight] 1.0 +davit_large.D1 [config.name] davit_large +davit_large.D1 [config.tag] ['davit_large', 'D1'] +davit_large.D1 [config.device] 1 +davit_large.D1 [config.devices] ['1'] +davit_large.D1 [config.env.CUDA_VISIBLE_DEVICES] 1 +davit_large.D0 [start] voir --config /Tmp/slurm.4112514.0/base/extra/timm/voirconf-davit_large.D0-0efae956f1553a76c1e03985181900f5.json /Tmp/slurm.4112514.0/milabench/benchmarks/timm/pytorch-image-models/train.py --amp --model davit_large --batch-size 128 --lr-base 0.01 --data-dir /Tmp/slurm.4112514.0/base/data --dataset FakeImageNet --output /Tmp/slurm.4112514.0/base/extra/timm/jenadogo.2024-02-05_09:17:41.183394/davit_large.D0 --checkpoint-hist 1 [at 2024-02-05 09:39:43.497324] +davit_large.D1 [start] voir --config /Tmp/slurm.4112514.0/base/extra/timm/voirconf-davit_large.D1-0efae956f1553a76c1e03985181900f5.json /Tmp/slurm.4112514.0/milabench/benchmarks/timm/pytorch-image-models/train.py --amp --model davit_large --batch-size 128 --lr-base 0.01 --data-dir /Tmp/slurm.4112514.0/base/data --dataset FakeImageNet --output /Tmp/slurm.4112514.0/base/extra/timm/jenadogo.2024-02-05_09:17:41.183394/davit_large.D1 --checkpoint-hist 1 [at 2024-02-05 09:39:43.500118] +davit_large.D1 [stderr] Training with a single process on 1 device (cuda:0). +davit_large.D0 [stderr] Training with a single process on 1 device (cuda:0). +davit_large.D0 [stderr] Model davit_large created, param count:196811752 +davit_large.D0 [stderr] Data processing configuration for current model + dataset: +davit_large.D0 [stderr] input_size: (3, 224, 224) +davit_large.D0 [stderr] interpolation: bicubic +davit_large.D0 [stderr] mean: (0.485, 0.456, 0.406) +davit_large.D0 [stderr] std: (0.229, 0.224, 0.225) +davit_large.D0 [stderr] crop_pct: 0.95 +davit_large.D0 [stderr] crop_mode: center +davit_large.D1 [stderr] Model davit_large created, param count:196811752 +davit_large.D1 [stderr] Data processing configuration for current model + dataset: +davit_large.D1 [stderr] input_size: (3, 224, 224) +davit_large.D1 [stderr] interpolation: bicubic +davit_large.D1 [stderr] mean: (0.485, 0.456, 0.406) +davit_large.D1 [stderr] std: (0.229, 0.224, 0.225) +davit_large.D1 [stderr] crop_pct: 0.95 +davit_large.D1 [stderr] crop_mode: center +davit_large.D0 [stderr] Learning rate (0.005) calculated from base learning rate (0.01) and global batch size (128) with linear scaling. +davit_large.D1 [stderr] Learning rate (0.005) calculated from base learning rate (0.01) and global batch size (128) with linear scaling. +davit_large.D0 [stderr] Using native Torch AMP. Training in mixed precision. +davit_large.D1 [stderr] Using native Torch AMP. Training in mixed precision. +davit_large.D1 [stderr] Scheduled epochs: 300. LR stepped per epoch. +davit_large.D0 [stderr] Scheduled epochs: 300. LR stepped per epoch. +davit_large.D0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [1961.4375, 81920.0], + 'power': 79.569, + 'temperature': 34}}, + 'task': 'main'} +davit_large.D1 [data] {'gpudata': {'1': {'load': 0, + 'memory': [1961.4375, 81920.0], + 'power': 76.284, + 'temperature': 30}}, + 'task': 'main'} +davit_large.D0 [data] {'loss': 7.2242937088012695, 'task': 'train'} +davit_large.D1 [data] {'loss': 7.2242937088012695, 'task': 'train'} +davit_large.D1 [data] {'gpudata': {'1': {'load': 0.73, + 'memory': [20935.4375, 81920.0], + 'power': 231.089, + 'temperature': 36}}, + 'task': 'main'} +davit_large.D0 [stderr] Train: 0 [ 0/32 ( 0%)] Loss: 7.224 (7.22) Time: 5.376s, 23.81/s (5.376s, 23.81/s) LR: 1.000e-05 Data: 1.866 (1.866) +davit_large.D0 [data] {'gpudata': {'0': {'load': 0.36, + 'memory': [30009.4375, 81920.0], + 'power': 118.363, + 'temperature': 37}}, + 'task': 'main'} +davit_large.D1 [stderr] Train: 0 [ 0/32 ( 0%)] Loss: 7.224 (7.22) Time: 5.497s, 23.29/s (5.497s, 23.29/s) LR: 1.000e-05 Data: 2.012 (2.012) +davit_large.D0 [data] {'loss': 7.176398277282715, 'task': 'train'} +davit_large.D1 [data] {'loss': 7.176398277282715, 'task': 'train'} +davit_large.D1 [data] {'gpudata': {'1': {'load': 0.9, + 'memory': [32271.4375, 81920.0], + 'power': 170.884, + 'temperature': 44}}, + 'task': 'main'} +davit_large.D0 [data] {'loss': 7.255929470062256, 'task': 'train'} +davit_large.D0 [data] {'gpudata': {'0': {'load': 1.0, + 'memory': [32271.4375, 81920.0], + 'power': 341.58, + 'temperature': 46}}, + 'task': 'main'} +davit_large.D1 [data] {'loss': 7.255929470062256, 'task': 'train'} +davit_large.D0 [data] {'loss': 7.163320541381836, 'task': 'train'} +davit_large.D1 [data] {'loss': 7.163320541381836, 'task': 'train'} +davit_large.D0 [data] {'loss': 7.234607696533203, 'task': 'train'} +davit_large.D1 [data] {'loss': 7.234731197357178, 'task': 'train'} +davit_large.D1 [data] {'gpudata': {'1': {'load': 0.86, + 'memory': [32271.4375, 81920.0], + 'power': 423.171, + 'temperature': 49}}, + 'task': 'main'} +davit_large.D0 [data] {'gpudata': {'0': {'load': 0.91, + 'memory': [32271.4375, 81920.0], + 'power': 419.613, + 'temperature': 52}}, + 'task': 'main'} +davit_large.D0 [data] {'loss': 7.243466377258301, 'task': 'train'} +davit_large.D1 [data] {'loss': 7.243409156799316, 'task': 'train'} +davit_large.D0 [data] {'rate': 288.78704725928174, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'loss': 7.048627853393555, 'task': 'train'} +davit_large.D1 [data] {'rate': 286.9764195377152, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'loss': 7.048476696014404, 'task': 'train'} +davit_large.D0 [data] {'rate': 304.02838849876184, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'gpudata': {'0': {'load': 0.92, + 'memory': [32271.4375, 81920.0], + 'power': 423.645, + 'temperature': 52}}, + 'task': 'main'} +davit_large.D0 [data] {'loss': 7.246768951416016, 'task': 'train'} +davit_large.D1 [data] {'gpudata': {'1': {'load': 0.99, + 'memory': [32271.4375, 81920.0], + 'power': 342.624, + 'temperature': 48}}, + 'task': 'main'} +davit_large.D1 [data] {'rate': 312.4742435069156, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'loss': 7.246639728546143, 'task': 'train'} +davit_large.D0 [data] {'rate': 308.5310059684705, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'rate': 306.4042003924101, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'loss': 7.151220321655273, 'task': 'train'} +davit_large.D1 [data] {'loss': 7.15114688873291, 'task': 'train'} +davit_large.D0 [data] {'rate': 295.08292759315526, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'rate': 297.49118271577714, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'loss': 7.270956993103027, 'task': 'train'} +davit_large.D1 [data] {'loss': 7.271016597747803, 'task': 'train'} +davit_large.D1 [data] {'gpudata': {'1': {'load': 0.98, + 'memory': [32271.4375, 81920.0], + 'power': 417.846, + 'temperature': 53}}, + 'task': 'main'} +davit_large.D0 [data] {'gpudata': {'0': {'load': 0.98, + 'memory': [32271.4375, 81920.0], + 'power': 404.772, + 'temperature': 53}}, + 'task': 'main'} +davit_large.D0 [data] {'rate': 299.8240112694602, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'rate': 297.0281431589852, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'loss': 7.312952518463135, 'task': 'train'} +davit_large.D1 [data] {'loss': 7.312915802001953, 'task': 'train'} +davit_large.D0 [data] {'rate': 308.6805033077407, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'rate': 304.8616680812936, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'loss': 7.311437606811523, 'task': 'train'} +davit_large.D1 [data] {'loss': 7.311379432678223, 'task': 'train'} +davit_large.D0 [stderr] Train: 0 [ 31/32 (100%)] Loss: 7.311 (7.24) Time: 0.379s, 337.57/s (0.559s, 228.90/s) LR: 1.000e-05 Data: 0.000 (0.074) +davit_large.D1 [stderr] Train: 0 [ 31/32 (100%)] Loss: 7.311 (7.24) Time: 0.393s, 326.06/s (0.564s, 227.00/s) LR: 1.000e-05 Data: 0.000 (0.078) +davit_large.D0 [stderr] Test: [ 0/32] Time: 2.479 (2.479) Loss: 7.1175 (7.1175) Acc@1: 0.0000 ( 0.0000) Acc@5: 0.0000 ( 0.0000) +davit_large.D1 [stderr] Test: [ 0/32] Time: 2.470 (2.470) Loss: 7.1175 (7.1175) Acc@1: 0.0000 ( 0.0000) Acc@5: 0.0000 ( 0.0000) +davit_large.D1 [stderr] Test: [ 32/32] Time: 0.351 (0.308) Loss: 7.0510 (7.2336) Acc@1: 0.0000 ( 0.0969) Acc@5: 0.0000 ( 0.5329) +davit_large.D0 [stderr] Test: [ 32/32] Time: 0.421 (0.318) Loss: 7.0507 (7.2336) Acc@1: 0.0000 ( 0.0969) Acc@5: 0.0000 ( 0.5329) +davit_large.D1 [stderr] Current checkpoints: +davit_large.D1 [stderr] ('/Tmp/slurm.4112514.0/base/extra/timm/jenadogo.2024-02-05_09:17:41.183394/davit_large.D1/20240205-093949-davit_large-224/checkpoint-0.pth.tar', 0.09689922480620156) +davit_large.D1 [stderr] +davit_large.D0 [stderr] Current checkpoints: +davit_large.D0 [stderr] ('/Tmp/slurm.4112514.0/base/extra/timm/jenadogo.2024-02-05_09:17:41.183394/davit_large.D0/20240205-093949-davit_large-224/checkpoint-0.pth.tar', 0.09689922480620156) +davit_large.D0 [stderr] +davit_large.D1 [data] {'rate': 333.9182691539913, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'gpudata': {'1': {'load': 0, + 'memory': [32271.4375, 81920.0], + 'power': 90.667, + 'temperature': 42}}, + 'task': 'main'} +davit_large.D1 [data] {'gpudata': {'1': {'load': 0.74, + 'memory': [32515.4375, 81920.0], + 'power': 417.558, + 'temperature': 48}}, + 'task': 'main'} +davit_large.D1 [data] {'gpudata': {'1': {'load': 0.25, + 'memory': [32515.4375, 81920.0], + 'power': 366.435, + 'temperature': 47}}, + 'task': 'main'} +davit_large.D1 [data] {'gpudata': {'1': {'load': 0.99, + 'memory': [32515.4375, 81920.0], + 'power': 416.254, + 'temperature': 50}}, + 'task': 'main'} +davit_large.D1 [data] {'gpudata': {'1': {'load': 0.03, + 'memory': [4563.4375, 81920.0], + 'power': 77.447, + 'temperature': 36}}, + 'task': 'main'} +davit_large.D0 [data] {'rate': 337.7676077671192, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [32271.4375, 81920.0], + 'power': 94.681, + 'temperature': 42}}, + 'task': 'main'} +davit_large.D0 [data] {'gpudata': {'0': {'load': 0.9, + 'memory': [32515.4375, 81920.0], + 'power': 362.419, + 'temperature': 50}}, + 'task': 'main'} +davit_large.D0 [data] {'gpudata': {'0': {'load': 0.81, + 'memory': [32515.4375, 81920.0], + 'power': 288.631, + 'temperature': 49}}, + 'task': 'main'} +davit_large.D0 [data] {'gpudata': {'0': {'load': 0.97, + 'memory': [32515.4375, 81920.0], + 'power': 371.216, + 'temperature': 51}}, + 'task': 'main'} +davit_large.D0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4409.4375, 81920.0], + 'power': 81.264, + 'temperature': 37}}, + 'task': 'main'} +davit_large.D1 [data] {'loss': 7.413604736328125, 'task': 'train'} +davit_large.D0 [data] {'loss': 7.413701057434082, 'task': 'train'} +davit_large.D1 [stderr] Train: 1 [ 0/32 ( 0%)] Loss: 7.414 (7.41) Time: 1.803s, 71.00/s (1.803s, 71.00/s) LR: 1.008e-03 Data: 1.146 (1.146) +davit_large.D0 [stderr] Train: 1 [ 0/32 ( 0%)] Loss: 7.414 (7.41) Time: 1.834s, 69.79/s (1.834s, 69.79/s) LR: 1.008e-03 Data: 1.280 (1.280) +davit_large.D0 [data] {'rate': 212.44601572468315, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'rate': 228.27529681210123, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'loss': 7.087103366851807, 'task': 'train'} +davit_large.D0 [data] {'loss': 7.08716344833374, 'task': 'train'} +davit_large.D1 [data] {'rate': 306.16411380530565, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'rate': 297.6658545964903, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'gpudata': {'0': {'load': 0.99, + 'memory': [32375.4375, 81920.0], + 'power': 323.198, + 'temperature': 51}}, + 'task': 'main'} +davit_large.D1 [data] {'loss': 7.022727012634277, 'task': 'train'} +davit_large.D1 [data] {'gpudata': {'1': {'load': 0.91, + 'memory': [32371.4375, 81920.0], + 'power': 334.543, + 'temperature': 48}}, + 'task': 'main'} +davit_large.D0 [data] {'loss': 7.022820472717285, 'task': 'train'} +davit_large.D0 [data] {'rate': 283.8694126984249, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'rate': 303.3547075190617, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'loss': 7.015778064727783, 'task': 'train'} +davit_large.D0 [data] {'loss': 7.015728950500488, 'task': 'train'} +davit_large.D1 [data] {'rate': 302.93055934266414, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'rate': 313.88746869568195, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'rate': 295.8596461531807, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'loss': 7.004846572875977, 'task': 'train'} +davit_large.D1 [data] {'rate': 319.69120440466014, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'loss': 7.004810333251953, 'task': 'train'} +davit_large.D1 [data] {'gpudata': {'1': {'load': 1.0, + 'memory': [32371.4375, 81920.0], + 'power': 399.157, + 'temperature': 51}}, + 'task': 'main'} +davit_large.D0 [data] {'gpudata': {'0': {'load': 0.92, + 'memory': [32375.4375, 81920.0], + 'power': 157.92, + 'temperature': 50}}, + 'task': 'main'} +davit_large.D1 [data] {'rate': 311.28935534193664, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'rate': 311.1180411574508, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'loss': 7.067630767822266, 'task': 'train'} +davit_large.D0 [data] {'loss': 7.067703723907471, 'task': 'train'} +davit_large.D0 [data] {'rate': 323.68101623255995, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'rate': 318.13933901069385, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'loss': 6.943202018737793, 'task': 'train'} +davit_large.D0 [data] {'loss': 6.943198204040527, 'task': 'train'} +davit_large.D1 [data] {'rate': 300.19495140925494, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'rate': 304.6041345669072, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'gpudata': {'1': {'load': 0.94, + 'memory': [32371.4375, 81920.0], + 'power': 419.772, + 'temperature': 54}}, + 'task': 'main'} +davit_large.D0 [data] {'gpudata': {'0': {'load': 0.88, + 'memory': [32375.4375, 81920.0], + 'power': 422.548, + 'temperature': 55}}, + 'task': 'main'} +davit_large.D1 [data] {'loss': 7.032207489013672, 'task': 'train'} +davit_large.D0 [data] {'loss': 7.032177448272705, 'task': 'train'} +davit_large.D1 [data] {'rate': 315.29579488545045, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'rate': 322.88559574244806, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'loss': 6.9783735275268555, 'task': 'train'} +davit_large.D0 [data] {'loss': 6.978496551513672, 'task': 'train'} +davit_large.D0 [data] {'rate': 328.48915846169183, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'rate': 319.23942510529645, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'loss': 6.981528282165527, 'task': 'train'} +davit_large.D0 [data] {'loss': 6.981618404388428, 'task': 'train'} +davit_large.D1 [data] {'rate': 334.4550166357468, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'rate': 298.9120828526006, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'gpudata': {'1': {'load': 0.99, + 'memory': [32371.4375, 81920.0], + 'power': 388.144, + 'temperature': 54}}, + 'task': 'main'} +davit_large.D0 [data] {'gpudata': {'0': {'load': 0.98, + 'memory': [32375.4375, 81920.0], + 'power': 405.646, + 'temperature': 55}}, + 'task': 'main'} +davit_large.D1 [data] {'loss': 7.016845703125, 'task': 'train'} +davit_large.D0 [data] {'loss': 7.016538619995117, 'task': 'train'} +davit_large.D1 [data] {'rate': 297.4780360578148, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'rate': 297.57593019891596, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [stderr] Train: 1 [ 31/32 (100%)] Loss: 6.997 (7.05) Time: 0.379s, 338.10/s (0.455s, 281.38/s) LR: 1.008e-03 Data: 0.000 (0.056) +davit_large.D0 [stderr] Train: 1 [ 31/32 (100%)] Loss: 6.997 (7.05) Time: 0.378s, 338.78/s (0.452s, 283.25/s) LR: 1.008e-03 Data: 0.000 (0.055) +davit_large.D1 [stderr] Test: [ 0/32] Time: 1.287 (1.287) Loss: 6.8691 (6.8691) Acc@1: 0.0000 ( 0.0000) Acc@5: 0.7812 ( 0.7812) +davit_large.D0 [stderr] Test: [ 0/32] Time: 1.335 (1.335) Loss: 6.8691 (6.8691) Acc@1: 0.0000 ( 0.0000) Acc@5: 0.7812 ( 0.7812) +davit_large.D1 [stderr] Test: [ 32/32] Time: 0.038 (0.264) Loss: 6.7069 (6.8682) Acc@1: 0.0000 ( 0.2907) Acc@5: 3.1250 ( 1.2839) +davit_large.D0 [stderr] Test: [ 32/32] Time: 0.039 (0.266) Loss: 6.7074 (6.8681) Acc@1: 0.0000 ( 0.2665) Acc@5: 3.1250 ( 1.2597) +davit_large.D1 [stderr] Current checkpoints: +davit_large.D1 [stderr] ('/Tmp/slurm.4112514.0/base/extra/timm/jenadogo.2024-02-05_09:17:41.183394/davit_large.D1/20240205-093949-davit_large-224/checkpoint-1.pth.tar', 0.29069767441860467) +davit_large.D1 [stderr] +davit_large.D0 [stderr] Current checkpoints: +davit_large.D0 [stderr] ('/Tmp/slurm.4112514.0/base/extra/timm/jenadogo.2024-02-05_09:17:41.183394/davit_large.D0/20240205-093949-davit_large-224/checkpoint-1.pth.tar', 0.26647286821705424) +davit_large.D0 [stderr] +davit_large.D1 [data] {'rate': 336.4123305432285, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'gpudata': {'1': {'load': 0.91, + 'memory': [32615.4375, 81920.0], + 'power': 413.067, + 'temperature': 51}}, + 'task': 'main'} +davit_large.D1 [data] {'gpudata': {'1': {'load': 0.87, + 'memory': [32615.4375, 81920.0], + 'power': 392.284, + 'temperature': 49}}, + 'task': 'main'} +davit_large.D1 [data] {'gpudata': {'1': {'load': 0.74, + 'memory': [32615.4375, 81920.0], + 'power': 165.734, + 'temperature': 49}}, + 'task': 'main'} +davit_large.D1 [data] {'gpudata': {'1': {'load': 0, + 'memory': [32615.4375, 81920.0], + 'power': 89.891, + 'temperature': 39}}, + 'task': 'main'} +davit_large.D1 [data] {'loss': 6.885984420776367, 'task': 'train'} +davit_large.D0 [data] {'rate': 338.1973068162126, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'gpudata': {'0': {'load': 0.74, + 'memory': [32619.4375, 81920.0], + 'power': 203.332, + 'temperature': 48}}, + 'task': 'main'} +davit_large.D0 [data] {'gpudata': {'0': {'load': 0.95, + 'memory': [32619.4375, 81920.0], + 'power': 192.618, + 'temperature': 52}}, + 'task': 'main'} +davit_large.D0 [data] {'gpudata': {'0': {'load': 0.22, + 'memory': [32619.4375, 81920.0], + 'power': 395.417, + 'temperature': 47}}, + 'task': 'main'} +davit_large.D0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [32619.4375, 81920.0], + 'power': 81.702, + 'temperature': 39}}, + 'task': 'main'} +davit_large.D0 [data] {'loss': 6.885586738586426, 'task': 'train'} +davit_large.D1 [stderr] Train: 2 [ 0/32 ( 0%)] Loss: 6.886 (6.89) Time: 1.479s, 86.55/s (1.479s, 86.55/s) LR: 2.006e-03 Data: 1.037 (1.037) +davit_large.D0 [stderr] Train: 2 [ 0/32 ( 0%)] Loss: 6.886 (6.89) Time: 1.513s, 84.61/s (1.513s, 84.61/s) LR: 2.006e-03 Data: 1.098 (1.098) +davit_large.D1 [data] {'rate': 224.71920291003224, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'rate': 271.7689463221978, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'loss': 6.914768218994141, 'task': 'train'} +davit_large.D0 [data] {'loss': 6.914725303649902, 'task': 'train'} +davit_large.D0 [data] {'rate': 274.4915030163426, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'rate': 319.6579776846699, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'gpudata': {'1': {'load': 0.85, + 'memory': [32859.4375, 81920.0], + 'power': 410.894, + 'temperature': 51}}, + 'task': 'main'} +davit_large.D1 [data] {'loss': 6.931402683258057, 'task': 'train'} +davit_large.D0 [data] {'gpudata': {'0': {'load': 0.93, + 'memory': [32863.4375, 81920.0], + 'power': 364.093, + 'temperature': 50}}, + 'task': 'main'} +davit_large.D0 [data] {'loss': 6.931621074676514, 'task': 'train'} +davit_large.D1 [data] {'rate': 261.58824346328043, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'rate': 305.4261508876928, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'loss': 6.940763473510742, 'task': 'train'} +davit_large.D1 [data] {'rate': 293.5569523803991, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'rate': 286.0233288135093, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'loss': 6.940611839294434, 'task': 'train'} +davit_large.D1 [data] {'rate': 263.3048609650464, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'gpudata': {'1': {'load': 1.0, + 'memory': [32859.4375, 81920.0], + 'power': 200.91, + 'temperature': 49}}, + 'task': 'main'} +davit_large.D0 [data] {'rate': 318.00799526757726, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'loss': 6.992800235748291, 'task': 'train'} +davit_large.D0 [data] {'loss': 6.990785121917725, 'task': 'train'} +davit_large.D0 [data] {'gpudata': {'0': {'load': 1.0, + 'memory': [32863.4375, 81920.0], + 'power': 278.364, + 'temperature': 51}}, + 'task': 'main'} +davit_large.D0 [data] {'rate': 288.2986884686784, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'rate': 307.5418999889887, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'loss': 6.91496467590332, 'task': 'train'} +davit_large.D0 [data] {'loss': 6.910470485687256, 'task': 'train'} +davit_large.D1 [data] {'rate': 305.5882860637634, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'rate': 309.7705591180716, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'loss': 7.016427040100098, 'task': 'train'} +davit_large.D0 [data] {'loss': 7.012662887573242, 'task': 'train'} +davit_large.D0 [data] {'rate': 312.18177960652673, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'gpudata': {'1': {'load': 0.73, + 'memory': [32859.4375, 81920.0], + 'power': 411.043, + 'temperature': 53}}, + 'task': 'main'} +davit_large.D1 [data] {'rate': 322.38750704149095, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'gpudata': {'0': {'load': 0.97, + 'memory': [32863.4375, 81920.0], + 'power': 237.555, + 'temperature': 54}}, + 'task': 'main'} +davit_large.D1 [data] {'loss': 6.8935089111328125, 'task': 'train'} +davit_large.D0 [data] {'loss': 6.896431922912598, 'task': 'train'} +davit_large.D1 [data] {'rate': 324.6031932854355, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'rate': 306.7059088037887, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'loss': 6.973326683044434, 'task': 'train'} +davit_large.D0 [data] {'loss': 6.972984790802002, 'task': 'train'} +davit_large.D0 [data] {'rate': 310.2550176182594, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'rate': 295.2129804879984, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'gpudata': {'1': {'load': 0.99, + 'memory': [32859.4375, 81920.0], + 'power': 411.236, + 'temperature': 56}}, + 'task': 'main'} +davit_large.D1 [data] {'loss': 7.10201358795166, 'task': 'train'} +davit_large.D0 [data] {'gpudata': {'0': {'load': 0.97, + 'memory': [32863.4375, 81920.0], + 'power': 437.908, + 'temperature': 56}}, + 'task': 'main'} +davit_large.D0 [data] {'rate': 317.9082384991119, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'loss': 7.091109275817871, 'task': 'train'} +davit_large.D1 [data] {'rate': 325.26164845332585, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'rate': 336.73818342898613, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'loss': 7.032718658447266, 'task': 'train'} +davit_large.D0 [data] {'rate': 298.2528469391523, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'loss': 7.031865119934082, 'task': 'train'} +davit_large.D1 [stderr] Train: 2 [ 31/32 (100%)] Loss: 6.950 (6.96) Time: 0.379s, 338.07/s (0.449s, 285.27/s) LR: 2.006e-03 Data: 0.000 (0.051) +davit_large.D0 [stderr] Train: 2 [ 31/32 (100%)] Loss: 6.946 (6.95) Time: 0.378s, 338.50/s (0.450s, 284.74/s) LR: 2.006e-03 Data: 0.000 (0.057) +davit_large.D1 [stderr] Test: [ 0/32] Time: 1.142 (1.142) Loss: 6.7523 (6.7523) Acc@1: 0.7812 ( 0.7812) Acc@5: 3.1250 ( 3.1250) +davit_large.D0 [stderr] Test: [ 0/32] Time: 1.256 (1.256) Loss: 6.7532 (6.7532) Acc@1: 0.7812 ( 0.7812) Acc@5: 2.3438 ( 2.3438) +davit_large.D1 [stderr] Test: [ 32/32] Time: 0.039 (0.269) Loss: 6.5073 (6.8241) Acc@1: 3.1250 ( 0.2180) Acc@5: 6.2500 ( 1.0417) +davit_large.D0 [stderr] Test: [ 32/32] Time: 0.039 (0.263) Loss: 6.4883 (6.8224) Acc@1: 3.1250 ( 0.2422) Acc@5: 6.2500 ( 1.0659) +davit_large.D1 [data] {'rate': 337.5969881200306, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'gpudata': {'1': {'load': 0.03, + 'memory': [33029.4375, 81920.0], + 'power': 159.187, + 'temperature': 44}}, + 'task': 'main'} +davit_large.D1 [data] {'gpudata': {'1': {'load': 0, + 'memory': [33103.4375, 81920.0], + 'power': 91.932, + 'temperature': 43}}, + 'task': 'main'} +davit_large.D1 [data] {'gpudata': {'1': {'load': 0.67, + 'memory': [33103.4375, 81920.0], + 'power': 92.675, + 'temperature': 44}}, + 'task': 'main'} +davit_large.D1 [data] {'gpudata': {'1': {'load': 0.19, + 'memory': [33103.4375, 81920.0], + 'power': 90.965, + 'temperature': 40}}, + 'task': 'main'} +davit_large.D0 [data] {'rate': 338.1462913124364, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [32863.4375, 81920.0], + 'power': 95.596, + 'temperature': 43}}, + 'task': 'main'} +davit_large.D0 [data] {'gpudata': {'0': {'load': 0.68, + 'memory': [33107.4375, 81920.0], + 'power': 99.905, + 'temperature': 46}}, + 'task': 'main'} +davit_large.D0 [data] {'gpudata': {'0': {'load': 0.7, + 'memory': [33107.4375, 81920.0], + 'power': 100.434, + 'temperature': 46}}, + 'task': 'main'} +davit_large.D0 [data] {'gpudata': {'0': {'load': 0.18, + 'memory': [33107.4375, 81920.0], + 'power': 94.44, + 'temperature': 41}}, + 'task': 'main'} +davit_large.D1 [data] {'loss': 6.881956100463867, 'task': 'train'} +davit_large.D0 [data] {'loss': 6.858100414276123, 'task': 'train'} +davit_large.D1 [stderr] Train: 3 [ 0/32 ( 0%)] Loss: 6.882 (6.88) Time: 1.705s, 75.07/s (1.705s, 75.07/s) LR: 3.004e-03 Data: 1.294 (1.294) +davit_large.D0 [stderr] Train: 3 [ 0/32 ( 0%)] Loss: 6.858 (6.86) Time: 1.582s, 80.89/s (1.582s, 80.89/s) LR: 3.004e-03 Data: 1.141 (1.141) +davit_large.D1 [data] {'loss': 6.857661724090576, 'task': 'train'} +davit_large.D1 [data] {'rate': 299.17023009769053, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'loss': 6.857681751251221, 'task': 'train'} +davit_large.D0 [data] {'rate': 280.65322763753477, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'gpudata': {'1': {'load': 0.89, + 'memory': [33347.4375, 81920.0], + 'power': 416.782, + 'temperature': 51}}, + 'task': 'main'} +davit_large.D0 [data] {'gpudata': {'0': {'load': 0.95, + 'memory': [33351.4375, 81920.0], + 'power': 159.884, + 'temperature': 50}}, + 'task': 'main'} +davit_large.D1 [data] {'rate': 289.96669059745153, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'rate': 295.90188066554794, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'loss': 6.904120445251465, 'task': 'train'} +davit_large.D0 [data] {'loss': 6.915355205535889, 'task': 'train'} +davit_large.D1 [data] {'rate': 319.1619042446598, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'rate': 306.85568925982454, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'loss': 6.893326759338379, 'task': 'train'} +davit_large.D0 [data] {'loss': 6.899193286895752, 'task': 'train'} +davit_large.D1 [data] {'rate': 301.36676349007865, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'rate': 294.70874972077354, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'gpudata': {'1': {'load': 0.99, + 'memory': [33347.4375, 81920.0], + 'power': 359.776, + 'temperature': 51}}, + 'task': 'main'} +davit_large.D0 [data] {'gpudata': {'0': {'load': 0.95, + 'memory': [33351.4375, 81920.0], + 'power': 326.143, + 'temperature': 50}}, + 'task': 'main'} +davit_large.D1 [data] {'loss': 6.914932727813721, 'task': 'train'} +davit_large.D0 [data] {'loss': 6.908669471740723, 'task': 'train'} +davit_large.D1 [data] {'rate': 304.44539511395107, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'rate': 324.74525918413434, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'loss': 6.965327262878418, 'task': 'train'} +davit_large.D0 [data] {'loss': 6.973827362060547, 'task': 'train'} +davit_large.D0 [data] {'rate': 317.26203065830646, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'rate': 300.89809170970915, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'loss': 6.89867639541626, 'task': 'train'} +davit_large.D0 [data] {'loss': 6.901933670043945, 'task': 'train'} +davit_large.D1 [data] {'gpudata': {'1': {'load': 0.99, + 'memory': [33347.4375, 81920.0], + 'power': 415.571, + 'temperature': 54}}, + 'task': 'main'} +davit_large.D1 [data] {'rate': 289.44016496859285, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'gpudata': {'0': {'load': 0.89, + 'memory': [33351.4375, 81920.0], + 'power': 408.017, + 'temperature': 56}}, + 'task': 'main'} +davit_large.D0 [data] {'rate': 311.95252839002785, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'rate': 323.415699661796, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'loss': 7.001712799072266, 'task': 'train'} +davit_large.D0 [data] {'loss': 6.998551368713379, 'task': 'train'} +davit_large.D1 [data] {'rate': 298.09570501720907, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'rate': 283.40182644395765, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'loss': 7.035810947418213, 'task': 'train'} +davit_large.D1 [data] {'rate': 335.314651138995, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'loss': 7.04182767868042, 'task': 'train'} +davit_large.D1 [data] {'gpudata': {'1': {'load': 0.97, + 'memory': [33347.4375, 81920.0], + 'power': 388.228, + 'temperature': 55}}, + 'task': 'main'} +davit_large.D0 [data] {'gpudata': {'0': {'load': 0.97, + 'memory': [33351.4375, 81920.0], + 'power': 383.403, + 'temperature': 57}}, + 'task': 'main'} +davit_large.D1 [data] {'rate': 333.5018442593364, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'rate': 326.3957369779189, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'loss': 6.9796528816223145, 'task': 'train'} +davit_large.D0 [data] {'loss': 6.9736433029174805, 'task': 'train'} +davit_large.D0 [data] {'rate': 334.9088027762014, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'rate': 296.978432152498, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'loss': 7.0153937339782715, 'task': 'train'} +davit_large.D0 [data] {'loss': 7.011266708374023, 'task': 'train'} +davit_large.D1 [stderr] Train: 3 [ 31/32 (100%)] Loss: 6.994 (6.96) Time: 0.379s, 338.10/s (0.449s, 284.89/s) LR: 3.004e-03 Data: 0.000 (0.058) +davit_large.D0 [stderr] Train: 3 [ 31/32 (100%)] Loss: 7.002 (6.96) Time: 0.380s, 337.28/s (0.449s, 285.33/s) LR: 3.004e-03 Data: 0.000 (0.054) +davit_large.D0 [data] {'rate': 298.453005685323, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [stderr] Test: [ 0/32] Time: 1.119 (1.119) Loss: 6.8200 (6.8200) Acc@1: 0.0000 ( 0.0000) Acc@5: 0.0000 ( 0.0000) +davit_large.D0 [stderr] Test: [ 0/32] Time: 1.146 (1.146) Loss: 6.8263 (6.8263) Acc@1: 0.0000 ( 0.0000) Acc@5: 0.0000 ( 0.0000) +davit_large.D1 [stderr] Test: [ 32/32] Time: 0.039 (0.256) Loss: 6.3792 (6.8162) Acc@1: 0.0000 ( 0.1938) Acc@5: 12.5000 ( 1.1143) +davit_large.D0 [stderr] Test: [ 32/32] Time: 0.039 (0.266) Loss: 6.3632 (6.8162) Acc@1: 0.0000 ( 0.1211) Acc@5: 6.2500 ( 1.0659) +davit_large.D1 [data] {'rate': 337.47319049039396, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'gpudata': {'1': {'load': 0, + 'memory': [33347.4375, 81920.0], + 'power': 92.648, + 'temperature': 45}}, + 'task': 'main'} +davit_large.D1 [data] {'gpudata': {'1': {'load': 0.97, + 'memory': [33591.4375, 81920.0], + 'power': 96.468, + 'temperature': 47}}, + 'task': 'main'} +davit_large.D1 [data] {'gpudata': {'1': {'load': 0.98, + 'memory': [33591.4375, 81920.0], + 'power': 96.758, + 'temperature': 48}}, + 'task': 'main'} +davit_large.D1 [data] {'gpudata': {'1': {'load': 0.21, + 'memory': [33591.4375, 81920.0], + 'power': 90.86, + 'temperature': 41}}, + 'task': 'main'} +davit_large.D1 [data] {'loss': 6.858846664428711, 'task': 'train'} +davit_large.D1 [stderr] Train: 4 [ 0/32 ( 0%)] Loss: 6.859 (6.86) Time: 1.421s, 90.06/s (1.421s, 90.06/s) LR: 4.002e-03 Data: 0.996 (0.996) +davit_large.D0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [33351.4375, 81920.0], + 'power': 97.6, + 'temperature': 45}}, + 'task': 'main'} +davit_large.D0 [data] {'rate': 337.2135299931729, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'gpudata': {'0': {'load': 0.98, + 'memory': [33595.4375, 81920.0], + 'power': 427.012, + 'temperature': 51}}, + 'task': 'main'} +davit_large.D0 [data] {'gpudata': {'0': {'load': 0.55, + 'memory': [33595.4375, 81920.0], + 'power': 407.893, + 'temperature': 49}}, + 'task': 'main'} +davit_large.D0 [data] {'gpudata': {'0': {'load': 0.17, + 'memory': [33595.4375, 81920.0], + 'power': 95.689, + 'temperature': 43}}, + 'task': 'main'} +davit_large.D0 [data] {'loss': 6.866186141967773, 'task': 'train'} +davit_large.D1 [data] {'rate': 263.83208987070776, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [stderr] Train: 4 [ 0/32 ( 0%)] Loss: 6.866 (6.87) Time: 1.608s, 79.58/s (1.608s, 79.58/s) LR: 4.002e-03 Data: 1.204 (1.204) +davit_large.D1 [data] {'loss': 6.8308563232421875, 'task': 'train'} +davit_large.D0 [data] {'rate': 291.7185605212812, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'gpudata': {'0': {'load': 0.98, + 'memory': [33839.4375, 81920.0], + 'power': 425.657, + 'temperature': 52}}, + 'task': 'main'} +davit_large.D1 [data] {'rate': 293.0593273598984, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'gpudata': {'1': {'load': 0.82, + 'memory': [33835.4375, 81920.0], + 'power': 431.574, + 'temperature': 52}}, + 'task': 'main'} +davit_large.D0 [data] {'loss': 6.832171440124512, 'task': 'train'} +davit_large.D1 [data] {'loss': 6.876811981201172, 'task': 'train'} +davit_large.D0 [data] {'rate': 267.9523758529123, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'rate': 274.88485213134186, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'loss': 6.88115119934082, 'task': 'train'} +davit_large.D1 [data] {'loss': 6.919188022613525, 'task': 'train'} +davit_large.D1 [data] {'rate': 311.84089604622943, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'rate': 304.5413399713321, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'loss': 6.921402931213379, 'task': 'train'} +davit_large.D0 [data] {'gpudata': {'0': {'load': 0.83, + 'memory': [33839.4375, 81920.0], + 'power': 342.53, + 'temperature': 55}}, + 'task': 'main'} +davit_large.D0 [data] {'rate': 274.5614038427539, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'gpudata': {'1': {'load': 0.79, + 'memory': [33835.4375, 81920.0], + 'power': 317.026, + 'temperature': 53}}, + 'task': 'main'} +davit_large.D1 [data] {'rate': 274.30134015545053, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'loss': 6.9168548583984375, 'task': 'train'} +davit_large.D0 [data] {'loss': 6.914167404174805, 'task': 'train'} +davit_large.D0 [data] {'rate': 296.9344058141142, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'rate': 309.2449677005309, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'loss': 6.999188423156738, 'task': 'train'} +davit_large.D0 [data] {'loss': 6.992395877838135, 'task': 'train'} +davit_large.D0 [data] {'rate': 299.42240599151097, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'rate': 303.7313789054362, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'loss': 7.041447162628174, 'task': 'train'} +davit_large.D1 [data] {'gpudata': {'1': {'load': 0.89, + 'memory': [33835.4375, 81920.0], + 'power': 408.291, + 'temperature': 54}}, + 'task': 'main'} +davit_large.D0 [data] {'gpudata': {'0': {'load': 0.98, + 'memory': [33839.4375, 81920.0], + 'power': 423.996, + 'temperature': 56}}, + 'task': 'main'} +davit_large.D0 [data] {'rate': 319.6778897610952, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'loss': 7.0399322509765625, 'task': 'train'} +davit_large.D1 [data] {'rate': 313.78400963207736, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'loss': 7.070823669433594, 'task': 'train'} +davit_large.D1 [data] {'rate': 288.7313794299665, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'rate': 320.73919800747194, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'loss': 7.071550369262695, 'task': 'train'} +davit_large.D1 [data] {'loss': 7.013205528259277, 'task': 'train'} +davit_large.D0 [data] {'rate': 306.7086010487081, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'rate': 298.1076047735179, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'loss': 7.012872695922852, 'task': 'train'} +davit_large.D1 [data] {'gpudata': {'1': {'load': 0.99, + 'memory': [33835.4375, 81920.0], + 'power': 427.363, + 'temperature': 56}}, + 'task': 'main'} +davit_large.D0 [data] {'gpudata': {'0': {'load': 0.99, + 'memory': [33839.4375, 81920.0], + 'power': 426.364, + 'temperature': 58}}, + 'task': 'main'} +davit_large.D1 [data] {'loss': 7.038879871368408, 'task': 'train'} +davit_large.D0 [data] {'rate': 304.1831865928029, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'rate': 309.2083886309725, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'loss': 7.043169975280762, 'task': 'train'} +davit_large.D1 [data] {'loss': 7.011752128601074, 'task': 'train'} +davit_large.D1 [data] {'rate': 330.0397849552897, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'rate': 310.11447168273537, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'loss': 7.011505126953125, 'task': 'train'} +davit_large.D1 [stderr] Train: 4 [ 31/32 (100%)] Loss: 7.093 (6.97) Time: 0.379s, 337.86/s (0.446s, 286.76/s) LR: 4.002e-03 Data: 0.000 (0.050) +davit_large.D0 [stderr] Train: 4 [ 31/32 (100%)] Loss: 7.085 (6.97) Time: 0.400s, 319.80/s (0.450s, 284.20/s) LR: 4.002e-03 Data: 0.000 (0.054) +davit_large.D0 [data] {'rate': 313.4033773286519, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [stderr] Test: [ 0/32] Time: 0.937 (0.937) Loss: 6.8398 (6.8398) Acc@1: 0.0000 ( 0.0000) Acc@5: 1.5625 ( 1.5625) +davit_large.D0 [stderr] Test: [ 0/32] Time: 1.244 (1.244) Loss: 6.8488 (6.8488) Acc@1: 0.7812 ( 0.7812) Acc@5: 1.5625 ( 1.5625) +davit_large.D1 [stderr] Test: [ 32/32] Time: 0.039 (0.253) Loss: 6.7426 (6.8291) Acc@1: 0.0000 ( 0.3391) Acc@5: 6.2500 ( 1.0174) +davit_large.D0 [stderr] Test: [ 32/32] Time: 0.039 (0.254) Loss: 6.7296 (6.8274) Acc@1: 3.1250 ( 0.3149) Acc@5: 6.2500 ( 1.1628) +davit_large.D1 [stderr] Current checkpoints: +davit_large.D1 [stderr] ('/Tmp/slurm.4112514.0/base/extra/timm/jenadogo.2024-02-05_09:17:41.183394/davit_large.D1/20240205-093949-davit_large-224/checkpoint-4.pth.tar', 0.3391472868217054) +davit_large.D1 [stderr] +davit_large.D0 [stderr] Current checkpoints: +davit_large.D0 [stderr] ('/Tmp/slurm.4112514.0/base/extra/timm/jenadogo.2024-02-05_09:17:41.183394/davit_large.D0/20240205-093949-davit_large-224/checkpoint-4.pth.tar', 0.31492248062015504) +davit_large.D0 [stderr] +davit_large.D1 [data] {'rate': 337.3973485371045, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [data] {'gpudata': {'1': {'load': 0, + 'memory': [33835.4375, 81920.0], + 'power': 92.783, + 'temperature': 45}}, + 'task': 'main'} +davit_large.D1 [data] {'gpudata': {'1': {'load': 0, + 'memory': [34079.4375, 81920.0], + 'power': 92.89, + 'temperature': 45}}, + 'task': 'main'} +davit_large.D1 [data] {'gpudata': {'1': {'load': 0.09, + 'memory': [34079.4375, 81920.0], + 'power': 350.324, + 'temperature': 49}}, + 'task': 'main'} +davit_large.D1 [data] {'gpudata': {'1': {'load': 0.18, + 'memory': [34079.4375, 81920.0], + 'power': 90.007, + 'temperature': 41}}, + 'task': 'main'} +davit_large.D1 [data] {'loss': 6.8232526779174805, 'task': 'train'} +davit_large.D1 [stderr] Train: 5 [ 0/32 ( 0%)] Loss: 6.823 (6.82) Time: 1.406s, 91.07/s (1.406s, 91.07/s) LR: 4.997e-03 Data: 0.985 (0.985) +davit_large.D1 [data] {'rate': 275.40297576616047, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'gpudata': {'0': {'load': 0.4, + 'memory': [33839.4375, 81920.0], + 'power': 101.075, + 'temperature': 50}}, + 'task': 'main'} +davit_large.D0 [data] {'rate': 319.7488884079777, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'gpudata': {'0': {'load': 0.01, + 'memory': [34083.4375, 81920.0], + 'power': 335.114, + 'temperature': 49}}, + 'task': 'main'} +davit_large.D0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [34083.4375, 81920.0], + 'power': 98.533, + 'temperature': 47}}, + 'task': 'main'} +davit_large.D0 [data] {'gpudata': {'0': {'load': 0.16, + 'memory': [34083.4375, 81920.0], + 'power': 96.774, + 'temperature': 45}}, + 'task': 'main'} +davit_large.D0 [data] {'loss': 6.82390832901001, 'task': 'train'} +davit_large.D0 [stderr] Train: 5 [ 0/32 ( 0%)] Loss: 6.824 (6.82) Time: 1.547s, 82.75/s (1.547s, 82.75/s) LR: 4.997e-03 Data: 1.124 (1.124) +davit_large.D1 [data] {'loss': 6.877004623413086, 'task': 'train'} +davit_large.D1 [data] {'rate': 295.8152373802478, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'rate': 252.59276507778412, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'gpudata': {'0': {'load': 0.99, + 'memory': [34327.4375, 81920.0], + 'power': 420.779, + 'temperature': 54}}, + 'task': 'main'} +davit_large.D1 [data] {'gpudata': {'1': {'load': 0.92, + 'memory': [34323.4375, 81920.0], + 'power': 364.835, + 'temperature': 51}}, + 'task': 'main'} +davit_large.D0 [data] {'loss': 6.877440929412842, 'task': 'train'} +davit_large.D1 [data] {'loss': 6.948058128356934, 'task': 'train'} +davit_large.D1 [data] {'rate': 296.18572235013085, 'task': 'train', 'units': 'items/s'} +davit_large.D0 [data] {'rate': 317.6747731444736, 'task': 'train', 'units': 'items/s'} +davit_large.D1 [stderr] Traceback (most recent call last): +davit_large.D1 [stderr] File "/Tmp/slurm.4112514.0/env/lib/python3.9/multiprocessing/resource_sharer.py", line 138, in _serve +davit_large.D1 [stderr] with self._listener.accept() as conn: +davit_large.D1 [stderr] File "/Tmp/slurm.4112514.0/env/lib/python3.9/multiprocessing/connection.py", line 465, in accept +davit_large.D1 [stderr] deliver_challenge(c, self._authkey) +davit_large.D1 [stderr] File "/Tmp/slurm.4112514.0/env/lib/python3.9/multiprocessing/connection.py", line 740, in deliver_challenge +davit_large.D1 [stderr] response = connection.recv_bytes(256) # reject large message +davit_large.D1 [stderr] File "/Tmp/slurm.4112514.0/env/lib/python3.9/multiprocessing/connection.py", line 216, in recv_bytes +davit_large.D1 [stderr] buf = self._recv_bytes(maxlength) +davit_large.D1 [stderr] File "/Tmp/slurm.4112514.0/env/lib/python3.9/multiprocessing/connection.py", line 414, in _recv_bytes +davit_large.D1 [stderr] buf = self._recv(4) +davit_large.D1 [stderr] File "/Tmp/slurm.4112514.0/env/lib/python3.9/multiprocessing/connection.py", line 379, in _recv +davit_large.D1 [stderr] chunk = read(handle, remaining) +davit_large.D1 [stderr] ConnectionResetError: [Errno 104] Connection reset by peer +davit_large.D1 [end] voir --config /Tmp/slurm.4112514.0/base/extra/timm/voirconf-davit_large.D1-0efae956f1553a76c1e03985181900f5.json /Tmp/slurm.4112514.0/milabench/benchmarks/timm/pytorch-image-models/train.py --amp --model davit_large --batch-size 128 --lr-base 0.01 --data-dir /Tmp/slurm.4112514.0/base/data --dataset FakeImageNet --output /Tmp/slurm.4112514.0/base/extra/timm/jenadogo.2024-02-05_09:17:41.183394/davit_large.D1 --checkpoint-hist 1 [at 2024-02-05 09:42:01.427072] +davit_large.D0 [end] voir --config /Tmp/slurm.4112514.0/base/extra/timm/voirconf-davit_large.D0-0efae956f1553a76c1e03985181900f5.json /Tmp/slurm.4112514.0/milabench/benchmarks/timm/pytorch-image-models/train.py --amp --model davit_large --batch-size 128 --lr-base 0.01 --data-dir /Tmp/slurm.4112514.0/base/data --dataset FakeImageNet --output /Tmp/slurm.4112514.0/base/extra/timm/jenadogo.2024-02-05_09:17:41.183394/davit_large.D0 --checkpoint-hist 1 [at 2024-02-05 09:42:01.692152] +davit_large-multi.0 [config.dirs.base] /Tmp/slurm.4112514.0/base +davit_large-multi.0 [config.dirs.venv] /Tmp/slurm.4112514.0/base/venv/torch +davit_large-multi.0 [config.dirs.data] /Tmp/slurm.4112514.0/base/data +davit_large-multi.0 [config.dirs.runs] /Tmp/slurm.4112514.0/base/runs +davit_large-multi.0 [config.dirs.extra] /Tmp/slurm.4112514.0/base/extra/timm +davit_large-multi.0 [config.dirs.cache] /Tmp/slurm.4112514.0/base/cache +davit_large-multi.0 [config.arch] cuda +davit_large-multi.0 [config.group] timm +davit_large-multi.0 [config.install_group] torch +davit_large-multi.0 [config.install_variant] cuda +davit_large-multi.0 [config.run_name] jenadogo.2024-02-05_09:17:41.183394 +davit_large-multi.0 [config.enabled] True +davit_large-multi.0 [config.capabilities.nodes] 1 +davit_large-multi.0 [config.max_duration] 600 +davit_large-multi.0 [config.voir.options.stop] 60 +davit_large-multi.0 [config.voir.options.interval] 1s +davit_large-multi.0 [config.config_base] /Tmp/slurm.4112514.0/milabench/config +davit_large-multi.0 [config.config_file] /Tmp/slurm.4112514.0/milabench/config/standard.yaml +davit_large-multi.0 [config.definition] /Tmp/slurm.4112514.0/milabench/benchmarks/timm +davit_large-multi.0 [config.plan.method] njobs +davit_large-multi.0 [config.plan.n] 1 +davit_large-multi.0 [config.argv.--amp] True +davit_large-multi.0 [config.argv.--model] davit_large +davit_large-multi.0 [config.argv.--batch-size] 128 +davit_large-multi.0 [config.argv.--lr-base] 0.01 +davit_large-multi.0 [config.tags] ['classification', 'multigpu', 'transformer', 'vision'] +davit_large-multi.0 [config.weight] 5.0 +davit_large-multi.0 [config.name] davit_large-multi +davit_large-multi.0 [config.tag] ['davit_large-multi', '0'] +davit_large-multi.0 [config.job-number] 0 +davit_large-multi.0 [config.devices] ['0', '1'] +davit_large-multi.0 [start] torchrun --nproc_per_node=2 -m voir --config /Tmp/slurm.4112514.0/base/extra/timm/voirconf-davit_large-multi.0-0efae956f1553a76c1e03985181900f5.json /Tmp/slurm.4112514.0/milabench/benchmarks/timm/pytorch-image-models/train.py --amp --model davit_large --batch-size 128 --lr-base 0.01 --data-dir /Tmp/slurm.4112514.0/base/data --dataset FakeImageNet --output /Tmp/slurm.4112514.0/base/extra/timm/jenadogo.2024-02-05_09:17:41.183394/davit_large-multi.0 --checkpoint-hist 1 [at 2024-02-05 09:42:01.698946] +davit_large-multi.0 [stderr] Training in distributed mode with multiple processes, 1 device per process.Process 1, total 2, device cuda:1. +davit_large-multi.0 [stderr] Training in distributed mode with multiple processes, 1 device per process.Process 0, total 2, device cuda:0. +davit_large-multi.0 [stderr] Model davit_large created, param count:196811752 +davit_large-multi.0 [stderr] Data processing configuration for current model + dataset: +davit_large-multi.0 [stderr] input_size: (3, 224, 224) +davit_large-multi.0 [stderr] interpolation: bicubic +davit_large-multi.0 [stderr] mean: (0.485, 0.456, 0.406) +davit_large-multi.0 [stderr] std: (0.229, 0.224, 0.225) +davit_large-multi.0 [stderr] crop_pct: 0.95 +davit_large-multi.0 [stderr] crop_mode: center +davit_large-multi.0 [stderr] Learning rate (0.01) calculated from base learning rate (0.01) and global batch size (256) with linear scaling. +davit_large-multi.0 [stderr] Using native Torch AMP. Training in mixed precision. +davit_large-multi.0 [stderr] Using native Torch DistributedDataParallel. +davit_large-multi.0 [stderr] libibverbs: Warning: couldn't load driver 'libbnxt_re-rdmav34.so': libbnxt_re-rdmav34.so: cannot open shared object file: No such file or directory +davit_large-multi.0 [stderr] libibverbs: Warning: couldn't load driver 'libbnxt_re-rdmav34.so': libbnxt_re-rdmav34.so: cannot open shared object file: No such file or directory +davit_large-multi.0 [stderr] libibverbs: Warning: couldn't load driver 'libcxgb4-rdmav34.so': libcxgb4-rdmav34.so: cannot open shared object file: No such file or directory +davit_large-multi.0 [stderr] libibverbs: Warning: couldn't load driver 'libcxgb4-rdmav34.so': libcxgb4-rdmav34.so: cannot open shared object file: No such file or directory +davit_large-multi.0 [stderr] libibverbs: Warning: couldn't load driver 'libipathverbs-rdmav34.so': libipathverbs-rdmav34.so: cannot open shared object file: No such file or directory +davit_large-multi.0 [stderr] libibverbs: Warning: couldn't load driver 'libipathverbs-rdmav34.so': libipathverbs-rdmav34.so: cannot open shared object file: No such file or directory +davit_large-multi.0 [stderr] libibverbs: Warning: couldn't load driver 'libhfi1verbs-rdmav34.so': libhfi1verbs-rdmav34.so: cannot open shared object file: No such file or directory +davit_large-multi.0 [stderr] libibverbs: Warning: couldn't load driver 'libhfi1verbs-rdmav34.so': libhfi1verbs-rdmav34.so: cannot open shared object file: No such file or directory +davit_large-multi.0 [stderr] libibverbs: Warning: couldn't load driver 'libqedr-rdmav34.so': libqedr-rdmav34.so: cannot open shared object file: No such file or directory +davit_large-multi.0 [stderr] libibverbs: Warning: couldn't load driver 'libqedr-rdmav34.so': libqedr-rdmav34.so: cannot open shared object file: No such file or directory +davit_large-multi.0 [stderr] libibverbs: Warning: couldn't load driver 'libmthca-rdmav34.so': libmthca-rdmav34.so: cannot open shared object file: No such file or directory +davit_large-multi.0 [stderr] libibverbs: Warning: couldn't load driver 'libmthca-rdmav34.so': libmthca-rdmav34.so: cannot open shared object file: No such file or directory +davit_large-multi.0 [stderr] libibverbs: Warning: couldn't load driver 'libvmw_pvrdma-rdmav34.so': libvmw_pvrdma-rdmav34.so: cannot open shared object file: No such file or directory +davit_large-multi.0 [stderr] libibverbs: Warning: couldn't load driver 'libvmw_pvrdma-rdmav34.so': libvmw_pvrdma-rdmav34.so: cannot open shared object file: No such file or directory +davit_large-multi.0 [stderr] libibverbs: Warning: couldn't load driver 'librxe-rdmav34.so': librxe-rdmav34.so: cannot open shared object file: No such file or directory +davit_large-multi.0 [stderr] libibverbs: Warning: couldn't load driver 'librxe-rdmav34.so': librxe-rdmav34.so: cannot open shared object file: No such file or directory +davit_large-multi.0 [stderr] libibverbs: Warning: couldn't load driver 'libocrdma-rdmav34.so': libocrdma-rdmav34.so: cannot open shared object file: No such file or directory +davit_large-multi.0 [stderr] libibverbs: Warning: couldn't load driver 'libocrdma-rdmav34.so': libocrdma-rdmav34.so: cannot open shared object file: No such file or directory +davit_large-multi.0 [stderr] libibverbs: Warning: couldn't load driver 'libi40iw-rdmav34.so': libi40iw-rdmav34.so: cannot open shared object file: No such file or directory +davit_large-multi.0 [stderr] libibverbs: Warning: couldn't load driver 'libi40iw-rdmav34.so': libi40iw-rdmav34.so: cannot open shared object file: No such file or directory +davit_large-multi.0 [stderr] libibverbs: Warning: couldn't load driver 'libmlx4-rdmav34.so': libmlx4-rdmav34.so: cannot open shared object file: No such file or directory +davit_large-multi.0 [stderr] libibverbs: Warning: couldn't load driver 'libmlx4-rdmav34.so': libmlx4-rdmav34.so: cannot open shared object file: No such file or directory +davit_large-multi.0 [stderr] libibverbs: Warning: couldn't load driver 'libhns-rdmav34.so': libhns-rdmav34.so: cannot open shared object file: No such file or directory +davit_large-multi.0 [stderr] libibverbs: Warning: couldn't load driver 'libhns-rdmav34.so': libhns-rdmav34.so: cannot open shared object file: No such file or directory +davit_large-multi.0 [stderr] Scheduled epochs: 300. LR stepped per epoch. +davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.24, + 'memory': [3839.4375, 81920.0], + 'power': 81.714, + 'temperature': 39}, + '1': {'load': 0.04, + 'memory': [3839.4375, 81920.0], + 'power': 77.09, + 'temperature': 35}}, + 'task': 'main'} +davit_large-multi.0 [data] {'loss': 7.155410289764404, 'task': 'train'} +davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.36, + 'memory': [5739.4375, 81920.0], + 'power': 152.73, + 'temperature': 42}, + '1': {'load': 0.42, + 'memory': [12173.4375, 81920.0], + 'power': 100.006, + 'temperature': 38}}, + 'task': 'main'} +davit_large-multi.0 [stderr] /Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torch/autograd/__init__.py:266: UserWarning: Grad strides do not match bucket view strides. This may indicate grad was not created according to the gradient layout contract, or that the param's strides changed since DDP was constructed. This is not an error, but may impair performance. +davit_large-multi.0 [stderr] grad.sizes() = [1536, 1, 3, 3], strides() = [9, 1, 3, 1] +davit_large-multi.0 [stderr] bucket_view.sizes() = [1536, 1, 3, 3], strides() = [9, 9, 3, 1] (Triggered internally at ../torch/csrc/distributed/c10d/reducer.cpp:322.) +davit_large-multi.0 [stderr] Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass +davit_large-multi.0 [stderr] /Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torch/autograd/__init__.py:266: UserWarning: Grad strides do not match bucket view strides. This may indicate grad was not created according to the gradient layout contract, or that the param's strides changed since DDP was constructed. This is not an error, but may impair performance. +davit_large-multi.0 [stderr] grad.sizes() = [1536, 1, 3, 3], strides() = [9, 1, 3, 1] +davit_large-multi.0 [stderr] bucket_view.sizes() = [1536, 1, 3, 3], strides() = [9, 9, 3, 1] (Triggered internally at ../torch/csrc/distributed/c10d/reducer.cpp:322.) +davit_large-multi.0 [stderr] Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass +davit_large-multi.0 [stderr] Train: 0 [ 0/16 ( 0%)] Loss: 7.172 (7.17) Time: 5.691s, 44.98/s (5.691s, 44.98/s) LR: 1.000e-05 Data: 2.294 (2.294) +davit_large-multi.0 [data] {'loss': 7.168210029602051, 'task': 'train'} +davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.98, + 'memory': [33387.4375, 81920.0], + 'power': 385.433, + 'temperature': 52}, + '1': {'load': 0.97, + 'memory': [33387.4375, 81920.0], + 'power': 329.465, + 'temperature': 47}}, + 'task': 'main'} +davit_large-multi.0 [data] {'loss': 7.251778602600098, 'task': 'train'} +davit_large-multi.0 [data] {'loss': 7.134215354919434, 'task': 'train'} +davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.97, + 'memory': [33387.4375, 81920.0], + 'power': 430.204, + 'temperature': 57}, + '1': {'load': 0.97, + 'memory': [33387.4375, 81920.0], + 'power': 426.098, + 'temperature': 53}}, + 'task': 'main'} +davit_large-multi.0 [data] {'loss': 7.230167388916016, 'task': 'train'} +davit_large-multi.0 [data] {'loss': 7.21876335144043, 'task': 'train'} +davit_large-multi.0 [stderr] Train: 0 [ 15/16 (100%)] Loss: 7.249 (7.21) Time: 0.383s, 668.03/s (0.736s, 347.89/s) LR: 1.000e-05 Data: 0.000 (0.156) +davit_large-multi.0 [stderr] Distributing BatchNorm running means and vars +davit_large-multi.0 [data] {'rate': 664.9768703900544, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [stderr] Test: [ 0/16] Time: 2.390 (2.390) Loss: 7.2354 (7.2354) Acc@1: 0.0000 ( 0.0000) Acc@5: 0.0000 ( 0.0000) +davit_large-multi.0 [stderr] Test: [ 16/16] Time: 0.341 (0.368) Loss: 7.0592 (7.2404) Acc@1: 0.0000 ( 0.0969) Acc@5: 0.0000 ( 0.5329) +davit_large-multi.0 [stderr] Current checkpoints: +davit_large-multi.0 [stderr] ('/Tmp/slurm.4112514.0/base/extra/timm/jenadogo.2024-02-05_09:17:41.183394/davit_large-multi.0/20240205-094208-davit_large-224/checkpoint-0.pth.tar', 0.09689922480620156) +davit_large-multi.0 [stderr] +davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [33387.4375, 81920.0], + 'power': 96.774, + 'temperature': 45}, + '1': {'load': 0, + 'memory': [33387.4375, 81920.0], + 'power': 91.181, + 'temperature': 41}}, + 'task': 'main'} +davit_large-multi.0 [data] {'rate': 665.201826417631, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.91, + 'memory': [33633.4375, 81920.0], + 'power': 423.784, + 'temperature': 54}, + '1': {'load': 0.88, + 'memory': [33633.4375, 81920.0], + 'power': 413.163, + 'temperature': 50}}, + 'task': 'main'} +davit_large-multi.0 [data] {'gpudata': {'0': {'load': 1.0, + 'memory': [5747.4375, 81920.0], + 'power': 96.244, + 'temperature': 44}, + '1': {'load': 1.0, + 'memory': [5747.4375, 81920.0], + 'power': 90.544, + 'temperature': 40}}, + 'task': 'main'} +davit_large-multi.0 [data] {'loss': 7.150577545166016, 'task': 'train'} +davit_large-multi.0 [stderr] Train: 1 [ 0/16 ( 0%)] Loss: 7.231 (7.23) Time: 1.289s, 198.55/s (1.289s, 198.55/s) LR: 2.008e-03 Data: 0.800 (0.800) +davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.92, + 'memory': [33425.4375, 81920.0], + 'power': 419.198, + 'temperature': 52}, + '1': {'load': 0.87, + 'memory': [33425.4375, 81920.0], + 'power': 394.842, + 'temperature': 44}}, + 'task': 'main'} +davit_large-multi.0 [data] {'loss': 7.119694709777832, 'task': 'train'} +davit_large-multi.0 [data] {'rate': 563.1647468254566, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'rate': 603.0105603731911, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'loss': 7.041730880737305, 'task': 'train'} +davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.97, + 'memory': [33425.4375, 81920.0], + 'power': 426.395, + 'temperature': 58}, + '1': {'load': 0.98, + 'memory': [33425.4375, 81920.0], + 'power': 412.63, + 'temperature': 53}}, + 'task': 'main'} +davit_large-multi.0 [data] {'rate': 598.8048860279963, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'loss': 7.061616897583008, 'task': 'train'} +davit_large-multi.0 [data] {'rate': 612.2635328518979, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'loss': 7.003392219543457, 'task': 'train'} +davit_large-multi.0 [data] {'rate': 645.6109971057083, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'loss': 6.952099800109863, 'task': 'train'} +davit_large-multi.0 [stderr] Train: 1 [ 15/16 (100%)] Loss: 6.963 (7.10) Time: 0.386s, 663.16/s (0.463s, 552.68/s) LR: 2.008e-03 Data: 0.000 (0.065) +davit_large-multi.0 [stderr] Distributing BatchNorm running means and vars +davit_large-multi.0 [stderr] Test: [ 0/16] Time: 1.221 (1.221) Loss: 6.8904 (6.8904) Acc@1: 0.0000 ( 0.0000) Acc@5: 0.0000 ( 0.0000) +davit_large-multi.0 [stderr] Test: [ 16/16] Time: 0.022 (0.299) Loss: 6.6527 (6.8794) Acc@1: 0.0000 ( 0.2665) Acc@5: 0.0000 ( 1.0901) +davit_large-multi.0 [stderr] Current checkpoints: +davit_large-multi.0 [stderr] ('/Tmp/slurm.4112514.0/base/extra/timm/jenadogo.2024-02-05_09:17:41.183394/davit_large-multi.0/20240205-094208-davit_large-224/checkpoint-1.pth.tar', 0.26647286821705424) +davit_large-multi.0 [stderr] +davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.99, + 'memory': [33425.4375, 81920.0], + 'power': 109.093, + 'temperature': 53}, + '1': {'load': 1.0, + 'memory': [33425.4375, 81920.0], + 'power': 130.548, + 'temperature': 50}}, + 'task': 'main'} +davit_large-multi.0 [data] {'rate': 665.0536632926653, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [33669.4375, 81920.0], + 'power': 98.647, + 'temperature': 50}, + '1': {'load': 0, + 'memory': [33669.4375, 81920.0], + 'power': 91.075, + 'temperature': 42}}, + 'task': 'main'} +davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.18, + 'memory': [33669.4375, 81920.0], + 'power': 96.662, + 'temperature': 45}, + '1': {'load': 0, + 'memory': [33765.4375, 81920.0], + 'power': 92.541, + 'temperature': 40}}, + 'task': 'main'} +davit_large-multi.0 [data] {'loss': 6.908686637878418, 'task': 'train'} +davit_large-multi.0 [stderr] Train: 2 [ 0/16 ( 0%)] Loss: 6.912 (6.91) Time: 1.374s, 186.30/s (1.374s, 186.30/s) LR: 4.006e-03 Data: 0.962 (0.962) +davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.97, + 'memory': [33913.4375, 81920.0], + 'power': 406.518, + 'temperature': 55}, + '1': {'load': 1.0, + 'memory': [33913.4375, 81920.0], + 'power': 418.71, + 'temperature': 47}}, + 'task': 'main'} +davit_large-multi.0 [data] {'loss': 6.8762969970703125, 'task': 'train'} +davit_large-multi.0 [data] {'rate': 623.3513240155006, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'rate': 560.6838440076098, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'loss': 6.921794414520264, 'task': 'train'} +davit_large-multi.0 [data] {'rate': 605.2457166394175, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'gpudata': {'0': {'load': 1.0, + 'memory': [33913.4375, 81920.0], + 'power': 364.683, + 'temperature': 57}, + '1': {'load': 1.0, + 'memory': [33913.4375, 81920.0], + 'power': 272.324, + 'temperature': 51}}, + 'task': 'main'} +davit_large-multi.0 [data] {'loss': 7.046853542327881, 'task': 'train'} +davit_large-multi.0 [data] {'rate': 622.0923707360357, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'loss': 6.945345878601074, 'task': 'train'} +davit_large-multi.0 [data] {'rate': 622.8740242030598, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'loss': 6.963676452636719, 'task': 'train'} +davit_large-multi.0 [stderr] Train: 2 [ 15/16 (100%)] Loss: 6.991 (6.95) Time: 0.386s, 662.59/s (0.465s, 550.70/s) LR: 4.006e-03 Data: 0.000 (0.072) +davit_large-multi.0 [stderr] Distributing BatchNorm running means and vars +davit_large-multi.0 [stderr] Test: [ 0/16] Time: 1.108 (1.108) Loss: 6.8474 (6.8474) Acc@1: 0.0000 ( 0.0000) Acc@5: 0.0000 ( 0.0000) +davit_large-multi.0 [stderr] Test: [ 16/16] Time: 0.022 (0.286) Loss: 6.3217 (6.8105) Acc@1: 0.0000 ( 0.3149) Acc@5: 0.0000 ( 1.1628) +davit_large-multi.0 [stderr] Current checkpoints: +davit_large-multi.0 [stderr] ('/Tmp/slurm.4112514.0/base/extra/timm/jenadogo.2024-02-05_09:17:41.183394/davit_large-multi.0/20240205-094208-davit_large-224/checkpoint-2.pth.tar', 0.31492248062015504) +davit_large-multi.0 [stderr] +davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.23, + 'memory': [33913.4375, 81920.0], + 'power': 101.377, + 'temperature': 51}, + '1': {'load': 0, + 'memory': [33913.4375, 81920.0], + 'power': 93.792, + 'temperature': 46}}, + 'task': 'main'} +davit_large-multi.0 [data] {'rate': 665.2086099462696, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'gpudata': {'0': {'load': 1.0, + 'memory': [34157.4375, 81920.0], + 'power': 99.369, + 'temperature': 48}, + '1': {'load': 0.7, + 'memory': [34157.4375, 81920.0], + 'power': 408.657, + 'temperature': 45}}, + 'task': 'main'} +davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.13, + 'memory': [34157.4375, 81920.0], + 'power': 96.724, + 'temperature': 45}, + '1': {'load': 1.0, + 'memory': [34327.4375, 81920.0], + 'power': 380.732, + 'temperature': 48}}, + 'task': 'main'} +davit_large-multi.0 [data] {'loss': 6.775097846984863, 'task': 'train'} +davit_large-multi.0 [stderr] Train: 3 [ 0/16 ( 0%)] Loss: 6.783 (6.78) Time: 1.106s, 231.46/s (1.106s, 231.46/s) LR: 6.004e-03 Data: 0.702 (0.702) +davit_large-multi.0 [data] {'rate': 534.3652806378642, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'loss': 6.857703685760498, 'task': 'train'} +davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.66, + 'memory': [34401.4375, 81920.0], + 'power': 417.119, + 'temperature': 54}, + '1': {'load': 1.0, + 'memory': [34401.4375, 81920.0], + 'power': 394.308, + 'temperature': 50}}, + 'task': 'main'} +davit_large-multi.0 [data] {'rate': 595.8755172595188, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'loss': 6.924503326416016, 'task': 'train'} +davit_large-multi.0 [data] {'rate': 606.5269607733695, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'loss': 7.01729154586792, 'task': 'train'} +davit_large-multi.0 [data] {'gpudata': {'0': {'load': 1.0, + 'memory': [34401.4375, 81920.0], + 'power': 433.37, + 'temperature': 60}, + '1': {'load': 0.97, + 'memory': [34401.4375, 81920.0], + 'power': 425.25, + 'temperature': 55}}, + 'task': 'main'} +davit_large-multi.0 [data] {'rate': 642.0740017575171, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'loss': 6.934739589691162, 'task': 'train'} +davit_large-multi.0 [data] {'rate': 615.6782904758486, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'loss': 7.023443222045898, 'task': 'train'} +davit_large-multi.0 [stderr] Train: 3 [ 15/16 (100%)] Loss: 7.020 (6.90) Time: 0.386s, 662.85/s (0.450s, 568.28/s) LR: 6.004e-03 Data: 0.000 (0.061) +davit_large-multi.0 [stderr] Distributing BatchNorm running means and vars +davit_large-multi.0 [stderr] Test: [ 0/16] Time: 1.374 (1.374) Loss: 6.7900 (6.7900) Acc@1: 0.0000 ( 0.0000) Acc@5: 0.0000 ( 0.0000) +davit_large-multi.0 [stderr] Test: [ 16/16] Time: 0.022 (0.289) Loss: 6.3929 (6.8046) Acc@1: 0.0000 ( 0.2665) Acc@5: 0.0000 ( 1.2355) +davit_large-multi.0 [data] {'rate': 665.7943304512658, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [34401.4375, 81920.0], + 'power': 98.418, + 'temperature': 48}, + '1': {'load': 0, + 'memory': [34401.4375, 81920.0], + 'power': 90.544, + 'temperature': 42}}, + 'task': 'main'} +davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.99, + 'memory': [34645.4375, 81920.0], + 'power': 429.394, + 'temperature': 56}, + '1': {'load': 0.76, + 'memory': [34645.4375, 81920.0], + 'power': 403.589, + 'temperature': 51}}, + 'task': 'main'} +davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.16, + 'memory': [34645.4375, 81920.0], + 'power': 90.575, + 'temperature': 45}, + '1': {'load': 1.0, + 'memory': [34815.4375, 81920.0], + 'power': 91.613, + 'temperature': 40}}, + 'task': 'main'} +davit_large-multi.0 [data] {'loss': 6.897610664367676, 'task': 'train'} +davit_large-multi.0 [stderr] Train: 4 [ 0/16 ( 0%)] Loss: 6.847 (6.85) Time: 1.340s, 191.03/s (1.340s, 191.03/s) LR: 8.002e-03 Data: 0.917 (0.917) +davit_large-multi.0 [data] {'rate': 569.5734681002303, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'loss': 6.811570644378662, 'task': 'train'} +davit_large-multi.0 [data] {'rate': 564.2721885575003, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.97, + 'memory': [34889.4375, 81920.0], + 'power': 369.584, + 'temperature': 57}, + '1': {'load': 0.97, + 'memory': [34889.4375, 81920.0], + 'power': 420.595, + 'temperature': 52}}, + 'task': 'main'} +davit_large-multi.0 [data] {'loss': 6.933971405029297, 'task': 'train'} +davit_large-multi.0 [data] {'rate': 566.0147994843084, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'loss': 6.995574951171875, 'task': 'train'} +davit_large-multi.0 [data] {'rate': 629.8239858215599, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'loss': 7.05184268951416, 'task': 'train'} +davit_large-multi.0 [data] {'gpudata': {'0': {'load': 1.0, + 'memory': [34889.4375, 81920.0], + 'power': 424.752, + 'temperature': 60}, + '1': {'load': 0.99, + 'memory': [34889.4375, 81920.0], + 'power': 348.568, + 'temperature': 54}}, + 'task': 'main'} +davit_large-multi.0 [data] {'rate': 620.8329463265804, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'loss': 7.034548759460449, 'task': 'train'} +davit_large-multi.0 [data] {'rate': 654.2521876751332, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [stderr] Train: 4 [ 15/16 (100%)] Loss: 7.029 (6.94) Time: 0.386s, 664.00/s (0.464s, 551.27/s) LR: 8.002e-03 Data: 0.000 (0.069) +davit_large-multi.0 [stderr] Distributing BatchNorm running means and vars +davit_large-multi.0 [stderr] Test: [ 0/16] Time: 1.163 (1.163) Loss: 6.8026 (6.8026) Acc@1: 0.0000 ( 0.0000) Acc@5: 1.1719 ( 1.1719) +davit_large-multi.0 [stderr] Test: [ 16/16] Time: 0.022 (0.292) Loss: 6.4709 (6.8062) Acc@1: 0.0000 ( 0.2665) Acc@5: 0.0000 ( 1.3566) +davit_large-multi.0 [data] {'rate': 663.6863089771649, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.82, + 'memory': [35133.4375, 81920.0], + 'power': 127.435, + 'temperature': 53}, + '1': {'load': 0.91, + 'memory': [35133.4375, 81920.0], + 'power': 410.598, + 'temperature': 48}}, + 'task': 'main'} +davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.92, + 'memory': [35133.4375, 81920.0], + 'power': 375.207, + 'temperature': 56}, + '1': {'load': 0.97, + 'memory': [35133.4375, 81920.0], + 'power': 410.462, + 'temperature': 49}}, + 'task': 'main'} +davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.12, + 'memory': [35133.4375, 81920.0], + 'power': 84.035, + 'temperature': 44}, + '1': {'load': 1.0, + 'memory': [35303.4375, 81920.0], + 'power': 90.32, + 'temperature': 39}}, + 'task': 'main'} +davit_large-multi.0 [data] {'loss': 6.79413366317749, 'task': 'train'} +davit_large-multi.0 [stderr] Train: 5 [ 0/16 ( 0%)] Loss: 6.817 (6.82) Time: 1.050s, 243.90/s (1.050s, 243.90/s) LR: 9.993e-03 Data: 0.646 (0.646) +davit_large-multi.0 [data] {'rate': 572.4908051156007, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'loss': 6.869453430175781, 'task': 'train'} +davit_large-multi.0 [data] {'rate': 576.3963942848092, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.99, + 'memory': [35377.4375, 81920.0], + 'power': 429.918, + 'temperature': 59}, + '1': {'load': 1.0, + 'memory': [35377.4375, 81920.0], + 'power': 382.582, + 'temperature': 52}}, + 'task': 'main'} +davit_large-multi.0 [data] {'loss': 6.885754585266113, 'task': 'train'} +davit_large-multi.0 [data] {'rate': 614.1476555720517, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'loss': 6.9908952713012695, 'task': 'train'} +davit_large-multi.0 [data] {'rate': 632.7135484514141, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'loss': 7.012163162231445, 'task': 'train'} +davit_large-multi.0 [data] {'rate': 592.857615042428, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.98, + 'memory': [35377.4375, 81920.0], + 'power': 373.19, + 'temperature': 59}, + '1': {'load': 0.97, + 'memory': [35377.4375, 81920.0], + 'power': 419.532, + 'temperature': 54}}, + 'task': 'main'} +davit_large-multi.0 [data] {'loss': 6.953549385070801, 'task': 'train'} +davit_large-multi.0 [stderr] Train: 5 [ 15/16 (100%)] Loss: 7.022 (6.92) Time: 0.387s, 661.67/s (0.447s, 572.71/s) LR: 9.993e-03 Data: 0.000 (0.056) +davit_large-multi.0 [data] {'rate': 617.8981239502672, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [stderr] Distributing BatchNorm running means and vars +davit_large-multi.0 [stderr] Test: [ 0/16] Time: 1.251 (1.251) Loss: 6.8382 (6.8382) Acc@1: 0.0000 ( 0.0000) Acc@5: 0.0000 ( 0.0000) +davit_large-multi.0 [stderr] Test: [ 16/16] Time: 0.022 (0.282) Loss: 6.4380 (6.8108) Acc@1: 0.0000 ( 0.2665) Acc@5: 0.0000 ( 1.2112) +davit_large-multi.0 [data] {'rate': 661.4089529354488, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [35621.4375, 81920.0], + 'power': 99.475, + 'temperature': 48}, + '1': {'load': 0, + 'memory': [35621.4375, 81920.0], + 'power': 91.789, + 'temperature': 42}}, + 'task': 'main'} +davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.75, + 'memory': [35621.4375, 81920.0], + 'power': 100.785, + 'temperature': 50}, + '1': {'load': 0.38, + 'memory': [35621.4375, 81920.0], + 'power': 92.572, + 'temperature': 45}}, + 'task': 'main'} +davit_large-multi.0 [data] {'loss': 6.839111328125, 'task': 'train'} +davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [35791.4375, 81920.0], + 'power': 293.613, + 'temperature': 46}, + '1': {'load': 1.0, + 'memory': [35791.4375, 81920.0], + 'power': 90.029, + 'temperature': 38}}, + 'task': 'main'} +davit_large-multi.0 [stderr] Train: 6 [ 0/16 ( 0%)] Loss: 6.862 (6.86) Time: 1.330s, 192.54/s (1.330s, 192.54/s) LR: 9.990e-03 Data: 0.918 (0.918) +davit_large-multi.0 [data] {'rate': 545.3975196505342, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'loss': 6.839109420776367, 'task': 'train'} +davit_large-multi.0 [data] {'rate': 586.8428875574634, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'loss': 6.879892349243164, 'task': 'train'} +davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.98, + 'memory': [35865.4375, 81920.0], + 'power': 367.848, + 'temperature': 55}, + '1': {'load': 1.0, + 'memory': [35865.4375, 81920.0], + 'power': 336.148, + 'temperature': 52}}, + 'task': 'main'} +davit_large-multi.0 [data] {'rate': 630.480335642807, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'loss': 7.020977020263672, 'task': 'train'} +davit_large-multi.0 [data] {'rate': 616.8596265960731, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'loss': 7.063673973083496, 'task': 'train'} +davit_large-multi.0 [data] {'rate': 622.4261064661621, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.97, + 'memory': [35865.4375, 81920.0], + 'power': 414.552, + 'temperature': 59}, + '1': {'load': 1.0, + 'memory': [35865.4375, 81920.0], + 'power': 425.453, + 'temperature': 56}}, + 'task': 'main'} +davit_large-multi.0 [data] {'loss': 7.032804489135742, 'task': 'train'} +davit_large-multi.0 [stderr] Train: 6 [ 15/16 (100%)] Loss: 7.042 (6.95) Time: 0.386s, 663.01/s (0.468s, 547.44/s) LR: 9.990e-03 Data: 0.000 (0.074) +davit_large-multi.0 [stderr] Distributing BatchNorm running means and vars +davit_large-multi.0 [stderr] Test: [ 0/16] Time: 1.266 (1.266) Loss: 6.8384 (6.8384) Acc@1: 0.0000 ( 0.0000) Acc@5: 3.1250 ( 3.1250) +davit_large-multi.0 [stderr] Test: [ 16/16] Time: 0.022 (0.289) Loss: 6.4454 (6.8036) Acc@1: 0.0000 ( 0.2665) Acc@5: 0.0000 ( 1.0659) +davit_large-multi.0 [data] {'rate': 666.0050236290647, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.94, + 'memory': [36109.4375, 81920.0], + 'power': 101.018, + 'temperature': 49}, + '1': {'load': 0.8, + 'memory': [36109.4375, 81920.0], + 'power': 278.749, + 'temperature': 51}}, + 'task': 'main'} +davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.26, + 'memory': [36109.4375, 81920.0], + 'power': 97.352, + 'temperature': 46}, + '1': {'load': 0, + 'memory': [36109.4375, 81920.0], + 'power': 91.471, + 'temperature': 42}}, + 'task': 'main'} +davit_large-multi.0 [data] {'loss': 6.813262462615967, 'task': 'train'} +davit_large-multi.0 [stderr] Train: 7 [ 0/16 ( 0%)] Loss: 6.842 (6.84) Time: 1.117s, 229.29/s (1.117s, 229.29/s) LR: 9.987e-03 Data: 0.694 (0.694) +davit_large-multi.0 [data] {'gpudata': {'0': {'load': 1.0, + 'memory': [36353.4375, 81920.0], + 'power': 266.798, + 'temperature': 52}, + '1': {'load': 1.0, + 'memory': [36353.4375, 81920.0], + 'power': 336.329, + 'temperature': 45}}, + 'task': 'main'} +davit_large-multi.0 [data] {'rate': 590.1847494743777, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'loss': 6.831705093383789, 'task': 'train'} +davit_large-multi.0 [data] {'rate': 590.3685437784663, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'loss': 6.866009712219238, 'task': 'train'} +davit_large-multi.0 [data] {'rate': 583.2721112799343, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'loss': 7.002652168273926, 'task': 'train'} +davit_large-multi.0 [data] {'gpudata': {'0': {'load': 1.0, + 'memory': [36353.4375, 81920.0], + 'power': 419.649, + 'temperature': 57}, + '1': {'load': 0.97, + 'memory': [36353.4375, 81920.0], + 'power': 387.001, + 'temperature': 54}}, + 'task': 'main'} +davit_large-multi.0 [data] {'rate': 613.7647480846026, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'loss': 6.942004203796387, 'task': 'train'} +davit_large-multi.0 [data] {'rate': 647.4609433412367, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'loss': 7.039649963378906, 'task': 'train'} +davit_large-multi.0 [stderr] Train: 7 [ 15/16 (100%)] Loss: 7.028 (6.93) Time: 0.385s, 664.41/s (0.451s, 567.75/s) LR: 9.987e-03 Data: 0.000 (0.058) +davit_large-multi.0 [data] {'rate': 619.8604168611666, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [stderr] Distributing BatchNorm running means and vars +davit_large-multi.0 [stderr] Test: [ 0/16] Time: 1.442 (1.442) Loss: 6.7585 (6.7585) Acc@1: 0.0000 ( 0.0000) Acc@5: 0.0000 ( 0.0000) +davit_large-multi.0 [stderr] Test: [ 16/16] Time: 0.022 (0.290) Loss: 6.3311 (6.8023) Acc@1: 0.0000 ( 0.2180) Acc@5: 0.0000 ( 1.1143) +davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.03, + 'memory': [36353.4375, 81920.0], + 'power': 99.475, + 'temperature': 48}, + '1': {'load': 0, + 'memory': [36353.4375, 81920.0], + 'power': 92.572, + 'temperature': 45}}, + 'task': 'main'} +davit_large-multi.0 [data] {'rate': 663.952995675905, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [36597.4375, 81920.0], + 'power': 96.999, + 'temperature': 45}, + '1': {'load': 1.0, + 'memory': [36597.4375, 81920.0], + 'power': 91.613, + 'temperature': 44}}, + 'task': 'main'} +davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.16, + 'memory': [36597.4375, 81920.0], + 'power': 95.596, + 'temperature': 43}, + '1': {'load': 1.0, + 'memory': [36767.4375, 81920.0], + 'power': 106.591, + 'temperature': 44}}, + 'task': 'main'} +davit_large-multi.0 [data] {'loss': 6.789029121398926, 'task': 'train'} +davit_large-multi.0 [stderr] Train: 8 [ 0/16 ( 0%)] Loss: 6.830 (6.83) Time: 1.280s, 200.03/s (1.280s, 200.03/s) LR: 9.982e-03 Data: 0.871 (0.871) +davit_large-multi.0 [data] {'rate': 637.8630821312903, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.87, + 'memory': [36841.4375, 81920.0], + 'power': 428.742, + 'temperature': 54}, + '1': {'load': 0.91, + 'memory': [36841.4375, 81920.0], + 'power': 396.126, + 'temperature': 50}}, + 'task': 'main'} +davit_large-multi.0 [data] {'loss': 6.900580883026123, 'task': 'train'} +davit_large-multi.0 [data] {'rate': 574.6250225213447, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'loss': 6.973140716552734, 'task': 'train'} +davit_large-multi.0 [data] {'rate': 607.4896189634794, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'loss': 7.021726608276367, 'task': 'train'} +davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.97, + 'memory': [36841.4375, 81920.0], + 'power': 429.268, + 'temperature': 57}, + '1': {'load': 0.97, + 'memory': [36841.4375, 81920.0], + 'power': 418.956, + 'temperature': 55}}, + 'task': 'main'} +davit_large-multi.0 [data] {'rate': 606.6911785228061, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'loss': 6.9875640869140625, 'task': 'train'} +davit_large-multi.0 [data] {'rate': 659.8806352229581, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'rate': 641.0683829309347, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'loss': 6.943531513214111, 'task': 'train'} +davit_large-multi.0 [stderr] Train: 8 [ 15/16 (100%)] Loss: 7.013 (6.92) Time: 0.386s, 663.54/s (0.465s, 550.15/s) LR: 9.982e-03 Data: 0.000 (0.073) +davit_large-multi.0 [stderr] Distributing BatchNorm running means and vars +davit_large-multi.0 [stderr] Test: [ 0/16] Time: 1.198 (1.198) Loss: 6.8322 (6.8322) Acc@1: 0.0000 ( 0.0000) Acc@5: 0.0000 ( 0.0000) +davit_large-multi.0 [stderr] Test: [ 16/16] Time: 0.022 (0.286) Loss: 6.4452 (6.7996) Acc@1: 0.0000 ( 0.2665) Acc@5: 0.0000 ( 1.1628) +davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [36841.4375, 81920.0], + 'power': 97.289, + 'temperature': 46}, + '1': {'load': 0, + 'memory': [36841.4375, 81920.0], + 'power': 91.932, + 'temperature': 44}}, + 'task': 'main'} +davit_large-multi.0 [data] {'rate': 665.5724049687465, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.87, + 'memory': [37085.4375, 81920.0], + 'power': 100.434, + 'temperature': 47}, + '1': {'load': 0.92, + 'memory': [37085.4375, 81920.0], + 'power': 414.754, + 'temperature': 50}}, + 'task': 'main'} +davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.17, + 'memory': [37085.4375, 81920.0], + 'power': 95.178, + 'temperature': 42}, + '1': {'load': 1.0, + 'memory': [37255.4375, 81920.0], + 'power': 91.181, + 'temperature': 41}}, + 'task': 'main'} +davit_large-multi.0 [data] {'loss': 6.868271827697754, 'task': 'train'} +davit_large-multi.0 [stderr] Train: 9 [ 0/16 ( 0%)] Loss: 6.854 (6.85) Time: 1.321s, 193.82/s (1.321s, 193.82/s) LR: 9.978e-03 Data: 0.901 (0.901) +davit_large-multi.0 [data] {'rate': 604.8611252087858, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'loss': 6.86773681640625, 'task': 'train'} +davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.88, + 'memory': [37329.4375, 81920.0], + 'power': 403.353, + 'temperature': 54}, + '1': {'load': 0.9, + 'memory': [37329.4375, 81920.0], + 'power': 409.88, + 'temperature': 50}}, + 'task': 'main'} +davit_large-multi.0 [data] {'rate': 603.3849509203146, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'loss': 6.960288047790527, 'task': 'train'} +davit_large-multi.0 [data] {'rate': 659.7110759522617, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'loss': 6.982820510864258, 'task': 'train'} +davit_large-multi.0 [data] {'rate': 606.1655164161647, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.97, + 'memory': [37329.4375, 81920.0], + 'power': 421.559, + 'temperature': 58}, + '1': {'load': 1.0, + 'memory': [37329.4375, 81920.0], + 'power': 437.265, + 'temperature': 55}}, + 'task': 'main'} +davit_large-multi.0 [data] {'loss': 7.0309295654296875, 'task': 'train'} +davit_large-multi.0 [data] {'rate': 655.3847394981004, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'rate': 641.6715889791386, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'loss': 6.982546806335449, 'task': 'train'} +davit_large-multi.0 [stderr] Train: 9 [ 15/16 (100%)] Loss: 7.022 (6.94) Time: 0.386s, 663.22/s (0.462s, 553.88/s) LR: 9.978e-03 Data: 0.000 (0.073) +davit_large-multi.0 [stderr] Distributing BatchNorm running means and vars +davit_large-multi.0 [stderr] Test: [ 0/16] Time: 1.237 (1.237) Loss: 6.7809 (6.7809) Acc@1: 0.0000 ( 0.0000) Acc@5: 1.5625 ( 1.5625) +davit_large-multi.0 [stderr] Test: [ 16/16] Time: 0.022 (0.286) Loss: 6.5430 (6.7976) Acc@1: 0.0000 ( 0.2907) Acc@5: 0.0000 ( 1.0901) +davit_large-multi.0 [data] {'rate': 665.4183954754274, 'task': 'train', 'units': 'items/s'} +davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [37499.4375, 81920.0], + 'power': 216.796, + 'temperature': 50}, + '1': {'load': 0, + 'memory': [37329.4375, 81920.0], + 'power': 90.86, + 'temperature': 42}}, + 'task': 'main'} +davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.68, + 'memory': [37573.4375, 81920.0], + 'power': 99.369, + 'temperature': 47}, + '1': {'load': 0.3, + 'memory': [37573.4375, 81920.0], + 'power': 92.01, + 'temperature': 44}}, + 'task': 'main'} +davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.05, + 'memory': [37573.4375, 81920.0], + 'power': 82.966, + 'temperature': 42}, + '1': {'load': 1.0, + 'memory': [37743.4375, 81920.0], + 'power': 91.102, + 'temperature': 40}}, + 'task': 'main'} +davit_large-multi.0 [stderr] [2024-02-05 09:44:40,969] torch.distributed.elastic.agent.server.api: [WARNING] Received Signals.SIGTERM death signal, shutting down workers +davit_large-multi.0 [stderr] [2024-02-05 09:44:40,969] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 53900 closing signal SIGTERM +davit_large-multi.0 [stderr] [2024-02-05 09:44:40,969] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 53901 closing signal SIGTERM +davit_large-multi.0 [stderr] Traceback (most recent call last): +davit_large-multi.0 [stderr] File "/Tmp/slurm.4112514.0/base/venv/torch/bin/torchrun", line 8, in +davit_large-multi.0 [stderr] sys.exit(main()) +davit_large-multi.0 [stderr] File "/Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 347, in wrapper +davit_large-multi.0 [stderr] return f(*args, **kwargs) +davit_large-multi.0 [stderr] File "/Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/run.py", line 812, in main +davit_large-multi.0 [stderr] run(args) +davit_large-multi.0 [stderr] File "/Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/run.py", line 803, in run +davit_large-multi.0 [stderr] elastic_launch( +davit_large-multi.0 [stderr] File "/Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/launcher/api.py", line 135, in __call__ +davit_large-multi.0 [stderr] return launch_agent(self._config, self._entrypoint, list(args)) +davit_large-multi.0 [stderr] File "/Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/launcher/api.py", line 259, in launch_agent +davit_large-multi.0 [stderr] result = agent.run() +davit_large-multi.0 [stderr] File "/Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/elastic/metrics/api.py", line 123, in wrapper +davit_large-multi.0 [stderr] result = f(*args, **kwargs) +davit_large-multi.0 [stderr] File "/Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/elastic/agent/server/api.py", line 727, in run +davit_large-multi.0 [stderr] result = self._invoke_run(role) +davit_large-multi.0 [stderr] File "/Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/elastic/agent/server/api.py", line 868, in _invoke_run +davit_large-multi.0 [stderr] time.sleep(monitor_interval) +davit_large-multi.0 [stderr] File "/Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 62, in _terminate_process_handler +davit_large-multi.0 [stderr] raise SignalException(f"Process {os.getpid()} got signal: {sigval}", sigval=sigval) +davit_large-multi.0 [stderr] torch.distributed.elastic.multiprocessing.api.SignalException: Process 53892 got signal: 15 +davit_large-multi.0 [end] torchrun --nproc_per_node=2 -m voir --config /Tmp/slurm.4112514.0/base/extra/timm/voirconf-davit_large-multi.0-0efae956f1553a76c1e03985181900f5.json /Tmp/slurm.4112514.0/milabench/benchmarks/timm/pytorch-image-models/train.py --amp --model davit_large --batch-size 128 --lr-base 0.01 --data-dir /Tmp/slurm.4112514.0/base/data --dataset FakeImageNet --output /Tmp/slurm.4112514.0/base/extra/timm/jenadogo.2024-02-05_09:17:41.183394/davit_large-multi.0 --checkpoint-hist 1 [at 2024-02-05 09:44:41.264798] +focalnet.D0 [config.dirs.base] /Tmp/slurm.4112514.0/base +focalnet.D0 [config.dirs.venv] /Tmp/slurm.4112514.0/base/venv/torch +focalnet.D0 [config.dirs.data] /Tmp/slurm.4112514.0/base/data +focalnet.D0 [config.dirs.runs] /Tmp/slurm.4112514.0/base/runs +focalnet.D0 [config.dirs.extra] /Tmp/slurm.4112514.0/base/extra/timm +focalnet.D0 [config.dirs.cache] /Tmp/slurm.4112514.0/base/cache +focalnet.D0 [config.arch] cuda +focalnet.D0 [config.group] timm +focalnet.D0 [config.install_group] torch +focalnet.D0 [config.install_variant] cuda +focalnet.D0 [config.run_name] jenadogo.2024-02-05_09:17:41.183394 +focalnet.D0 [config.enabled] True +focalnet.D0 [config.capabilities.nodes] 1 +focalnet.D0 [config.max_duration] 600 +focalnet.D0 [config.voir.options.stop] 60 +focalnet.D0 [config.voir.options.interval] 1s +focalnet.D0 [config.config_base] /Tmp/slurm.4112514.0/milabench/config +focalnet.D0 [config.config_file] /Tmp/slurm.4112514.0/milabench/config/standard.yaml +focalnet.D0 [config.definition] /Tmp/slurm.4112514.0/milabench/benchmarks/timm +focalnet.D0 [config.plan.method] per_gpu +focalnet.D0 [config.argv.--amp] True +focalnet.D0 [config.argv.--model] focalnet_base_lrf +focalnet.D0 [config.tags] ['classification', 'convnet', 'vision'] +focalnet.D0 [config.weight] 2.0 +focalnet.D0 [config.name] focalnet +focalnet.D0 [config.tag] ['focalnet', 'D0'] +focalnet.D0 [config.device] 0 +focalnet.D0 [config.devices] ['0'] +focalnet.D0 [config.env.CUDA_VISIBLE_DEVICES] 0 +focalnet.D1 [config.dirs.base] /Tmp/slurm.4112514.0/base +focalnet.D1 [config.dirs.venv] /Tmp/slurm.4112514.0/base/venv/torch +focalnet.D1 [config.dirs.data] /Tmp/slurm.4112514.0/base/data +focalnet.D1 [config.dirs.runs] /Tmp/slurm.4112514.0/base/runs +focalnet.D1 [config.dirs.extra] /Tmp/slurm.4112514.0/base/extra/timm +focalnet.D1 [config.dirs.cache] /Tmp/slurm.4112514.0/base/cache +focalnet.D1 [config.arch] cuda +focalnet.D1 [config.group] timm +focalnet.D1 [config.install_group] torch +focalnet.D1 [config.install_variant] cuda +focalnet.D1 [config.run_name] jenadogo.2024-02-05_09:17:41.183394 +focalnet.D1 [config.enabled] True +focalnet.D1 [config.capabilities.nodes] 1 +focalnet.D1 [config.max_duration] 600 +focalnet.D1 [config.voir.options.stop] 60 +focalnet.D1 [config.voir.options.interval] 1s +focalnet.D1 [config.config_base] /Tmp/slurm.4112514.0/milabench/config +focalnet.D1 [config.config_file] /Tmp/slurm.4112514.0/milabench/config/standard.yaml +focalnet.D1 [config.definition] /Tmp/slurm.4112514.0/milabench/benchmarks/timm +focalnet.D1 [config.plan.method] per_gpu +focalnet.D1 [config.argv.--amp] True +focalnet.D1 [config.argv.--model] focalnet_base_lrf +focalnet.D1 [config.tags] ['classification', 'convnet', 'vision'] +focalnet.D1 [config.weight] 2.0 +focalnet.D1 [config.name] focalnet +focalnet.D1 [config.tag] ['focalnet', 'D1'] +focalnet.D1 [config.device] 1 +focalnet.D1 [config.devices] ['1'] +focalnet.D1 [config.env.CUDA_VISIBLE_DEVICES] 1 +focalnet.D0 [start] voir --config /Tmp/slurm.4112514.0/base/extra/timm/voirconf-focalnet.D0-0efae956f1553a76c1e03985181900f5.json /Tmp/slurm.4112514.0/milabench/benchmarks/timm/pytorch-image-models/train.py --amp --model focalnet_base_lrf --data-dir /Tmp/slurm.4112514.0/base/data --dataset FakeImageNet --output /Tmp/slurm.4112514.0/base/extra/timm/jenadogo.2024-02-05_09:17:41.183394/focalnet.D0 --checkpoint-hist 1 [at 2024-02-05 09:44:41.274277] +focalnet.D1 [start] voir --config /Tmp/slurm.4112514.0/base/extra/timm/voirconf-focalnet.D1-0efae956f1553a76c1e03985181900f5.json /Tmp/slurm.4112514.0/milabench/benchmarks/timm/pytorch-image-models/train.py --amp --model focalnet_base_lrf --data-dir /Tmp/slurm.4112514.0/base/data --dataset FakeImageNet --output /Tmp/slurm.4112514.0/base/extra/timm/jenadogo.2024-02-05_09:17:41.183394/focalnet.D1 --checkpoint-hist 1 [at 2024-02-05 09:44:41.277942] +focalnet.D1 [stderr] Training with a single process on 1 device (cuda:0). +focalnet.D0 [stderr] Training with a single process on 1 device (cuda:0). +focalnet.D1 [stderr] Model focalnet_base_lrf created, param count:88749768 +focalnet.D1 [stderr] Data processing configuration for current model + dataset: +focalnet.D1 [stderr] input_size: (3, 224, 224) +focalnet.D1 [stderr] interpolation: bicubic +focalnet.D1 [stderr] mean: (0.485, 0.456, 0.406) +focalnet.D1 [stderr] std: (0.229, 0.224, 0.225) +focalnet.D1 [stderr] crop_pct: 0.9 +focalnet.D1 [stderr] crop_mode: center +focalnet.D0 [stderr] Model focalnet_base_lrf created, param count:88749768 +focalnet.D0 [stderr] Data processing configuration for current model + dataset: +focalnet.D0 [stderr] input_size: (3, 224, 224) +focalnet.D0 [stderr] interpolation: bicubic +focalnet.D0 [stderr] mean: (0.485, 0.456, 0.406) +focalnet.D0 [stderr] std: (0.229, 0.224, 0.225) +focalnet.D0 [stderr] crop_pct: 0.9 +focalnet.D0 [stderr] crop_mode: center +focalnet.D1 [stderr] Learning rate (0.05) calculated from base learning rate (0.1) and global batch size (128) with linear scaling. +focalnet.D1 [stderr] Using native Torch AMP. Training in mixed precision. +focalnet.D0 [stderr] Learning rate (0.05) calculated from base learning rate (0.1) and global batch size (128) with linear scaling. +focalnet.D0 [stderr] Using native Torch AMP. Training in mixed precision. +focalnet.D1 [stderr] Scheduled epochs: 300. LR stepped per epoch. +focalnet.D0 [stderr] Scheduled epochs: 300. LR stepped per epoch. +focalnet.D0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [1509.4375, 81920.0], + 'power': 81.418, + 'temperature': 38}}, + 'task': 'main'} +focalnet.D1 [data] {'gpudata': {'1': {'load': 0, + 'memory': [1509.4375, 81920.0], + 'power': 77.09, + 'temperature': 34}}, + 'task': 'main'} +focalnet.D1 [data] {'loss': 7.004467010498047, 'task': 'train'} +focalnet.D1 [data] {'gpudata': {'1': {'load': 0.99, + 'memory': [10275.4375, 81920.0], + 'power': 171.841, + 'temperature': 42}}, + 'task': 'main'} +focalnet.D0 [data] {'loss': 7.004467010498047, 'task': 'train'} +focalnet.D0 [data] {'gpudata': {'0': {'load': 0.99, + 'memory': [10211.4375, 81920.0], + 'power': 338.088, + 'temperature': 46}}, + 'task': 'main'} +focalnet.D1 [stderr] Train: 0 [ 0/32 ( 0%)] Loss: 7.004 (7.00) Time: 13.759s, 9.30/s (13.759s, 9.30/s) LR: 1.000e-05 Data: 2.187 (2.187) +focalnet.D1 [data] {'gpudata': {'1': {'load': 0.99, + 'memory': [21577.4375, 81920.0], + 'power': 146.399, + 'temperature': 39}}, + 'task': 'main'} +focalnet.D1 [data] {'gpudata': {'1': {'load': 1.0, + 'memory': [14103.4375, 81920.0], + 'power': 177.174, + 'temperature': 42}}, + 'task': 'main'} +focalnet.D1 [data] {'gpudata': {'1': {'load': 0.99, + 'memory': [13253.4375, 81920.0], + 'power': 298.558, + 'temperature': 43}}, + 'task': 'main'} +focalnet.D1 [data] {'loss': 7.006728649139404, 'task': 'train'} +focalnet.D0 [stderr] Train: 0 [ 0/32 ( 0%)] Loss: 7.004 (7.00) Time: 14.001s, 9.14/s (14.001s, 9.14/s) LR: 1.000e-05 Data: 2.148 (2.148) +focalnet.D0 [data] {'gpudata': {'0': {'load': 0.99, + 'memory': [21589.4375, 81920.0], + 'power': 228.134, + 'temperature': 44}}, + 'task': 'main'} +focalnet.D0 [data] {'gpudata': {'0': {'load': 1.0, + 'memory': [9787.4375, 81920.0], + 'power': 235.929, + 'temperature': 47}}, + 'task': 'main'} +focalnet.D0 [data] {'gpudata': {'0': {'load': 0.99, + 'memory': [9169.4375, 81920.0], + 'power': 209.823, + 'temperature': 46}}, + 'task': 'main'} +focalnet.D0 [data] {'loss': 7.006728649139404, 'task': 'train'} +focalnet.D1 [data] {'loss': 7.036325454711914, 'task': 'train'} +focalnet.D0 [data] {'loss': 6.935497760772705, 'task': 'train'} +focalnet.D1 [data] {'loss': 7.024367332458496, 'task': 'train'} +focalnet.D0 [data] {'loss': 7.024367332458496, 'task': 'train'} +focalnet.D0 [data] {'gpudata': {'0': {'load': 0.76, + 'memory': [23571.4375, 81920.0], + 'power': 309.749, + 'temperature': 52}}, + 'task': 'main'} +focalnet.D1 [data] {'gpudata': {'1': {'load': 0.93, + 'memory': [23641.4375, 81920.0], + 'power': 360.663, + 'temperature': 49}}, + 'task': 'main'} +focalnet.D0 [data] {'loss': 6.9885382652282715, 'task': 'train'} +focalnet.D1 [data] {'loss': 6.970383644104004, 'task': 'train'} +focalnet.D0 [data] {'loss': 7.009471893310547, 'task': 'train'} +focalnet.D1 [data] {'loss': 6.9413628578186035, 'task': 'train'} +focalnet.D0 [data] {'loss': 7.056240081787109, 'task': 'train'} +focalnet.D1 [data] {'gpudata': {'1': {'load': 0.76, + 'memory': [23641.4375, 81920.0], + 'power': 366.156, + 'temperature': 49}}, + 'task': 'main'} +focalnet.D1 [data] {'rate': 377.5036384149665, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [data] {'gpudata': {'0': {'load': 0.8, + 'memory': [23571.4375, 81920.0], + 'power': 359.495, + 'temperature': 52}}, + 'task': 'main'} +focalnet.D1 [data] {'loss': 6.990042686462402, 'task': 'train'} +focalnet.D0 [data] {'rate': 374.6683694641556, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [data] {'loss': 6.997433662414551, 'task': 'train'} +focalnet.D1 [data] {'rate': 370.522238387252, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'loss': 6.946528434753418, 'task': 'train'} +focalnet.D0 [data] {'rate': 381.08341353526527, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [data] {'loss': 6.977944850921631, 'task': 'train'} +focalnet.D1 [data] {'rate': 386.57694374862564, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [data] {'rate': 398.29990911480644, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'loss': 6.990629196166992, 'task': 'train'} +focalnet.D1 [data] {'gpudata': {'1': {'load': 0.97, + 'memory': [23643.4375, 81920.0], + 'power': 364.093, + 'temperature': 51}}, + 'task': 'main'} +focalnet.D0 [data] {'gpudata': {'0': {'load': 0.98, + 'memory': [23571.4375, 81920.0], + 'power': 363.767, + 'temperature': 55}}, + 'task': 'main'} +focalnet.D0 [data] {'loss': 6.979873180389404, 'task': 'train'} +focalnet.D1 [data] {'rate': 392.6866319812837, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [data] {'rate': 401.12049060520735, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'loss': 6.979123115539551, 'task': 'train'} +focalnet.D1 [stderr] Train: 0 [ 31/32 (100%)] Loss: 7.005 (7.00) Time: 0.307s, 417.61/s (0.754s, 169.75/s) LR: 1.000e-05 Data: 0.000 (0.084) +focalnet.D1 [data] {'rate': 405.71756163605994, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [data] {'loss': 7.005303382873535, 'task': 'train'} +focalnet.D0 [stderr] Train: 0 [ 31/32 (100%)] Loss: 7.005 (7.00) Time: 0.553s, 231.27/s (0.772s, 165.82/s) LR: 1.000e-05 Data: 0.000 (0.084) +focalnet.D0 [data] {'rate': 360.72387361528064, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [stderr] Test: [ 0/32] Time: 2.193 (2.193) Loss: 6.9615 (6.9615) Acc@1: 0.0000 ( 0.0000) Acc@5: 0.0000 ( 0.0000) +focalnet.D0 [stderr] Test: [ 0/32] Time: 2.078 (2.078) Loss: 6.9615 (6.9615) Acc@1: 0.0000 ( 0.0000) Acc@5: 0.0000 ( 0.0000) +focalnet.D1 [stderr] Test: [ 32/32] Time: 1.027 (0.321) Loss: 6.8639 (6.9459) Acc@1: 0.0000 ( 0.1453) Acc@5: 3.1250 ( 0.6541) +focalnet.D0 [stderr] Test: [ 32/32] Time: 1.053 (0.311) Loss: 6.8639 (6.9459) Acc@1: 0.0000 ( 0.1453) Acc@5: 3.1250 ( 0.6541) +focalnet.D1 [stderr] Current checkpoints: +focalnet.D1 [stderr] ('/Tmp/slurm.4112514.0/base/extra/timm/jenadogo.2024-02-05_09:17:41.183394/focalnet.D1/20240205-094446-focalnet_base_lrf-224/checkpoint-0.pth.tar', 0.14534883720930233) +focalnet.D1 [stderr] +focalnet.D0 [stderr] Current checkpoints: +focalnet.D0 [stderr] ('/Tmp/slurm.4112514.0/base/extra/timm/jenadogo.2024-02-05_09:17:41.183394/focalnet.D0/20240205-094446-focalnet_base_lrf-224/checkpoint-0.pth.tar', 0.14534883720930233) +focalnet.D0 [stderr] +focalnet.D1 [data] {'rate': 417.38812312443554, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'gpudata': {'1': {'load': 0, + 'memory': [23643.4375, 81920.0], + 'power': 89.393, + 'temperature': 39}}, + 'task': 'main'} +focalnet.D1 [data] {'gpudata': {'1': {'load': 0, + 'memory': [23887.4375, 81920.0], + 'power': 90.007, + 'temperature': 40}}, + 'task': 'main'} +focalnet.D1 [data] {'gpudata': {'1': {'load': 0.64, + 'memory': [23887.4375, 81920.0], + 'power': 326.236, + 'temperature': 43}}, + 'task': 'main'} +focalnet.D1 [data] {'gpudata': {'1': {'load': 0.65, + 'memory': [7287.4375, 81920.0], + 'power': 88.957, + 'temperature': 39}}, + 'task': 'main'} +focalnet.D1 [data] {'loss': 7.020679950714111, 'task': 'train'} +focalnet.D0 [data] {'rate': 231.2379865768878, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [23571.4375, 81920.0], + 'power': 95.689, + 'temperature': 43}}, + 'task': 'main'} +focalnet.D0 [data] {'gpudata': {'0': {'load': 0.64, + 'memory': [23815.4375, 81920.0], + 'power': 303.289, + 'temperature': 50}}, + 'task': 'main'} +focalnet.D0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [23815.4375, 81920.0], + 'power': 306.979, + 'temperature': 48}}, + 'task': 'main'} +focalnet.D0 [data] {'gpudata': {'0': {'load': 0.87, + 'memory': [4385.4375, 81920.0], + 'power': 113.508, + 'temperature': 45}}, + 'task': 'main'} +focalnet.D1 [stderr] Train: 1 [ 0/32 ( 0%)] Loss: 7.021 (7.02) Time: 1.451s, 88.23/s (1.451s, 88.23/s) LR: 1.001e-02 Data: 1.020 (1.020) +focalnet.D0 [data] {'loss': 7.020679950714111, 'task': 'train'} +focalnet.D0 [stderr] Train: 1 [ 0/32 ( 0%)] Loss: 7.021 (7.02) Time: 1.661s, 77.07/s (1.661s, 77.07/s) LR: 1.001e-02 Data: 1.100 (1.100) +focalnet.D1 [data] {'rate': 315.62343914346116, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [data] {'rate': 202.100719508245, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'loss': 7.003786087036133, 'task': 'train'} +focalnet.D1 [data] {'gpudata': {'1': {'load': 0.77, + 'memory': [23721.4375, 81920.0], + 'power': 291.003, + 'temperature': 45}}, + 'task': 'main'} +focalnet.D0 [data] {'gpudata': {'0': {'load': 0.92, + 'memory': [23655.4375, 81920.0], + 'power': 110.983, + 'temperature': 48}}, + 'task': 'main'} +focalnet.D0 [data] {'loss': 7.003786087036133, 'task': 'train'} +focalnet.D1 [data] {'rate': 379.9619486908587, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [data] {'rate': 335.93811495019315, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'loss': 7.062005996704102, 'task': 'train'} +focalnet.D1 [data] {'rate': 370.3643540929286, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [data] {'loss': 6.96353006362915, 'task': 'train'} +focalnet.D0 [data] {'rate': 367.04243119852714, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'loss': 7.019172668457031, 'task': 'train'} +focalnet.D1 [data] {'rate': 362.4965981251868, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [data] {'loss': 7.047094821929932, 'task': 'train'} +focalnet.D1 [data] {'gpudata': {'1': {'load': 0.93, + 'memory': [23723.4375, 81920.0], + 'power': 334.007, + 'temperature': 49}}, + 'task': 'main'} +focalnet.D0 [data] {'gpudata': {'0': {'load': 0.89, + 'memory': [23657.4375, 81920.0], + 'power': 137.88, + 'temperature': 53}}, + 'task': 'main'} +focalnet.D0 [data] {'rate': 362.3580731304099, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'loss': 7.077932357788086, 'task': 'train'} +focalnet.D1 [data] {'rate': 348.4229803371138, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [data] {'loss': 7.034217834472656, 'task': 'train'} +focalnet.D0 [data] {'rate': 362.5166701379054, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'loss': 6.999080181121826, 'task': 'train'} +focalnet.D1 [data] {'rate': 378.77964641340213, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [data] {'loss': 7.056346893310547, 'task': 'train'} +focalnet.D0 [data] {'rate': 357.2617852450118, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'loss': 7.077407360076904, 'task': 'train'} +focalnet.D1 [data] {'rate': 366.9251789920027, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [data] {'gpudata': {'0': {'load': 0.84, + 'memory': [23657.4375, 81920.0], + 'power': 364.547, + 'temperature': 53}}, + 'task': 'main'} +focalnet.D0 [data] {'loss': 7.087892055511475, 'task': 'train'} +focalnet.D1 [data] {'gpudata': {'1': {'load': 0.74, + 'memory': [23723.4375, 81920.0], + 'power': 145.933, + 'temperature': 47}}, + 'task': 'main'} +focalnet.D0 [data] {'rate': 367.1403156946068, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'loss': 6.993818283081055, 'task': 'train'} +focalnet.D1 [data] {'rate': 356.7102938249908, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [data] {'loss': 7.04456901550293, 'task': 'train'} +focalnet.D0 [data] {'rate': 354.3274788234613, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'loss': 7.098369598388672, 'task': 'train'} +focalnet.D1 [data] {'rate': 379.2761549350046, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [data] {'loss': 7.043420791625977, 'task': 'train'} +focalnet.D0 [data] {'rate': 391.760778375228, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'loss': 7.144115447998047, 'task': 'train'} +focalnet.D1 [data] {'gpudata': {'1': {'load': 0.99, + 'memory': [23723.4375, 81920.0], + 'power': 316.696, + 'temperature': 51}}, + 'task': 'main'} +focalnet.D0 [data] {'gpudata': {'0': {'load': 0.97, + 'memory': [23657.4375, 81920.0], + 'power': 365.046, + 'temperature': 55}}, + 'task': 'main'} +focalnet.D1 [data] {'rate': 397.3043545165627, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [data] {'rate': 400.17129290508296, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [data] {'loss': 6.981839179992676, 'task': 'train'} +focalnet.D1 [stderr] Train: 1 [ 31/32 (100%)] Loss: 7.108 (7.05) Time: 0.306s, 418.56/s (0.387s, 330.55/s) LR: 1.001e-02 Data: 0.000 (0.056) +focalnet.D0 [stderr] Train: 1 [ 31/32 (100%)] Loss: 7.108 (7.05) Time: 0.323s, 396.46/s (0.391s, 326.95/s) LR: 1.001e-02 Data: 0.000 (0.058) +focalnet.D1 [stderr] Test: [ 0/32] Time: 1.040 (1.040) Loss: 6.8923 (6.8923) Acc@1: 0.0000 ( 0.0000) Acc@5: 0.0000 ( 0.0000) +focalnet.D0 [stderr] Test: [ 0/32] Time: 1.135 (1.135) Loss: 6.8922 (6.8922) Acc@1: 0.0000 ( 0.0000) Acc@5: 0.0000 ( 0.0000) +focalnet.D1 [stderr] Test: [ 32/32] Time: 0.039 (0.243) Loss: 6.9393 (6.9699) Acc@1: 0.0000 ( 0.2665) Acc@5: 0.0000 ( 0.9932) +focalnet.D0 [stderr] Test: [ 32/32] Time: 0.029 (0.253) Loss: 6.9392 (6.9700) Acc@1: 0.0000 ( 0.2665) Acc@5: 0.0000 ( 0.9932) +focalnet.D1 [stderr] Current checkpoints: +focalnet.D1 [stderr] ('/Tmp/slurm.4112514.0/base/extra/timm/jenadogo.2024-02-05_09:17:41.183394/focalnet.D1/20240205-094446-focalnet_base_lrf-224/checkpoint-1.pth.tar', 0.26647286821705424) +focalnet.D1 [stderr] +focalnet.D1 [data] {'rate': 418.06433293931025, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'gpudata': {'1': {'load': 0.78, + 'memory': [23967.4375, 81920.0], + 'power': 337.601, + 'temperature': 47}}, + 'task': 'main'} +focalnet.D1 [data] {'gpudata': {'1': {'load': 0.34, + 'memory': [23967.4375, 81920.0], + 'power': 275.2, + 'temperature': 44}}, + 'task': 'main'} +focalnet.D1 [data] {'gpudata': {'1': {'load': 0.85, + 'memory': [23967.4375, 81920.0], + 'power': 90.681, + 'temperature': 41}}, + 'task': 'main'} +focalnet.D1 [data] {'loss': 6.9958415031433105, 'task': 'train'} +focalnet.D0 [stderr] Current checkpoints: +focalnet.D0 [stderr] ('/Tmp/slurm.4112514.0/base/extra/timm/jenadogo.2024-02-05_09:17:41.183394/focalnet.D0/20240205-094446-focalnet_base_lrf-224/checkpoint-1.pth.tar', 0.26647286821705424) +focalnet.D0 [stderr] +focalnet.D1 [stderr] Train: 2 [ 0/32 ( 0%)] Loss: 6.996 (7.00) Time: 1.192s, 107.40/s (1.192s, 107.40/s) LR: 2.001e-02 Data: 0.876 (0.876) +focalnet.D1 [data] {'rate': 346.83417655473176, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'loss': 7.1502604484558105, 'task': 'train'} +focalnet.D0 [data] {'rate': 410.4666880430734, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [data] {'gpudata': {'0': {'load': 0.14, + 'memory': [23901.4375, 81920.0], + 'power': 96.887, + 'temperature': 45}}, + 'task': 'main'} +focalnet.D0 [data] {'gpudata': {'0': {'load': 0.26, + 'memory': [23901.4375, 81920.0], + 'power': 96.468, + 'temperature': 44}}, + 'task': 'main'} +focalnet.D0 [data] {'gpudata': {'0': {'load': 0.57, + 'memory': [23901.4375, 81920.0], + 'power': 96.724, + 'temperature': 45}}, + 'task': 'main'} +focalnet.D0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [23901.4375, 81920.0], + 'power': 82.244, + 'temperature': 40}}, + 'task': 'main'} +focalnet.D0 [data] {'loss': 6.995856761932373, 'task': 'train'} +focalnet.D1 [data] {'gpudata': {'1': {'load': 0.73, + 'memory': [24211.4375, 81920.0], + 'power': 224.08, + 'temperature': 48}}, + 'task': 'main'} +focalnet.D0 [stderr] Train: 2 [ 0/32 ( 0%)] Loss: 6.996 (7.00) Time: 1.513s, 84.58/s (1.513s, 84.58/s) LR: 2.001e-02 Data: 1.163 (1.163) +focalnet.D1 [data] {'rate': 363.44954437539195, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'loss': 7.019004821777344, 'task': 'train'} +focalnet.D0 [data] {'rate': 374.08747497851624, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [data] {'loss': 7.150268077850342, 'task': 'train'} +focalnet.D1 [data] {'rate': 344.45744385574426, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'loss': 7.025628089904785, 'task': 'train'} +focalnet.D0 [data] {'rate': 346.55505720261465, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [data] {'loss': 7.018989086151123, 'task': 'train'} +focalnet.D1 [data] {'rate': 364.41392045119136, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'loss': 7.010931491851807, 'task': 'train'} +focalnet.D0 [data] {'gpudata': {'0': {'load': 0.77, + 'memory': [24145.4375, 81920.0], + 'power': 352.055, + 'temperature': 49}}, + 'task': 'main'} +focalnet.D0 [data] {'rate': 372.1957969021981, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'gpudata': {'1': {'load': 0.82, + 'memory': [24211.4375, 81920.0], + 'power': 340.654, + 'temperature': 49}}, + 'task': 'main'} +focalnet.D0 [data] {'loss': 7.025630950927734, 'task': 'train'} +focalnet.D1 [data] {'rate': 346.1042942730779, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'loss': 7.141164302825928, 'task': 'train'} +focalnet.D0 [data] {'rate': 364.0071538705124, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [data] {'loss': 7.010924339294434, 'task': 'train'} +focalnet.D1 [data] {'rate': 376.6864543167475, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'loss': 7.2925591468811035, 'task': 'train'} +focalnet.D0 [data] {'rate': 380.4107956125856, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [data] {'loss': 7.141152381896973, 'task': 'train'} +focalnet.D0 [data] {'gpudata': {'0': {'load': 0.97, + 'memory': [24145.4375, 81920.0], + 'power': 147.967, + 'temperature': 50}}, + 'task': 'main'} +focalnet.D1 [data] {'rate': 372.6043664248162, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'loss': 7.083065032958984, 'task': 'train'} +focalnet.D0 [data] {'rate': 371.64457969218705, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'gpudata': {'1': {'load': 0.87, + 'memory': [24211.4375, 81920.0], + 'power': 363.907, + 'temperature': 50}}, + 'task': 'main'} +focalnet.D0 [data] {'loss': 7.292555809020996, 'task': 'train'} +focalnet.D1 [data] {'rate': 394.0787002934719, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [data] {'rate': 391.0418595167924, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'loss': 7.183151721954346, 'task': 'train'} +focalnet.D0 [data] {'loss': 7.197795867919922, 'task': 'train'} +focalnet.D0 [data] {'rate': 381.7465121640444, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'rate': 381.75979003147916, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'loss': 7.230227470397949, 'task': 'train'} +focalnet.D0 [data] {'gpudata': {'0': {'load': 0.98, + 'memory': [24145.4375, 81920.0], + 'power': 329.272, + 'temperature': 53}}, + 'task': 'main'} +focalnet.D0 [data] {'rate': 394.8530578971939, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'gpudata': {'1': {'load': 0.97, + 'memory': [24211.4375, 81920.0], + 'power': 353.118, + 'temperature': 52}}, + 'task': 'main'} +focalnet.D1 [data] {'rate': 386.5877386856878, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [data] {'loss': 7.275201797485352, 'task': 'train'} +focalnet.D1 [stderr] Train: 2 [ 31/32 (100%)] Loss: 7.261 (7.13) Time: 0.306s, 417.65/s (0.375s, 341.68/s) LR: 2.001e-02 Data: 0.000 (0.049) +focalnet.D1 [stderr] Test: [ 0/32] Time: 0.950 (0.950) Loss: 6.9301 (6.9301) Acc@1: 0.0000 ( 0.0000) Acc@5: 6.2500 ( 6.2500) +focalnet.D0 [data] {'rate': 408.5081638900445, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [data] {'loss': 7.122132301330566, 'task': 'train'} +focalnet.D0 [stderr] Train: 2 [ 31/32 (100%)] Loss: 7.261 (7.13) Time: 0.308s, 415.52/s (0.389s, 329.34/s) LR: 2.001e-02 Data: 0.000 (0.064) +focalnet.D0 [stderr] Test: [ 0/32] Time: 1.379 (1.379) Loss: 6.9301 (6.9301) Acc@1: 0.0000 ( 0.0000) Acc@5: 6.2500 ( 6.2500) +focalnet.D1 [stderr] Test: [ 32/32] Time: 0.029 (0.246) Loss: 6.7456 (7.1150) Acc@1: 0.0000 ( 0.1696) Acc@5: 0.0000 ( 0.8479) +focalnet.D0 [stderr] Test: [ 32/32] Time: 0.029 (0.233) Loss: 6.7456 (7.1150) Acc@1: 0.0000 ( 0.1696) Acc@5: 0.0000 ( 0.8479) +focalnet.D1 [data] {'rate': 417.87477501564985, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'gpudata': {'1': {'load': 0, + 'memory': [24455.4375, 81920.0], + 'power': 222.482, + 'temperature': 45}}, + 'task': 'main'} +focalnet.D1 [data] {'gpudata': {'1': {'load': 0, + 'memory': [24455.4375, 81920.0], + 'power': 89.496, + 'temperature': 39}}, + 'task': 'main'} +focalnet.D1 [data] {'gpudata': {'1': {'load': 0.24, + 'memory': [24455.4375, 81920.0], + 'power': 89.268, + 'temperature': 40}}, + 'task': 'main'} +focalnet.D1 [data] {'loss': 7.0892863273620605, 'task': 'train'} +focalnet.D1 [stderr] Train: 3 [ 0/32 ( 0%)] Loss: 7.089 (7.09) Time: 1.249s, 102.49/s (1.249s, 102.49/s) LR: 3.000e-02 Data: 0.927 (0.927) +focalnet.D1 [data] {'rate': 334.1599013449281, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'loss': 7.171996593475342, 'task': 'train'} +focalnet.D1 [data] {'gpudata': {'1': {'load': 0.84, + 'memory': [24699.4375, 81920.0], + 'power': 359.495, + 'temperature': 48}}, + 'task': 'main'} +focalnet.D0 [data] {'rate': 397.105073404697, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [24145.4375, 81920.0], + 'power': 96.244, + 'temperature': 44}}, + 'task': 'main'} +focalnet.D0 [data] {'gpudata': {'0': {'load': 0.84, + 'memory': [24389.4375, 81920.0], + 'power': 359.805, + 'temperature': 47}}, + 'task': 'main'} +focalnet.D0 [data] {'gpudata': {'0': {'load': 0.53, + 'memory': [24389.4375, 81920.0], + 'power': 162.406, + 'temperature': 47}}, + 'task': 'main'} +focalnet.D0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [24389.4375, 81920.0], + 'power': 94.531, + 'temperature': 41}}, + 'task': 'main'} +focalnet.D0 [data] {'loss': 7.089305400848389, 'task': 'train'} +focalnet.D1 [data] {'rate': 373.0916968167913, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [stderr] Train: 3 [ 0/32 ( 0%)] Loss: 7.089 (7.09) Time: 1.690s, 75.72/s (1.690s, 75.72/s) LR: 3.000e-02 Data: 1.337 (1.337) +focalnet.D1 [data] {'loss': 7.192546844482422, 'task': 'train'} +focalnet.D0 [data] {'loss': 7.172007083892822, 'task': 'train'} +focalnet.D0 [data] {'rate': 382.8357238250604, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'rate': 345.1481354090593, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'loss': 7.318939208984375, 'task': 'train'} +focalnet.D0 [data] {'loss': 7.1925554275512695, 'task': 'train'} +focalnet.D0 [data] {'rate': 368.86344649851264, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'rate': 376.75181536660364, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'loss': 7.21081018447876, 'task': 'train'} +focalnet.D0 [data] {'gpudata': {'0': {'load': 0.98, + 'memory': [24633.4375, 81920.0], + 'power': 360.307, + 'temperature': 53}}, + 'task': 'main'} +focalnet.D1 [data] {'gpudata': {'1': {'load': 0.84, + 'memory': [24699.4375, 81920.0], + 'power': 354.757, + 'temperature': 49}}, + 'task': 'main'} +focalnet.D0 [data] {'loss': 7.318955898284912, 'task': 'train'} +focalnet.D0 [data] {'rate': 383.6918463348368, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'rate': 359.8902587758572, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'loss': 7.230084419250488, 'task': 'train'} +focalnet.D0 [data] {'loss': 7.210818290710449, 'task': 'train'} +focalnet.D0 [data] {'rate': 362.2798861943022, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'rate': 359.906978217468, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'loss': 7.394801139831543, 'task': 'train'} +focalnet.D0 [data] {'loss': 7.2300519943237305, 'task': 'train'} +focalnet.D0 [data] {'gpudata': {'0': {'load': 0.9, + 'memory': [24633.4375, 81920.0], + 'power': 152.73, + 'temperature': 52}}, + 'task': 'main'} +focalnet.D0 [data] {'rate': 374.32314114652013, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'rate': 373.240063388954, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'loss': 7.30866813659668, 'task': 'train'} +focalnet.D1 [data] {'gpudata': {'1': {'load': 0.92, + 'memory': [24701.4375, 81920.0], + 'power': 187.295, + 'temperature': 50}}, + 'task': 'main'} +focalnet.D0 [data] {'rate': 385.31704834979394, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'rate': 387.3037290822438, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [data] {'loss': 7.3948073387146, 'task': 'train'} +focalnet.D1 [data] {'loss': 7.4334330558776855, 'task': 'train'} +focalnet.D1 [data] {'rate': 390.61462906716037, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'loss': 7.347421169281006, 'task': 'train'} +focalnet.D0 [data] {'rate': 386.30469545487875, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [data] {'loss': 7.269433975219727, 'task': 'train'} +focalnet.D0 [data] {'gpudata': {'0': {'load': 0.98, + 'memory': [24633.4375, 81920.0], + 'power': 292.963, + 'temperature': 53}}, + 'task': 'main'} +focalnet.D0 [data] {'rate': 391.949862622798, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'gpudata': {'1': {'load': 0.99, + 'memory': [24701.4375, 81920.0], + 'power': 288.103, + 'temperature': 51}}, + 'task': 'main'} +focalnet.D1 [data] {'rate': 386.7610052096193, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'loss': 7.239360809326172, 'task': 'train'} +focalnet.D0 [data] {'loss': 7.293488025665283, 'task': 'train'} +focalnet.D1 [stderr] Train: 3 [ 31/32 (100%)] Loss: 7.239 (7.23) Time: 0.307s, 416.88/s (0.377s, 339.55/s) LR: 3.000e-02 Data: 0.001 (0.051) +focalnet.D0 [data] {'rate': 390.25286040788416, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [stderr] Test: [ 0/32] Time: 0.909 (0.909) Loss: 7.1712 (7.1712) Acc@1: 0.0000 ( 0.0000) Acc@5: 0.7812 ( 0.7812) +focalnet.D0 [data] {'loss': 7.199603080749512, 'task': 'train'} +focalnet.D0 [stderr] Train: 3 [ 31/32 (100%)] Loss: 7.239 (7.23) Time: 0.316s, 405.30/s (0.392s, 326.65/s) LR: 3.000e-02 Data: 0.000 (0.069) +focalnet.D0 [data] {'rate': 393.69922105701767, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [stderr] Test: [ 0/32] Time: 1.238 (1.238) Loss: 7.1711 (7.1711) Acc@1: 0.0000 ( 0.0000) Acc@5: 0.7812 ( 0.7812) +focalnet.D1 [stderr] Test: [ 32/32] Time: 0.049 (0.226) Loss: 6.2443 (7.1748) Acc@1: 0.0000 ( 0.2180) Acc@5: 25.0000 ( 1.0174) +focalnet.D1 [data] {'rate': 417.71883541646497, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'gpudata': {'1': {'load': 0, + 'memory': [24945.4375, 81920.0], + 'power': 340.749, + 'temperature': 47}}, + 'task': 'main'} +focalnet.D1 [data] {'gpudata': {'1': {'load': 0.79, + 'memory': [24945.4375, 81920.0], + 'power': 291.19, + 'temperature': 47}}, + 'task': 'main'} +focalnet.D1 [data] {'gpudata': {'1': {'load': 0.12, + 'memory': [24945.4375, 81920.0], + 'power': 89.199, + 'temperature': 39}}, + 'task': 'main'} +focalnet.D0 [stderr] Test: [ 32/32] Time: 0.039 (0.231) Loss: 6.2440 (7.1748) Acc@1: 0.0000 ( 0.2180) Acc@5: 25.0000 ( 1.0174) +focalnet.D1 [data] {'loss': 7.215429306030273, 'task': 'train'} +focalnet.D1 [stderr] Train: 4 [ 0/32 ( 0%)] Loss: 7.215 (7.22) Time: 1.363s, 93.91/s (1.363s, 93.91/s) LR: 4.000e-02 Data: 1.036 (1.036) +focalnet.D1 [data] {'loss': 7.113177299499512, 'task': 'train'} +focalnet.D1 [data] {'rate': 392.1785839596839, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'gpudata': {'1': {'load': 0.89, + 'memory': [25189.4375, 81920.0], + 'power': 342.214, + 'temperature': 48}}, + 'task': 'main'} +focalnet.D1 [data] {'loss': 7.28206729888916, 'task': 'train'} +focalnet.D0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [24633.4375, 81920.0], + 'power': 98.647, + 'temperature': 47}}, + 'task': 'main'} +focalnet.D0 [data] {'rate': 405.2786467214058, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [data] {'gpudata': {'0': {'load': 0.79, + 'memory': [24877.4375, 81920.0], + 'power': 270.126, + 'temperature': 52}}, + 'task': 'main'} +focalnet.D0 [data] {'gpudata': {'0': {'load': 0.8, + 'memory': [24877.4375, 81920.0], + 'power': 302.512, + 'temperature': 52}}, + 'task': 'main'} +focalnet.D0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [24877.4375, 81920.0], + 'power': 95.067, + 'temperature': 42}}, + 'task': 'main'} +focalnet.D0 [data] {'loss': 7.215425491333008, 'task': 'train'} +focalnet.D1 [data] {'rate': 357.99593995872215, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [stderr] Train: 4 [ 0/32 ( 0%)] Loss: 7.215 (7.22) Time: 1.360s, 94.09/s (1.360s, 94.09/s) LR: 4.000e-02 Data: 1.007 (1.007) +focalnet.D1 [data] {'loss': 7.228561878204346, 'task': 'train'} +focalnet.D0 [data] {'rate': 355.052571316657, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [data] {'loss': 7.113143444061279, 'task': 'train'} +focalnet.D1 [data] {'rate': 351.24494425664983, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'loss': 7.187459945678711, 'task': 'train'} +focalnet.D0 [data] {'rate': 344.14947329357074, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [data] {'loss': 7.281986713409424, 'task': 'train'} +focalnet.D1 [data] {'rate': 361.30861815154486, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [data] {'gpudata': {'0': {'load': 0.74, + 'memory': [25121.4375, 81920.0], + 'power': 180.537, + 'temperature': 52}}, + 'task': 'main'} +focalnet.D1 [data] {'gpudata': {'1': {'load': 0.99, + 'memory': [25189.4375, 81920.0], + 'power': 214.382, + 'temperature': 47}}, + 'task': 'main'} +focalnet.D1 [data] {'loss': 7.373691558837891, 'task': 'train'} +focalnet.D0 [data] {'rate': 365.44320759979354, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [data] {'loss': 7.228658199310303, 'task': 'train'} +focalnet.D1 [data] {'rate': 358.97944734502687, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'loss': 7.27872896194458, 'task': 'train'} +focalnet.D0 [data] {'rate': 362.9207135452953, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [data] {'loss': 7.187405586242676, 'task': 'train'} +focalnet.D1 [data] {'rate': 376.591053806096, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'loss': 7.458530426025391, 'task': 'train'} +focalnet.D0 [data] {'rate': 371.0216249722227, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [data] {'loss': 7.373756408691406, 'task': 'train'} +focalnet.D1 [data] {'rate': 349.81122924381066, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [data] {'gpudata': {'0': {'load': 0.82, + 'memory': [25121.4375, 81920.0], + 'power': 363.882, + 'temperature': 54}}, + 'task': 'main'} +focalnet.D1 [data] {'gpudata': {'1': {'load': 0.72, + 'memory': [25189.4375, 81920.0], + 'power': 341.661, + 'temperature': 49}}, + 'task': 'main'} +focalnet.D1 [data] {'loss': 7.464056015014648, 'task': 'train'} +focalnet.D0 [data] {'rate': 372.6179025098007, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [data] {'loss': 7.278803825378418, 'task': 'train'} +focalnet.D1 [data] {'rate': 380.6044658036676, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [data] {'rate': 415.1497551386742, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'loss': 7.423433303833008, 'task': 'train'} +focalnet.D1 [data] {'rate': 386.6128691436118, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [data] {'loss': 7.388588905334473, 'task': 'train'} +focalnet.D0 [data] {'rate': 394.6336036138548, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [data] {'gpudata': {'0': {'load': 0.98, + 'memory': [25121.4375, 81920.0], + 'power': 364.519, + 'temperature': 56}}, + 'task': 'main'} +focalnet.D1 [stderr] Train: 4 [ 31/32 (100%)] Loss: 7.404 (7.33) Time: 0.306s, 417.75/s (0.381s, 336.29/s) LR: 4.000e-02 Data: 0.000 (0.053) +focalnet.D1 [data] {'rate': 391.78734430216616, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'gpudata': {'1': {'load': 0.98, + 'memory': [25189.4375, 81920.0], + 'power': 304.931, + 'temperature': 52}}, + 'task': 'main'} +focalnet.D0 [data] {'loss': 7.517882347106934, 'task': 'train'} +focalnet.D0 [data] {'rate': 398.50470160101816, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [stderr] Test: [ 0/32] Time: 0.973 (0.973) Loss: 6.9691 (6.9691) Acc@1: 0.0000 ( 0.0000) Acc@5: 4.6875 ( 4.6875) +focalnet.D0 [data] {'loss': 7.410562515258789, 'task': 'train'} +focalnet.D0 [data] {'rate': 385.5248665044852, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [stderr] Train: 4 [ 31/32 (100%)] Loss: 7.404 (7.33) Time: 0.317s, 404.26/s (0.376s, 340.54/s) LR: 4.000e-02 Data: 0.001 (0.052) +focalnet.D0 [stderr] Test: [ 0/32] Time: 1.050 (1.050) Loss: 6.9695 (6.9695) Acc@1: 0.0000 ( 0.0000) Acc@5: 4.6875 ( 4.6875) +focalnet.D1 [stderr] Test: [ 32/32] Time: 0.051 (0.231) Loss: 6.8196 (7.2575) Acc@1: 0.0000 ( 0.1211) Acc@5: 3.1250 ( 0.7025) +focalnet.D1 [data] {'rate': 347.191257177318, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'gpudata': {'1': {'load': 0.53, + 'memory': [25433.4375, 81920.0], + 'power': 99.354, + 'temperature': 44}}, + 'task': 'main'} +focalnet.D1 [data] {'gpudata': {'1': {'load': 0.11, + 'memory': [25433.4375, 81920.0], + 'power': 90.65, + 'temperature': 42}}, + 'task': 'main'} +focalnet.D1 [data] {'gpudata': {'1': {'load': 0, + 'memory': [25433.4375, 81920.0], + 'power': 89.096, + 'temperature': 38}}, + 'task': 'main'} +focalnet.D1 [data] {'loss': 7.211061000823975, 'task': 'train'} +focalnet.D0 [stderr] Test: [ 32/32] Time: 0.034 (0.225) Loss: 6.8202 (7.2576) Acc@1: 0.0000 ( 0.1211) Acc@5: 3.1250 ( 0.7025) +focalnet.D1 [stderr] Train: 5 [ 0/32 ( 0%)] Loss: 7.211 (7.21) Time: 1.047s, 122.22/s (1.047s, 122.22/s) LR: 4.997e-02 Data: 0.719 (0.719) +focalnet.D1 [data] {'rate': 351.4632029572619, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'loss': 7.3649702072143555, 'task': 'train'} +focalnet.D1 [data] {'rate': 405.6032086952962, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'loss': 7.474612712860107, 'task': 'train'} +focalnet.D1 [data] {'gpudata': {'1': {'load': 0.93, + 'memory': [25677.4375, 81920.0], + 'power': 148.119, + 'temperature': 49}}, + 'task': 'main'} +focalnet.D1 [data] {'rate': 359.0032109808133, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [data] {'rate': 399.19964712248196, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [25121.4375, 81920.0], + 'power': 98.129, + 'temperature': 46}}, + 'task': 'main'} +focalnet.D0 [data] {'gpudata': {'0': {'load': 0.83, + 'memory': [25365.4375, 81920.0], + 'power': 98.725, + 'temperature': 46}}, + 'task': 'main'} +focalnet.D0 [data] {'gpudata': {'0': {'load': 0.28, + 'memory': [25365.4375, 81920.0], + 'power': 306.064, + 'temperature': 51}}, + 'task': 'main'} +focalnet.D0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [25365.4375, 81920.0], + 'power': 82.773, + 'temperature': 41}}, + 'task': 'main'} +focalnet.D0 [data] {'loss': 7.211301326751709, 'task': 'train'} +focalnet.D1 [data] {'loss': 7.582969665527344, 'task': 'train'} +focalnet.D0 [stderr] Train: 5 [ 0/32 ( 0%)] Loss: 7.211 (7.21) Time: 1.520s, 84.19/s (1.520s, 84.19/s) LR: 4.997e-02 Data: 1.174 (1.174) +focalnet.D0 [data] {'rate': 355.55540246920174, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'rate': 383.01676532207705, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [data] {'loss': 7.365008354187012, 'task': 'train'} +focalnet.D1 [data] {'loss': 7.687699317932129, 'task': 'train'} +focalnet.D0 [data] {'rate': 356.66717386162975, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'rate': 339.7901033353911, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [data] {'loss': 7.474736213684082, 'task': 'train'} +focalnet.D0 [data] {'gpudata': {'0': {'load': 0.77, + 'memory': [25609.4375, 81920.0], + 'power': 370.689, + 'temperature': 53}}, + 'task': 'main'} +focalnet.D1 [data] {'loss': 7.523072242736816, 'task': 'train'} +focalnet.D1 [data] {'gpudata': {'1': {'load': 0.76, + 'memory': [25677.4375, 81920.0], + 'power': 366.93, + 'temperature': 50}}, + 'task': 'main'} +focalnet.D0 [data] {'rate': 392.41729205191984, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'rate': 329.94204266432956, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [data] {'loss': 7.583381652832031, 'task': 'train'} +focalnet.D1 [data] {'loss': 7.385464668273926, 'task': 'train'} +focalnet.D0 [data] {'rate': 354.6084941134556, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'rate': 360.17828341039245, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [data] {'loss': 7.70918083190918, 'task': 'train'} +focalnet.D1 [data] {'loss': 7.446259021759033, 'task': 'train'} +focalnet.D0 [data] {'rate': 384.24663600400527, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'rate': 386.82900312464454, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [data] {'gpudata': {'0': {'load': 0.65, + 'memory': [25609.4375, 81920.0], + 'power': 364.122, + 'temperature': 53}}, + 'task': 'main'} +focalnet.D0 [data] {'loss': 7.491670608520508, 'task': 'train'} +focalnet.D1 [data] {'gpudata': {'1': {'load': 0.99, + 'memory': [25677.4375, 81920.0], + 'power': 304.997, + 'temperature': 49}}, + 'task': 'main'} +focalnet.D1 [data] {'loss': 7.398087501525879, 'task': 'train'} +focalnet.D0 [data] {'rate': 376.582842411833, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'rate': 398.97395960318363, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [data] {'loss': 7.544958591461182, 'task': 'train'} +focalnet.D0 [data] {'rate': 393.2997914570873, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'loss': 7.640642166137695, 'task': 'train'} +focalnet.D1 [data] {'rate': 401.11896690188894, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [data] {'rate': 393.09845317212324, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [data] {'loss': 7.219976425170898, 'task': 'train'} +focalnet.D1 [stderr] Train: 5 [ 31/32 (100%)] Loss: 7.476 (7.45) Time: 0.307s, 416.88/s (0.369s, 346.72/s) LR: 4.997e-02 Data: 0.000 (0.044) +focalnet.D0 [data] {'gpudata': {'0': {'load': 0.99, + 'memory': [25609.4375, 81920.0], + 'power': 282.912, + 'temperature': 54}}, + 'task': 'main'} +focalnet.D1 [stderr] Test: [ 0/32] Time: 0.788 (0.788) Loss: 7.4392 (7.4392) Acc@1: 0.0000 ( 0.0000) Acc@5: 0.0000 ( 0.0000) +focalnet.D0 [data] {'rate': 411.4301370304474, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [data] {'loss': 7.497481346130371, 'task': 'train'} +focalnet.D0 [data] {'rate': 377.4812793725869, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [data] {'loss': 7.480964660644531, 'task': 'train'} +focalnet.D0 [stderr] Train: 5 [ 31/32 (100%)] Loss: 7.514 (7.44) Time: 0.320s, 399.70/s (0.380s, 337.21/s) LR: 4.997e-02 Data: 0.000 (0.057) +focalnet.D0 [stderr] Test: [ 0/32] Time: 1.234 (1.234) Loss: 7.4338 (7.4338) Acc@1: 0.0000 ( 0.0000) Acc@5: 0.0000 ( 0.0000) +focalnet.D1 [stderr] Test: [ 32/32] Time: 0.049 (0.205) Loss: 6.9521 (7.2929) Acc@1: 0.0000 ( 0.1211) Acc@5: 0.0000 ( 0.7994) +focalnet.D1 [data] {'rate': 401.34674660080793, 'task': 'train', 'units': 'items/s'} +focalnet.D1 [data] {'gpudata': {'1': {'load': 0, + 'memory': [25677.4375, 81920.0], + 'power': 91.181, + 'temperature': 43}}, + 'task': 'main'} +focalnet.D1 [data] {'gpudata': {'1': {'load': 0.53, + 'memory': [25921.4375, 81920.0], + 'power': 95.731, + 'temperature': 44}}, + 'task': 'main'} +focalnet.D1 [data] {'gpudata': {'1': {'load': 0.81, + 'memory': [25921.4375, 81920.0], + 'power': 238.387, + 'temperature': 47}}, + 'task': 'main'} +focalnet.D1 [end] voir --config /Tmp/slurm.4112514.0/base/extra/timm/voirconf-focalnet.D1-0efae956f1553a76c1e03985181900f5.json /Tmp/slurm.4112514.0/milabench/benchmarks/timm/pytorch-image-models/train.py --amp --model focalnet_base_lrf --data-dir /Tmp/slurm.4112514.0/base/data --dataset FakeImageNet --output /Tmp/slurm.4112514.0/base/extra/timm/jenadogo.2024-02-05_09:17:41.183394/focalnet.D1 --checkpoint-hist 1 [at 2024-02-05 09:47:06.876703] +focalnet.D0 [stderr] Test: [ 32/32] Time: 0.029 (0.221) Loss: 6.6553 (7.3056) Acc@1: 0.0000 ( 0.1938) Acc@5: 0.0000 ( 0.6541) +focalnet.D0 [data] {'rate': 400.05627635395626, 'task': 'train', 'units': 'items/s'} +focalnet.D0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [25609.4375, 81920.0], + 'power': 98.304, + 'temperature': 46}}, + 'task': 'main'} +focalnet.D0 [data] {'gpudata': {'0': {'load': 0.57, + 'memory': [25853.4375, 81920.0], + 'power': 371.364, + 'temperature': 50}}, + 'task': 'main'} +focalnet.D0 [data] {'gpudata': {'0': {'load': 0.85, + 'memory': [25853.4375, 81920.0], + 'power': 361.574, + 'temperature': 50}}, + 'task': 'main'} +focalnet.D0 [end] voir --config /Tmp/slurm.4112514.0/base/extra/timm/voirconf-focalnet.D0-0efae956f1553a76c1e03985181900f5.json /Tmp/slurm.4112514.0/milabench/benchmarks/timm/pytorch-image-models/train.py --amp --model focalnet_base_lrf --data-dir /Tmp/slurm.4112514.0/base/data --dataset FakeImageNet --output /Tmp/slurm.4112514.0/base/extra/timm/jenadogo.2024-02-05_09:17:41.183394/focalnet.D0 --checkpoint-hist 1 [at 2024-02-05 09:47:08.883093] +opt-1_3b.0 [config.dirs.base] /Tmp/slurm.4112514.0/base +opt-1_3b.0 [config.dirs.venv] /Tmp/slurm.4112514.0/base/venv/torch +opt-1_3b.0 [config.dirs.data] /Tmp/slurm.4112514.0/base/data +opt-1_3b.0 [config.dirs.runs] /Tmp/slurm.4112514.0/base/runs +opt-1_3b.0 [config.dirs.extra] /Tmp/slurm.4112514.0/base/extra/opt +opt-1_3b.0 [config.dirs.cache] /Tmp/slurm.4112514.0/base/cache +opt-1_3b.0 [config.arch] cuda +opt-1_3b.0 [config.group] opt +opt-1_3b.0 [config.install_group] torch +opt-1_3b.0 [config.install_variant] cuda +opt-1_3b.0 [config.run_name] jenadogo.2024-02-05_09:17:41.183394 +opt-1_3b.0 [config.enabled] True +opt-1_3b.0 [config.capabilities.nodes] 1 +opt-1_3b.0 [config.max_duration] 600 +opt-1_3b.0 [config.voir.options.stop] 60 +opt-1_3b.0 [config.voir.options.interval] 1s +opt-1_3b.0 [config.config_base] /Tmp/slurm.4112514.0/milabench/config +opt-1_3b.0 [config.config_file] /Tmp/slurm.4112514.0/milabench/config/standard.yaml +opt-1_3b.0 [config.tags] ['huggingface', 'language-modeling', 'llm', 'multigpu', 'nlp', 'transformer'] +opt-1_3b.0 [config.definition] /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt +opt-1_3b.0 [config.plan.method] njobs +opt-1_3b.0 [config.plan.n] 1 +opt-1_3b.0 [config.manager_addr] override-me +opt-1_3b.0 [config.manager_port] 10000 +opt-1_3b.0 [config.cpus_per_gpu] 8 +opt-1_3b.0 [config.gradient_accumulation_steps] 1 +opt-1_3b.0 [config.max_train_steps] 100 +opt-1_3b.0 [config.dataset_name] wikitext +opt-1_3b.0 [config.dataset_config_name] wikitext-103-v1 +opt-1_3b.0 [config.validation_split_percentage] 5 +opt-1_3b.0 [config.use_deepspeed] False +opt-1_3b.0 [config.num_machines] 1 +opt-1_3b.0 [config.model_name] facebook/opt-1.3b +opt-1_3b.0 [config.per_gpu_batch_size] 1 +opt-1_3b.0 [config.weight] 5.0 +opt-1_3b.0 [config.name] opt-1_3b +opt-1_3b.0 [config.tag] ['opt-1_3b', '0'] +opt-1_3b.0 [config.job-number] 0 +opt-1_3b.0 [config.devices] ['0', '1'] +opt-1_3b.0 [start] accelerate launch --mixed_precision=fp16 --dynamo_backend=no --machine_rank=0 --num_machines=1 --multi_gpu --gradient_accumulation_steps=1 --num_cpu_threads_per_process=8 --main_process_ip=override-me --main_process_port=10000 --num_processes=2 /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/main.py [at 2024-02-05 09:47:08.889070] +opt-1_3b.0 [stderr] Detected kernel version 4.15.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher. +opt-1_3b.0 [stdout] [02/05/24 09:47:13] INFO [1/2] __main__ - Distributed logging.py:61 +opt-1_3b.0 [stdout] environment: MULTI_GPU Backend: nccl +opt-1_3b.0 [stdout] Num processes: 2 +opt-1_3b.0 [stdout] Process index: 1 +opt-1_3b.0 [stdout] Local process index: 1 +opt-1_3b.0 [stdout] Device: cuda:1 +opt-1_3b.0 [stdout] +opt-1_3b.0 [stdout] Mixed precision type: fp16 +opt-1_3b.0 [stdout] +opt-1_3b.0 [data] {'gpudata': {'0': {'load': 0, 'memory': [697.5625, 81920.0], 'temperature': 38}, + '1': {'load': 0, + 'memory': [711.6875, 81920.0], + 'temperature': 33}}, + 'task': 'main'} +opt-1_3b.0 [stdout] [02/05/24 09:47:13] INFO [0/2] __main__ - Distributed logging.py:61 +opt-1_3b.0 [stdout] environment: MULTI_GPU Backend: nccl +opt-1_3b.0 [stdout] Num processes: 2 +opt-1_3b.0 [stdout] Process index: 0 +opt-1_3b.0 [stdout] Local process index: 0 +opt-1_3b.0 [stdout] Device: cuda:0 +opt-1_3b.0 [stdout] +opt-1_3b.0 [stdout] Mixed precision type: fp16 +opt-1_3b.0 [stdout] +opt-1_3b.0 [stderr] libibverbs: Warning: couldn't load driver 'libbnxt_re-rdmav34.so': libbnxt_re-rdmav34.so: cannot open shared object file: No such file or directory +opt-1_3b.0 [stderr] libibverbs: Warning: couldn't load driver 'libbnxt_re-rdmav34.so': libbnxt_re-rdmav34.so: cannot open shared object file: No such file or directory +opt-1_3b.0 [stderr] libibverbs: Warning: couldn't load driver 'libcxgb4-rdmav34.so': libcxgb4-rdmav34.so: cannot open shared object file: No such file or directory +opt-1_3b.0 [stderr] libibverbs: Warning: couldn't load driver 'libcxgb4-rdmav34.so': libcxgb4-rdmav34.so: cannot open shared object file: No such file or directory +opt-1_3b.0 [stderr] libibverbs: Warning: couldn't load driver 'libipathverbs-rdmav34.so': libipathverbs-rdmav34.so: cannot open shared object file: No such file or directory +opt-1_3b.0 [stderr] libibverbs: Warning: couldn't load driver 'libipathverbs-rdmav34.so': libipathverbs-rdmav34.so: cannot open shared object file: No such file or directory +opt-1_3b.0 [stderr] libibverbs: Warning: couldn't load driver 'libhfi1verbs-rdmav34.so': libhfi1verbs-rdmav34.so: cannot open shared object file: No such file or directory +opt-1_3b.0 [stderr] libibverbs: Warning: couldn't load driver 'libhfi1verbs-rdmav34.so': libhfi1verbs-rdmav34.so: cannot open shared object file: No such file or directory +opt-1_3b.0 [stderr] libibverbs: Warning: couldn't load driver 'libqedr-rdmav34.so': libqedr-rdmav34.so: cannot open shared object file: No such file or directory +opt-1_3b.0 [stderr] libibverbs: Warning: couldn't load driver 'libqedr-rdmav34.so': libqedr-rdmav34.so: cannot open shared object file: No such file or directory +opt-1_3b.0 [stderr] libibverbs: Warning: couldn't load driver 'libmthca-rdmav34.so': libmthca-rdmav34.so: cannot open shared object file: No such file or directory +opt-1_3b.0 [stderr] libibverbs: Warning: couldn't load driver 'libmthca-rdmav34.so': libmthca-rdmav34.so: cannot open shared object file: No such file or directory +opt-1_3b.0 [stderr] libibverbs: Warning: couldn't load driver 'libvmw_pvrdma-rdmav34.so': libvmw_pvrdma-rdmav34.so: cannot open shared object file: No such file or directory +opt-1_3b.0 [stderr] libibverbs: Warning: couldn't load driver 'libvmw_pvrdma-rdmav34.so': libvmw_pvrdma-rdmav34.so: cannot open shared object file: No such file or directory +opt-1_3b.0 [stderr] libibverbs: Warning: couldn't load driver 'librxe-rdmav34.so': librxe-rdmav34.so: cannot open shared object file: No such file or directory +opt-1_3b.0 [stderr] libibverbs: Warning: couldn't load driver 'librxe-rdmav34.so': librxe-rdmav34.so: cannot open shared object file: No such file or directory +opt-1_3b.0 [stderr] libibverbs: Warning: couldn't load driver 'libocrdma-rdmav34.so': libocrdma-rdmav34.so: cannot open shared object file: No such file or directory +opt-1_3b.0 [stderr] libibverbs: Warning: couldn't load driver 'libocrdma-rdmav34.so': libocrdma-rdmav34.so: cannot open shared object file: No such file or directory +opt-1_3b.0 [stderr] libibverbs: Warning: couldn't load driver 'libi40iw-rdmav34.so': libi40iw-rdmav34.so: cannot open shared object file: No such file or directory +opt-1_3b.0 [stderr] libibverbs: Warning: couldn't load driver 'libi40iw-rdmav34.so': libi40iw-rdmav34.so: cannot open shared object file: No such file or directory +opt-1_3b.0 [stderr] libibverbs: Warning: couldn't load driver 'libmlx4-rdmav34.so': libmlx4-rdmav34.so: cannot open shared object file: No such file or directory +opt-1_3b.0 [stderr] libibverbs: Warning: couldn't load driver 'libmlx4-rdmav34.so': libmlx4-rdmav34.so: cannot open shared object file: No such file or directory +opt-1_3b.0 [stderr] libibverbs: Warning: couldn't load driver 'libhns-rdmav34.so': libhns-rdmav34.so: cannot open shared object file: No such file or directory +opt-1_3b.0 [stderr] libibverbs: Warning: couldn't load driver 'libhns-rdmav34.so': libhns-rdmav34.so: cannot open shared object file: No such file or directory +opt-1_3b.0 [stderr] /Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/datasets/load.py:1429: FutureWarning: The repository for wikitext contains custom code which must be executed to correctly load the dataset. You can inspect the repository content at https://hf.co/datasets/wikitext +opt-1_3b.0 [stderr] You can avoid this message in future by passing the argument `trust_remote_code=True`. +opt-1_3b.0 [stderr] Passing `trust_remote_code=True` will be mandatory to load this dataset from the next major release of `datasets`. +opt-1_3b.0 [stderr] warnings.warn( +opt-1_3b.0 [stderr] /Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/datasets/load.py:1429: FutureWarning: The repository for wikitext contains custom code which must be executed to correctly load the dataset. You can inspect the repository content at https://hf.co/datasets/wikitext +opt-1_3b.0 [stderr] You can avoid this message in future by passing the argument `trust_remote_code=True`. +opt-1_3b.0 [stderr] Passing `trust_remote_code=True` will be mandatory to load this dataset from the next major release of `datasets`. +opt-1_3b.0 [stderr] warnings.warn( +opt-1_3b.0 [stderr] loading configuration file config.json from cache at /Tmp/slurm.4112514.0/base/cache/hub/models--facebook--opt-1.3b/snapshots/3f5c25d0bc631cb57ac65913f76e22c2dfb61d62/config.json +opt-1_3b.0 [stderr] Model config OPTConfig { +opt-1_3b.0 [stderr] "_name_or_path": "facebook/opt-1.3b", +opt-1_3b.0 [stderr] "_remove_final_layer_norm": false, +opt-1_3b.0 [stderr] "activation_dropout": 0.0, +opt-1_3b.0 [stderr] "activation_function": "relu", +opt-1_3b.0 [stderr] "architectures": [ +opt-1_3b.0 [stderr] "OPTForCausalLM" +opt-1_3b.0 [stderr] ], +opt-1_3b.0 [stderr] "attention_dropout": 0.0, +opt-1_3b.0 [stderr] "bos_token_id": 2, +opt-1_3b.0 [stderr] "do_layer_norm_before": true, +opt-1_3b.0 [stderr] "dropout": 0.1, +opt-1_3b.0 [stderr] "enable_bias": true, +opt-1_3b.0 [stderr] "eos_token_id": 2, +opt-1_3b.0 [stderr] "ffn_dim": 8192, +opt-1_3b.0 [stderr] "hidden_size": 2048, +opt-1_3b.0 [stderr] "init_std": 0.02, +opt-1_3b.0 [stderr] "layer_norm_elementwise_affine": true, +opt-1_3b.0 [stderr] "layerdrop": 0.0, +opt-1_3b.0 [stderr] "max_position_embeddings": 2048, +opt-1_3b.0 [stderr] "model_type": "opt", +opt-1_3b.0 [stderr] "num_attention_heads": 32, +opt-1_3b.0 [stderr] "num_hidden_layers": 24, +opt-1_3b.0 [stderr] "pad_token_id": 1, +opt-1_3b.0 [stderr] "prefix": "", +opt-1_3b.0 [stderr] "torch_dtype": "float16", +opt-1_3b.0 [stderr] "transformers_version": "4.37.2", +opt-1_3b.0 [stderr] "use_cache": true, +opt-1_3b.0 [stderr] "vocab_size": 50272, +opt-1_3b.0 [stderr] "word_embed_proj_dim": 2048 +opt-1_3b.0 [stderr] } +opt-1_3b.0 [stderr] +opt-1_3b.0 [stderr] loading configuration file config.json from cache at /Tmp/slurm.4112514.0/base/cache/hub/models--facebook--opt-1.3b/snapshots/3f5c25d0bc631cb57ac65913f76e22c2dfb61d62/config.json +opt-1_3b.0 [stderr] Model config OPTConfig { +opt-1_3b.0 [stderr] "_name_or_path": "facebook/opt-1.3b", +opt-1_3b.0 [stderr] "_remove_final_layer_norm": false, +opt-1_3b.0 [stderr] "activation_dropout": 0.0, +opt-1_3b.0 [stderr] "activation_function": "relu", +opt-1_3b.0 [stderr] "architectures": [ +opt-1_3b.0 [stderr] "OPTForCausalLM" +opt-1_3b.0 [stderr] ], +opt-1_3b.0 [stderr] "attention_dropout": 0.0, +opt-1_3b.0 [stderr] "bos_token_id": 2, +opt-1_3b.0 [stderr] "do_layer_norm_before": true, +opt-1_3b.0 [stderr] "dropout": 0.1, +opt-1_3b.0 [stderr] "enable_bias": true, +opt-1_3b.0 [stderr] "eos_token_id": 2, +opt-1_3b.0 [stderr] "ffn_dim": 8192, +opt-1_3b.0 [stderr] "hidden_size": 2048, +opt-1_3b.0 [stderr] "init_std": 0.02, +opt-1_3b.0 [stderr] "layer_norm_elementwise_affine": true, +opt-1_3b.0 [stderr] "layerdrop": 0.0, +opt-1_3b.0 [stderr] "max_position_embeddings": 2048, +opt-1_3b.0 [stderr] "model_type": "opt", +opt-1_3b.0 [stderr] "num_attention_heads": 32, +opt-1_3b.0 [stderr] "num_hidden_layers": 24, +opt-1_3b.0 [stderr] "pad_token_id": 1, +opt-1_3b.0 [stderr] "prefix": "", +opt-1_3b.0 [stderr] "torch_dtype": "float16", +opt-1_3b.0 [stderr] "transformers_version": "4.37.2", +opt-1_3b.0 [stderr] "use_cache": true, +opt-1_3b.0 [stderr] "vocab_size": 50272, +opt-1_3b.0 [stderr] "word_embed_proj_dim": 2048 +opt-1_3b.0 [stderr] } +opt-1_3b.0 [stderr] +opt-1_3b.0 [stderr] loading file vocab.json from cache at /Tmp/slurm.4112514.0/base/cache/hub/models--facebook--opt-1.3b/snapshots/3f5c25d0bc631cb57ac65913f76e22c2dfb61d62/vocab.json +opt-1_3b.0 [stderr] loading file merges.txt from cache at /Tmp/slurm.4112514.0/base/cache/hub/models--facebook--opt-1.3b/snapshots/3f5c25d0bc631cb57ac65913f76e22c2dfb61d62/merges.txt +opt-1_3b.0 [stderr] loading file tokenizer.json from cache at None +opt-1_3b.0 [stderr] loading file added_tokens.json from cache at None +opt-1_3b.0 [stderr] loading file special_tokens_map.json from cache at /Tmp/slurm.4112514.0/base/cache/hub/models--facebook--opt-1.3b/snapshots/3f5c25d0bc631cb57ac65913f76e22c2dfb61d62/special_tokens_map.json +opt-1_3b.0 [stderr] loading file tokenizer_config.json from cache at /Tmp/slurm.4112514.0/base/cache/hub/models--facebook--opt-1.3b/snapshots/3f5c25d0bc631cb57ac65913f76e22c2dfb61d62/tokenizer_config.json +opt-1_3b.0 [stderr] loading configuration file config.json from cache at /Tmp/slurm.4112514.0/base/cache/hub/models--facebook--opt-1.3b/snapshots/3f5c25d0bc631cb57ac65913f76e22c2dfb61d62/config.json +opt-1_3b.0 [stderr] Model config OPTConfig { +opt-1_3b.0 [stderr] "_name_or_path": "facebook/opt-1.3b", +opt-1_3b.0 [stderr] "_remove_final_layer_norm": false, +opt-1_3b.0 [stderr] "activation_dropout": 0.0, +opt-1_3b.0 [stderr] "activation_function": "relu", +opt-1_3b.0 [stderr] "architectures": [ +opt-1_3b.0 [stderr] "OPTForCausalLM" +opt-1_3b.0 [stderr] ], +opt-1_3b.0 [stderr] "attention_dropout": 0.0, +opt-1_3b.0 [stderr] "bos_token_id": 2, +opt-1_3b.0 [stderr] "do_layer_norm_before": true, +opt-1_3b.0 [stderr] "dropout": 0.1, +opt-1_3b.0 [stderr] "enable_bias": true, +opt-1_3b.0 [stderr] "eos_token_id": 2, +opt-1_3b.0 [stderr] "ffn_dim": 8192, +opt-1_3b.0 [stderr] "hidden_size": 2048, +opt-1_3b.0 [stderr] "init_std": 0.02, +opt-1_3b.0 [stderr] "layer_norm_elementwise_affine": true, +opt-1_3b.0 [stderr] "layerdrop": 0.0, +opt-1_3b.0 [stderr] "max_position_embeddings": 2048, +opt-1_3b.0 [stderr] "model_type": "opt", +opt-1_3b.0 [stderr] "num_attention_heads": 32, +opt-1_3b.0 [stderr] "num_hidden_layers": 24, +opt-1_3b.0 [stderr] "pad_token_id": 1, +opt-1_3b.0 [stderr] "prefix": "", +opt-1_3b.0 [stderr] "torch_dtype": "float16", +opt-1_3b.0 [stderr] "transformers_version": "4.37.2", +opt-1_3b.0 [stderr] "use_cache": true, +opt-1_3b.0 [stderr] "vocab_size": 50272, +opt-1_3b.0 [stderr] "word_embed_proj_dim": 2048 +opt-1_3b.0 [stderr] } +opt-1_3b.0 [stderr] +opt-1_3b.0 [stderr] loading configuration file config.json from cache at /Tmp/slurm.4112514.0/base/cache/hub/models--facebook--opt-1.3b/snapshots/3f5c25d0bc631cb57ac65913f76e22c2dfb61d62/config.json +opt-1_3b.0 [stderr] Model config OPTConfig { +opt-1_3b.0 [stderr] "_name_or_path": "facebook/opt-1.3b", +opt-1_3b.0 [stderr] "_remove_final_layer_norm": false, +opt-1_3b.0 [stderr] "activation_dropout": 0.0, +opt-1_3b.0 [stderr] "activation_function": "relu", +opt-1_3b.0 [stderr] "architectures": [ +opt-1_3b.0 [stderr] "OPTForCausalLM" +opt-1_3b.0 [stderr] ], +opt-1_3b.0 [stderr] "attention_dropout": 0.0, +opt-1_3b.0 [stderr] "bos_token_id": 2, +opt-1_3b.0 [stderr] "do_layer_norm_before": true, +opt-1_3b.0 [stderr] "dropout": 0.1, +opt-1_3b.0 [stderr] "enable_bias": true, +opt-1_3b.0 [stderr] "eos_token_id": 2, +opt-1_3b.0 [stderr] "ffn_dim": 8192, +opt-1_3b.0 [stderr] "hidden_size": 2048, +opt-1_3b.0 [stderr] "init_std": 0.02, +opt-1_3b.0 [stderr] "layer_norm_elementwise_affine": true, +opt-1_3b.0 [stderr] "layerdrop": 0.0, +opt-1_3b.0 [stderr] "max_position_embeddings": 2048, +opt-1_3b.0 [stderr] "model_type": "opt", +opt-1_3b.0 [stderr] "num_attention_heads": 32, +opt-1_3b.0 [stderr] "num_hidden_layers": 24, +opt-1_3b.0 [stderr] "pad_token_id": 1, +opt-1_3b.0 [stderr] "prefix": "", +opt-1_3b.0 [stderr] "torch_dtype": "float16", +opt-1_3b.0 [stderr] "transformers_version": "4.37.2", +opt-1_3b.0 [stderr] "use_cache": true, +opt-1_3b.0 [stderr] "vocab_size": 50272, +opt-1_3b.0 [stderr] "word_embed_proj_dim": 2048 +opt-1_3b.0 [stderr] } +opt-1_3b.0 [stderr] +opt-1_3b.0 [stdout] [02/05/24 09:47:14] WARNING [0/2] __main__ - The tokenizer picked logging.py:61 +opt-1_3b.0 [stdout] seems to have a very large +opt-1_3b.0 [stdout] `model_max_length` +opt-1_3b.0 [stdout] (1000000000000000019884624838656). +opt-1_3b.0 [stdout] Picking 1024 instead. You can change +opt-1_3b.0 [stdout] that default value by passing +opt-1_3b.0 [stdout] --block_size xxx. +opt-1_3b.0 [stderr] Generate config GenerationConfig { +opt-1_3b.0 [stderr] "bos_token_id": 2, +opt-1_3b.0 [stderr] "eos_token_id": 2, +opt-1_3b.0 [stderr] "pad_token_id": 1 +opt-1_3b.0 [stderr] } +opt-1_3b.0 [stderr] +opt-1_3b.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [1509.4375, 81920.0], + 'temperature': 38}, + '1': {'load': 0, + 'memory': [1509.4375, 81920.0], + 'temperature': 33}}, + 'task': 'main'} +opt-1_3b.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [1509.4375, 81920.0], + 'temperature': 38}, + '1': {'load': 0, + 'memory': [1509.4375, 81920.0], + 'temperature': 32}}, + 'task': 'main'} +opt-1_3b.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [1509.4375, 81920.0], + 'temperature': 37}, + '1': {'load': 0, + 'memory': [1509.4375, 81920.0], + 'temperature': 32}}, + 'task': 'main'} +opt-1_3b.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [1509.4375, 81920.0], + 'temperature': 37}, + '1': {'load': 0, + 'memory': [1509.4375, 81920.0], + 'temperature': 31}}, + 'task': 'main'} +opt-1_3b.0 [stderr] You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 50265. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc +opt-1_3b.0 [data] {'gpudata': {'0': {'load': 0.29, + 'memory': [2545.4375, 81920.0], + 'temperature': 36}, + '1': {'load': 0, + 'memory': [1509.4375, 81920.0], + 'temperature': 31}}, + 'task': 'main'} +opt-1_3b.0 [stdout] [02/05/24 09:47:29] INFO [0/2] __main__ - ***** Running logging.py:61 +opt-1_3b.0 [stdout] training ***** +opt-1_3b.0 [stdout] INFO [0/2] __main__ - Num examples = logging.py:61 +opt-1_3b.0 [stdout] 115910 +opt-1_3b.0 [stdout] INFO [0/2] __main__ - Num Epochs = 1 logging.py:61 +opt-1_3b.0 [stdout] INFO [0/2] __main__ - Instantaneous logging.py:61 +opt-1_3b.0 [stdout] batch size per device = 1 +opt-1_3b.0 [stdout] INFO [0/2] __main__ - Total train batch logging.py:61 +opt-1_3b.0 [stdout] size (w. parallel, distributed & +opt-1_3b.0 [stdout] accumulation) = 2 +opt-1_3b.0 [stdout] INFO [0/2] __main__ - Gradient logging.py:61 +opt-1_3b.0 [stdout] Accumulation steps = 1 +opt-1_3b.0 [stdout] INFO [0/2] __main__ - Total optimization logging.py:61 +opt-1_3b.0 [stdout] steps = 100 +opt-1_3b.0 [data] {'loss': 11.195878028869629, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 12.08406925201416, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 12.094964981079102, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 11.944356918334961, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 9.969600677490234, 'task': 'train'} +opt-1_3b.0 [data] {'rate': 3.916599472688741, 'task': 'train', 'units': 'items/s'} +opt-1_3b.0 [data] {'loss': 10.278947830200195, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 10.161888122558594, 'task': 'train'} +opt-1_3b.0 [data] {'gpudata': {'0': {'load': 0.99, + 'memory': [41307.4375, 81920.0], + 'temperature': 46}, + '1': {'load': 0.98, + 'memory': [41307.4375, 81920.0], + 'temperature': 40}}, + 'task': 'main'} +opt-1_3b.0 [data] {'loss': 9.691802978515625, 'task': 'train'} +opt-1_3b.0 [data] {'rate': 7.452592226695901, 'task': 'train', 'units': 'items/s'} +opt-1_3b.0 [data] {'loss': 9.84829044342041, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 9.518179893493652, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 9.536498069763184, 'task': 'train'} +opt-1_3b.0 [data] {'rate': 7.432593179781645, 'task': 'train', 'units': 'items/s'} +opt-1_3b.0 [data] {'loss': 9.402581214904785, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 9.356261253356934, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 9.344156265258789, 'task': 'train'} +opt-1_3b.0 [data] {'rate': 7.448937010962144, 'task': 'train', 'units': 'items/s'} +opt-1_3b.0 [data] {'loss': 9.218290328979492, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 9.028590202331543, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 8.881168365478516, 'task': 'train'} +opt-1_3b.0 [data] {'rate': 7.4501895717339615, 'task': 'train', 'units': 'items/s'} +opt-1_3b.0 [data] {'loss': 8.740152359008789, 'task': 'train'} +opt-1_3b.0 [data] {'gpudata': {'0': {'load': 0.99, + 'memory': [41307.4375, 81920.0], + 'temperature': 48}, + '1': {'load': 0.99, + 'memory': [41307.4375, 81920.0], + 'temperature': 42}}, + 'task': 'main'} +opt-1_3b.0 [data] {'loss': 8.990778923034668, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 8.575270652770996, 'task': 'train'} +opt-1_3b.0 [data] {'rate': 7.4307080008964395, 'task': 'train', 'units': 'items/s'} +opt-1_3b.0 [data] {'loss': 8.785866737365723, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 8.55030632019043, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 8.39486312866211, 'task': 'train'} +opt-1_3b.0 [data] {'rate': 7.430115650916164, 'task': 'train', 'units': 'items/s'} +opt-1_3b.0 [data] {'loss': 8.380533218383789, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 8.442427635192871, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 8.301115036010742, 'task': 'train'} +opt-1_3b.0 [data] {'rate': 7.446968607460988, 'task': 'train', 'units': 'items/s'} +opt-1_3b.0 [data] {'loss': 8.287036895751953, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 8.037515640258789, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 8.210185050964355, 'task': 'train'} +opt-1_3b.0 [data] {'rate': 7.462795925829384, 'task': 'train', 'units': 'items/s'} +opt-1_3b.0 [data] {'loss': 8.13209056854248, 'task': 'train'} +opt-1_3b.0 [data] {'gpudata': {'0': {'load': 0.98, + 'memory': [41307.4375, 81920.0], + 'temperature': 50}, + '1': {'load': 0.99, + 'memory': [41307.4375, 81920.0], + 'temperature': 45}}, + 'task': 'main'} +opt-1_3b.0 [data] {'loss': 8.165427207946777, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 8.249624252319336, 'task': 'train'} +opt-1_3b.0 [data] {'rate': 7.45093954559195, 'task': 'train', 'units': 'items/s'} +opt-1_3b.0 [data] {'loss': 8.073044776916504, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 8.111602783203125, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 8.119954109191895, 'task': 'train'} +opt-1_3b.0 [data] {'rate': 7.4458162628581475, 'task': 'train', 'units': 'items/s'} +opt-1_3b.0 [data] {'loss': 8.19534683227539, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 7.794744491577148, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 8.021860122680664, 'task': 'train'} +opt-1_3b.0 [data] {'rate': 7.435946727684838, 'task': 'train', 'units': 'items/s'} +opt-1_3b.0 [data] {'loss': 8.353038787841797, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 7.849271297454834, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 7.903420448303223, 'task': 'train'} +opt-1_3b.0 [data] {'gpudata': {'0': {'load': 0.98, + 'memory': [41307.4375, 81920.0], + 'temperature': 51}, + '1': {'load': 0.99, + 'memory': [41307.4375, 81920.0], + 'temperature': 46}}, + 'task': 'main'} +opt-1_3b.0 [data] {'rate': 7.449056074326506, 'task': 'train', 'units': 'items/s'} +opt-1_3b.0 [data] {'loss': 7.843648910522461, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 7.870221138000488, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 8.084782600402832, 'task': 'train'} +opt-1_3b.0 [data] {'rate': 7.451025581658375, 'task': 'train', 'units': 'items/s'} +opt-1_3b.0 [data] {'loss': 7.9906086921691895, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 7.874730587005615, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 8.088814735412598, 'task': 'train'} +opt-1_3b.0 [data] {'rate': 7.437304819623558, 'task': 'train', 'units': 'items/s'} +opt-1_3b.0 [data] {'loss': 8.2008056640625, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 8.207475662231445, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 7.88267707824707, 'task': 'train'} +opt-1_3b.0 [data] {'rate': 7.437436699629899, 'task': 'train', 'units': 'items/s'} +opt-1_3b.0 [data] {'loss': 8.002808570861816, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 7.65382719039917, 'task': 'train'} +opt-1_3b.0 [data] {'gpudata': {'0': {'load': 0.99, + 'memory': [41307.4375, 81920.0], + 'temperature': 50}, + '1': {'load': 0.98, + 'memory': [41307.4375, 81920.0], + 'temperature': 45}}, + 'task': 'main'} +opt-1_3b.0 [data] {'loss': 7.899359703063965, 'task': 'train'} +opt-1_3b.0 [data] {'rate': 7.441716545086632, 'task': 'train', 'units': 'items/s'} +opt-1_3b.0 [data] {'loss': 7.944027423858643, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 8.027850151062012, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 7.670206546783447, 'task': 'train'} +opt-1_3b.0 [data] {'rate': 7.440777020534275, 'task': 'train', 'units': 'items/s'} +opt-1_3b.0 [data] {'loss': 7.487945079803467, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 7.927110195159912, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 8.036956787109375, 'task': 'train'} +opt-1_3b.0 [data] {'rate': 7.447409368898222, 'task': 'train', 'units': 'items/s'} +opt-1_3b.0 [data] {'loss': 7.702938079833984, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 7.825314521789551, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 8.329445838928223, 'task': 'train'} +opt-1_3b.0 [data] {'rate': 7.435990671114228, 'task': 'train', 'units': 'items/s'} +opt-1_3b.0 [data] {'loss': 8.052446365356445, 'task': 'train'} +opt-1_3b.0 [data] {'gpudata': {'0': {'load': 0.99, + 'memory': [41307.4375, 81920.0], + 'temperature': 50}, + '1': {'load': 0.99, + 'memory': [41307.4375, 81920.0], + 'temperature': 46}}, + 'task': 'main'} +opt-1_3b.0 [data] {'loss': 7.7013397216796875, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 7.929051876068115, 'task': 'train'} +opt-1_3b.0 [data] {'rate': 7.445670868039458, 'task': 'train', 'units': 'items/s'} +opt-1_3b.0 [data] {'loss': 7.912907600402832, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 7.954098701477051, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 8.227679252624512, 'task': 'train'} +opt-1_3b.0 [data] {'rate': 7.441137840310398, 'task': 'train', 'units': 'items/s'} +opt-1_3b.0 [data] {'loss': 8.123826026916504, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 7.775002956390381, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 7.617221832275391, 'task': 'train'} +opt-1_3b.0 [data] {'rate': 7.443664558905218, 'task': 'train', 'units': 'items/s'} +opt-1_3b.0 [data] {'loss': 7.9398674964904785, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 7.922633171081543, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 7.667035102844238, 'task': 'train'} +opt-1_3b.0 [data] {'rate': 7.482762260520051, 'task': 'train', 'units': 'items/s'} +opt-1_3b.0 [data] {'loss': 7.607123851776123, 'task': 'train'} +opt-1_3b.0 [data] {'gpudata': {'0': {'load': 0.99, + 'memory': [41307.4375, 81920.0], + 'temperature': 53}, + '1': {'load': 0.99, + 'memory': [41307.4375, 81920.0], + 'temperature': 48}}, + 'task': 'main'} +opt-1_3b.0 [data] {'loss': 7.806539535522461, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 8.054414749145508, 'task': 'train'} +opt-1_3b.0 [data] {'rate': 7.432380253699751, 'task': 'train', 'units': 'items/s'} +opt-1_3b.0 [data] {'loss': 7.841533184051514, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 7.729464530944824, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 8.287406921386719, 'task': 'train'} +opt-1_3b.0 [data] {'rate': 7.453960821854837, 'task': 'train', 'units': 'items/s'} +opt-1_3b.0 [data] {'loss': 7.893307209014893, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 7.758818626403809, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 7.729844570159912, 'task': 'train'} +opt-1_3b.0 [data] {'rate': 7.462811417238307, 'task': 'train', 'units': 'items/s'} +opt-1_3b.0 [data] {'loss': 7.654940128326416, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 7.963740348815918, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 7.853725433349609, 'task': 'train'} +opt-1_3b.0 [data] {'gpudata': {'0': {'load': 0.98, + 'memory': [41307.4375, 81920.0], + 'temperature': 53}, + '1': {'load': 1.0, + 'memory': [41307.4375, 81920.0], + 'temperature': 48}}, + 'task': 'main'} +opt-1_3b.0 [data] {'rate': 7.439199944898809, 'task': 'train', 'units': 'items/s'} +opt-1_3b.0 [data] {'loss': 7.7367424964904785, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 8.032720565795898, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 8.021537780761719, 'task': 'train'} +opt-1_3b.0 [data] {'rate': 7.43490981349372, 'task': 'train', 'units': 'items/s'} +opt-1_3b.0 [data] {'loss': 7.791340351104736, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 8.016383171081543, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 7.95905876159668, 'task': 'train'} +opt-1_3b.0 [data] {'rate': 7.433159578640932, 'task': 'train', 'units': 'items/s'} +opt-1_3b.0 [data] {'loss': 7.935147762298584, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 7.755134105682373, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 7.665759563446045, 'task': 'train'} +opt-1_3b.0 [data] {'rate': 7.340255571950962, 'task': 'train', 'units': 'items/s'} +opt-1_3b.0 [data] {'loss': 7.89297342300415, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 7.874948501586914, 'task': 'train'} +opt-1_3b.0 [data] {'gpudata': {'0': {'load': 0.98, + 'memory': [41307.4375, 81920.0], + 'temperature': 53}, + '1': {'load': 0.98, + 'memory': [41307.4375, 81920.0], + 'temperature': 48}}, + 'task': 'main'} +opt-1_3b.0 [data] {'loss': 7.938521385192871, 'task': 'train'} +opt-1_3b.0 [data] {'rate': 7.448180826971091, 'task': 'train', 'units': 'items/s'} +opt-1_3b.0 [data] {'loss': 8.242273330688477, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 7.613307952880859, 'task': 'train'} +opt-1_3b.0 [data] {'loss': 8.197229385375977, 'task': 'train'} +opt-1_3b.0 [data] {'rate': 7.459995251134081, 'task': 'train', 'units': 'items/s'} +opt-1_3b.0 [data] {'loss': 7.614323616027832, 'task': 'train'} +opt-1_3b.0 [end] accelerate launch --mixed_precision=fp16 --dynamo_backend=no --machine_rank=0 --num_machines=1 --multi_gpu --gradient_accumulation_steps=1 --num_cpu_threads_per_process=8 --main_process_ip=override-me --main_process_port=10000 --num_processes=2 /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/main.py [at 2024-02-05 09:48:00.972620] +opt-1_3b-multinode [message] Skip opt-1_3b-multinode because the following capability is not satisfied: nodes >= 2 +opt-6_7b-multinode [message] Skip opt-6_7b-multinode because the following capability is not satisfied: nodes >= 2 +stargan.D0 [config.dirs.base] /Tmp/slurm.4112514.0/base +stargan.D0 [config.dirs.venv] /Tmp/slurm.4112514.0/base/venv/torch +stargan.D0 [config.dirs.data] /Tmp/slurm.4112514.0/base/data +stargan.D0 [config.dirs.runs] /Tmp/slurm.4112514.0/base/runs +stargan.D0 [config.dirs.extra] /Tmp/slurm.4112514.0/base/extra/stargan +stargan.D0 [config.dirs.cache] /Tmp/slurm.4112514.0/base/cache +stargan.D0 [config.arch] cuda +stargan.D0 [config.group] stargan +stargan.D0 [config.install_group] torch +stargan.D0 [config.install_variant] cuda +stargan.D0 [config.run_name] jenadogo.2024-02-05_09:17:41.183394 +stargan.D0 [config.enabled] True +stargan.D0 [config.capabilities.nodes] 1 +stargan.D0 [config.max_duration] 600 +stargan.D0 [config.voir.options.stop] 60 +stargan.D0 [config.voir.options.interval] 1s +stargan.D0 [config.config_base] /Tmp/slurm.4112514.0/milabench/config +stargan.D0 [config.config_file] /Tmp/slurm.4112514.0/milabench/config/standard.yaml +stargan.D0 [config.tags] ['gan', 'resnet', 'vision'] +stargan.D0 [config.definition] /Tmp/slurm.4112514.0/milabench/benchmarks/stargan +stargan.D0 [config.plan.method] per_gpu +stargan.D0 [config.argv.--image_size] 512 +stargan.D0 [config.argv.--c_dim] 5 +stargan.D0 [config.argv.--batch_size] 16 +stargan.D0 [config.weight] 1.0 +stargan.D0 [config.name] stargan +stargan.D0 [config.tag] ['stargan', 'D0'] +stargan.D0 [config.device] 0 +stargan.D0 [config.devices] ['0'] +stargan.D0 [config.env.CUDA_VISIBLE_DEVICES] 0 +stargan.D1 [config.dirs.base] /Tmp/slurm.4112514.0/base +stargan.D1 [config.dirs.venv] /Tmp/slurm.4112514.0/base/venv/torch +stargan.D1 [config.dirs.data] /Tmp/slurm.4112514.0/base/data +stargan.D1 [config.dirs.runs] /Tmp/slurm.4112514.0/base/runs +stargan.D1 [config.dirs.extra] /Tmp/slurm.4112514.0/base/extra/stargan +stargan.D1 [config.dirs.cache] /Tmp/slurm.4112514.0/base/cache +stargan.D1 [config.arch] cuda +stargan.D1 [config.group] stargan +stargan.D1 [config.install_group] torch +stargan.D1 [config.install_variant] cuda +stargan.D1 [config.run_name] jenadogo.2024-02-05_09:17:41.183394 +stargan.D1 [config.enabled] True +stargan.D1 [config.capabilities.nodes] 1 +stargan.D1 [config.max_duration] 600 +stargan.D1 [config.voir.options.stop] 60 +stargan.D1 [config.voir.options.interval] 1s +stargan.D1 [config.config_base] /Tmp/slurm.4112514.0/milabench/config +stargan.D1 [config.config_file] /Tmp/slurm.4112514.0/milabench/config/standard.yaml +stargan.D1 [config.tags] ['gan', 'resnet', 'vision'] +stargan.D1 [config.definition] /Tmp/slurm.4112514.0/milabench/benchmarks/stargan +stargan.D1 [config.plan.method] per_gpu +stargan.D1 [config.argv.--image_size] 512 +stargan.D1 [config.argv.--c_dim] 5 +stargan.D1 [config.argv.--batch_size] 16 +stargan.D1 [config.weight] 1.0 +stargan.D1 [config.name] stargan +stargan.D1 [config.tag] ['stargan', 'D1'] +stargan.D1 [config.device] 1 +stargan.D1 [config.devices] ['1'] +stargan.D1 [config.env.CUDA_VISIBLE_DEVICES] 1 +stargan.D0 [start] voir --config /Tmp/slurm.4112514.0/base/extra/stargan/voirconf-stargan.D0-0efae956f1553a76c1e03985181900f5.json /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/stargan/main.py --image_size 512 --c_dim 5 --batch_size 16 [at 2024-02-05 09:48:00.981562] +stargan.D1 [start] voir --config /Tmp/slurm.4112514.0/base/extra/stargan/voirconf-stargan.D1-0efae956f1553a76c1e03985181900f5.json /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/stargan/main.py --image_size 512 --c_dim 5 --batch_size 16 [at 2024-02-05 09:48:00.984605] +stargan.D1 [stdout] Namespace(c_dim=5, c2_dim=8, celeba_crop_size=178, rafd_crop_size=256, image_size=512, g_conv_dim=64, d_conv_dim=64, g_repeat_num=6, d_repeat_num=6, lambda_cls=1, lambda_rec=10, lambda_gp=10, dataset='synth', batch_size=16, num_iters=200000, num_iters_decay=100000, g_lr=0.0001, d_lr=0.0001, n_critic=5, beta1=0.5, beta2=0.999, resume_iters=None, selected_attrs=['Black_Hair', 'Blond_Hair', 'Brown_Hair', 'Male', 'Young'], test_iters=200000, num_workers=1, mode='train', use_tensorboard=False, celeba_image_dir='data/celeba/images', attr_path='data/celeba/list_attr_celeba.txt', rafd_image_dir='data/RaFD/train', log_dir='/Tmp/slurm.4112514.0/base/extra/stargan/logs', model_save_dir='/Tmp/slurm.4112514.0/base/extra/stargan/models', sample_dir='/Tmp/slurm.4112514.0/base/extra/stargan/samples', result_dir='/Tmp/slurm.4112514.0/base/extra/stargan/results', log_step=10, sample_step=1000, model_save_step=10000, lr_update_step=1000) +stargan.D0 [stdout] Namespace(c_dim=5, c2_dim=8, celeba_crop_size=178, rafd_crop_size=256, image_size=512, g_conv_dim=64, d_conv_dim=64, g_repeat_num=6, d_repeat_num=6, lambda_cls=1, lambda_rec=10, lambda_gp=10, dataset='synth', batch_size=16, num_iters=200000, num_iters_decay=100000, g_lr=0.0001, d_lr=0.0001, n_critic=5, beta1=0.5, beta2=0.999, resume_iters=None, selected_attrs=['Black_Hair', 'Blond_Hair', 'Brown_Hair', 'Male', 'Young'], test_iters=200000, num_workers=1, mode='train', use_tensorboard=False, celeba_image_dir='data/celeba/images', attr_path='data/celeba/list_attr_celeba.txt', rafd_image_dir='data/RaFD/train', log_dir='/Tmp/slurm.4112514.0/base/extra/stargan/logs', model_save_dir='/Tmp/slurm.4112514.0/base/extra/stargan/models', sample_dir='/Tmp/slurm.4112514.0/base/extra/stargan/samples', result_dir='/Tmp/slurm.4112514.0/base/extra/stargan/results', log_step=10, sample_step=1000, model_save_step=10000, lr_update_step=1000) +stargan.D1 [stdout] Generator( +stargan.D1 [stdout] (main): Sequential( +stargan.D1 [stdout] (0): Conv2d(8, 64, kernel_size=(7, 7), stride=(1, 1), padding=(3, 3), bias=False) +stargan.D1 [stdout] (1): InstanceNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) +stargan.D1 [stdout] (2): ReLU(inplace=True) +stargan.D1 [stdout] (3): Conv2d(64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False) +stargan.D1 [stdout] (4): InstanceNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) +stargan.D1 [stdout] (5): ReLU(inplace=True) +stargan.D1 [stdout] (6): Conv2d(128, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False) +stargan.D1 [stdout] (7): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) +stargan.D1 [stdout] (8): ReLU(inplace=True) +stargan.D1 [stdout] (9): ResidualBlock( +stargan.D1 [stdout] (main): Sequential( +stargan.D1 [stdout] (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) +stargan.D1 [stdout] (1): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) +stargan.D1 [stdout] (2): ReLU(inplace=True) +stargan.D1 [stdout] (3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) +stargan.D1 [stdout] (4): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) +stargan.D1 [stdout] ) +stargan.D1 [stdout] ) +stargan.D1 [stdout] (10): ResidualBlock( +stargan.D1 [stdout] (main): Sequential( +stargan.D1 [stdout] (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) +stargan.D1 [stdout] (1): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) +stargan.D1 [stdout] (2): ReLU(inplace=True) +stargan.D1 [stdout] (3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) +stargan.D1 [stdout] (4): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) +stargan.D1 [stdout] ) +stargan.D1 [stdout] ) +stargan.D1 [stdout] (11): ResidualBlock( +stargan.D1 [stdout] (main): Sequential( +stargan.D1 [stdout] (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) +stargan.D1 [stdout] (1): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) +stargan.D1 [stdout] (2): ReLU(inplace=True) +stargan.D1 [stdout] (3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) +stargan.D1 [stdout] (4): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) +stargan.D1 [stdout] ) +stargan.D1 [stdout] ) +stargan.D1 [stdout] (12): ResidualBlock( +stargan.D1 [stdout] (main): Sequential( +stargan.D1 [stdout] (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) +stargan.D1 [stdout] (1): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) +stargan.D1 [stdout] (2): ReLU(inplace=True) +stargan.D1 [stdout] (3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) +stargan.D1 [stdout] (4): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) +stargan.D1 [stdout] ) +stargan.D1 [stdout] ) +stargan.D1 [stdout] (13): ResidualBlock( +stargan.D1 [stdout] (main): Sequential( +stargan.D1 [stdout] (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) +stargan.D1 [stdout] (1): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) +stargan.D1 [stdout] (2): ReLU(inplace=True) +stargan.D1 [stdout] (3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) +stargan.D1 [stdout] (4): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) +stargan.D1 [stdout] ) +stargan.D1 [stdout] ) +stargan.D1 [stdout] (14): ResidualBlock( +stargan.D1 [stdout] (main): Sequential( +stargan.D1 [stdout] (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) +stargan.D1 [stdout] (1): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) +stargan.D1 [stdout] (2): ReLU(inplace=True) +stargan.D1 [stdout] (3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) +stargan.D1 [stdout] (4): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) +stargan.D1 [stdout] ) +stargan.D1 [stdout] ) +stargan.D1 [stdout] (15): ConvTranspose2d(256, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False) +stargan.D1 [stdout] (16): InstanceNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) +stargan.D1 [stdout] (17): ReLU(inplace=True) +stargan.D1 [stdout] (18): ConvTranspose2d(128, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False) +stargan.D1 [stdout] (19): InstanceNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) +stargan.D1 [stdout] (20): ReLU(inplace=True) +stargan.D1 [stdout] (21): Conv2d(64, 3, kernel_size=(7, 7), stride=(1, 1), padding=(3, 3), bias=False) +stargan.D1 [stdout] (22): Tanh() +stargan.D1 [stdout] ) +stargan.D1 [stdout] ) +stargan.D1 [stdout] G +stargan.D1 [stdout] The number of parameters: 8430528 +stargan.D1 [stdout] Discriminator( +stargan.D1 [stdout] (main): Sequential( +stargan.D1 [stdout] (0): Conv2d(3, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) +stargan.D1 [stdout] (1): LeakyReLU(negative_slope=0.01) +stargan.D1 [stdout] (2): Conv2d(64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) +stargan.D1 [stdout] (3): LeakyReLU(negative_slope=0.01) +stargan.D1 [stdout] (4): Conv2d(128, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) +stargan.D1 [stdout] (5): LeakyReLU(negative_slope=0.01) +stargan.D1 [stdout] (6): Conv2d(256, 512, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) +stargan.D1 [stdout] (7): LeakyReLU(negative_slope=0.01) +stargan.D1 [stdout] (8): Conv2d(512, 1024, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) +stargan.D1 [stdout] (9): LeakyReLU(negative_slope=0.01) +stargan.D1 [stdout] (10): Conv2d(1024, 2048, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) +stargan.D1 [stdout] (11): LeakyReLU(negative_slope=0.01) +stargan.D1 [stdout] ) +stargan.D1 [stdout] (conv1): Conv2d(2048, 1, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) +stargan.D1 [stdout] (conv2): Conv2d(2048, 5, kernel_size=(8, 8), stride=(1, 1), bias=False) +stargan.D1 [stdout] ) +stargan.D1 [stdout] D +stargan.D1 [stdout] The number of parameters: 45376448 +stargan.D1 [stdout] Start training... +stargan.D0 [stdout] Generator( +stargan.D0 [stdout] (main): Sequential( +stargan.D0 [stdout] (0): Conv2d(8, 64, kernel_size=(7, 7), stride=(1, 1), padding=(3, 3), bias=False) +stargan.D0 [stdout] (1): InstanceNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) +stargan.D0 [stdout] (2): ReLU(inplace=True) +stargan.D0 [stdout] (3): Conv2d(64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False) +stargan.D0 [stdout] (4): InstanceNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) +stargan.D0 [stdout] (5): ReLU(inplace=True) +stargan.D0 [stdout] (6): Conv2d(128, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False) +stargan.D0 [stdout] (7): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) +stargan.D0 [stdout] (8): ReLU(inplace=True) +stargan.D0 [stdout] (9): ResidualBlock( +stargan.D0 [stdout] (main): Sequential( +stargan.D0 [stdout] (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) +stargan.D0 [stdout] (1): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) +stargan.D0 [stdout] (2): ReLU(inplace=True) +stargan.D0 [stdout] (3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) +stargan.D0 [stdout] (4): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) +stargan.D0 [stdout] ) +stargan.D0 [stdout] ) +stargan.D0 [stdout] (10): ResidualBlock( +stargan.D0 [stdout] (main): Sequential( +stargan.D0 [stdout] (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) +stargan.D0 [stdout] (1): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) +stargan.D0 [stdout] (2): ReLU(inplace=True) +stargan.D0 [stdout] (3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) +stargan.D0 [stdout] (4): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) +stargan.D0 [stdout] ) +stargan.D0 [stdout] ) +stargan.D0 [stdout] (11): ResidualBlock( +stargan.D0 [stdout] (main): Sequential( +stargan.D0 [stdout] (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) +stargan.D0 [stdout] (1): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) +stargan.D0 [stdout] (2): ReLU(inplace=True) +stargan.D0 [stdout] (3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) +stargan.D0 [stdout] (4): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) +stargan.D0 [stdout] ) +stargan.D0 [stdout] ) +stargan.D0 [stdout] (12): ResidualBlock( +stargan.D0 [stdout] (main): Sequential( +stargan.D0 [stdout] (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) +stargan.D0 [stdout] (1): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) +stargan.D0 [stdout] (2): ReLU(inplace=True) +stargan.D0 [stdout] (3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) +stargan.D0 [stdout] (4): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) +stargan.D0 [stdout] ) +stargan.D0 [stdout] ) +stargan.D0 [stdout] (13): ResidualBlock( +stargan.D0 [stdout] (main): Sequential( +stargan.D0 [stdout] (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) +stargan.D0 [stdout] (1): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) +stargan.D0 [stdout] (2): ReLU(inplace=True) +stargan.D0 [stdout] (3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) +stargan.D0 [stdout] (4): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) +stargan.D0 [stdout] ) +stargan.D0 [stdout] ) +stargan.D0 [stdout] (14): ResidualBlock( +stargan.D0 [stdout] (main): Sequential( +stargan.D0 [stdout] (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) +stargan.D0 [stdout] (1): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) +stargan.D0 [stdout] (2): ReLU(inplace=True) +stargan.D0 [stdout] (3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) +stargan.D0 [stdout] (4): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) +stargan.D0 [stdout] ) +stargan.D0 [stdout] ) +stargan.D0 [stdout] (15): ConvTranspose2d(256, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False) +stargan.D0 [stdout] (16): InstanceNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) +stargan.D0 [stdout] (17): ReLU(inplace=True) +stargan.D0 [stdout] (18): ConvTranspose2d(128, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False) +stargan.D0 [stdout] (19): InstanceNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) +stargan.D0 [stdout] (20): ReLU(inplace=True) +stargan.D0 [stdout] (21): Conv2d(64, 3, kernel_size=(7, 7), stride=(1, 1), padding=(3, 3), bias=False) +stargan.D0 [stdout] (22): Tanh() +stargan.D0 [stdout] ) +stargan.D0 [stdout] ) +stargan.D0 [stdout] G +stargan.D0 [stdout] The number of parameters: 8430528 +stargan.D0 [stdout] Discriminator( +stargan.D0 [stdout] (main): Sequential( +stargan.D0 [stdout] (0): Conv2d(3, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) +stargan.D0 [stdout] (1): LeakyReLU(negative_slope=0.01) +stargan.D0 [stdout] (2): Conv2d(64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) +stargan.D0 [stdout] (3): LeakyReLU(negative_slope=0.01) +stargan.D0 [stdout] (4): Conv2d(128, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) +stargan.D0 [stdout] (5): LeakyReLU(negative_slope=0.01) +stargan.D0 [stdout] (6): Conv2d(256, 512, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) +stargan.D0 [stdout] (7): LeakyReLU(negative_slope=0.01) +stargan.D0 [stdout] (8): Conv2d(512, 1024, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) +stargan.D0 [stdout] (9): LeakyReLU(negative_slope=0.01) +stargan.D0 [stdout] (10): Conv2d(1024, 2048, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) +stargan.D0 [stdout] (11): LeakyReLU(negative_slope=0.01) +stargan.D0 [stdout] ) +stargan.D0 [stdout] (conv1): Conv2d(2048, 1, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) +stargan.D0 [stdout] (conv2): Conv2d(2048, 5, kernel_size=(8, 8), stride=(1, 1), bias=False) +stargan.D0 [stdout] ) +stargan.D0 [stdout] D +stargan.D0 [stdout] The number of parameters: 45376448 +stargan.D0 [stdout] Start training... +stargan.D1 [stderr] /Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torch/nn/_reduction.py:42: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. +stargan.D1 [stderr] warnings.warn(warning.format(ret)) +stargan.D0 [stderr] /Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torch/nn/_reduction.py:42: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. +stargan.D0 [stderr] warnings.warn(warning.format(ret)) +stargan.D0 [data] {'loss': 13.086599349975586, 'task': 'train'} +stargan.D0 [data] {'gpudata': {'0': {'load': 1.0, + 'memory': [18133.4375, 81920.0], + 'power': 101.666, + 'temperature': 47}}, + 'task': 'main'} +stargan.D0 [data] {'gpudata': {'0': {'load': 1.0, + 'memory': [36341.4375, 81920.0], + 'power': 179.178, + 'temperature': 46}}, + 'task': 'main'} +stargan.D1 [data] {'loss': 13.126571655273438, 'task': 'train'} +stargan.D1 [data] {'gpudata': {'1': {'load': 1.0, + 'memory': [53235.4375, 81920.0], + 'power': 90.248, + 'temperature': 42}}, + 'task': 'main'} +stargan.D1 [data] {'gpudata': {'1': {'load': 0, + 'memory': [19629.4375, 81920.0], + 'power': 87.681, + 'temperature': 35}}, + 'task': 'main'} +stargan.D0 [data] {'loss': 12.320722579956055, 'task': 'train'} +stargan.D1 [data] {'loss': 12.423778533935547, 'task': 'train'} +stargan.D1 [data] {'loss': 10.919904708862305, 'task': 'train'} +stargan.D0 [data] {'loss': 10.844955444335938, 'task': 'train'} +stargan.D1 [data] {'loss': 8.524900436401367, 'task': 'train'} +stargan.D0 [data] {'loss': 8.569493293762207, 'task': 'train'} +stargan.D1 [data] {'rate': 6.070166268203733, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'loss': 5.316471099853516, 'task': 'train'} +stargan.D1 [data] {'loss': 5.558107376098633, 'task': 'train'} +stargan.D0 [data] {'rate': 8.111013843537386, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'gpudata': {'0': {'load': 0.96, + 'memory': [35507.4375, 81920.0], + 'power': 303.111, + 'temperature': 54}}, + 'task': 'main'} +stargan.D0 [data] {'gpudata': {'0': {'load': 1.0, + 'memory': [61035.4375, 81920.0], + 'power': 341.428, + 'temperature': 49}}, + 'task': 'main'} +stargan.D1 [data] {'gpudata': {'1': {'load': 0.97, + 'memory': [35507.4375, 81920.0], + 'power': 288.775, + 'temperature': 48}}, + 'task': 'main'} +stargan.D1 [data] {'rate': 75.80683512518422, 'task': 'train', 'units': 'items/s'} +stargan.D1 [data] {'gpudata': {'1': {'load': 0.07, + 'memory': [61035.4375, 81920.0], + 'power': 99.905, + 'temperature': 40}}, + 'task': 'main'} +stargan.D0 [data] {'loss': 3.0125012397766113, 'task': 'train'} +stargan.D1 [data] {'loss': 3.0867488384246826, 'task': 'train'} +stargan.D0 [data] {'loss': 3.823237180709839, 'task': 'train'} +stargan.D0 [data] {'gpudata': {'0': {'load': 0.95, + 'memory': [31485.4375, 81920.0], + 'power': 431.721, + 'temperature': 55}}, + 'task': 'main'} +stargan.D1 [data] {'loss': 4.6895880699157715, 'task': 'train'} +stargan.D1 [data] {'rate': 4.539216274737172, 'task': 'train', 'units': 'items/s'} +stargan.D1 [data] {'gpudata': {'1': {'load': 0.94, + 'memory': [31485.4375, 81920.0], + 'power': 441.527, + 'temperature': 49}}, + 'task': 'main'} +stargan.D0 [data] {'loss': 2.8021841049194336, 'task': 'train'} +stargan.D1 [data] {'loss': 2.7982873916625977, 'task': 'train'} +stargan.D0 [data] {'loss': 2.5015196800231934, 'task': 'train'} +stargan.D0 [data] {'rate': 8.572943815519281, 'task': 'train', 'units': 'items/s'} +stargan.D1 [data] {'loss': 2.4365835189819336, 'task': 'train'} +stargan.D0 [data] {'loss': 2.26265025138855, 'task': 'train'} +stargan.D1 [data] {'loss': 2.298689842224121, 'task': 'train'} +stargan.D0 [stdout] Elapsed [0:00:16], Iteration [10/200000], D/loss_real: -2.9441, D/loss_fake: 1.2514, D/loss_cls: 3.3664, D/loss_gp: 0.0589, G/loss_fake: -0.7904, G/loss_rec: 0.5356, G/loss_cls: 3.6614 +stargan.D1 [stdout] Elapsed [0:00:16], Iteration [10/200000], D/loss_real: -3.3031, D/loss_fake: 1.3961, D/loss_cls: 3.7115, D/loss_gp: 0.0494, G/loss_fake: -0.7826, G/loss_rec: 0.5350, G/loss_cls: 3.4823 +stargan.D1 [data] {'rate': 49.18814712112089, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'loss': 3.3144726753234863, 'task': 'train'} +stargan.D0 [data] {'rate': 30.96766055047403, 'task': 'train', 'units': 'items/s'} +stargan.D1 [data] {'loss': 2.9326090812683105, 'task': 'train'} +stargan.D0 [data] {'loss': 2.775360584259033, 'task': 'train'} +stargan.D1 [data] {'loss': 2.7949299812316895, 'task': 'train'} +stargan.D0 [data] {'loss': 2.439539909362793, 'task': 'train'} +stargan.D1 [data] {'loss': 2.175811767578125, 'task': 'train'} +stargan.D0 [data] {'loss': 1.7700482606887817, 'task': 'train'} +stargan.D1 [data] {'loss': 1.9518747329711914, 'task': 'train'} +stargan.D0 [data] {'loss': 1.9974515438079834, 'task': 'train'} +stargan.D1 [data] {'loss': 2.4351184368133545, 'task': 'train'} +stargan.D0 [data] {'rate': 49.330248229886166, 'task': 'train', 'units': 'items/s'} +stargan.D1 [data] {'rate': 48.32095808630915, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'loss': 2.304419755935669, 'task': 'train'} +stargan.D0 [data] {'gpudata': {'0': {'load': 1.0, + 'memory': [36225.4375, 81920.0], + 'power': 430.856, + 'temperature': 58}}, + 'task': 'main'} +stargan.D1 [data] {'loss': 4.472228527069092, 'task': 'train'} +stargan.D1 [data] {'gpudata': {'1': {'load': 1.0, + 'memory': [36225.4375, 81920.0], + 'power': 316.952, + 'temperature': 51}}, + 'task': 'main'} +stargan.D0 [data] {'loss': 1.7860604524612427, 'task': 'train'} +stargan.D1 [data] {'loss': 3.427830219268799, 'task': 'train'} +stargan.D1 [data] {'rate': 31.283494449309458, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'loss': 1.1357308626174927, 'task': 'train'} +stargan.D1 [data] {'loss': 3.364100456237793, 'task': 'train'} +stargan.D0 [data] {'loss': 4.594911098480225, 'task': 'train'} +stargan.D1 [data] {'loss': 5.611645221710205, 'task': 'train'} +stargan.D0 [data] {'loss': 3.95440673828125, 'task': 'train'} +stargan.D1 [data] {'loss': 2.9991838932037354, 'task': 'train'} +stargan.D0 [stdout] Elapsed [0:00:19], Iteration [20/200000], D/loss_real: -1.4181, D/loss_fake: 0.2556, D/loss_cls: 3.3175, D/loss_gp: 0.1800, G/loss_fake: -0.9815, G/loss_rec: 0.5196, G/loss_cls: 3.4382 +stargan.D0 [data] {'rate': 49.47055832412142, 'task': 'train', 'units': 'items/s'} +stargan.D1 [stdout] Elapsed [0:00:19], Iteration [20/200000], D/loss_real: -3.0196, D/loss_fake: 1.1173, D/loss_cls: 4.4445, D/loss_gp: 0.0457, G/loss_fake: -2.6300, G/loss_rec: 0.5209, G/loss_cls: 3.3289 +stargan.D1 [data] {'rate': 57.187042166348476, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'loss': 2.2354042530059814, 'task': 'train'} +stargan.D1 [data] {'loss': 3.168743133544922, 'task': 'train'} +stargan.D0 [data] {'loss': 1.1194443702697754, 'task': 'train'} +stargan.D0 [data] {'rate': 31.24591902055902, 'task': 'train', 'units': 'items/s'} +stargan.D1 [data] {'loss': 5.686138153076172, 'task': 'train'} +stargan.D0 [data] {'loss': 1.4098445177078247, 'task': 'train'} +stargan.D1 [data] {'loss': 4.89923620223999, 'task': 'train'} +stargan.D0 [data] {'loss': 3.358997106552124, 'task': 'train'} +stargan.D1 [data] {'loss': 0.7502227425575256, 'task': 'train'} +stargan.D0 [data] {'loss': 0.35069146752357483, 'task': 'train'} +stargan.D1 [data] {'loss': 6.855472564697266, 'task': 'train'} +stargan.D0 [data] {'gpudata': {'0': {'load': 1.0, + 'memory': [36225.4375, 81920.0], + 'power': 433.526, + 'temperature': 58}}, + 'task': 'main'} +stargan.D0 [data] {'rate': 59.51554000779854, 'task': 'train', 'units': 'items/s'} +stargan.D1 [data] {'rate': 48.2559928303176, 'task': 'train', 'units': 'items/s'} +stargan.D1 [data] {'gpudata': {'1': {'load': 1.0, + 'memory': [36225.4375, 81920.0], + 'power': 359.296, + 'temperature': 53}}, + 'task': 'main'} +stargan.D0 [data] {'loss': 5.433831691741943, 'task': 'train'} +stargan.D1 [data] {'loss': 5.009852409362793, 'task': 'train'} +stargan.D0 [data] {'loss': 4.70731258392334, 'task': 'train'} +stargan.D1 [data] {'loss': 6.654544353485107, 'task': 'train'} +stargan.D0 [data] {'loss': 4.531362056732178, 'task': 'train'} +stargan.D1 [data] {'loss': 5.631687164306641, 'task': 'train'} +stargan.D1 [data] {'rate': 39.7733727802551, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'loss': 4.711325645446777, 'task': 'train'} +stargan.D1 [data] {'loss': 3.020941734313965, 'task': 'train'} +stargan.D0 [data] {'loss': 3.845850944519043, 'task': 'train'} +stargan.D1 [data] {'loss': 0.9652997255325317, 'task': 'train'} +stargan.D0 [stdout] Elapsed [0:00:22], Iteration [30/200000], D/loss_real: 0.5797, D/loss_fake: -1.1285, D/loss_cls: 3.4686, D/loss_gp: 0.0926, G/loss_fake: 0.6402, G/loss_rec: 0.5199, G/loss_cls: 3.2032 +stargan.D0 [data] {'rate': 49.45345102989279, 'task': 'train', 'units': 'items/s'} +stargan.D1 [stdout] Elapsed [0:00:23], Iteration [30/200000], D/loss_real: -5.2351, D/loss_fake: 2.2791, D/loss_cls: 3.6622, D/loss_gp: 0.0259, G/loss_fake: -2.6694, G/loss_rec: 0.5166, G/loss_cls: 3.3523 +stargan.D1 [data] {'rate': 53.73730261008293, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'loss': 2.554161787033081, 'task': 'train'} +stargan.D1 [data] {'loss': 2.1918654441833496, 'task': 'train'} +stargan.D0 [data] {'loss': 4.034933090209961, 'task': 'train'} +stargan.D0 [data] {'rate': 31.458797631187924, 'task': 'train', 'units': 'items/s'} +stargan.D1 [data] {'loss': 1.1304746866226196, 'task': 'train'} +stargan.D0 [data] {'loss': 2.0962419509887695, 'task': 'train'} +stargan.D1 [data] {'loss': 0.7519818544387817, 'task': 'train'} +stargan.D0 [data] {'loss': 3.493194103240967, 'task': 'train'} +stargan.D1 [data] {'loss': 0.44569265842437744, 'task': 'train'} +stargan.D0 [data] {'loss': 4.025451183319092, 'task': 'train'} +stargan.D1 [data] {'loss': 0.004062086343765259, 'task': 'train'} +stargan.D0 [data] {'gpudata': {'0': {'load': 1.0, + 'memory': [37249.4375, 81920.0], + 'power': 428.209, + 'temperature': 59}}, + 'task': 'main'} +stargan.D0 [data] {'rate': 59.49004678286125, 'task': 'train', 'units': 'items/s'} +stargan.D1 [data] {'rate': 49.69721172389678, 'task': 'train', 'units': 'items/s'} +stargan.D1 [data] {'gpudata': {'1': {'load': 0.96, + 'memory': [37249.4375, 81920.0], + 'power': 335.011, + 'temperature': 54}}, + 'task': 'main'} +stargan.D0 [data] {'loss': 4.53808069229126, 'task': 'train'} +stargan.D1 [data] {'loss': 0.5381399989128113, 'task': 'train'} +stargan.D0 [data] {'loss': 1.9568357467651367, 'task': 'train'} +stargan.D1 [data] {'loss': 0.42546024918556213, 'task': 'train'} +stargan.D1 [data] {'rate': 31.738985124566497, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'loss': 3.0084915161132812, 'task': 'train'} +stargan.D1 [data] {'loss': 0.28230521082878113, 'task': 'train'} +stargan.D0 [data] {'loss': 2.68540096282959, 'task': 'train'} +stargan.D1 [data] {'loss': 0.2297508418560028, 'task': 'train'} +stargan.D0 [data] {'loss': 1.8974976539611816, 'task': 'train'} +stargan.D1 [data] {'loss': 0.1786213368177414, 'task': 'train'} +stargan.D0 [stdout] Elapsed [0:00:25], Iteration [40/200000], D/loss_real: -3.9405, D/loss_fake: 2.0677, D/loss_cls: 3.3284, D/loss_gp: 0.0442, G/loss_fake: -3.0649, G/loss_rec: 0.5094, G/loss_cls: 3.2437 +stargan.D0 [data] {'rate': 49.39132901299682, 'task': 'train', 'units': 'items/s'} +stargan.D1 [stdout] Elapsed [0:00:26], Iteration [40/200000], D/loss_real: -6.0086, D/loss_fake: 2.6586, D/loss_cls: 3.3453, D/loss_gp: 0.0183, G/loss_fake: -2.7480, G/loss_rec: 0.5191, G/loss_cls: 3.3349 +stargan.D1 [data] {'rate': 58.45556602263356, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'loss': 1.5260272026062012, 'task': 'train'} +stargan.D1 [data] {'loss': 1.4123754501342773, 'task': 'train'} +stargan.D0 [data] {'loss': 1.1798679828643799, 'task': 'train'} +stargan.D0 [data] {'rate': 31.36853787546416, 'task': 'train', 'units': 'items/s'} +stargan.D1 [data] {'loss': 1.4125949144363403, 'task': 'train'} +stargan.D0 [data] {'loss': 1.0800530910491943, 'task': 'train'} +stargan.D1 [data] {'loss': 0.8548569083213806, 'task': 'train'} +stargan.D0 [data] {'loss': 0.8603284955024719, 'task': 'train'} +stargan.D1 [data] {'loss': 0.9377182126045227, 'task': 'train'} +stargan.D0 [data] {'loss': 0.7206588387489319, 'task': 'train'} +stargan.D1 [data] {'loss': 0.8383750319480896, 'task': 'train'} +stargan.D0 [data] {'gpudata': {'0': {'load': 0.95, + 'memory': [37249.4375, 81920.0], + 'power': 339.3, + 'temperature': 58}}, + 'task': 'main'} +stargan.D0 [data] {'rate': 59.09236571212803, 'task': 'train', 'units': 'items/s'} +stargan.D1 [data] {'gpudata': {'1': {'load': 0.94, + 'memory': [37249.4375, 81920.0], + 'power': 475.449, + 'temperature': 55}}, + 'task': 'main'} +stargan.D1 [data] {'rate': 49.391380334102536, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'loss': 1.1522326469421387, 'task': 'train'} +stargan.D1 [data] {'loss': 1.4708633422851562, 'task': 'train'} +stargan.D0 [data] {'loss': 1.061980962753296, 'task': 'train'} +stargan.D1 [data] {'loss': 1.2513329982757568, 'task': 'train'} +stargan.D1 [data] {'rate': 31.77375879512413, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'loss': 0.8583265542984009, 'task': 'train'} +stargan.D1 [data] {'loss': 1.0890026092529297, 'task': 'train'} +stargan.D0 [data] {'loss': 0.7775387763977051, 'task': 'train'} +stargan.D1 [data] {'loss': 0.9918217658996582, 'task': 'train'} +stargan.D0 [data] {'loss': 0.6566269993782043, 'task': 'train'} +stargan.D1 [data] {'loss': 1.0508769750595093, 'task': 'train'} +stargan.D0 [stdout] Elapsed [0:00:29], Iteration [50/200000], D/loss_real: -5.7523, D/loss_fake: 3.1407, D/loss_cls: 3.1712, D/loss_gp: 0.0097, G/loss_fake: -3.1466, G/loss_rec: 0.5205, G/loss_cls: 3.2357 +stargan.D0 [data] {'rate': 49.45335671993288, 'task': 'train', 'units': 'items/s'} +stargan.D1 [stdout] Elapsed [0:00:29], Iteration [50/200000], D/loss_real: -5.8821, D/loss_fake: 3.3373, D/loss_cls: 3.5701, D/loss_gp: 0.0026, G/loss_fake: -3.5141, G/loss_rec: 0.5239, G/loss_cls: 3.4201 +stargan.D1 [data] {'rate': 59.105728553809016, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'loss': 0.9836164116859436, 'task': 'train'} +stargan.D1 [data] {'loss': 1.4979536533355713, 'task': 'train'} +stargan.D0 [data] {'loss': 0.8919828534126282, 'task': 'train'} +stargan.D0 [data] {'rate': 31.118046567349563, 'task': 'train', 'units': 'items/s'} +stargan.D1 [data] {'loss': 1.4741599559783936, 'task': 'train'} +stargan.D0 [data] {'loss': 0.7860561013221741, 'task': 'train'} +stargan.D1 [data] {'loss': 0.9676339626312256, 'task': 'train'} +stargan.D0 [data] {'loss': 0.7149083614349365, 'task': 'train'} +stargan.D1 [data] {'loss': 0.8525210022926331, 'task': 'train'} +stargan.D1 [data] {'gpudata': {'1': {'load': 0.95, + 'memory': [37249.4375, 81920.0], + 'power': 457.131, + 'temperature': 56}}, + 'task': 'main'} +stargan.D0 [data] {'loss': 0.6592683792114258, 'task': 'train'} +stargan.D0 [data] {'gpudata': {'0': {'load': 0.95, + 'memory': [37249.4375, 81920.0], + 'power': 445.114, + 'temperature': 57}}, + 'task': 'main'} +stargan.D1 [data] {'loss': 0.7842587828636169, 'task': 'train'} +stargan.D0 [data] {'rate': 58.921000849354826, 'task': 'train', 'units': 'items/s'} +stargan.D1 [data] {'rate': 48.32964328351237, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'loss': 1.170042872428894, 'task': 'train'} +stargan.D1 [data] {'loss': 1.5052552223205566, 'task': 'train'} +stargan.D0 [data] {'loss': 1.2022496461868286, 'task': 'train'} +stargan.D1 [data] {'loss': 1.6901298761367798, 'task': 'train'} +stargan.D1 [data] {'rate': 31.494440098506974, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'loss': 1.0389693975448608, 'task': 'train'} +stargan.D1 [data] {'loss': 0.9543049335479736, 'task': 'train'} +stargan.D0 [data] {'loss': 0.9149699211120605, 'task': 'train'} +stargan.D1 [data] {'loss': 1.0347249507904053, 'task': 'train'} +stargan.D0 [data] {'loss': 0.9960232377052307, 'task': 'train'} +stargan.D1 [data] {'loss': 1.2393981218338013, 'task': 'train'} +stargan.D0 [stdout] Elapsed [0:00:32], Iteration [60/200000], D/loss_real: -6.5344, D/loss_fake: 3.7980, D/loss_cls: 3.1827, D/loss_gp: 0.0550, G/loss_fake: -2.9272, G/loss_rec: 0.5228, G/loss_cls: 3.2755 +stargan.D0 [data] {'rate': 49.259070703974494, 'task': 'train', 'units': 'items/s'} +stargan.D1 [stdout] Elapsed [0:00:32], Iteration [60/200000], D/loss_real: -5.7467, D/loss_fake: 3.3267, D/loss_cls: 3.6405, D/loss_gp: 0.0019, G/loss_fake: -3.3058, G/loss_rec: 0.5319, G/loss_cls: 3.3369 +stargan.D1 [data] {'rate': 59.308379044545724, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'loss': 1.5111725330352783, 'task': 'train'} +stargan.D1 [data] {'loss': 1.5788054466247559, 'task': 'train'} +stargan.D0 [data] {'loss': 1.3756446838378906, 'task': 'train'} +stargan.D0 [data] {'rate': 31.245749632133784, 'task': 'train', 'units': 'items/s'} +stargan.D1 [data] {'loss': 1.525927186012268, 'task': 'train'} +stargan.D0 [data] {'loss': 1.3048858642578125, 'task': 'train'} +stargan.D1 [data] {'loss': 1.404424786567688, 'task': 'train'} +stargan.D1 [data] {'gpudata': {'1': {'load': 0.94, + 'memory': [37249.4375, 81920.0], + 'power': 443.451, + 'temperature': 56}}, + 'task': 'main'} +stargan.D0 [data] {'loss': 1.260168433189392, 'task': 'train'} +stargan.D0 [data] {'gpudata': {'0': {'load': 0.95, + 'memory': [37249.4375, 81920.0], + 'power': 407.393, + 'temperature': 59}}, + 'task': 'main'} +stargan.D1 [data] {'loss': 1.2809407711029053, 'task': 'train'} +stargan.D0 [data] {'loss': 1.2427525520324707, 'task': 'train'} +stargan.D1 [data] {'loss': 1.1997722387313843, 'task': 'train'} +stargan.D0 [data] {'rate': 59.41545706781175, 'task': 'train', 'units': 'items/s'} +stargan.D1 [data] {'rate': 48.349679512849946, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'loss': 2.133110523223877, 'task': 'train'} +stargan.D1 [data] {'loss': 2.0829529762268066, 'task': 'train'} +stargan.D0 [data] {'loss': 2.447371006011963, 'task': 'train'} +stargan.D1 [data] {'loss': 2.077482223510742, 'task': 'train'} +stargan.D0 [data] {'loss': 2.1524879932403564, 'task': 'train'} +stargan.D1 [data] {'loss': 2.0973048210144043, 'task': 'train'} +stargan.D1 [data] {'rate': 39.69473518108951, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'loss': 2.0962350368499756, 'task': 'train'} +stargan.D1 [data] {'loss': 2.2769947052001953, 'task': 'train'} +stargan.D0 [data] {'loss': 1.7511037588119507, 'task': 'train'} +stargan.D1 [data] {'loss': 1.631940484046936, 'task': 'train'} +stargan.D0 [stdout] Elapsed [0:00:35], Iteration [70/200000], D/loss_real: -6.0488, D/loss_fake: 4.4382, D/loss_cls: 3.2730, D/loss_gp: 0.0089, G/loss_fake: -4.5084, G/loss_rec: 0.5348, G/loss_cls: 3.2803 +stargan.D0 [data] {'rate': 49.18214585462339, 'task': 'train', 'units': 'items/s'} +stargan.D1 [stdout] Elapsed [0:00:35], Iteration [70/200000], D/loss_real: -6.5973, D/loss_fake: 4.8111, D/loss_cls: 3.2614, D/loss_gp: 0.0157, G/loss_fake: -4.8725, G/loss_rec: 0.5365, G/loss_cls: 3.3287 +stargan.D1 [data] {'rate': 54.79065602412278, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'loss': 2.4997518062591553, 'task': 'train'} +stargan.D1 [data] {'loss': 2.5286381244659424, 'task': 'train'} +stargan.D0 [data] {'loss': 2.4853875637054443, 'task': 'train'} +stargan.D0 [data] {'gpudata': {'0': {'load': 0.95, + 'memory': [37249.4375, 81920.0], + 'power': 319.368, + 'temperature': 59}}, + 'task': 'main'} +stargan.D0 [data] {'rate': 30.80577118282395, 'task': 'train', 'units': 'items/s'} +stargan.D1 [data] {'loss': 2.629201889038086, 'task': 'train'} +stargan.D1 [data] {'gpudata': {'1': {'load': 0.95, + 'memory': [37249.4375, 81920.0], + 'power': 371.65, + 'temperature': 57}}, + 'task': 'main'} +stargan.D0 [data] {'loss': 1.923665165901184, 'task': 'train'} +stargan.D1 [data] {'loss': 2.0407872200012207, 'task': 'train'} +stargan.D0 [data] {'loss': 1.8418934345245361, 'task': 'train'} +stargan.D1 [data] {'loss': 2.051154613494873, 'task': 'train'} +stargan.D0 [data] {'loss': 1.8276960849761963, 'task': 'train'} +stargan.D1 [data] {'loss': 2.0659563541412354, 'task': 'train'} +stargan.D0 [data] {'rate': 58.76953698827997, 'task': 'train', 'units': 'items/s'} +stargan.D1 [data] {'rate': 49.27341860387492, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'loss': 2.236924409866333, 'task': 'train'} +stargan.D1 [data] {'loss': 2.6378462314605713, 'task': 'train'} +stargan.D0 [data] {'loss': 2.8516690731048584, 'task': 'train'} +stargan.D1 [data] {'loss': 2.6494815349578857, 'task': 'train'} +stargan.D1 [data] {'rate': 31.522440107484467, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'loss': 1.8801888227462769, 'task': 'train'} +stargan.D1 [data] {'loss': 2.2870073318481445, 'task': 'train'} +stargan.D0 [data] {'loss': 1.6853495836257935, 'task': 'train'} +stargan.D1 [data] {'loss': 2.0969746112823486, 'task': 'train'} +stargan.D0 [data] {'loss': 1.5299787521362305, 'task': 'train'} +stargan.D1 [data] {'loss': 1.9737675189971924, 'task': 'train'} +stargan.D0 [stdout] Elapsed [0:00:38], Iteration [80/200000], D/loss_real: -5.2612, D/loss_fake: 3.4792, D/loss_cls: 3.1756, D/loss_gp: 0.0136, G/loss_fake: -3.1057, G/loss_rec: 0.5712, G/loss_cls: 3.2117 +stargan.D0 [data] {'rate': 49.446915176997685, 'task': 'train', 'units': 'items/s'} +stargan.D1 [stdout] Elapsed [0:00:39], Iteration [80/200000], D/loss_real: -6.1910, D/loss_fake: 4.6648, D/loss_cls: 3.2099, D/loss_gp: 0.0290, G/loss_fake: -3.1216, G/loss_rec: 0.5615, G/loss_cls: 3.3123 +stargan.D1 [data] {'rate': 58.02852265093514, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'loss': 3.067190170288086, 'task': 'train'} +stargan.D0 [data] {'gpudata': {'0': {'load': 0.96, + 'memory': [37249.4375, 81920.0], + 'power': 442.414, + 'temperature': 61}}, + 'task': 'main'} +stargan.D1 [data] {'loss': 2.7785685062408447, 'task': 'train'} +stargan.D1 [data] {'gpudata': {'1': {'load': 1.0, + 'memory': [37249.4375, 81920.0], + 'power': 218.688, + 'temperature': 58}}, + 'task': 'main'} +stargan.D0 [data] {'loss': 4.43770170211792, 'task': 'train'} +stargan.D0 [data] {'rate': 31.30322924602014, 'task': 'train', 'units': 'items/s'} +stargan.D1 [data] {'loss': 2.6694083213806152, 'task': 'train'} +stargan.D0 [data] {'loss': 2.5714731216430664, 'task': 'train'} +stargan.D1 [data] {'loss': 2.9124083518981934, 'task': 'train'} +stargan.D0 [data] {'loss': 3.320981025695801, 'task': 'train'} +stargan.D1 [data] {'loss': 2.7157540321350098, 'task': 'train'} +stargan.D0 [data] {'loss': 4.1229047775268555, 'task': 'train'} +stargan.D1 [data] {'loss': 3.169157028198242, 'task': 'train'} +stargan.D0 [data] {'rate': 59.367222951769115, 'task': 'train', 'units': 'items/s'} +stargan.D1 [data] {'rate': 49.0809275149506, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'loss': 3.4645135402679443, 'task': 'train'} +stargan.D1 [data] {'loss': 3.221501111984253, 'task': 'train'} +stargan.D0 [data] {'loss': 4.0375471115112305, 'task': 'train'} +stargan.D1 [data] {'loss': 2.9697532653808594, 'task': 'train'} +stargan.D1 [data] {'rate': 31.48517770468959, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'loss': 3.961233377456665, 'task': 'train'} +stargan.D1 [data] {'loss': 2.776503086090088, 'task': 'train'} +stargan.D0 [data] {'loss': 2.915566921234131, 'task': 'train'} +stargan.D1 [data] {'loss': 2.5769779682159424, 'task': 'train'} +stargan.D0 [data] {'loss': 3.1274237632751465, 'task': 'train'} +stargan.D1 [data] {'loss': 2.37219500541687, 'task': 'train'} +stargan.D0 [stdout] Elapsed [0:00:41], Iteration [90/200000], D/loss_real: -6.6969, D/loss_fake: 5.7755, D/loss_cls: 3.2659, D/loss_gp: 0.0783, G/loss_fake: -3.5203, G/loss_rec: 0.5685, G/loss_cls: 3.3906 +stargan.D0 [data] {'rate': 49.2855529283344, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'gpudata': {'0': {'load': 1.0, + 'memory': [37249.4375, 81920.0], + 'power': 448.562, + 'temperature': 63}}, + 'task': 'main'} +stargan.D1 [stdout] Elapsed [0:00:42], Iteration [90/200000], D/loss_real: -5.4369, D/loss_fake: 4.5795, D/loss_cls: 3.1754, D/loss_gp: 0.0054, G/loss_fake: -3.7668, G/loss_rec: 0.5979, G/loss_cls: 3.3008 +stargan.D1 [data] {'gpudata': {'1': {'load': 1.0, + 'memory': [37249.4375, 81920.0], + 'power': 401.708, + 'temperature': 57}}, + 'task': 'main'} +stargan.D1 [data] {'rate': 59.337294101011096, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'loss': 3.3899824619293213, 'task': 'train'} +stargan.D1 [data] {'loss': 2.9476373195648193, 'task': 'train'} +stargan.D0 [data] {'loss': 2.9018616676330566, 'task': 'train'} +stargan.D0 [data] {'rate': 31.359074148423026, 'task': 'train', 'units': 'items/s'} +stargan.D1 [data] {'loss': 2.485952377319336, 'task': 'train'} +stargan.D0 [data] {'loss': 2.6068801879882812, 'task': 'train'} +stargan.D1 [data] {'loss': 2.529491662979126, 'task': 'train'} +stargan.D0 [data] {'loss': 2.148733615875244, 'task': 'train'} +stargan.D1 [data] {'loss': 5.798713684082031, 'task': 'train'} +stargan.D0 [data] {'loss': 1.6613131761550903, 'task': 'train'} +stargan.D1 [data] {'loss': 2.3753085136413574, 'task': 'train'} +stargan.D0 [data] {'rate': 59.72890141699278, 'task': 'train', 'units': 'items/s'} +stargan.D1 [data] {'rate': 49.70871151749535, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'loss': 2.4931132793426514, 'task': 'train'} +stargan.D1 [data] {'loss': 9.10033893585205, 'task': 'train'} +stargan.D0 [data] {'loss': 2.3023457527160645, 'task': 'train'} +stargan.D1 [data] {'loss': 7.552038192749023, 'task': 'train'} +stargan.D1 [data] {'rate': 31.65987686638858, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'loss': 1.5212444067001343, 'task': 'train'} +stargan.D1 [data] {'loss': 8.128246307373047, 'task': 'train'} +stargan.D0 [data] {'loss': 1.0948269367218018, 'task': 'train'} +stargan.D1 [data] {'loss': 4.439353942871094, 'task': 'train'} +stargan.D0 [data] {'loss': 0.7401851415634155, 'task': 'train'} +stargan.D1 [data] {'loss': 9.333183288574219, 'task': 'train'} +stargan.D0 [stdout] Elapsed [0:00:45], Iteration [100/200000], D/loss_real: -4.6808, D/loss_fake: 2.0253, D/loss_cls: 3.1560, D/loss_gp: 0.0240, G/loss_fake: -1.5565, G/loss_rec: 0.5726, G/loss_cls: 3.2989 +stargan.D0 [data] {'rate': 49.392076305176595, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'gpudata': {'0': {'load': 1.0, + 'memory': [37249.4375, 81920.0], + 'power': 453.126, + 'temperature': 62}}, + 'task': 'main'} +stargan.D1 [stdout] Elapsed [0:00:45], Iteration [100/200000], D/loss_real: -0.8434, D/loss_fake: 0.6758, D/loss_cls: 3.3759, D/loss_gp: 0.6125, G/loss_fake: -1.6794, G/loss_rec: 0.5712, G/loss_cls: 3.3597 +stargan.D1 [data] {'gpudata': {'1': {'load': 1.0, + 'memory': [37249.4375, 81920.0], + 'power': 361.891, + 'temperature': 57}}, + 'task': 'main'} +stargan.D1 [data] {'rate': 59.386353166735155, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'loss': 2.91646409034729, 'task': 'train'} +stargan.D1 [data] {'loss': 6.954597473144531, 'task': 'train'} +stargan.D0 [data] {'loss': 6.623352527618408, 'task': 'train'} +stargan.D0 [data] {'rate': 31.466676430251912, 'task': 'train', 'units': 'items/s'} +stargan.D1 [data] {'loss': 2.90112042427063, 'task': 'train'} +stargan.D0 [data] {'loss': 3.384063720703125, 'task': 'train'} +stargan.D1 [data] {'loss': 13.5943021774292, 'task': 'train'} +stargan.D0 [data] {'loss': 4.105134963989258, 'task': 'train'} +stargan.D1 [data] {'loss': 8.158888816833496, 'task': 'train'} +stargan.D0 [data] {'loss': 4.730385780334473, 'task': 'train'} +stargan.D1 [data] {'loss': 9.401894569396973, 'task': 'train'} +stargan.D0 [data] {'rate': 59.64028698950829, 'task': 'train', 'units': 'items/s'} +stargan.D1 [data] {'rate': 49.49026343249651, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'loss': 4.058284282684326, 'task': 'train'} +stargan.D1 [data] {'loss': 8.876028060913086, 'task': 'train'} +stargan.D0 [data] {'loss': 2.777726411819458, 'task': 'train'} +stargan.D1 [data] {'loss': 6.9729108810424805, 'task': 'train'} +stargan.D1 [data] {'rate': 31.591414650022948, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'loss': 2.456256628036499, 'task': 'train'} +stargan.D1 [data] {'loss': 3.7158071994781494, 'task': 'train'} +stargan.D0 [data] {'loss': 2.3443100452423096, 'task': 'train'} +stargan.D1 [data] {'loss': 7.917386054992676, 'task': 'train'} +stargan.D0 [data] {'loss': 2.275050163269043, 'task': 'train'} +stargan.D1 [data] {'loss': 8.137388229370117, 'task': 'train'} +stargan.D0 [stdout] Elapsed [0:00:48], Iteration [110/200000], D/loss_real: -1.7066, D/loss_fake: 0.5479, D/loss_cls: 3.1516, D/loss_gp: 0.0282, G/loss_fake: -1.5534, G/loss_rec: 0.5381, G/loss_cls: 3.2066 +stargan.D0 [data] {'rate': 49.61532014313851, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'gpudata': {'0': {'load': 0.99, + 'memory': [37249.4375, 81920.0], + 'power': 353.929, + 'temperature': 61}}, + 'task': 'main'} +stargan.D1 [stdout] Elapsed [0:00:48], Iteration [110/200000], D/loss_real: -2.2855, D/loss_fake: 1.2400, D/loss_cls: 5.9675, D/loss_gp: 0.3215, G/loss_fake: 0.6602, G/loss_rec: 0.5440, G/loss_cls: 3.9705 +stargan.D1 [data] {'gpudata': {'1': {'load': 0.94, + 'memory': [37249.4375, 81920.0], + 'power': 345.475, + 'temperature': 58}}, + 'task': 'main'} +stargan.D1 [data] {'rate': 59.14293117396511, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'loss': 3.4394419193267822, 'task': 'train'} +stargan.D1 [data] {'loss': 5.095452785491943, 'task': 'train'} +stargan.D0 [data] {'loss': 3.4526238441467285, 'task': 'train'} +stargan.D0 [data] {'rate': 30.66574243952172, 'task': 'train', 'units': 'items/s'} +stargan.D1 [data] {'loss': 6.249704360961914, 'task': 'train'} +stargan.D0 [data] {'loss': 3.372030258178711, 'task': 'train'} +stargan.D1 [data] {'loss': 7.855173110961914, 'task': 'train'} +stargan.D0 [data] {'loss': 3.7733371257781982, 'task': 'train'} +stargan.D1 [data] {'loss': 6.997179985046387, 'task': 'train'} +stargan.D0 [data] {'loss': 2.8129544258117676, 'task': 'train'} +stargan.D1 [data] {'loss': 4.948371887207031, 'task': 'train'} +stargan.D0 [data] {'rate': 59.629054583314804, 'task': 'train', 'units': 'items/s'} +stargan.D1 [data] {'rate': 48.56219387364226, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'loss': 5.036316394805908, 'task': 'train'} +stargan.D1 [data] {'loss': 5.383059501647949, 'task': 'train'} +stargan.D0 [data] {'loss': 4.945727348327637, 'task': 'train'} +stargan.D1 [data] {'loss': 4.6140875816345215, 'task': 'train'} +stargan.D1 [data] {'rate': 31.452196063244006, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'loss': 4.381791591644287, 'task': 'train'} +stargan.D1 [data] {'loss': 4.4699273109436035, 'task': 'train'} +stargan.D0 [data] {'loss': 3.521312952041626, 'task': 'train'} +stargan.D1 [data] {'loss': 4.141944408416748, 'task': 'train'} +stargan.D0 [data] {'loss': 3.2929673194885254, 'task': 'train'} +stargan.D0 [data] {'gpudata': {'0': {'load': 0.95, + 'memory': [37249.4375, 81920.0], + 'power': 433.839, + 'temperature': 61}}, + 'task': 'main'} +stargan.D1 [data] {'loss': 3.731205940246582, 'task': 'train'} +stargan.D1 [data] {'gpudata': {'1': {'load': 0.95, + 'memory': [37249.4375, 81920.0], + 'power': 256.398, + 'temperature': 57}}, + 'task': 'main'} +stargan.D0 [stdout] Elapsed [0:00:51], Iteration [120/200000], D/loss_real: -5.1362, D/loss_fake: 5.1578, D/loss_cls: 3.1566, D/loss_gp: 0.0115, G/loss_fake: -3.9916, G/loss_rec: 0.5590, G/loss_cls: 3.2055 +stargan.D0 [data] {'rate': 49.105528255316656, 'task': 'train', 'units': 'items/s'} +stargan.D1 [stdout] Elapsed [0:00:52], Iteration [120/200000], D/loss_real: -1.1582, D/loss_fake: 1.4803, D/loss_cls: 3.3211, D/loss_gp: 0.0088, G/loss_fake: -1.3027, G/loss_rec: 0.5429, G/loss_cls: 3.3317 +stargan.D1 [data] {'rate': 59.14441919766337, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'loss': 3.743408203125, 'task': 'train'} +stargan.D1 [data] {'loss': 3.8762078285217285, 'task': 'train'} +stargan.D0 [data] {'loss': 3.2628345489501953, 'task': 'train'} +stargan.D0 [data] {'rate': 31.276708690407578, 'task': 'train', 'units': 'items/s'} +stargan.D1 [data] {'loss': 3.286445140838623, 'task': 'train'} +stargan.D0 [data] {'loss': 2.6808578968048096, 'task': 'train'} +stargan.D1 [data] {'loss': 2.4740278720855713, 'task': 'train'} +stargan.D0 [data] {'loss': 1.960935115814209, 'task': 'train'} +stargan.D1 [data] {'loss': 2.146240234375, 'task': 'train'} +stargan.D0 [data] {'loss': 1.4182789325714111, 'task': 'train'} +stargan.D1 [data] {'loss': 1.4623568058013916, 'task': 'train'} +stargan.D0 [data] {'rate': 58.98515596768921, 'task': 'train', 'units': 'items/s'} +stargan.D1 [data] {'rate': 49.47912055702268, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'loss': 2.6358723640441895, 'task': 'train'} +stargan.D1 [data] {'loss': 1.5353127717971802, 'task': 'train'} +stargan.D0 [data] {'loss': 1.3485865592956543, 'task': 'train'} +stargan.D1 [data] {'loss': 1.082343339920044, 'task': 'train'} +stargan.D1 [data] {'rate': 31.65044454617051, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'loss': 2.2289342880249023, 'task': 'train'} +stargan.D1 [data] {'loss': 1.2025959491729736, 'task': 'train'} +stargan.D0 [data] {'loss': 0.24021558463573456, 'task': 'train'} +stargan.D0 [data] {'gpudata': {'0': {'load': 0.95, + 'memory': [37249.4375, 81920.0], + 'power': 414.437, + 'temperature': 62}}, + 'task': 'main'} +stargan.D1 [data] {'loss': 3.066537857055664, 'task': 'train'} +stargan.D1 [data] {'gpudata': {'1': {'load': 0.95, + 'memory': [37249.4375, 81920.0], + 'power': 216.875, + 'temperature': 57}}, + 'task': 'main'} +stargan.D0 [data] {'loss': 1.4500253200531006, 'task': 'train'} +stargan.D1 [data] {'loss': 2.132075786590576, 'task': 'train'} +stargan.D0 [stdout] Elapsed [0:00:54], Iteration [130/200000], D/loss_real: -4.2758, D/loss_fake: 0.0746, D/loss_cls: 3.5662, D/loss_gp: 0.2085, G/loss_fake: -0.3973, G/loss_rec: 0.5317, G/loss_cls: 3.3752 +stargan.D0 [data] {'rate': 49.55839299642971, 'task': 'train', 'units': 'items/s'} +stargan.D1 [stdout] Elapsed [0:00:55], Iteration [130/200000], D/loss_real: -1.6849, D/loss_fake: -0.5680, D/loss_cls: 3.9488, D/loss_gp: 0.0436, G/loss_fake: 4.6861, G/loss_rec: 0.5331, G/loss_cls: 15.5475 +stargan.D1 [data] {'rate': 59.389853661458034, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'loss': 1.5281116962432861, 'task': 'train'} +stargan.D1 [data] {'loss': 15.770112037658691, 'task': 'train'} +stargan.D0 [data] {'loss': 2.698395252227783, 'task': 'train'} +stargan.D0 [data] {'rate': 31.23820175218178, 'task': 'train', 'units': 'items/s'} +stargan.D1 [data] {'loss': 3.1142730712890625, 'task': 'train'} +stargan.D0 [data] {'loss': 4.0252861976623535, 'task': 'train'} +stargan.D1 [data] {'loss': 3.321274757385254, 'task': 'train'} +stargan.D0 [data] {'loss': 3.9706175327301025, 'task': 'train'} +stargan.D1 [data] {'loss': 3.0215723514556885, 'task': 'train'} +stargan.D0 [data] {'loss': 1.7442097663879395, 'task': 'train'} +stargan.D1 [data] {'loss': 1.546674370765686, 'task': 'train'} +stargan.D0 [data] {'rate': 59.31196130521255, 'task': 'train', 'units': 'items/s'} +stargan.D1 [data] {'rate': 49.70239445652892, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'loss': 5.667969703674316, 'task': 'train'} +stargan.D1 [data] {'loss': 2.000736713409424, 'task': 'train'} +stargan.D0 [data] {'loss': 2.842047929763794, 'task': 'train'} +stargan.D1 [data] {'loss': 2.160703659057617, 'task': 'train'} +stargan.D1 [data] {'rate': 31.58890012682657, 'task': 'train', 'units': 'items/s'} +stargan.D1 [data] {'gpudata': {'1': {'load': 0.94, + 'memory': [37249.4375, 81920.0], + 'power': 206.579, + 'temperature': 57}}, + 'task': 'main'} +stargan.D0 [data] {'loss': 4.03906774520874, 'task': 'train'} +stargan.D0 [data] {'gpudata': {'0': {'load': 0.95, + 'memory': [37249.4375, 81920.0], + 'power': 383.563, + 'temperature': 62}}, + 'task': 'main'} +stargan.D1 [data] {'loss': 3.493316650390625, 'task': 'train'} +stargan.D0 [data] {'loss': 10.422286033630371, 'task': 'train'} +stargan.D1 [data] {'loss': 1.687225580215454, 'task': 'train'} +stargan.D0 [data] {'loss': 8.622574806213379, 'task': 'train'} +stargan.D1 [data] {'loss': 0.4342287480831146, 'task': 'train'} +stargan.D0 [stdout] Elapsed [0:00:58], Iteration [140/200000], D/loss_real: 1.3497, D/loss_fake: -1.3719, D/loss_cls: 3.5691, D/loss_gp: 0.5076, G/loss_fake: 4.5077, G/loss_rec: 0.5169, G/loss_cls: 15.6602 +stargan.D0 [data] {'rate': 49.56574361571909, 'task': 'train', 'units': 'items/s'} +stargan.D1 [stdout] Elapsed [0:00:58], Iteration [140/200000], D/loss_real: -5.1039, D/loss_fake: 1.3547, D/loss_cls: 4.0685, D/loss_gp: 0.0115, G/loss_fake: -1.4762, G/loss_rec: 0.5330, G/loss_cls: 3.4679 +stargan.D1 [data] {'rate': 58.18488738173222, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'loss': 18.30327606201172, 'task': 'train'} +stargan.D1 [data] {'loss': 4.503701210021973, 'task': 'train'} +stargan.D0 [data] {'loss': 8.927497863769531, 'task': 'train'} +stargan.D0 [data] {'rate': 31.418211015410936, 'task': 'train', 'units': 'items/s'} +stargan.D1 [data] {'loss': 1.7170045375823975, 'task': 'train'} +stargan.D0 [data] {'loss': 9.636566162109375, 'task': 'train'} +stargan.D1 [data] {'loss': 2.104483127593994, 'task': 'train'} +stargan.D0 [data] {'loss': 4.094073295593262, 'task': 'train'} +stargan.D1 [data] {'loss': 0.7632861137390137, 'task': 'train'} +stargan.D0 [data] {'loss': 18.521974563598633, 'task': 'train'} +stargan.D1 [data] {'loss': 1.8718502521514893, 'task': 'train'} +stargan.D0 [data] {'rate': 59.60100102414263, 'task': 'train', 'units': 'items/s'} +stargan.D1 [data] {'rate': 49.66152646568214, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'loss': 8.858222961425781, 'task': 'train'} +stargan.D1 [data] {'loss': 3.6066956520080566, 'task': 'train'} +stargan.D1 [data] {'gpudata': {'1': {'load': 0.95, + 'memory': [37249.4375, 81920.0], + 'power': 184.123, + 'temperature': 58}}, + 'task': 'main'} +stargan.D0 [data] {'loss': 11.066619873046875, 'task': 'train'} +stargan.D0 [data] {'gpudata': {'0': {'load': 0.95, + 'memory': [37249.4375, 81920.0], + 'power': 369.196, + 'temperature': 62}}, + 'task': 'main'} +stargan.D1 [data] {'loss': 1.7119112014770508, 'task': 'train'} +stargan.D1 [data] {'rate': 31.653023450260136, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'loss': 11.126097679138184, 'task': 'train'} +stargan.D1 [data] {'loss': 1.3435289859771729, 'task': 'train'} +stargan.D0 [data] {'loss': 10.235696792602539, 'task': 'train'} +stargan.D1 [data] {'loss': 0.3240029811859131, 'task': 'train'} +stargan.D0 [data] {'loss': 8.154548645019531, 'task': 'train'} +stargan.D1 [data] {'loss': -0.04024927318096161, 'task': 'train'} +stargan.D0 [stdout] Elapsed [0:01:01], Iteration [150/200000], D/loss_real: -1.2535, D/loss_fake: 0.6175, D/loss_cls: 3.4699, D/loss_gp: 0.5321, G/loss_fake: -1.2647, G/loss_rec: 0.5174, G/loss_cls: 3.2621 +stargan.D0 [data] {'rate': 49.581598799087075, 'task': 'train', 'units': 'items/s'} +stargan.D1 [stdout] Elapsed [0:01:01], Iteration [150/200000], D/loss_real: -4.1687, D/loss_fake: 0.6496, D/loss_cls: 3.2830, D/loss_gp: 0.0196, G/loss_fake: 0.1872, G/loss_rec: 0.5304, G/loss_cls: 6.0083 +stargan.D1 [data] {'rate': 59.518864380067626, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'loss': 4.43005895614624, 'task': 'train'} +stargan.D1 [data] {'loss': 1.0258541107177734, 'task': 'train'} +stargan.D0 [data] {'loss': 1.8267446756362915, 'task': 'train'} +stargan.D0 [data] {'rate': 30.531249426465713, 'task': 'train', 'units': 'items/s'} +stargan.D1 [data] {'loss': 2.104243278503418, 'task': 'train'} +stargan.D0 [data] {'loss': 12.161108016967773, 'task': 'train'} +stargan.D1 [data] {'loss': 2.302819013595581, 'task': 'train'} +stargan.D0 [data] {'loss': 4.781451225280762, 'task': 'train'} +stargan.D1 [data] {'loss': 1.0321542024612427, 'task': 'train'} +stargan.D0 [data] {'loss': 5.923039436340332, 'task': 'train'} +stargan.D1 [data] {'loss': 0.46669667959213257, 'task': 'train'} +stargan.D0 [data] {'rate': 59.099343367511246, 'task': 'train', 'units': 'items/s'} +stargan.D1 [data] {'rate': 48.56102752254567, 'task': 'train', 'units': 'items/s'} +stargan.D1 [data] {'gpudata': {'1': {'load': 1.0, + 'memory': [37249.4375, 81920.0], + 'power': 440.785, + 'temperature': 60}}, + 'task': 'main'} +stargan.D0 [data] {'loss': 5.019904613494873, 'task': 'train'} +stargan.D0 [data] {'gpudata': {'0': {'load': 0.96, + 'memory': [37249.4375, 81920.0], + 'power': 191.33, + 'temperature': 61}}, + 'task': 'main'} +stargan.D1 [data] {'loss': 1.3737903833389282, 'task': 'train'} +stargan.D0 [data] {'loss': 3.3380775451660156, 'task': 'train'} +stargan.D1 [data] {'loss': 1.2577769756317139, 'task': 'train'} +stargan.D1 [data] {'rate': 31.673595176529552, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'loss': 3.6919498443603516, 'task': 'train'} +stargan.D1 [data] {'loss': 1.0547436475753784, 'task': 'train'} +stargan.D0 [data] {'loss': 4.253905296325684, 'task': 'train'} +stargan.D1 [data] {'loss': 0.5914134979248047, 'task': 'train'} +stargan.D0 [data] {'loss': 2.4230833053588867, 'task': 'train'} +stargan.D1 [data] {'loss': 0.6023615002632141, 'task': 'train'} +stargan.D0 [stdout] Elapsed [0:01:04], Iteration [160/200000], D/loss_real: -1.3471, D/loss_fake: -0.2718, D/loss_cls: 3.4030, D/loss_gp: 0.0639, G/loss_fake: 0.8706, G/loss_rec: 0.5198, G/loss_cls: 3.2820 +stargan.D0 [data] {'rate': 49.588115502976706, 'task': 'train', 'units': 'items/s'} +stargan.D1 [stdout] Elapsed [0:01:05], Iteration [160/200000], D/loss_real: -5.0238, D/loss_fake: 1.7855, D/loss_cls: 3.2694, D/loss_gp: 0.0571, G/loss_fake: -1.1051, G/loss_rec: 0.5213, G/loss_cls: 3.6561 +stargan.D1 [data] {'rate': 58.96057459674209, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'loss': 10.039185523986816, 'task': 'train'} +stargan.D1 [data] {'loss': 1.527198076248169, 'task': 'train'} +stargan.D0 [data] {'loss': 6.0921783447265625, 'task': 'train'} +stargan.D0 [data] {'rate': 31.464153447482754, 'task': 'train', 'units': 'items/s'} +stargan.D1 [data] {'loss': 1.5562794208526611, 'task': 'train'} +stargan.D0 [data] {'loss': 5.071992874145508, 'task': 'train'} +stargan.D1 [data] {'loss': 1.5965646505355835, 'task': 'train'} +stargan.D0 [data] {'loss': 2.7736778259277344, 'task': 'train'} +stargan.D1 [data] {'loss': 1.5951406955718994, 'task': 'train'} +stargan.D0 [data] {'loss': 2.8728411197662354, 'task': 'train'} +stargan.D1 [data] {'loss': 1.3130909204483032, 'task': 'train'} +stargan.D0 [data] {'gpudata': {'0': {'load': 1.0, + 'memory': [37249.4375, 81920.0], + 'power': 411.327, + 'temperature': 62}}, + 'task': 'main'} +stargan.D0 [data] {'rate': 59.583600529059176, 'task': 'train', 'units': 'items/s'} +stargan.D1 [data] {'rate': 49.43002668739498, 'task': 'train', 'units': 'items/s'} +stargan.D1 [data] {'gpudata': {'1': {'load': 1.0, + 'memory': [37249.4375, 81920.0], + 'power': 435.363, + 'temperature': 60}}, + 'task': 'main'} +stargan.D0 [data] {'loss': 2.718597650527954, 'task': 'train'} +stargan.D1 [data] {'loss': 2.1472766399383545, 'task': 'train'} +stargan.D0 [data] {'loss': 1.1434322595596313, 'task': 'train'} +stargan.D1 [data] {'loss': 2.1337950229644775, 'task': 'train'} +stargan.D1 [data] {'rate': 31.584784153414756, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'loss': 1.1257877349853516, 'task': 'train'} +stargan.D1 [data] {'loss': 2.006946086883545, 'task': 'train'} +stargan.D0 [data] {'loss': 1.2838565111160278, 'task': 'train'} +stargan.D1 [data] {'loss': 1.9438531398773193, 'task': 'train'} +stargan.D0 [data] {'loss': -0.10892480611801147, 'task': 'train'} +stargan.D1 [data] {'loss': 1.9006925821304321, 'task': 'train'} +stargan.D0 [stdout] Elapsed [0:01:07], Iteration [170/200000], D/loss_real: -3.7368, D/loss_fake: -0.3944, D/loss_cls: 3.1891, D/loss_gp: 0.0833, G/loss_fake: 0.9465, G/loss_rec: 0.5205, G/loss_cls: 5.4315 +stargan.D0 [data] {'rate': 49.76568369036204, 'task': 'train', 'units': 'items/s'} +stargan.D1 [stdout] Elapsed [0:01:08], Iteration [170/200000], D/loss_real: -3.7056, D/loss_fake: 2.3075, D/loss_cls: 3.2629, D/loss_gp: 0.0036, G/loss_fake: -2.3883, G/loss_rec: 0.5440, G/loss_cls: 3.3111 +stargan.D1 [data] {'rate': 59.67308391881362, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'loss': 2.0530691146850586, 'task': 'train'} +stargan.D1 [data] {'loss': 2.4702656269073486, 'task': 'train'} +stargan.D0 [data] {'loss': 3.778801679611206, 'task': 'train'} +stargan.D0 [data] {'rate': 31.407605079894314, 'task': 'train', 'units': 'items/s'} +stargan.D1 [data] {'loss': 2.454594135284424, 'task': 'train'} +stargan.D0 [data] {'loss': 1.776045560836792, 'task': 'train'} +stargan.D1 [data] {'loss': 2.297137975692749, 'task': 'train'} +stargan.D0 [data] {'loss': 1.2212872505187988, 'task': 'train'} +stargan.D1 [data] {'loss': 2.1954355239868164, 'task': 'train'} +stargan.D0 [data] {'loss': -0.08791941404342651, 'task': 'train'} +stargan.D1 [data] {'loss': 2.135706901550293, 'task': 'train'} +stargan.D0 [data] {'gpudata': {'0': {'load': 1.0, + 'memory': [37249.4375, 81920.0], + 'power': 372.754, + 'temperature': 62}}, + 'task': 'main'} +stargan.D0 [data] {'rate': 59.697505278565345, 'task': 'train', 'units': 'items/s'} +stargan.D1 [data] {'rate': 49.632316140045745, 'task': 'train', 'units': 'items/s'} +stargan.D1 [data] {'gpudata': {'1': {'load': 0.99, + 'memory': [37249.4375, 81920.0], + 'power': 478.634, + 'temperature': 59}}, + 'task': 'main'} +stargan.D0 [data] {'loss': 0.47604113817214966, 'task': 'train'} +stargan.D1 [data] {'loss': 2.5031216144561768, 'task': 'train'} +stargan.D0 [data] {'loss': -0.22139911353588104, 'task': 'train'} +stargan.D1 [data] {'loss': 2.465254068374634, 'task': 'train'} +stargan.D1 [data] {'rate': 31.579191702028957, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'loss': -0.4290718734264374, 'task': 'train'} +stargan.D1 [data] {'loss': 2.3812623023986816, 'task': 'train'} +stargan.D0 [data] {'loss': -0.778673529624939, 'task': 'train'} +stargan.D1 [data] {'loss': 2.2978627681732178, 'task': 'train'} +stargan.D0 [data] {'loss': -0.8954766392707825, 'task': 'train'} +stargan.D1 [data] {'loss': 2.2070529460906982, 'task': 'train'} +stargan.D0 [stdout] Elapsed [0:01:11], Iteration [180/200000], D/loss_real: -5.5528, D/loss_fake: 0.7168, D/loss_cls: 3.2029, D/loss_gp: 0.0738, G/loss_fake: -0.5895, G/loss_rec: 0.5188, G/loss_cls: 3.4747 +stargan.D0 [data] {'rate': 49.63427650319213, 'task': 'train', 'units': 'items/s'} +stargan.D1 [stdout] Elapsed [0:01:11], Iteration [180/200000], D/loss_real: -3.8466, D/loss_fake: 2.6622, D/loss_cls: 3.2503, D/loss_gp: 0.0141, G/loss_fake: -2.1656, G/loss_rec: 0.5203, G/loss_cls: 3.3044 +stargan.D1 [data] {'rate': 59.67564533786787, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'loss': -0.3081740438938141, 'task': 'train'} +stargan.D1 [data] {'loss': 2.5542283058166504, 'task': 'train'} +stargan.D0 [data] {'loss': -0.2823235094547272, 'task': 'train'} +stargan.D0 [data] {'rate': 30.352150429749646, 'task': 'train', 'units': 'items/s'} +stargan.D1 [data] {'loss': 2.4962158203125, 'task': 'train'} +stargan.D0 [data] {'loss': -0.2523912191390991, 'task': 'train'} +stargan.D1 [data] {'loss': 2.4540083408355713, 'task': 'train'} +stargan.D0 [data] {'loss': 0.4653049409389496, 'task': 'train'} +stargan.D1 [data] {'loss': 2.4197134971618652, 'task': 'train'} +stargan.D0 [data] {'loss': -0.043198347091674805, 'task': 'train'} +stargan.D1 [data] {'loss': 2.3649215698242188, 'task': 'train'} +stargan.D1 [data] {'gpudata': {'1': {'load': 0.95, + 'memory': [37249.4375, 81920.0], + 'power': 404.125, + 'temperature': 60}}, + 'task': 'main'} +stargan.D0 [data] {'gpudata': {'0': {'load': 0.95, + 'memory': [37249.4375, 81920.0], + 'power': 338.483, + 'temperature': 60}}, + 'task': 'main'} +stargan.D0 [data] {'rate': 58.99085755756849, 'task': 'train', 'units': 'items/s'} +stargan.D1 [data] {'rate': 48.526239573204066, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'loss': 0.01216808706521988, 'task': 'train'} +stargan.D1 [data] {'loss': 2.695486068725586, 'task': 'train'} +stargan.D0 [data] {'loss': -0.06336987018585205, 'task': 'train'} +stargan.D1 [data] {'loss': 2.5670456886291504, 'task': 'train'} +stargan.D0 [data] {'loss': -0.15630030632019043, 'task': 'train'} +stargan.D1 [data] {'loss': 2.4641611576080322, 'task': 'train'} +stargan.D1 [data] {'rate': 39.60854616370856, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'loss': -0.29230356216430664, 'task': 'train'} +stargan.D1 [data] {'loss': 2.365623950958252, 'task': 'train'} +stargan.D0 [data] {'loss': -0.4468396306037903, 'task': 'train'} +stargan.D1 [data] {'loss': 2.2756996154785156, 'task': 'train'} +stargan.D0 [stdout] Elapsed [0:01:14], Iteration [190/200000], D/loss_real: -5.0827, D/loss_fake: 1.1374, D/loss_cls: 3.1855, D/loss_gp: 0.0313, G/loss_fake: -1.0954, G/loss_rec: 0.5242, G/loss_cls: 3.2559 +stargan.D0 [data] {'rate': 49.48916617661824, 'task': 'train', 'units': 'items/s'} +stargan.D1 [stdout] Elapsed [0:01:14], Iteration [190/200000], D/loss_real: -4.0938, D/loss_fake: 3.0788, D/loss_cls: 3.2354, D/loss_gp: 0.0055, G/loss_fake: -2.6099, G/loss_rec: 0.5075, G/loss_cls: 3.2966 +stargan.D1 [data] {'rate': 52.20426607911461, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'loss': 0.3574408292770386, 'task': 'train'} +stargan.D1 [data] {'loss': 2.5148653984069824, 'task': 'train'} +stargan.D0 [data] {'loss': 0.3145390748977661, 'task': 'train'} +stargan.D0 [data] {'rate': 31.447301042365407, 'task': 'train', 'units': 'items/s'} +stargan.D1 [data] {'loss': 2.4128103256225586, 'task': 'train'} +stargan.D0 [data] {'loss': 0.10284045338630676, 'task': 'train'} +stargan.D1 [data] {'loss': 2.3410749435424805, 'task': 'train'} +stargan.D0 [data] {'loss': 0.09530594944953918, 'task': 'train'} +stargan.D1 [data] {'loss': 2.305192470550537, 'task': 'train'} +stargan.D1 [data] {'gpudata': {'1': {'load': 0.95, + 'memory': [37249.4375, 81920.0], + 'power': 372.907, + 'temperature': 59}}, + 'task': 'main'} +stargan.D0 [data] {'loss': 0.09159152209758759, 'task': 'train'} +stargan.D0 [data] {'gpudata': {'0': {'load': 0.95, + 'memory': [37249.4375, 81920.0], + 'power': 321.849, + 'temperature': 60}}, + 'task': 'main'} +stargan.D1 [data] {'loss': 2.3832812309265137, 'task': 'train'} +stargan.D0 [data] {'rate': 58.988396848387104, 'task': 'train', 'units': 'items/s'} +stargan.D1 [data] {'rate': 49.80786519498297, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'loss': 1.4705601930618286, 'task': 'train'} +stargan.D1 [data] {'loss': 2.9193878173828125, 'task': 'train'} +stargan.D0 [data] {'loss': 2.188790798187256, 'task': 'train'} +stargan.D1 [data] {'loss': 2.4689574241638184, 'task': 'train'} +stargan.D1 [data] {'rate': 31.63939005188365, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'loss': 0.7120053172111511, 'task': 'train'} +stargan.D1 [data] {'loss': 2.378248691558838, 'task': 'train'} +stargan.D0 [data] {'loss': 0.5668267011642456, 'task': 'train'} +stargan.D1 [data] {'loss': 2.3605432510375977, 'task': 'train'} +stargan.D0 [data] {'loss': 0.2552018165588379, 'task': 'train'} +stargan.D1 [data] {'loss': 2.295079231262207, 'task': 'train'} +stargan.D0 [stdout] Elapsed [0:01:17], Iteration [200/200000], D/loss_real: -3.4034, D/loss_fake: 0.2293, D/loss_cls: 3.2892, D/loss_gp: 0.0140, G/loss_fake: 0.6918, G/loss_rec: 0.5262, G/loss_cls: 3.2448 +stargan.D0 [data] {'rate': 49.2532622408791, 'task': 'train', 'units': 'items/s'} +stargan.D1 [stdout] Elapsed [0:01:17], Iteration [200/200000], D/loss_real: -4.2044, D/loss_fake: 3.2083, D/loss_cls: 3.2269, D/loss_gp: 0.0064, G/loss_fake: -2.9743, G/loss_rec: 0.5022, G/loss_cls: 3.2982 +stargan.D1 [data] {'rate': 58.36879699837295, 'task': 'train', 'units': 'items/s'} +stargan.D1 [data] {'gpudata': {'1': {'load': 1.0, + 'memory': [37249.4375, 81920.0], + 'power': 456.844, + 'temperature': 60}}, + 'task': 'main'} +stargan.D0 [data] {'loss': 0.9877324104309082, 'task': 'train'} +stargan.D0 [data] {'loss': 1.0904085636138916, 'task': 'train'} +stargan.D0 [data] {'rate': 31.261323071022503, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'loss': 0.8475162386894226, 'task': 'train'} +stargan.D1 [end] voir --config /Tmp/slurm.4112514.0/base/extra/stargan/voirconf-stargan.D1-0efae956f1553a76c1e03985181900f5.json /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/stargan/main.py --image_size 512 --c_dim 5 --batch_size 16 [at 2024-02-05 09:49:22.319947] +stargan.D0 [data] {'loss': 0.3615033030509949, 'task': 'train'} +stargan.D0 [data] {'gpudata': {'0': {'load': 0.95, + 'memory': [37249.4375, 81920.0], + 'power': 190.866, + 'temperature': 59}}, + 'task': 'main'} +stargan.D0 [data] {'loss': 0.24729645252227783, 'task': 'train'} +stargan.D0 [data] {'rate': 57.97210364015004, 'task': 'train', 'units': 'items/s'} +stargan.D0 [data] {'gpudata': {'0': {'load': 1.0, + 'memory': [37249.4375, 81920.0], + 'power': 434.012, + 'temperature': 62}}, + 'task': 'main'} +stargan.D0 [end] voir --config /Tmp/slurm.4112514.0/base/extra/stargan/voirconf-stargan.D0-0efae956f1553a76c1e03985181900f5.json /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/stargan/main.py --image_size 512 --c_dim 5 --batch_size 16 [at 2024-02-05 09:49:23.847147] +super-slomo.D0 [config.dirs.base] /Tmp/slurm.4112514.0/base +super-slomo.D0 [config.dirs.venv] /Tmp/slurm.4112514.0/base/venv/torch +super-slomo.D0 [config.dirs.data] /Tmp/slurm.4112514.0/base/data +super-slomo.D0 [config.dirs.runs] /Tmp/slurm.4112514.0/base/runs +super-slomo.D0 [config.dirs.extra] /Tmp/slurm.4112514.0/base/extra/super-slomo +super-slomo.D0 [config.dirs.cache] /Tmp/slurm.4112514.0/base/cache +super-slomo.D0 [config.arch] cuda +super-slomo.D0 [config.group] super-slomo +super-slomo.D0 [config.install_group] torch +super-slomo.D0 [config.install_variant] cuda +super-slomo.D0 [config.run_name] jenadogo.2024-02-05_09:17:41.183394 +super-slomo.D0 [config.enabled] True +super-slomo.D0 [config.capabilities.nodes] 1 +super-slomo.D0 [config.max_duration] 600 +super-slomo.D0 [config.voir.options.stop] 60 +super-slomo.D0 [config.voir.options.interval] 1s +super-slomo.D0 [config.config_base] /Tmp/slurm.4112514.0/milabench/config +super-slomo.D0 [config.config_file] /Tmp/slurm.4112514.0/milabench/config/standard.yaml +super-slomo.D0 [config.tags] ['convnet', 'unet', 'video-interpolation', 'vision'] +super-slomo.D0 [config.definition] /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo +super-slomo.D0 [config.plan.method] per_gpu +super-slomo.D0 [config.argv.--train_batch_size] 32 +super-slomo.D0 [config.weight] 1.0 +super-slomo.D0 [config.name] super-slomo +super-slomo.D0 [config.tag] ['super-slomo', 'D0'] +super-slomo.D0 [config.device] 0 +super-slomo.D0 [config.devices] ['0'] +super-slomo.D0 [config.env.CUDA_VISIBLE_DEVICES] 0 +super-slomo.D1 [config.dirs.base] /Tmp/slurm.4112514.0/base +super-slomo.D1 [config.dirs.venv] /Tmp/slurm.4112514.0/base/venv/torch +super-slomo.D1 [config.dirs.data] /Tmp/slurm.4112514.0/base/data +super-slomo.D1 [config.dirs.runs] /Tmp/slurm.4112514.0/base/runs +super-slomo.D1 [config.dirs.extra] /Tmp/slurm.4112514.0/base/extra/super-slomo +super-slomo.D1 [config.dirs.cache] /Tmp/slurm.4112514.0/base/cache +super-slomo.D1 [config.arch] cuda +super-slomo.D1 [config.group] super-slomo +super-slomo.D1 [config.install_group] torch +super-slomo.D1 [config.install_variant] cuda +super-slomo.D1 [config.run_name] jenadogo.2024-02-05_09:17:41.183394 +super-slomo.D1 [config.enabled] True +super-slomo.D1 [config.capabilities.nodes] 1 +super-slomo.D1 [config.max_duration] 600 +super-slomo.D1 [config.voir.options.stop] 60 +super-slomo.D1 [config.voir.options.interval] 1s +super-slomo.D1 [config.config_base] /Tmp/slurm.4112514.0/milabench/config +super-slomo.D1 [config.config_file] /Tmp/slurm.4112514.0/milabench/config/standard.yaml +super-slomo.D1 [config.tags] ['convnet', 'unet', 'video-interpolation', 'vision'] +super-slomo.D1 [config.definition] /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo +super-slomo.D1 [config.plan.method] per_gpu +super-slomo.D1 [config.argv.--train_batch_size] 32 +super-slomo.D1 [config.weight] 1.0 +super-slomo.D1 [config.name] super-slomo +super-slomo.D1 [config.tag] ['super-slomo', 'D1'] +super-slomo.D1 [config.device] 1 +super-slomo.D1 [config.devices] ['1'] +super-slomo.D1 [config.env.CUDA_VISIBLE_DEVICES] 1 +super-slomo.D0 [start] voir --config /Tmp/slurm.4112514.0/base/extra/super-slomo/voirconf-super-slomo.D0-0efae956f1553a76c1e03985181900f5.json /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/slomo/train.py --train_batch_size 32 [at 2024-02-05 09:49:23.854468] +super-slomo.D1 [start] voir --config /Tmp/slurm.4112514.0/base/extra/super-slomo/voirconf-super-slomo.D1-0efae956f1553a76c1e03985181900f5.json /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/slomo/train.py --train_batch_size 32 [at 2024-02-05 09:49:23.857624] +super-slomo.D1 [stderr] /Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torchvision/models/_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead. +super-slomo.D1 [stderr] warnings.warn( +super-slomo.D1 [stderr] /Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torchvision/models/_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing `weights=VGG16_Weights.IMAGENET1K_V1`. You can also use `weights=VGG16_Weights.DEFAULT` to get the most up-to-date weights. +super-slomo.D1 [stderr] warnings.warn(msg) +super-slomo.D0 [stderr] /Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torchvision/models/_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead. +super-slomo.D0 [stderr] warnings.warn( +super-slomo.D0 [stderr] /Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torchvision/models/_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing `weights=VGG16_Weights.IMAGENET1K_V1`. You can also use `weights=VGG16_Weights.DEFAULT` to get the most up-to-date weights. +super-slomo.D0 [stderr] warnings.warn(msg) +super-slomo.D1 [stdout] Epoch: 0 +super-slomo.D1 [stderr] /Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torch/optim/lr_scheduler.py:143: UserWarning: Detected call of `lr_scheduler.step()` before `optimizer.step()`. In PyTorch 1.1.0 and later, you should call them in the opposite order: `optimizer.step()` before `lr_scheduler.step()`. Failure to do this will result in PyTorch skipping the first value of the learning rate schedule. See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate +super-slomo.D1 [stderr] warnings.warn("Detected call of `lr_scheduler.step()` before `optimizer.step()`. " +super-slomo.D1 [data] {'gpudata': {'1': {'load': 0, + 'memory': [1279.4375, 81920.0], + 'power': 78.541, + 'temperature': 39}}, + 'task': 'main'} +super-slomo.D1 [stderr] /Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torch/nn/functional.py:4316: UserWarning: Default grid_sample and affine_grid behavior has changed to align_corners=False since 1.3.0. Please specify align_corners=True if the old behavior is desired. See the documentation of grid_sample for details. +super-slomo.D1 [stderr] warnings.warn( +super-slomo.D1 [data] {'loss': 328.1830749511719, 'task': 'train'} +super-slomo.D0 [stdout] Epoch: 0 +super-slomo.D0 [stderr] /Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torch/optim/lr_scheduler.py:143: UserWarning: Detected call of `lr_scheduler.step()` before `optimizer.step()`. In PyTorch 1.1.0 and later, you should call them in the opposite order: `optimizer.step()` before `lr_scheduler.step()`. Failure to do this will result in PyTorch skipping the first value of the learning rate schedule. See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate +super-slomo.D0 [stderr] warnings.warn("Detected call of `lr_scheduler.step()` before `optimizer.step()`. " +super-slomo.D0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [1279.4375, 81920.0], + 'power': 83.84, + 'temperature': 44}}, + 'task': 'main'} +super-slomo.D1 [data] {'loss': 328.1575622558594, 'task': 'train'} +super-slomo.D0 [stderr] /Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torch/nn/functional.py:4316: UserWarning: Default grid_sample and affine_grid behavior has changed to align_corners=False since 1.3.0. Please specify align_corners=True if the old behavior is desired. See the documentation of grid_sample for details. +super-slomo.D0 [stderr] warnings.warn( +super-slomo.D0 [data] {'loss': 328.1808776855469, 'task': 'train'} +super-slomo.D0 [data] {'gpudata': {'0': {'load': 0.63, + 'memory': [25463.4375, 81920.0], + 'power': 225.187, + 'temperature': 46}}, + 'task': 'main'} +super-slomo.D1 [data] {'gpudata': {'1': {'load': 0.32, + 'memory': [33623.4375, 81920.0], + 'power': 307.355, + 'temperature': 48}}, + 'task': 'main'} +super-slomo.D1 [data] {'loss': 328.1372985839844, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.1506652832031, 'task': 'train'} +super-slomo.D1 [data] {'loss': 328.12249755859375, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.1282043457031, 'task': 'train'} +super-slomo.D1 [data] {'loss': 328.1156005859375, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.1103820800781, 'task': 'train'} +super-slomo.D1 [data] {'loss': 328.1140441894531, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.09625244140625, 'task': 'train'} +super-slomo.D0 [data] {'gpudata': {'0': {'load': 1.0, + 'memory': [33623.4375, 81920.0], + 'power': 163.864, + 'temperature': 57}}, + 'task': 'main'} +super-slomo.D1 [data] {'loss': 328.1138000488281, 'task': 'train'} +super-slomo.D1 [data] {'gpudata': {'1': {'load': 1.0, + 'memory': [33623.4375, 81920.0], + 'power': 267.289, + 'temperature': 52}}, + 'task': 'main'} +super-slomo.D0 [data] {'loss': 328.08685302734375, 'task': 'train'} +super-slomo.D1 [data] {'loss': 328.11358642578125, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.08148193359375, 'task': 'train'} +super-slomo.D1 [data] {'loss': 328.1134338378906, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0789794921875, 'task': 'train'} +super-slomo.D1 [data] {'loss': 328.1131286621094, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0780334472656, 'task': 'train'} +super-slomo.D1 [data] {'loss': 328.11273193359375, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0777587890625, 'task': 'train'} +super-slomo.D1 [data] {'rate': 42.223251422772165, 'task': 'train', 'units': 'items/s'} +super-slomo.D0 [data] {'gpudata': {'0': {'load': 1.0, + 'memory': [33623.4375, 81920.0], + 'power': 442.35, + 'temperature': 56}}, + 'task': 'main'} +super-slomo.D1 [data] {'loss': 328.11224365234375, 'task': 'train'} +super-slomo.D1 [data] {'gpudata': {'1': {'load': 1.0, + 'memory': [33623.4375, 81920.0], + 'power': 404.413, + 'temperature': 51}}, + 'task': 'main'} +super-slomo.D0 [data] {'loss': 328.0776672363281, 'task': 'train'} +super-slomo.D0 [data] {'rate': 38.79726076499047, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.1116943359375, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0775451660156, 'task': 'train'} +super-slomo.D1 [data] {'rate': 43.00943182458634, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.1109924316406, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.077392578125, 'task': 'train'} +super-slomo.D0 [data] {'rate': 43.4802238008101, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.1100158691406, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0771484375, 'task': 'train'} +super-slomo.D1 [data] {'rate': 42.19576861214756, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.1089172363281, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0767822265625, 'task': 'train'} +super-slomo.D1 [data] {'gpudata': {'1': {'load': 0.99, + 'memory': [33623.4375, 81920.0], + 'power': 295.207, + 'temperature': 53}}, + 'task': 'main'} +super-slomo.D0 [data] {'gpudata': {'0': {'load': 0.9, + 'memory': [33623.4375, 81920.0], + 'power': 407.288, + 'temperature': 57}}, + 'task': 'main'} +super-slomo.D0 [data] {'rate': 42.81730439466763, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.10870361328125, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0762939453125, 'task': 'train'} +super-slomo.D1 [data] {'rate': 41.96262631077533, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.1079406738281, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.075439453125, 'task': 'train'} +super-slomo.D0 [data] {'rate': 42.923366857522396, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.1075134277344, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0742492675781, 'task': 'train'} +super-slomo.D1 [data] {'rate': 42.67097532572921, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.107177734375, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0732727050781, 'task': 'train'} +super-slomo.D0 [data] {'rate': 42.908459152243736, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.1068115234375, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.07171630859375, 'task': 'train'} +super-slomo.D1 [data] {'gpudata': {'1': {'load': 1.0, + 'memory': [33623.4375, 81920.0], + 'power': 366.435, + 'temperature': 56}}, + 'task': 'main'} +super-slomo.D1 [data] {'rate': 42.174428610396426, 'task': 'train', 'units': 'items/s'} +super-slomo.D0 [data] {'gpudata': {'0': {'load': 0.9, + 'memory': [33623.4375, 81920.0], + 'power': 369.723, + 'temperature': 58}}, + 'task': 'main'} +super-slomo.D1 [data] {'loss': 328.1065368652344, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0705261230469, 'task': 'train'} +super-slomo.D0 [data] {'rate': 42.99635575720326, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.106201171875, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0693359375, 'task': 'train'} +super-slomo.D1 [data] {'rate': 42.12282491183487, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.1058349609375, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0682373046875, 'task': 'train'} +super-slomo.D0 [data] {'rate': 42.77231474031326, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.10546875, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0671691894531, 'task': 'train'} +super-slomo.D1 [data] {'rate': 42.645000930803775, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.1051940917969, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.06671142578125, 'task': 'train'} +super-slomo.D0 [data] {'gpudata': {'0': {'load': 1.0, + 'memory': [33623.4375, 81920.0], + 'power': 293.145, + 'temperature': 57}}, + 'task': 'main'} +super-slomo.D1 [data] {'gpudata': {'1': {'load': 0.88, + 'memory': [33623.4375, 81920.0], + 'power': 425.918, + 'temperature': 56}}, + 'task': 'main'} +super-slomo.D0 [data] {'rate': 42.73260307320863, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.1050109863281, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0676574707031, 'task': 'train'} +super-slomo.D1 [data] {'rate': 42.90648494130909, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.1045837402344, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.06634521484375, 'task': 'train'} +super-slomo.D0 [data] {'rate': 42.8775920325925, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.1043395996094, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.06573486328125, 'task': 'train'} +super-slomo.D1 [data] {'rate': 42.88650960519841, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.1040954589844, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0654602050781, 'task': 'train'} +super-slomo.D0 [data] {'rate': 42.97861565938056, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.1038513183594, 'task': 'train'} +super-slomo.D1 [data] {'gpudata': {'1': {'load': 0.89, + 'memory': [33623.4375, 81920.0], + 'power': 288.775, + 'temperature': 54}}, + 'task': 'main'} +super-slomo.D0 [data] {'loss': 328.0655517578125, 'task': 'train'} +super-slomo.D0 [data] {'gpudata': {'0': {'load': 1.0, + 'memory': [33623.4375, 81920.0], + 'power': 399.771, + 'temperature': 55}}, + 'task': 'main'} +super-slomo.D1 [data] {'rate': 41.79188462146644, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.1035461425781, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.06488037109375, 'task': 'train'} +super-slomo.D0 [data] {'rate': 43.03043807253124, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.1033630371094, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0646057128906, 'task': 'train'} +super-slomo.D1 [data] {'rate': 42.311999587881125, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.10302734375, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0643310546875, 'task': 'train'} +super-slomo.D0 [data] {'rate': 42.947213296283294, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.1028137207031, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0648498535156, 'task': 'train'} +super-slomo.D1 [data] {'rate': 42.236329128286826, 'task': 'train', 'units': 'items/s'} +super-slomo.D0 [data] {'gpudata': {'0': {'load': 1.0, + 'memory': [33623.4375, 81920.0], + 'power': 255.879, + 'temperature': 57}}, + 'task': 'main'} +super-slomo.D1 [data] {'loss': 328.1025695800781, 'task': 'train'} +super-slomo.D1 [data] {'gpudata': {'1': {'load': 1.0, + 'memory': [33623.4375, 81920.0], + 'power': 410.598, + 'temperature': 55}}, + 'task': 'main'} +super-slomo.D0 [data] {'loss': 328.0643310546875, 'task': 'train'} +super-slomo.D0 [data] {'rate': 42.16959426109774, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.1023864746094, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.06439208984375, 'task': 'train'} +super-slomo.D1 [data] {'rate': 41.50958305411328, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.10211181640625, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.06414794921875, 'task': 'train'} +super-slomo.D0 [data] {'rate': 42.17600549911848, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.1018371582031, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0637512207031, 'task': 'train'} +super-slomo.D1 [data] {'rate': 41.597193206509935, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.1014709472656, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0636901855469, 'task': 'train'} +super-slomo.D1 [data] {'gpudata': {'1': {'load': 1.0, + 'memory': [33623.4375, 81920.0], + 'power': 379.03, + 'temperature': 57}}, + 'task': 'main'} +super-slomo.D0 [data] {'gpudata': {'0': {'load': 1.0, + 'memory': [33623.4375, 81920.0], + 'power': 445.921, + 'temperature': 59}}, + 'task': 'main'} +super-slomo.D0 [data] {'rate': 42.5152107632783, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.1010437011719, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0632629394531, 'task': 'train'} +super-slomo.D1 [data] {'rate': 40.74037809950712, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.10064697265625, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.06298828125, 'task': 'train'} +super-slomo.D0 [data] {'rate': 42.983245404287985, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.1002502441406, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0628356933594, 'task': 'train'} +super-slomo.D1 [data] {'rate': 41.686302787906655, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.09954833984375, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0625915527344, 'task': 'train'} +super-slomo.D0 [data] {'rate': 42.96517192478301, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.1037292480469, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.06231689453125, 'task': 'train'} +super-slomo.D1 [data] {'gpudata': {'1': {'load': 0.88, + 'memory': [33623.4375, 81920.0], + 'power': 383.69, + 'temperature': 56}}, + 'task': 'main'} +super-slomo.D1 [data] {'rate': 42.92308882732098, 'task': 'train', 'units': 'items/s'} +super-slomo.D0 [data] {'gpudata': {'0': {'load': 0.87, + 'memory': [33623.4375, 81920.0], + 'power': 399.138, + 'temperature': 59}}, + 'task': 'main'} +super-slomo.D1 [data] {'loss': 328.0997619628906, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0622863769531, 'task': 'train'} +super-slomo.D0 [data] {'rate': 43.14095789762292, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.1002502441406, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0620422363281, 'task': 'train'} +super-slomo.D1 [data] {'rate': 42.9191141780514, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.1004638671875, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0616455078125, 'task': 'train'} +super-slomo.D0 [data] {'rate': 42.871474733729194, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.1006164550781, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0614318847656, 'task': 'train'} +super-slomo.D1 [data] {'rate': 42.35843739239985, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.1006164550781, 'task': 'train'} +super-slomo.D1 [data] {'gpudata': {'1': {'load': 0.87, + 'memory': [33623.4375, 81920.0], + 'power': 276.07, + 'temperature': 55}}, + 'task': 'main'} +super-slomo.D0 [data] {'loss': 328.0611572265625, 'task': 'train'} +super-slomo.D0 [data] {'gpudata': {'0': {'load': 0.88, + 'memory': [33623.4375, 81920.0], + 'power': 324.414, + 'temperature': 57}}, + 'task': 'main'} +super-slomo.D0 [data] {'rate': 42.66998570883504, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.1005859375, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0608215332031, 'task': 'train'} +super-slomo.D1 [data] {'rate': 42.38928702596212, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.10052490234375, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0605773925781, 'task': 'train'} +super-slomo.D0 [data] {'rate': 42.98155633949571, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.1004333496094, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.060302734375, 'task': 'train'} +super-slomo.D1 [data] {'rate': 42.905077137174494, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.10028076171875, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.06011962890625, 'task': 'train'} +super-slomo.D0 [data] {'rate': 42.511847163373254, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.1001281738281, 'task': 'train'} +super-slomo.D1 [data] {'gpudata': {'1': {'load': 1.0, + 'memory': [33623.4375, 81920.0], + 'power': 303.693, + 'temperature': 55}}, + 'task': 'main'} +super-slomo.D0 [data] {'loss': 328.0599060058594, 'task': 'train'} +super-slomo.D0 [data] {'gpudata': {'0': {'load': 1.0, + 'memory': [33623.4375, 81920.0], + 'power': 308.786, + 'temperature': 57}}, + 'task': 'main'} +super-slomo.D1 [data] {'rate': 42.4743053514844, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.09991455078125, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0594787597656, 'task': 'train'} +super-slomo.D0 [data] {'rate': 42.86994258757482, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.09967041015625, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.05889892578125, 'task': 'train'} +super-slomo.D1 [data] {'rate': 42.472249463395805, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.0992736816406, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0585021972656, 'task': 'train'} +super-slomo.D0 [data] {'rate': 42.49725354692752, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.0985107421875, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0582580566406, 'task': 'train'} +super-slomo.D1 [data] {'rate': 42.969217020103905, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'gpudata': {'1': {'load': 1.0, + 'memory': [33623.4375, 81920.0], + 'power': 416.345, + 'temperature': 57}}, + 'task': 'main'} +super-slomo.D1 [data] {'loss': 328.098876953125, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.05804443359375, 'task': 'train'} +super-slomo.D0 [data] {'gpudata': {'0': {'load': 1.0, + 'memory': [33623.4375, 81920.0], + 'power': 417.001, + 'temperature': 59}}, + 'task': 'main'} +super-slomo.D0 [data] {'rate': 43.405046110604715, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.09783935546875, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0578308105469, 'task': 'train'} +super-slomo.D1 [data] {'rate': 42.97217003289474, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.09771728515625, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0574035644531, 'task': 'train'} +super-slomo.D0 [data] {'rate': 43.12103275886802, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.09765625, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0569152832031, 'task': 'train'} +super-slomo.D1 [data] {'rate': 42.89614471174207, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.09722900390625, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0567932128906, 'task': 'train'} +super-slomo.D1 [data] {'gpudata': {'1': {'load': 1.0, + 'memory': [33623.4375, 81920.0], + 'power': 185.48, + 'temperature': 55}}, + 'task': 'main'} +super-slomo.D0 [data] {'gpudata': {'0': {'load': 1.0, + 'memory': [33623.4375, 81920.0], + 'power': 411.236, + 'temperature': 59}}, + 'task': 'main'} +super-slomo.D0 [data] {'rate': 43.387751102702914, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.09661865234375, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.05706787109375, 'task': 'train'} +super-slomo.D1 [data] {'rate': 42.85993201505348, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.0962219238281, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0559387207031, 'task': 'train'} +super-slomo.D0 [data] {'rate': 42.26819143557929, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.0956726074219, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0567932128906, 'task': 'train'} +super-slomo.D1 [data] {'rate': 42.72829128840763, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.0948486328125, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.05535888671875, 'task': 'train'} +super-slomo.D0 [data] {'rate': 43.164368089315126, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.09417724609375, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0556640625, 'task': 'train'} +super-slomo.D1 [data] {'gpudata': {'1': {'load': 1.0, + 'memory': [33623.4375, 81920.0], + 'power': 418.793, + 'temperature': 57}}, + 'task': 'main'} +super-slomo.D1 [data] {'rate': 42.720005897710415, 'task': 'train', 'units': 'items/s'} +super-slomo.D0 [data] {'gpudata': {'0': {'load': 1.0, + 'memory': [33623.4375, 81920.0], + 'power': 376.441, + 'temperature': 60}}, + 'task': 'main'} +super-slomo.D1 [data] {'loss': 328.09375, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0544128417969, 'task': 'train'} +super-slomo.D0 [data] {'rate': 41.81135303002456, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.0930480957031, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0548400878906, 'task': 'train'} +super-slomo.D1 [data] {'rate': 42.72014987349979, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.0914001464844, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.05328369140625, 'task': 'train'} +super-slomo.D0 [data] {'rate': 42.804093660991015, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.0916748046875, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.05352783203125, 'task': 'train'} +super-slomo.D1 [data] {'rate': 42.93893869832614, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.0895690917969, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0526428222656, 'task': 'train'} +super-slomo.D1 [data] {'gpudata': {'1': {'load': 0.88, + 'memory': [33623.4375, 81920.0], + 'power': 297.28, + 'temperature': 57}}, + 'task': 'main'} +super-slomo.D0 [data] {'gpudata': {'0': {'load': 0.89, + 'memory': [33623.4375, 81920.0], + 'power': 443.534, + 'temperature': 60}}, + 'task': 'main'} +super-slomo.D0 [data] {'rate': 42.36072864511957, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.0887756347656, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0525207519531, 'task': 'train'} +super-slomo.D1 [data] {'rate': 42.9028110608252, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.0867614746094, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0517578125, 'task': 'train'} +super-slomo.D0 [data] {'rate': 42.7445884556233, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.0846862792969, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.051513671875, 'task': 'train'} +super-slomo.D1 [data] {'rate': 42.9378598133529, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.0829162597656, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0505065917969, 'task': 'train'} +super-slomo.D0 [data] {'rate': 42.942775832436475, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.08135986328125, 'task': 'train'} +super-slomo.D1 [data] {'gpudata': {'1': {'load': 0.75, + 'memory': [33623.4375, 81920.0], + 'power': 317.851, + 'temperature': 56}}, + 'task': 'main'} +super-slomo.D0 [data] {'loss': 328.05035400390625, 'task': 'train'} +super-slomo.D0 [data] {'gpudata': {'0': {'load': 0.91, + 'memory': [33623.4375, 81920.0], + 'power': 388.218, + 'temperature': 58}}, + 'task': 'main'} +super-slomo.D1 [data] {'rate': 42.16716666692011, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.07977294921875, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.04974365234375, 'task': 'train'} +super-slomo.D0 [data] {'rate': 42.44379503463226, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.0782165527344, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0492248535156, 'task': 'train'} +super-slomo.D1 [data] {'rate': 41.32730294455212, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.07427978515625, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0486145019531, 'task': 'train'} +super-slomo.D0 [data] {'rate': 43.51366606548073, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.0722961425781, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.04791259765625, 'task': 'train'} +super-slomo.D1 [data] {'rate': 42.226784983223894, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.0682067871094, 'task': 'train'} +super-slomo.D1 [data] {'gpudata': {'1': {'load': 1.0, + 'memory': [33623.4375, 81920.0], + 'power': 419.158, + 'temperature': 57}}, + 'task': 'main'} +super-slomo.D0 [data] {'loss': 328.0473937988281, 'task': 'train'} +super-slomo.D0 [data] {'gpudata': {'0': {'load': 1.0, + 'memory': [33623.4375, 81920.0], + 'power': 161.977, + 'temperature': 58}}, + 'task': 'main'} +super-slomo.D0 [data] {'rate': 42.54857963636719, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.0652160644531, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0467224121094, 'task': 'train'} +super-slomo.D1 [data] {'rate': 42.844742785241884, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.0614318847656, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.046142578125, 'task': 'train'} +super-slomo.D0 [data] {'rate': 43.53290833270459, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.0570983886719, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0453186035156, 'task': 'train'} +super-slomo.D1 [data] {'rate': 42.75678942742178, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.0522766113281, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0447692871094, 'task': 'train'} +super-slomo.D1 [data] {'gpudata': {'1': {'load': 1.0, + 'memory': [33623.4375, 81920.0], + 'power': 353.354, + 'temperature': 55}}, + 'task': 'main'} +super-slomo.D0 [data] {'rate': 42.95616046019493, 'task': 'train', 'units': 'items/s'} +super-slomo.D0 [data] {'gpudata': {'0': {'load': 1.0, + 'memory': [33623.4375, 81920.0], + 'power': 415.698, + 'temperature': 60}}, + 'task': 'main'} +super-slomo.D1 [data] {'loss': 328.0467224121094, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0439147949219, 'task': 'train'} +super-slomo.D1 [data] {'rate': 42.76593481199916, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.04095458984375, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.043212890625, 'task': 'train'} +super-slomo.D0 [data] {'rate': 42.99340204778447, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.0346374511719, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.04248046875, 'task': 'train'} +super-slomo.D1 [data] {'rate': 42.82768683451572, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.0284729003906, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0415344238281, 'task': 'train'} +super-slomo.D0 [data] {'rate': 43.043351084142294, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.02099609375, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0408630371094, 'task': 'train'} +super-slomo.D1 [data] {'gpudata': {'1': {'load': 1.0, + 'memory': [33623.4375, 81920.0], + 'power': 391.734, + 'temperature': 58}}, + 'task': 'main'} +super-slomo.D1 [data] {'rate': 42.91939684829752, 'task': 'train', 'units': 'items/s'} +super-slomo.D0 [data] {'gpudata': {'0': {'load': 1.0, + 'memory': [33623.4375, 81920.0], + 'power': 399.549, + 'temperature': 58}}, + 'task': 'main'} +super-slomo.D1 [data] {'loss': 328.01324462890625, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0400085449219, 'task': 'train'} +super-slomo.D0 [data] {'rate': 43.518287642417846, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 328.005126953125, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0389404296875, 'task': 'train'} +super-slomo.D1 [data] {'rate': 43.05641511596151, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 327.9964904785156, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.03814697265625, 'task': 'train'} +super-slomo.D0 [data] {'rate': 43.287178969446785, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 327.9867858886719, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0372314453125, 'task': 'train'} +super-slomo.D1 [data] {'rate': 42.98713738069286, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 327.9784240722656, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0361022949219, 'task': 'train'} +super-slomo.D1 [data] {'gpudata': {'1': {'load': 1.0, + 'memory': [33623.4375, 81920.0], + 'power': 433.772, + 'temperature': 58}}, + 'task': 'main'} +super-slomo.D0 [data] {'gpudata': {'0': {'load': 1.0, + 'memory': [33623.4375, 81920.0], + 'power': 381.362, + 'temperature': 61}}, + 'task': 'main'} +super-slomo.D0 [data] {'rate': 43.53866396289749, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 327.9691162109375, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0350341796875, 'task': 'train'} +super-slomo.D1 [data] {'rate': 42.91796543135994, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 327.95867919921875, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0339660644531, 'task': 'train'} +super-slomo.D0 [data] {'rate': 43.37799943116125, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 327.94573974609375, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.03277587890625, 'task': 'train'} +super-slomo.D1 [data] {'rate': 42.86951340067263, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 327.93817138671875, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.031494140625, 'task': 'train'} +super-slomo.D0 [data] {'rate': 43.340955427253995, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 327.92431640625, 'task': 'train'} +super-slomo.D1 [data] {'gpudata': {'1': {'load': 0.88, + 'memory': [33623.4375, 81920.0], + 'power': 307.178, + 'temperature': 56}}, + 'task': 'main'} +super-slomo.D0 [data] {'loss': 328.03021240234375, 'task': 'train'} +super-slomo.D1 [data] {'rate': 42.9652786184259, 'task': 'train', 'units': 'items/s'} +super-slomo.D0 [data] {'gpudata': {'0': {'load': 0.87, + 'memory': [33623.4375, 81920.0], + 'power': 439.994, + 'temperature': 60}}, + 'task': 'main'} +super-slomo.D1 [data] {'loss': 327.9130859375, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0287780761719, 'task': 'train'} +super-slomo.D0 [data] {'rate': 42.89125781684294, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 327.89923095703125, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0271911621094, 'task': 'train'} +super-slomo.D1 [data] {'rate': 42.806390692612894, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 327.8857421875, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.02557373046875, 'task': 'train'} +super-slomo.D0 [data] {'rate': 42.60793166127688, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 327.8737487792969, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0238342285156, 'task': 'train'} +super-slomo.D1 [data] {'rate': 42.80056234802858, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 327.8575439453125, 'task': 'train'} +super-slomo.D1 [data] {'gpudata': {'1': {'load': 0.88, + 'memory': [33623.4375, 81920.0], + 'power': 311.92, + 'temperature': 55}}, + 'task': 'main'} +super-slomo.D0 [data] {'loss': 328.0219421386719, 'task': 'train'} +super-slomo.D0 [data] {'gpudata': {'0': {'load': 0.89, + 'memory': [33623.4375, 81920.0], + 'power': 328.073, + 'temperature': 59}}, + 'task': 'main'} +super-slomo.D0 [data] {'rate': 43.06844869291004, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 327.8467102050781, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.01995849609375, 'task': 'train'} +super-slomo.D1 [data] {'rate': 42.8794871090212, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 327.8307189941406, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.017578125, 'task': 'train'} +super-slomo.D0 [data] {'rate': 42.510999859042165, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 327.814697265625, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0150146484375, 'task': 'train'} +super-slomo.D1 [data] {'rate': 43.0790384068286, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 327.802001953125, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0122985839844, 'task': 'train'} +super-slomo.D0 [data] {'rate': 41.24031574446626, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 327.7815856933594, 'task': 'train'} +super-slomo.D1 [data] {'gpudata': {'1': {'load': 1.0, + 'memory': [33623.4375, 81920.0], + 'power': 435.075, + 'temperature': 57}}, + 'task': 'main'} +super-slomo.D0 [data] {'loss': 328.0094299316406, 'task': 'train'} +super-slomo.D0 [data] {'gpudata': {'0': {'load': 1.0, + 'memory': [33623.4375, 81920.0], + 'power': 230.817, + 'temperature': 58}}, + 'task': 'main'} +super-slomo.D1 [data] {'rate': 42.502253894524024, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 327.7676696777344, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0064697265625, 'task': 'train'} +super-slomo.D0 [data] {'rate': 42.84492523460464, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 327.749267578125, 'task': 'train'} +super-slomo.D0 [data] {'loss': 328.0031433105469, 'task': 'train'} +super-slomo.D1 [data] {'rate': 42.8229542053422, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 327.73223876953125, 'task': 'train'} +super-slomo.D0 [data] {'loss': 327.99951171875, 'task': 'train'} +super-slomo.D0 [data] {'rate': 42.44515944302966, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 327.7157897949219, 'task': 'train'} +super-slomo.D0 [data] {'loss': 327.9956970214844, 'task': 'train'} +super-slomo.D1 [data] {'gpudata': {'1': {'load': 1.0, + 'memory': [33623.4375, 81920.0], + 'power': 232.981, + 'temperature': 55}}, + 'task': 'main'} +super-slomo.D1 [data] {'rate': 42.90461175343307, 'task': 'train', 'units': 'items/s'} +super-slomo.D0 [data] {'gpudata': {'0': {'load': 1.0, + 'memory': [33623.4375, 81920.0], + 'power': 363.17, + 'temperature': 60}}, + 'task': 'main'} +super-slomo.D1 [data] {'loss': 327.6958312988281, 'task': 'train'} +super-slomo.D0 [data] {'loss': 327.99163818359375, 'task': 'train'} +super-slomo.D0 [data] {'rate': 43.274375881872615, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 327.68048095703125, 'task': 'train'} +super-slomo.D0 [data] {'loss': 327.9873962402344, 'task': 'train'} +super-slomo.D1 [data] {'rate': 42.33385334937904, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 327.661376953125, 'task': 'train'} +super-slomo.D0 [data] {'loss': 327.9829406738281, 'task': 'train'} +super-slomo.D0 [data] {'rate': 42.076573606046885, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 327.63995361328125, 'task': 'train'} +super-slomo.D0 [data] {'loss': 327.978271484375, 'task': 'train'} +super-slomo.D1 [data] {'rate': 41.21628576652275, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 327.6248474121094, 'task': 'train'} +super-slomo.D0 [data] {'loss': 327.9732971191406, 'task': 'train'} +super-slomo.D1 [data] {'gpudata': {'1': {'load': 1.0, + 'memory': [33623.4375, 81920.0], + 'power': 380.174, + 'temperature': 58}}, + 'task': 'main'} +super-slomo.D0 [data] {'gpudata': {'0': {'load': 1.0, + 'memory': [33623.4375, 81920.0], + 'power': 440.537, + 'temperature': 61}}, + 'task': 'main'} +super-slomo.D0 [data] {'rate': 42.72927214341595, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 327.6032409667969, 'task': 'train'} +super-slomo.D0 [data] {'loss': 327.9681396484375, 'task': 'train'} +super-slomo.D1 [data] {'rate': 42.04657885843091, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 327.5832824707031, 'task': 'train'} +super-slomo.D0 [data] {'loss': 327.9626159667969, 'task': 'train'} +super-slomo.D0 [data] {'rate': 42.56282506409955, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 327.5660400390625, 'task': 'train'} +super-slomo.D0 [data] {'loss': 327.9566955566406, 'task': 'train'} +super-slomo.D1 [data] {'rate': 42.89340112783721, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 327.5426940917969, 'task': 'train'} +super-slomo.D0 [data] {'loss': 327.95037841796875, 'task': 'train'} +super-slomo.D0 [data] {'rate': 42.98973469485746, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 327.5249938964844, 'task': 'train'} +super-slomo.D1 [data] {'gpudata': {'1': {'load': 0.94, + 'memory': [33623.4375, 81920.0], + 'power': 424.638, + 'temperature': 58}}, + 'task': 'main'} +super-slomo.D0 [data] {'loss': 327.9438171386719, 'task': 'train'} +super-slomo.D1 [data] {'rate': 42.974995960837205, 'task': 'train', 'units': 'items/s'} +super-slomo.D0 [data] {'gpudata': {'0': {'load': 0.87, + 'memory': [33623.4375, 81920.0], + 'power': 395.504, + 'temperature': 61}}, + 'task': 'main'} +super-slomo.D1 [data] {'loss': 327.5033264160156, 'task': 'train'} +super-slomo.D0 [data] {'loss': 327.9368896484375, 'task': 'train'} +super-slomo.D0 [data] {'rate': 43.061292697180875, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 327.48394775390625, 'task': 'train'} +super-slomo.D0 [data] {'loss': 327.9297180175781, 'task': 'train'} +super-slomo.D1 [data] {'rate': 43.0610227570057, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 327.46380615234375, 'task': 'train'} +super-slomo.D0 [data] {'loss': 327.92254638671875, 'task': 'train'} +super-slomo.D0 [data] {'rate': 43.06247358399002, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'loss': 327.4425354003906, 'task': 'train'} +super-slomo.D0 [data] {'loss': 327.9158020019531, 'task': 'train'} +super-slomo.D1 [data] {'rate': 42.884222501481, 'task': 'train', 'units': 'items/s'} +super-slomo.D1 [data] {'gpudata': {'1': {'load': 1.0, + 'memory': [33623.4375, 81920.0], + 'power': 408.898, + 'temperature': 57}}, + 'task': 'main'} +super-slomo.D0 [data] {'loss': 327.9084167480469, 'task': 'train'} +super-slomo.D0 [data] {'gpudata': {'0': {'load': 0.88, + 'memory': [33623.4375, 81920.0], + 'power': 388.886, + 'temperature': 61}}, + 'task': 'main'} +super-slomo.D1 [end] voir --config /Tmp/slurm.4112514.0/base/extra/super-slomo/voirconf-super-slomo.D1-0efae956f1553a76c1e03985181900f5.json /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/slomo/train.py --train_batch_size 32 [at 2024-02-05 09:50:53.430652] +super-slomo.D0 [data] {'rate': 43.13205309442783, 'task': 'train', 'units': 'items/s'} +super-slomo.D0 [data] {'gpudata': {'0': {'load': 0.99, + 'memory': [33623.4375, 81920.0], + 'power': 353.53, + 'temperature': 61}}, + 'task': 'main'} +super-slomo.D0 [end] voir --config /Tmp/slurm.4112514.0/base/extra/super-slomo/voirconf-super-slomo.D0-0efae956f1553a76c1e03985181900f5.json /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/slomo/train.py --train_batch_size 32 [at 2024-02-05 09:50:54.064611] +dlrm.0 [config.dirs.base] /Tmp/slurm.4112514.0/base +dlrm.0 [config.dirs.venv] /Tmp/slurm.4112514.0/base/venv/torch +dlrm.0 [config.dirs.data] /Tmp/slurm.4112514.0/base/data +dlrm.0 [config.dirs.runs] /Tmp/slurm.4112514.0/base/runs +dlrm.0 [config.dirs.extra] /Tmp/slurm.4112514.0/base/extra/dlrm +dlrm.0 [config.dirs.cache] /Tmp/slurm.4112514.0/base/cache +dlrm.0 [config.arch] cuda +dlrm.0 [config.group] dlrm +dlrm.0 [config.install_group] torch +dlrm.0 [config.install_variant] cuda +dlrm.0 [config.run_name] jenadogo.2024-02-05_09:17:41.183394 +dlrm.0 [config.enabled] True +dlrm.0 [config.capabilities.nodes] 1 +dlrm.0 [config.max_duration] 600 +dlrm.0 [config.voir.options.stop] 60 +dlrm.0 [config.voir.options.interval] 1s +dlrm.0 [config.config_base] /Tmp/slurm.4112514.0/milabench/config +dlrm.0 [config.config_file] /Tmp/slurm.4112514.0/milabench/config/standard.yaml +dlrm.0 [config.tags] ['nlp', 'rl'] +dlrm.0 [config.definition] /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm +dlrm.0 [config.plan.method] njobs +dlrm.0 [config.plan.n] 1 +dlrm.0 [config.argv.--num-batches] 1000 +dlrm.0 [config.argv.--data-generation] random +dlrm.0 [config.argv.--arch-mlp-bot] 512-512-64 +dlrm.0 [config.argv.--arch-mlp-top] 1024-1024-1024-1 +dlrm.0 [config.argv.--arch-sparse-feature-size] 64 +dlrm.0 [config.argv.--arch-embedding-size] 1000000-1000000-1000000-1000000-1000000-1000000-1000000-1000000 +dlrm.0 [config.argv.--num-indices-per-lookup] 100 +dlrm.0 [config.argv.--arch-interaction-op] dot +dlrm.0 [config.argv.--numpy-rand-seed] 727 +dlrm.0 [config.argv.--print-freq] 999999 +dlrm.0 [config.argv.--enable-profiling] True +dlrm.0 [config.argv.--mini-batch-size] 16384 +dlrm.0 [config.argv.--test-mini-batch-size] 16384 +dlrm.0 [config.argv.--test-num-workers] 0 +dlrm.0 [config.argv.--use-gpu] True +dlrm.0 [config.weight] 1.0 +dlrm.0 [config.name] dlrm +dlrm.0 [config.tag] ['dlrm', '0'] +dlrm.0 [config.job-number] 0 +dlrm.0 [config.devices] ['0', '1'] +dlrm.0 [start] voir --config /Tmp/slurm.4112514.0/base/extra/dlrm/voirconf-dlrm.0-0efae956f1553a76c1e03985181900f5.json /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/dlrm/dlrm_s_pytorch.py --num-batches 1000 --data-generation random --arch-mlp-bot 512-512-64 --arch-mlp-top 1024-1024-1024-1 --arch-sparse-feature-size 64 --arch-embedding-size 1000000-1000000-1000000-1000000-1000000-1000000-1000000-1000000 --num-indices-per-lookup 100 --arch-interaction-op dot --numpy-rand-seed 727 --print-freq 999999 --enable-profiling --mini-batch-size 16384 --test-mini-batch-size 16384 --test-num-workers 0 --use-gpu [at 2024-02-05 09:50:54.071733] +dlrm.0 [stdout] Unable to import mlperf_logging, No module named 'mlperf_logging' +dlrm.0 [stderr] /Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/distributed_c10d.py:359: UserWarning: torch.distributed.reduce_op is deprecated, please use torch.distributed.ReduceOp instead +dlrm.0 [stderr] warnings.warn( +dlrm.0 [stdout] world size: 1, current rank: 0, local rank: 0 +dlrm.0 [stdout] Using 2 GPU(s)... +dlrm.0 [stdout] time/loss/accuracy (if enabled): +dlrm.0 [stderr] STAGE:2024-02-05 09:51:03 63869:63869 ActivityProfilerController.cpp:314] Completed Stage: Warm Up +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [1137.4375, 81920.0], + 'power': 83.742, + 'temperature': 43}, + '1': {'load': 0, + 'memory': [697.5625, 81920.0], + 'power': 62.574, + 'temperature': 37}}, + 'task': 'main'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [1137.4375, 81920.0], + 'power': 83.262, + 'temperature': 42}, + '1': {'load': 0, + 'memory': [697.5625, 81920.0], + 'power': 62.186, + 'temperature': 35}}, + 'task': 'main'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [1137.4375, 81920.0], + 'power': 82.676, + 'temperature': 41}, + '1': {'load': 0, + 'memory': [697.5625, 81920.0], + 'power': 61.895, + 'temperature': 34}}, + 'task': 'main'} +dlrm.0 [stderr] libibverbs: Warning: couldn't load driver 'libbnxt_re-rdmav34.so': libbnxt_re-rdmav34.so: cannot open shared object file: No such file or directory +dlrm.0 [stderr] libibverbs: Warning: couldn't load driver 'libcxgb4-rdmav34.so': libcxgb4-rdmav34.so: cannot open shared object file: No such file or directory +dlrm.0 [stderr] libibverbs: Warning: couldn't load driver 'libipathverbs-rdmav34.so': libipathverbs-rdmav34.so: cannot open shared object file: No such file or directory +dlrm.0 [stderr] libibverbs: Warning: couldn't load driver 'libhfi1verbs-rdmav34.so': libhfi1verbs-rdmav34.so: cannot open shared object file: No such file or directory +dlrm.0 [stderr] libibverbs: Warning: couldn't load driver 'libqedr-rdmav34.so': libqedr-rdmav34.so: cannot open shared object file: No such file or directory +dlrm.0 [stderr] libibverbs: Warning: couldn't load driver 'libmthca-rdmav34.so': libmthca-rdmav34.so: cannot open shared object file: No such file or directory +dlrm.0 [stderr] libibverbs: Warning: couldn't load driver 'libvmw_pvrdma-rdmav34.so': libvmw_pvrdma-rdmav34.so: cannot open shared object file: No such file or directory +dlrm.0 [stderr] libibverbs: Warning: couldn't load driver 'librxe-rdmav34.so': librxe-rdmav34.so: cannot open shared object file: No such file or directory +dlrm.0 [stderr] libibverbs: Warning: couldn't load driver 'libocrdma-rdmav34.so': libocrdma-rdmav34.so: cannot open shared object file: No such file or directory +dlrm.0 [stderr] libibverbs: Warning: couldn't load driver 'libi40iw-rdmav34.so': libi40iw-rdmav34.so: cannot open shared object file: No such file or directory +dlrm.0 [stderr] libibverbs: Warning: couldn't load driver 'libmlx4-rdmav34.so': libmlx4-rdmav34.so: cannot open shared object file: No such file or directory +dlrm.0 [stderr] libibverbs: Warning: couldn't load driver 'libhns-rdmav34.so': libhns-rdmav34.so: cannot open shared object file: No such file or directory +dlrm.0 [data] {'loss': 0.0887361615896225} +dlrm.0 [data] {'gpudata': {'0': {'load': 0.1, + 'memory': [3775.4375, 81920.0], + 'power': 83.599, + 'temperature': 40}, + '1': {'load': 0.1, + 'memory': [3757.4375, 81920.0], + 'power': 77.09, + 'temperature': 34}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08788755536079407} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [3775.4375, 81920.0], + 'power': 82.145, + 'temperature': 39}, + '1': {'load': 0, + 'memory': [3757.4375, 81920.0], + 'power': 76.818, + 'temperature': 33}}, + 'task': 'main'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [3783.4375, 81920.0], + 'power': 81.607, + 'temperature': 39}, + '1': {'load': 0, + 'memory': [3765.4375, 81920.0], + 'power': 76.818, + 'temperature': 33}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08937834203243256} +dlrm.0 [data] {'rate': 293449.8760154572, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [3783.4375, 81920.0], + 'power': 81.418, + 'temperature': 38}, + '1': {'load': 0, + 'memory': [4169.4375, 81920.0], + 'power': 76.552, + 'temperature': 32}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08813147246837616} +dlrm.0 [data] {'rate': 326727.8497004031, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [3985.4375, 81920.0], + 'power': 81.177, + 'temperature': 38}, + '1': {'load': 0, + 'memory': [4169.4375, 81920.0], + 'power': 76.31, + 'temperature': 32}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08771650493144989} +dlrm.0 [data] {'rate': 384422.10147401376, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [3985.4375, 81920.0], + 'power': 81.17, + 'temperature': 37}, + '1': {'load': 0, + 'memory': [4169.4375, 81920.0], + 'power': 76.284, + 'temperature': 31}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08742949366569519} +dlrm.0 [data] {'rate': 310436.71799419983, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4187.4375, 81920.0], + 'power': 80.794, + 'temperature': 37}, + '1': {'load': 0, + 'memory': [4169.4375, 81920.0], + 'power': 76.02, + 'temperature': 31}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08757737278938293} +dlrm.0 [data] {'rate': 309196.53419823316, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4187.4375, 81920.0], + 'power': 80.693, + 'temperature': 37}, + '1': {'load': 0, + 'memory': [4169.4375, 81920.0], + 'power': 76.02, + 'temperature': 31}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08654382824897766} +dlrm.0 [data] {'rate': 355172.85064279265, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4187.4375, 81920.0], + 'power': 80.632, + 'temperature': 36}, + '1': {'load': 0, + 'memory': [4371.4375, 81920.0], + 'power': 76.035, + 'temperature': 30}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.0858154371380806} +dlrm.0 [data] {'rate': 342938.42806770187, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4187.4375, 81920.0], + 'power': 80.632, + 'temperature': 36}, + '1': {'load': 0, + 'memory': [4371.4375, 81920.0], + 'power': 76.284, + 'temperature': 30}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08628800511360168} +dlrm.0 [data] {'rate': 381619.82522445556, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4187.4375, 81920.0], + 'power': 80.249, + 'temperature': 36}, + '1': {'load': 0, + 'memory': [4371.4375, 81920.0], + 'power': 76.575, + 'temperature': 30}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.0873076319694519} +dlrm.0 [data] {'rate': 370053.1004968139, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4187.4375, 81920.0], + 'power': 80.342, + 'temperature': 36}, + '1': {'load': 0, + 'memory': [4371.4375, 81920.0], + 'power': 76.284, + 'temperature': 30}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08590050786733627} +dlrm.0 [data] {'rate': 343951.99753523467, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4187.4375, 81920.0], + 'power': 80.007, + 'temperature': 35}, + '1': {'load': 0, + 'memory': [4371.4375, 81920.0], + 'power': 76.284, + 'temperature': 30}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08602668344974518} +dlrm.0 [data] {'rate': 363468.3111714683, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4187.4375, 81920.0], + 'power': 80.063, + 'temperature': 35}, + '1': {'load': 0, + 'memory': [4371.4375, 81920.0], + 'power': 76.31, + 'temperature': 30}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08581672608852386} +dlrm.0 [data] {'rate': 317686.49771887757, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4187.4375, 81920.0], + 'power': 79.81, + 'temperature': 35}, + '1': {'load': 0, + 'memory': [4371.4375, 81920.0], + 'power': 76.284, + 'temperature': 29}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08588778972625732} +dlrm.0 [data] {'rate': 381442.683091673, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4187.4375, 81920.0], + 'power': 79.81, + 'temperature': 35}, + '1': {'load': 0, + 'memory': [4371.4375, 81920.0], + 'power': 76.035, + 'temperature': 29}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08632193505764008} +dlrm.0 [data] {'rate': 341962.27319588076, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0.16, + 'memory': [4187.4375, 81920.0], + 'power': 79.718, + 'temperature': 34}, + '1': {'load': 0.11, + 'memory': [4371.4375, 81920.0], + 'power': 75.947, + 'temperature': 29}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08664406836032867} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4187.4375, 81920.0], + 'power': 124.866, + 'temperature': 35}, + '1': {'load': 0, + 'memory': [4371.4375, 81920.0], + 'power': 77.94, + 'temperature': 30}}, + 'task': 'main'} +dlrm.0 [data] {'rate': 333007.9337961365, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4187.4375, 81920.0], + 'power': 79.476, + 'temperature': 34}, + '1': {'load': 0, + 'memory': [4371.4375, 81920.0], + 'power': 76.035, + 'temperature': 29}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.0852133184671402} +dlrm.0 [data] {'rate': 371176.638780315, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4187.4375, 81920.0], + 'power': 79.476, + 'temperature': 34}, + '1': {'load': 0, + 'memory': [4371.4375, 81920.0], + 'power': 76.035, + 'temperature': 29}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08576951175928116} +dlrm.0 [data] {'rate': 330606.1020394426, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4389.4375, 81920.0], + 'power': 79.476, + 'temperature': 34}, + '1': {'load': 0, + 'memory': [4371.4375, 81920.0], + 'power': 75.744, + 'temperature': 29}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08471724390983582} +dlrm.0 [data] {'rate': 363481.0193867784, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4389.4375, 81920.0], + 'power': 79.272, + 'temperature': 33}, + '1': {'load': 0, + 'memory': [4371.4375, 81920.0], + 'power': 75.744, + 'temperature': 29}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08532554656267166} +dlrm.0 [data] {'rate': 364328.3173628749, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4389.4375, 81920.0], + 'power': 79.18, + 'temperature': 33}, + '1': {'load': 0, + 'memory': [4371.4375, 81920.0], + 'power': 75.744, + 'temperature': 29}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08427020162343979} +dlrm.0 [data] {'rate': 249108.82473485204, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4389.4375, 81920.0], + 'power': 79.272, + 'temperature': 33}, + '1': {'load': 0, + 'memory': [4371.4375, 81920.0], + 'power': 76.035, + 'temperature': 29}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08591149747371674} +dlrm.0 [data] {'rate': 345014.93741581915, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4389.4375, 81920.0], + 'power': 78.982, + 'temperature': 33}, + '1': {'load': 0, + 'memory': [4371.4375, 81920.0], + 'power': 75.744, + 'temperature': 28}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.0845126137137413} +dlrm.0 [data] {'rate': 332897.87457588996, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4389.4375, 81920.0], + 'power': 78.982, + 'temperature': 33}, + '1': {'load': 0, + 'memory': [4371.4375, 81920.0], + 'power': 75.744, + 'temperature': 28}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.0840827077627182} +dlrm.0 [data] {'rate': 379260.05816354847, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4389.4375, 81920.0], + 'power': 78.799, + 'temperature': 32}, + '1': {'load': 0, + 'memory': [4371.4375, 81920.0], + 'power': 75.859, + 'temperature': 28}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08428709208965302} +dlrm.0 [data] {'rate': 259102.35393792726, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4389.4375, 81920.0], + 'power': 79.81, + 'temperature': 32}, + '1': {'load': 0, + 'memory': [4371.4375, 81920.0], + 'power': 75.744, + 'temperature': 28}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08434845507144928} +dlrm.0 [data] {'rate': 332360.7292104753, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4389.4375, 81920.0], + 'power': 79.903, + 'temperature': 32}, + '1': {'load': 0, + 'memory': [4371.4375, 81920.0], + 'power': 75.744, + 'temperature': 28}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08465416729450226} +dlrm.0 [data] {'rate': 304511.24374870514, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4593.4375, 81920.0], + 'power': 79.81, + 'temperature': 32}, + '1': {'load': 0, + 'memory': [4371.4375, 81920.0], + 'power': 75.744, + 'temperature': 28}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08376754820346832} +dlrm.0 [data] {'rate': 332971.956603495, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4593.4375, 81920.0], + 'power': 79.81, + 'temperature': 32}, + '1': {'load': 0, + 'memory': [4371.4375, 81920.0], + 'power': 75.744, + 'temperature': 28}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.083040751516819} +dlrm.0 [data] {'rate': 262714.0390235857, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4593.4375, 81920.0], + 'power': 79.81, + 'temperature': 32}, + '1': {'load': 0, + 'memory': [4371.4375, 81920.0], + 'power': 75.744, + 'temperature': 28}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08479100465774536} +dlrm.0 [data] {'rate': 369855.1442823338, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0.16, + 'memory': [4593.4375, 81920.0], + 'power': 79.903, + 'temperature': 32}, + '1': {'load': 0.11, + 'memory': [4371.4375, 81920.0], + 'power': 75.744, + 'temperature': 28}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08379324525594711} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4593.4375, 81920.0], + 'power': 79.625, + 'temperature': 33}, + '1': {'load': 0, + 'memory': [4371.4375, 81920.0], + 'power': 77.47, + 'temperature': 29}}, + 'task': 'main'} +dlrm.0 [data] {'rate': 321639.73444305325, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4593.4375, 81920.0], + 'power': 79.569, + 'temperature': 32}, + '1': {'load': 0, + 'memory': [4371.4375, 81920.0], + 'power': 75.744, + 'temperature': 28}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08349813520908356} +dlrm.0 [data] {'rate': 377668.2269454109, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4593.4375, 81920.0], + 'power': 79.661, + 'temperature': 32}, + '1': {'load': 0, + 'memory': [4371.4375, 81920.0], + 'power': 75.744, + 'temperature': 28}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08437865972518921} +dlrm.0 [data] {'rate': 333196.59609904146, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4593.4375, 81920.0], + 'power': 79.625, + 'temperature': 32}, + '1': {'load': 0, + 'memory': [4371.4375, 81920.0], + 'power': 75.481, + 'temperature': 28}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08468881249427795} +dlrm.0 [data] {'rate': 361281.25982021185, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4593.4375, 81920.0], + 'power': 79.533, + 'temperature': 32}, + '1': {'load': 0, + 'memory': [4371.4375, 81920.0], + 'power': 75.481, + 'temperature': 28}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08403709530830383} +dlrm.0 [data] {'rate': 375068.81164332264, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4797.4375, 81920.0], + 'power': 79.569, + 'temperature': 32}, + '1': {'load': 0, + 'memory': [4371.4375, 81920.0], + 'power': 75.453, + 'temperature': 28}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08420669287443161} +dlrm.0 [data] {'rate': 344352.50128039275, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4797.4375, 81920.0], + 'power': 79.569, + 'temperature': 32}, + '1': {'load': 0, + 'memory': [4371.4375, 81920.0], + 'power': 75.453, + 'temperature': 28}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08320620656013489} +dlrm.0 [data] {'rate': 365460.8206884016, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4797.4375, 81920.0], + 'power': 79.625, + 'temperature': 32}, + '1': {'load': 0, + 'memory': [4371.4375, 81920.0], + 'power': 75.656, + 'temperature': 28}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08308559656143188} +dlrm.0 [data] {'rate': 336735.42853169725, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4797.4375, 81920.0], + 'power': 79.81, + 'temperature': 32}, + '1': {'load': 0, + 'memory': [4371.4375, 81920.0], + 'power': 75.453, + 'temperature': 28}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08385886251926422} +dlrm.0 [data] {'rate': 371467.1931597436, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4797.4375, 81920.0], + 'power': 79.753, + 'temperature': 32}, + '1': {'load': 0, + 'memory': [4371.4375, 81920.0], + 'power': 75.627, + 'temperature': 28}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08402976393699646} +dlrm.0 [data] {'rate': 361668.59461663454, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4797.4375, 81920.0], + 'power': 79.625, + 'temperature': 32}, + '1': {'load': 0, + 'memory': [4371.4375, 81920.0], + 'power': 75.569, + 'temperature': 28}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08415201306343079} +dlrm.0 [data] {'rate': 341185.0599926781, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4797.4375, 81920.0], + 'power': 79.625, + 'temperature': 32}, + '1': {'load': 0, + 'memory': [4575.4375, 81920.0], + 'power': 75.569, + 'temperature': 28}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08402085304260254} +dlrm.0 [data] {'rate': 318613.42796525516, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4797.4375, 81920.0], + 'power': 79.81, + 'temperature': 32}, + '1': {'load': 0, + 'memory': [4575.4375, 81920.0], + 'power': 75.453, + 'temperature': 28}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08228246122598648} +dlrm.0 [data] {'rate': 324023.29344600794, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4797.4375, 81920.0], + 'power': 79.81, + 'temperature': 32}, + '1': {'load': 0, + 'memory': [4575.4375, 81920.0], + 'power': 75.453, + 'temperature': 28}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08508101850748062} +dlrm.0 [data] {'rate': 379499.10796631494, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4797.4375, 81920.0], + 'power': 79.81, + 'temperature': 32}, + '1': {'load': 0, + 'memory': [4575.4375, 81920.0], + 'power': 75.54, + 'temperature': 28}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08269783854484558} +dlrm.0 [data] {'rate': 285912.61066396453, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0.1, + 'memory': [4797.4375, 81920.0], + 'power': 79.81, + 'temperature': 32}, + '1': {'load': 0.11, + 'memory': [4575.4375, 81920.0], + 'power': 75.453, + 'temperature': 28}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08433524519205093} +dlrm.0 [data] {'gpudata': {'0': {'load': 0.05, + 'memory': [4797.4375, 81920.0], + 'power': 123.797, + 'temperature': 33}, + '1': {'load': 0, + 'memory': [4575.4375, 81920.0], + 'power': 75.54, + 'temperature': 29}}, + 'task': 'main'} +dlrm.0 [data] {'rate': 322867.61302637606, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4797.4375, 81920.0], + 'power': 79.661, + 'temperature': 32}, + '1': {'load': 0, + 'memory': [4575.4375, 81920.0], + 'power': 75.453, + 'temperature': 28}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08258543908596039} +dlrm.0 [data] {'rate': 304964.3236972189, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4797.4375, 81920.0], + 'power': 79.569, + 'temperature': 32}, + '1': {'load': 0, + 'memory': [4575.4375, 81920.0], + 'power': 75.54, + 'temperature': 28}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08313082903623581} +dlrm.0 [data] {'rate': 340238.1704572883, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4797.4375, 81920.0], + 'power': 79.661, + 'temperature': 32}, + '1': {'load': 0, + 'memory': [4575.4375, 81920.0], + 'power': 75.453, + 'temperature': 28}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08317264169454575} +dlrm.0 [data] {'rate': 373204.2194946495, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4797.4375, 81920.0], + 'power': 79.661, + 'temperature': 32}, + '1': {'load': 0, + 'memory': [4575.4375, 81920.0], + 'power': 75.453, + 'temperature': 28}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08357995748519897} +dlrm.0 [data] {'rate': 380418.88521570637, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4797.4375, 81920.0], + 'power': 79.569, + 'temperature': 31}, + '1': {'load': 0, + 'memory': [4575.4375, 81920.0], + 'power': 75.453, + 'temperature': 28}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08405735343694687} +dlrm.0 [data] {'rate': 346675.795118837, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4797.4375, 81920.0], + 'power': 79.272, + 'temperature': 31}, + '1': {'load': 0, + 'memory': [4575.4375, 81920.0], + 'power': 75.453, + 'temperature': 28}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08272015303373337} +dlrm.0 [data] {'rate': 366836.2724679101, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4797.4375, 81920.0], + 'power': 79.272, + 'temperature': 31}, + '1': {'load': 0, + 'memory': [4575.4375, 81920.0], + 'power': 75.453, + 'temperature': 28}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08338481932878494} +dlrm.0 [data] {'rate': 330628.2851569674, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4797.4375, 81920.0], + 'power': 79.088, + 'temperature': 31}, + '1': {'load': 0, + 'memory': [4575.4375, 81920.0], + 'power': 75.481, + 'temperature': 28}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08422384411096573} +dlrm.0 [data] {'rate': 358234.1957804105, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4797.4375, 81920.0], + 'power': 79.292, + 'temperature': 31}, + '1': {'load': 0, + 'memory': [4575.4375, 81920.0], + 'power': 75.569, + 'temperature': 28}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08405454456806183} +dlrm.0 [data] {'rate': 349093.7157250441, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4797.4375, 81920.0], + 'power': 79.088, + 'temperature': 31}, + '1': {'load': 0, + 'memory': [4575.4375, 81920.0], + 'power': 75.191, + 'temperature': 28}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08417406678199768} +dlrm.0 [data] {'rate': 382326.38417482394, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4797.4375, 81920.0], + 'power': 79.088, + 'temperature': 31}, + '1': {'load': 0, + 'memory': [4575.4375, 81920.0], + 'power': 75.191, + 'temperature': 28}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08274278044700623} +dlrm.0 [data] {'rate': 345314.90774239064, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4797.4375, 81920.0], + 'power': 79.292, + 'temperature': 31}, + '1': {'load': 0, + 'memory': [4575.4375, 81920.0], + 'power': 75.279, + 'temperature': 28}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08461865782737732} +dlrm.0 [data] {'rate': 314213.5669186966, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4797.4375, 81920.0], + 'power': 79.384, + 'temperature': 31}, + '1': {'load': 0, + 'memory': [4575.4375, 81920.0], + 'power': 75.569, + 'temperature': 28}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08379694819450378} +dlrm.0 [data] {'rate': 352043.87209238816, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4797.4375, 81920.0], + 'power': 79.384, + 'temperature': 31}, + '1': {'load': 0, + 'memory': [4575.4375, 81920.0], + 'power': 75.569, + 'temperature': 28}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08401922881603241} +dlrm.0 [data] {'rate': 363726.5525800209, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0.07, + 'memory': [4797.4375, 81920.0], + 'power': 79.476, + 'temperature': 31}, + '1': {'load': 0.11, + 'memory': [4575.4375, 81920.0], + 'power': 75.366, + 'temperature': 28}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08402208983898163} +dlrm.0 [data] {'gpudata': {'0': {'load': 0.07, + 'memory': [4797.4375, 81920.0], + 'power': 104.04, + 'temperature': 32}, + '1': {'load': 0, + 'memory': [4575.4375, 81920.0], + 'power': 78.923, + 'temperature': 28}}, + 'task': 'main'} +dlrm.0 [data] {'rate': 265861.18171335914, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4797.4375, 81920.0], + 'power': 79.384, + 'temperature': 32}, + '1': {'load': 0, + 'memory': [4575.4375, 81920.0], + 'power': 75.279, + 'temperature': 27}}, + 'task': 'main'} +dlrm.0 [data] {'loss': 0.08343112468719482} +dlrm.0 [data] {'rate': 366965.3015538037, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4797.4375, 81920.0], + 'power': 79.625, + 'temperature': 32}, + '1': {'load': 0, + 'memory': [4575.4375, 81920.0], + 'power': 75.279, + 'temperature': 27}}, + 'task': 'main'} +dlrm.0 [stderr] STAGE:2024-02-05 09:54:31 63869:63869 ActivityProfilerController.cpp:320] Completed Stage: Collection +dlrm.0 [stderr] STAGE:2024-02-05 09:54:31 63869:63869 ActivityProfilerController.cpp:324] Completed Stage: Post Processing +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4797.4375, 81920.0], + 'power': 79.625, + 'temperature': 32}, + '1': {'load': 0, + 'memory': [4575.4375, 81920.0], + 'power': 75.279, + 'temperature': 27}}, + 'task': 'main'} +dlrm.0 [data] {'rate': 78023.74204752748, 'task': 'train', 'units': 'items/s'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4797.4375, 81920.0], + 'power': 79.569, + 'temperature': 32}, + '1': {'load': 0, + 'memory': [4575.4375, 81920.0], + 'power': 75.453, + 'temperature': 27}}, + 'task': 'main'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4797.4375, 81920.0], + 'power': 79.81, + 'temperature': 32}, + '1': {'load': 0, + 'memory': [4575.4375, 81920.0], + 'power': 75.453, + 'temperature': 27}}, + 'task': 'main'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4797.4375, 81920.0], + 'power': 79.81, + 'temperature': 32}, + '1': {'load': 0, + 'memory': [4575.4375, 81920.0], + 'power': 75.453, + 'temperature': 27}}, + 'task': 'main'} +dlrm.0 [data] {'gpudata': {'0': {'load': 0, + 'memory': [4797.4375, 81920.0], + 'power': 79.718, + 'temperature': 32}, + '1': {'load': 0, + 'memory': [4575.4375, 81920.0], + 'power': 75.366, + 'temperature': 27}}, + 'task': 'main'} +dlrm.0 [end] voir --config /Tmp/slurm.4112514.0/base/extra/dlrm/voirconf-dlrm.0-0efae956f1553a76c1e03985181900f5.json /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/dlrm/dlrm_s_pytorch.py --num-batches 1000 --data-generation random --arch-mlp-bot 512-512-64 --arch-mlp-top 1024-1024-1024-1 --arch-sparse-feature-size 64 --arch-embedding-size 1000000-1000000-1000000-1000000-1000000-1000000-1000000-1000000 --num-indices-per-lookup 100 --arch-interaction-op dot --numpy-rand-seed 727 --print-freq 999999 --enable-profiling --mini-batch-size 16384 --test-mini-batch-size 16384 --test-num-workers 0 --use-gpu [at 2024-02-05 09:54:50.463186] +[DONE] Reports directory: /Tmp/slurm.4112514.0/base/runs/jenadogo.2024-02-05_09:17:41.183394 +Source: /Tmp/slurm.4112514.0/base/runs/jenadogo.2024-02-05_09:17:41.183394 +================= +Benchmark results +================= + n fail perf perf_adj std% sem% peak_memory +bert-fp16 2 0 155.71 155.71 4.4% 0.6% 24423 +bert-fp32 2 0 29.73 29.73 0.3% 0.0% 31387 +bert-tf32 2 0 114.45 114.45 0.9% 0.1% 31389 +bert-tf32-fp16 2 0 155.22 155.22 4.0% 0.5% 24423 +convnext_large-fp16 2 0 317.87 317.87 23.5% 3.0% 27285 +convnext_large-fp32 2 0 45.33 45.33 5.3% 0.7% 49405 +convnext_large-tf32 2 0 147.55 147.55 13.1% 1.7% 49405 +convnext_large-tf32-fp16 2 0 322.09 322.09 23.9% 3.1% 27285 +davit_large 2 0 304.38 304.38 6.9% 0.6% 34083 +davit_large-multi 1 0 618.99 618.99 5.3% 0.7% 37573 +dlrm 1 0 340498.17 340498.17 9.5% 1.2% 4797 +focalnet 2 0 375.00 375.00 6.5% 0.6% 25921 +opt-1_3b 1 0 7.44 7.44 0.3% 0.0% 41307 +reformer 2 0 61.82 61.82 0.6% 0.1% 25227 +regnet_y_128gf 2 0 88.24 88.24 4.4% 0.4% 31377 +resnet152 2 0 653.16 653.16 8.5% 0.8% 34309 +resnet152-multi 1 0 1295.57 1295.57 9.7% 1.3% 41227 +resnet50 2 0 550.83 550.83 45.4% 4.1% 4553 +stargan 2 0 45.59 45.59 27.5% 2.5% 53235 +super-slomo 2 0 42.70 42.70 1.2% 0.1% 33623 +t5 2 0 48.35 48.35 4.2% 0.4% 34211 +whisper 2 0 562.24 562.24 2.9% 0.3% 9101 +---- +Done after 2711 + From 7a5002648823e61d229d6efe95c99f02d43edd6f Mon Sep 17 00:00:00 2001 From: "pierre.delaunay" Date: Thu, 8 Feb 2024 15:26:27 -0500 Subject: [PATCH 2/6] Add timer group --- .gitignore | 4 +- benchmarks/torchvision/main.py | 81 +++++++++++++++++------------- benchmarks/torchvision/voirfile.py | 2 +- commands.sh | 3 +- milabench/cli/dry.py | 6 ++- 5 files changed, 55 insertions(+), 41 deletions(-) diff --git a/.gitignore b/.gitignore index 717564ab2..72f6e8846 100644 --- a/.gitignore +++ b/.gitignore @@ -26,4 +26,6 @@ workspace/ slurm-* scripts/inventory.yaml out.txt -output/ \ No newline at end of file +output/ +voir/ +cantilever/ diff --git a/benchmarks/torchvision/main.py b/benchmarks/torchvision/main.py index baf351601..77134bd76 100644 --- a/benchmarks/torchvision/main.py +++ b/benchmarks/torchvision/main.py @@ -11,6 +11,7 @@ import torchvision.transforms as transforms import voir from giving import give, given +from cantilever.core.timer import timeit normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) @@ -59,30 +60,38 @@ def scaling(enable): yield -def train_epoch(model, criterion, optimizer, loader, device, scaler=None): +def train_epoch(model, criterion, optimizer, loader, device, scaler=None, timer=None): global stats stats.newepoch() model.train() + + s = time.time() + p = time.time() + + # this is what computes the batch size for inp, target in voir.iterate("train", loader, True): - inp = inp.to(device) - target = target.to(device) - optimizer.zero_grad() - with scaling(scaler is not None): - output = model(inp) - loss = criterion(output, target) - give(loss=loss.item()) - - if scaler: - scaler.scale(loss).backward() - scaler.step(optimizer) - scaler.update() - else: - loss.backward() - optimizer.step() - - stats.newbatch(inp) + with timer.timeit("batch"): + inp = inp.to(device) + target = target.to(device) + optimizer.zero_grad() + + with scaling(scaler is not None): + output = model(inp) + loss = criterion(output, target) + # this force sync + # give(loss=loss.item()) + + if scaler: + scaler.scale(loss).backward() + scaler.step(optimizer) + scaler.update() + else: + loss.backward() + optimizer.step() + + torch.cuda.synchronize() class SyntheticData: @@ -232,25 +241,25 @@ def main(): else: scaler = None - s = time.time() - with given() as gv: - if not args.no_stdout: - gv.where("loss").display() - - for epoch in voir.iterate("main", range(args.epochs)): - es = time.time() - + with timeit("train") as train_timer: + with given() as gv: if not args.no_stdout: - print(f"Begin training epoch {epoch}/{args.epochs}") - train_epoch( - model, criterion, optimizer, train_loader, device, scaler=scaler - ) - - ee = time.time() - print(f" Epoch: {stats.epoch_count / (ee - es)}") - - e = time.time() - print(f"Train speed: {stats.count / (e - s)}") + gv.where("loss").display() + + for epoch in voir.iterate("main", range(args.epochs)): + + with train_timer.timeit("epoch") as epoch_timer: + model.train() + es = time.time() + + if not args.no_stdout: + print(f"Begin training epoch {epoch}/{args.epochs}") + + train_epoch( + model, criterion, optimizer, train_loader, device, scaler=scaler, timer=epoch_timer + ) + + train_timer.show() if __name__ == "__main__": main() diff --git a/benchmarks/torchvision/voirfile.py b/benchmarks/torchvision/voirfile.py index 1f5fb2274..5230562f7 100644 --- a/benchmarks/torchvision/voirfile.py +++ b/benchmarks/torchvision/voirfile.py @@ -34,7 +34,7 @@ def instrument_main(ov, options: Config): ov.require(dash) ov.require( - log("value", "progress", "rate", "units", "loss", "gpudata", context="task"), + log("value", "progress", "rate", "units", "loss", "gpudata", "time", context="task"), rate( interval=options.interval, skip=options.skip, diff --git a/commands.sh b/commands.sh index 5c2ee955a..ce296f888 100644 --- a/commands.sh +++ b/commands.sh @@ -21,7 +21,6 @@ source $VIRTUAL_ENV/bin/activate # resnet50 # ======== ( - CUDA_VISIBLE_DEVICES=0 voir --config /Tmp/slurm.4123709.0/base/extra/torchvision/voirconf-resnet50.D0-0efae956f1553a76c1e03985181900f5.json /home/mila/d/delaunap/milabench/benchmarks/torchvision/main.py --precision tf32-fp16 --lr 0.01 --no-stdout --epochs 50 --model resnet50 --batch-size 64 & - wait + python /home/mila/d/delaunap/milabench/benchmarks/torchvision/main.py --precision tf32-fp16 --lr 0.01 --no-stdout --epochs 10 --model resnet50 --batch-size 64 ) diff --git a/milabench/cli/dry.py b/milabench/cli/dry.py index fc57f3431..f8717f380 100644 --- a/milabench/cli/dry.py +++ b/milabench/cli/dry.py @@ -197,7 +197,11 @@ def cli_dry(args=None): if first_pack and args.withenv: first_pack = False gen.section("Virtual Env") - gen.env(pack.core._nox_session.env) + + venv = pack.core._nox_session.env["VIRTUAL_ENV"] + gen.env(VIRTUAL_ENV=VIRTUAL_ENV) + gen.print("source $VIRTUAL_ENV/bin/activate") + gen.section("Milabench") gen.env(pack.make_env()) From a94ba6e27da0e4933ca158e5989cc867cd36b672 Mon Sep 17 00:00:00 2001 From: "pierre.delaunay" Date: Thu, 8 Feb 2024 15:44:28 -0500 Subject: [PATCH 3/6] - --- benchmarks/torchvision/main.py | 15 ++++++++++++++- 1 file changed, 14 insertions(+), 1 deletion(-) diff --git a/benchmarks/torchvision/main.py b/benchmarks/torchvision/main.py index 77134bd76..1177d1953 100644 --- a/benchmarks/torchvision/main.py +++ b/benchmarks/torchvision/main.py @@ -69,8 +69,21 @@ def train_epoch(model, criterion, optimizer, loader, device, scaler=None, timer= s = time.time() p = time.time() + def iterator(loader, timer): + with timer.timeit("loader"): + iterator = iter(loader) + + while True: + with timer.timeit("next"): + try: + batch = next(iterator) + except StopIteration: + return + + yield batch + # this is what computes the batch size - for inp, target in voir.iterate("train", loader, True): + for inp, target in voir.iterate("train", iterator(loader, timer), True): with timer.timeit("batch"): inp = inp.to(device) From c0a93608db6511fe696fd044ccde3891bd1b57ed Mon Sep 17 00:00:00 2001 From: "pierre.delaunay" Date: Fri, 9 Feb 2024 12:54:02 -0500 Subject: [PATCH 4/6] Pin update --- .pin/constraints-cuda-torch.txt | 196 +- .pin/constraints-rocm-torch.txt | 46 +- .../accelerate_opt/requirements.cuda.txt | 396 + .../accelerate_opt/requirements.rocm.txt | 36 +- benchmarks/dlrm/requirements.cuda.txt | 384 + benchmarks/dlrm/requirements.rocm.txt | 45 +- benchmarks/flops/requirements.cuda.txt | 207 + benchmarks/flops/requirements.rocm.txt | 18 +- benchmarks/huggingface/requirements.cuda.txt | 232 + benchmarks/huggingface/requirements.rocm.txt | 14 +- benchmarks/llama/requirements.cuda.txt | 336 + benchmarks/llama/requirements.rocm.txt | 207 +- benchmarks/rwkv/requirements.cuda.txt | 291 + benchmarks/rwkv/requirements.rocm.txt | 21 +- benchmarks/stargan/requirements.cuda.txt | 204 + benchmarks/stargan/requirements.rocm.txt | 15 +- benchmarks/super-slomo/requirements.cuda.txt | 213 + benchmarks/super-slomo/requirements.rocm.txt | 23 +- benchmarks/timm/requirements.cuda.txt | 225 + benchmarks/timm/requirements.rocm.txt | 23 +- benchmarks/torchvision/main.py | 58 +- benchmarks/torchvision/requirements.cuda.txt | 184 +- benchmarks/torchvision/requirements.rocm.txt | 18 +- commands.sh | 26 - milabench/_version.py | 6 +- milabench/cli/dry.py | 20 +- milabench/commands/__init__.py | 8 +- milabench/log.py | 44 +- milabench/main.py | 4 + milabench/merge.py | 1 - milabench/scripts/vcs.py | 1 + milabench/utils.py | 2 +- scripts/interactive.sh | 1 + test.out | 21141 ---------------- 34 files changed, 3197 insertions(+), 21449 deletions(-) create mode 100644 benchmarks/accelerate_opt/requirements.cuda.txt create mode 100644 benchmarks/dlrm/requirements.cuda.txt create mode 100644 benchmarks/flops/requirements.cuda.txt create mode 100644 benchmarks/huggingface/requirements.cuda.txt create mode 100644 benchmarks/llama/requirements.cuda.txt create mode 100644 benchmarks/rwkv/requirements.cuda.txt create mode 100644 benchmarks/stargan/requirements.cuda.txt create mode 100644 benchmarks/super-slomo/requirements.cuda.txt create mode 100644 benchmarks/timm/requirements.cuda.txt delete mode 100644 commands.sh create mode 100644 milabench/main.py delete mode 100644 test.out diff --git a/.pin/constraints-cuda-torch.txt b/.pin/constraints-cuda-torch.txt index f52d2aa9d..0f70803c6 100644 --- a/.pin/constraints-cuda-torch.txt +++ b/.pin/constraints-cuda-torch.txt @@ -1,16 +1,16 @@ # -# This file is autogenerated by pip-compile with Python 3.11 +# This file is autogenerated by pip-compile with Python 3.9 # by the following command: # -# pip-compile --config=pyproject.toml --output-file=.pin/constraints-cuda-torch.txt --resolver=backtracking .pin/tmp-constraints.txt benchmarks/accelerate_opt/requirements.in benchmarks/dlrm/requirements.in benchmarks/flops/requirements.in benchmarks/huggingface/requirements.in benchmarks/rwkv/requirements.in benchmarks/stargan/requirements.in benchmarks/super-slomo/requirements.in benchmarks/timm/requirements.in benchmarks/torchvision/requirements.in +# pip-compile --output-file=.pin/constraints-cuda-torch.txt .pin/tmp-constraints.txt benchmarks/accelerate_opt/requirements.in benchmarks/dlrm/requirements.in benchmarks/flops/requirements.in benchmarks/huggingface/requirements.in benchmarks/llama/requirements.in benchmarks/rwkv/requirements.in benchmarks/stargan/requirements.in benchmarks/super-slomo/requirements.in benchmarks/timm/requirements.in benchmarks/torchvision/requirements.in # --extra-index-url https://download.pytorch.org/whl/cu118 -absl-py==2.0.0 +absl-py==2.1.0 # via tensorboard -accelerate==0.24.1 +accelerate==0.27.0 # via -r benchmarks/accelerate_opt/requirements.in -aiohttp==3.8.6 +aiohttp==3.9.3 # via # datasets # fsspec @@ -22,53 +22,57 @@ asttokens==2.4.1 # via giving async-timeout==4.0.3 # via aiohttp -attrs==23.1.0 +attrs==23.2.0 # via aiohttp cachetools==5.3.2 # via google-auth -certifi==2023.7.22 +certifi==2024.2.2 # via requests charset-normalizer==3.3.2 - # via - # aiohttp - # requests + # via requests codefind==0.1.3 # via ptera -datasets==2.14.6 +datasets==2.17.0 # via # -r benchmarks/accelerate_opt/requirements.in + # -r benchmarks/llama/requirements.in # evaluate -deepspeed==0.11.1 +deepspeed==0.13.1 # via # -r benchmarks/accelerate_opt/requirements.in # -r benchmarks/rwkv/requirements.in -dill==0.3.7 +dill==0.3.8 # via # datasets # evaluate # multiprocess -docker==6.1.3 +docker==7.0.0 # via torchx -docstring-parser==0.15 +docstring-parser==0.8.1 # via torchx evaluate==0.4.1 # via -r benchmarks/accelerate_opt/requirements.in executing==1.2.0 # via varname -fbgemm-gpu==0.5.0+cu118 +fairscale==0.4.13 + # via -r benchmarks/llama/requirements.in +fbgemm-gpu==0.6.0+cu118 # via torchrec filelock==3.13.1 # via + # datasets # huggingface-hub # torch # torchx # transformers # triton -frozenlist==1.4.0 +fire==0.5.0 + # via -r benchmarks/llama/requirements.in +frozenlist==1.4.1 # via # aiohttp # aiosignal -fsspec[http]==2023.1.0 +fsspec[http]==2023.10.0 # via # datasets # evaluate @@ -82,19 +86,19 @@ giving==0.4.2 # via # ptera # voir -google-auth==2.23.4 +google-auth==2.27.0 # via # google-auth-oauthlib # tensorboard -google-auth-oauthlib==1.1.0 +google-auth-oauthlib==1.2.0 # via tensorboard graphviz==0.20.1 # via torchviz -grpcio==1.59.2 +grpcio==1.60.1 # via tensorboard hjson==3.1.0 # via deepspeed -huggingface-hub==0.17.3 +huggingface-hub==0.20.3 # via # -r benchmarks/timm/requirements.in # accelerate @@ -102,25 +106,27 @@ huggingface-hub==0.17.3 # evaluate # tokenizers # transformers -idna==3.4 +idna==3.6 # via # requests # yarl -importlib-metadata==6.8.0 - # via torchx -jinja2==3.1.2 +importlib-metadata==7.0.1 + # via + # markdown + # torchx +jinja2==3.1.3 # via torch joblib==1.3.2 # via scikit-learn -lightning-utilities==0.9.0 +lightning-utilities==0.10.1 # via # pytorch-lightning # torchmetrics -markdown==3.5.1 +markdown==3.5.2 # via tensorboard markdown-it-py==3.0.0 # via rich -markupsafe==2.1.3 +markupsafe==2.1.5 # via # jinja2 # werkzeug @@ -128,11 +134,11 @@ mdurl==0.1.2 # via markdown-it-py mpmath==1.3.0 # via sympy -multidict==6.0.4 +multidict==6.0.5 # via # aiohttp # yarl -multiprocess==0.70.15 +multiprocess==0.70.16 # via # datasets # evaluate @@ -144,14 +150,18 @@ ninja==1.11.1.1 # via # -r benchmarks/rwkv/requirements.in # deepspeed -numpy==1.26.1 +numpy==1.26.4 # via + # -r benchmarks/dlrm/requirements.in + # -r benchmarks/rwkv/requirements.in # -r benchmarks/stargan/requirements.in # -r benchmarks/super-slomo/requirements.in # accelerate # datasets # deepspeed # evaluate + # fairscale + # fbgemm-gpu # onnx # opencv-python # pandas @@ -163,13 +173,38 @@ numpy==1.26.1 # torchmetrics # torchvision # transformers +nvidia-cublas-cu11==11.11.3.6 + # via + # nvidia-cudnn-cu11 + # nvidia-cusolver-cu11 + # torch +nvidia-cuda-cupti-cu11==11.8.87 + # via torch +nvidia-cuda-nvrtc-cu11==11.8.89 + # via torch +nvidia-cuda-runtime-cu11==11.8.89 + # via torch +nvidia-cudnn-cu11==8.7.0.84 + # via torch +nvidia-cufft-cu11==10.9.0.58 + # via torch +nvidia-curand-cu11==10.3.0.86 + # via torch +nvidia-cusolver-cu11==11.4.1.48 + # via torch +nvidia-cusparse-cu11==11.7.5.86 + # via torch +nvidia-nccl-cu11==2.19.3 + # via torch +nvidia-nvtx-cu11==11.8.86 + # via torch oauthlib==3.2.2 # via requests-oauthlib omegaconf==2.3.0 # via voir onnx==1.15.0 # via -r benchmarks/dlrm/requirements.in -opencv-python==4.8.1.78 +opencv-python==4.9.0.80 # via -r benchmarks/super-slomo/requirements.in ovld==0.3.2 # via voir @@ -185,17 +220,17 @@ packaging==23.2 # pytorch-lightning # torchmetrics # transformers -pandas==2.1.2 +pandas==2.2.0 # via # datasets # evaluate -pillow==10.1.0 +pillow==10.2.0 # via torchvision -protobuf==4.23.4 +protobuf==4.25.2 # via # onnx # tensorboard -psutil==5.9.6 +psutil==5.9.8 # via # accelerate # deepspeed @@ -203,24 +238,28 @@ ptera==1.4.1 # via voir py-cpuinfo==9.0.0 # via deepspeed -pyarrow==14.0.0 +pyarrow==15.0.0 + # via datasets +pyarrow-hotfix==0.6 # via datasets -pyasn1==0.5.0 +pyasn1==0.5.1 # via # pyasn1-modules # rsa pyasn1-modules==0.3.0 # via google-auth -pydantic==1.10.13 +pydantic==1.10.14 # via # -r benchmarks/rwkv/requirements.in # deepspeed -pydot==1.4.2 +pydot==2.0.0 # via -r benchmarks/dlrm/requirements.in -pygments==2.16.1 +pygments==2.17.2 # via rich pynvml==11.5.0 - # via voir + # via + # deepspeed + # voir pyparsing==3.1.1 # via pydot pyre-extensions==0.0.30 @@ -229,7 +268,7 @@ python-dateutil==2.8.2 # via pandas pytorch-lightning==1.9.5 # via -r benchmarks/rwkv/requirements.in -pytz==2023.3.post1 +pytz==2024.1 # via pandas pyyaml==6.0.1 # via @@ -243,7 +282,7 @@ pyyaml==6.0.1 # transformers reactivex==4.0.4 # via giving -regex==2023.10.3 +regex==2023.12.25 # via transformers requests==2.31.0 # via @@ -261,66 +300,87 @@ requests-oauthlib==1.3.1 # via google-auth-oauthlib responses==0.18.0 # via evaluate -rich==13.6.0 +rich==13.7.0 # via # -r benchmarks/accelerate_opt/requirements.in # voir rsa==4.9 # via google-auth -safetensors==0.4.0 +safetensors==0.4.2 # via # -r benchmarks/timm/requirements.in + # accelerate # transformers -scikit-learn==1.3.2 +scikit-learn==1.4.0 # via -r benchmarks/dlrm/requirements.in -scipy==1.11.3 +scipy==1.12.0 # via scikit-learn +sentencepiece==0.1.99 + # via -r benchmarks/llama/requirements.in six==1.16.0 # via # asttokens + # fire # python-dateutil # tensorboard sympy==1.12 # via torch tabulate==0.9.0 # via torchx -tensorboard==2.15.0 +tensorboard==2.15.2 # via -r benchmarks/dlrm/requirements.in tensorboard-data-server==0.7.2 # via tensorboard +termcolor==2.4.0 + # via fire threadpoolctl==3.2.0 # via scikit-learn -tokenizers==0.14.1 +tokenizers==0.15.1 # via transformers -torch==2.1.0+cu118 +torch==2.2.0+cu118 # via + # -r benchmarks/accelerate_opt/requirements.in + # -r benchmarks/dlrm/requirements.in + # -r benchmarks/flops/requirements.in + # -r benchmarks/huggingface/requirements.in + # -r benchmarks/llama/requirements.in + # -r benchmarks/rwkv/requirements.in # -r benchmarks/stargan/requirements.in # -r benchmarks/super-slomo/requirements.in + # -r benchmarks/timm/requirements.in + # -r benchmarks/torchvision/requirements.in # accelerate # deepspeed + # fairscale # pytorch-lightning # torchaudio # torchmetrics # torchvision # torchviz -torchaudio==2.1.0+cu118 +torchaudio==2.2.0+cu118 # via -r benchmarks/accelerate_opt/requirements.in torchmetrics==1.0.3 # via # pytorch-lightning # torchrec -torchrec==0.5.0+cu118 +torchrec==0.6.0+cu118 # via -r benchmarks/dlrm/requirements.in -torchvision==0.16.0+cu118 +torchvision==0.17.0+cu118 # via + # -r benchmarks/accelerate_opt/requirements.in + # -r benchmarks/flops/requirements.in # -r benchmarks/stargan/requirements.in # -r benchmarks/super-slomo/requirements.in + # -r benchmarks/timm/requirements.in + # -r benchmarks/torchvision/requirements.in torchviz==0.0.2 # via -r benchmarks/dlrm/requirements.in -torchx==0.6.0 +torchx==0.5.0 # via -r benchmarks/dlrm/requirements.in tqdm==4.66.1 # via + # -r benchmarks/dlrm/requirements.in + # -r benchmarks/flops/requirements.in # -r benchmarks/super-slomo/requirements.in # -r benchmarks/torchvision/requirements.in # datasets @@ -330,13 +390,14 @@ tqdm==4.66.1 # pytorch-lightning # torchrec # transformers -transformers==4.34.1 +transformers==4.37.2 # via # -r benchmarks/accelerate_opt/requirements.in # -r benchmarks/huggingface/requirements.in -triton==2.1.0 + # -r benchmarks/llama/requirements.in +triton==2.2.0 # via torch -typing-extensions==4.8.0 +typing-extensions==4.9.0 # via # huggingface-hub # lightning-utilities @@ -348,7 +409,7 @@ typing-extensions==4.8.0 # typing-inspect typing-inspect==0.9.0 # via pyre-extensions -tzdata==2023.3 +tzdata==2023.4 # via pandas urllib3==1.26.18 # via @@ -358,19 +419,26 @@ urllib3==1.26.18 # torchx varname==0.10.0 # via giving -voir==0.2.11 +voir==0.2.12 # via + # -c .pin/../constraints/cuda.txt + # -r benchmarks/accelerate_opt/requirements.in + # -r benchmarks/dlrm/requirements.in + # -r benchmarks/flops/requirements.in + # -r benchmarks/huggingface/requirements.in + # -r benchmarks/llama/requirements.in + # -r benchmarks/rwkv/requirements.in # -r benchmarks/stargan/requirements.in # -r benchmarks/super-slomo/requirements.in -websocket-client==1.6.4 - # via docker + # -r benchmarks/timm/requirements.in + # -r benchmarks/torchvision/requirements.in werkzeug==3.0.1 # via tensorboard xxhash==3.4.1 # via # datasets # evaluate -yarl==1.9.2 +yarl==1.9.4 # via aiohttp zipp==3.17.0 # via importlib-metadata diff --git a/.pin/constraints-rocm-torch.txt b/.pin/constraints-rocm-torch.txt index a220c5c8d..00fdd63a4 100644 --- a/.pin/constraints-rocm-torch.txt +++ b/.pin/constraints-rocm-torch.txt @@ -1,8 +1,8 @@ # -# This file is autogenerated by pip-compile with Python 3.11 +# This file is autogenerated by pip-compile with Python 3.9 # by the following command: # -# pip-compile --config=pyproject.toml --output-file=.pin/constraints-rocm-torch.txt --resolver=backtracking .pin/tmp-constraints.txt benchmarks/accelerate_opt/requirements.in benchmarks/dlrm/requirements.in benchmarks/flops/requirements.in benchmarks/huggingface/requirements.in benchmarks/rwkv/requirements.in benchmarks/stargan/requirements.in benchmarks/super-slomo/requirements.in benchmarks/timm/requirements.in benchmarks/torchvision/requirements.in +# pip-compile --output-file=.pin/constraints-rocm-torch.txt .pin/tmp-constraints.txt benchmarks/accelerate_opt/requirements.in benchmarks/dlrm/requirements.in benchmarks/flops/requirements.in benchmarks/huggingface/requirements.in benchmarks/llama/requirements.in benchmarks/rwkv/requirements.in benchmarks/stargan/requirements.in benchmarks/super-slomo/requirements.in benchmarks/timm/requirements.in benchmarks/torchvision/requirements.in # --extra-index-url https://download.pytorch.org/whl/rocm5.6/ @@ -39,6 +39,7 @@ codefind==0.1.3 datasets==2.14.6 # via # -r benchmarks/accelerate_opt/requirements.in + # -r benchmarks/llama/requirements.in # evaluate deepspeed==0.12.2 # via @@ -57,6 +58,8 @@ evaluate==0.4.1 # via -r benchmarks/accelerate_opt/requirements.in executing==1.2.0 # via varname +fairscale==0.4.13 + # via -r benchmarks/llama/requirements.in fbgemm-gpu==0.5.0 # via torchrec filelock==3.13.1 @@ -66,6 +69,8 @@ filelock==3.13.1 # torch # torchx # transformers +fire==0.5.0 + # via -r benchmarks/llama/requirements.in frozenlist==1.4.0 # via # aiohttp @@ -109,7 +114,9 @@ idna==3.4 # requests # yarl importlib-metadata==6.8.0 - # via torchx + # via + # markdown + # torchx jinja2==3.1.2 # via torch joblib==1.3.2 @@ -152,10 +159,13 @@ numpy==1.26.1 # via # -r benchmarks/dlrm/requirements.in # -r benchmarks/rwkv/requirements.in + # -r benchmarks/stargan/requirements.in + # -r benchmarks/super-slomo/requirements.in # accelerate # datasets # deepspeed # evaluate + # fairscale # fbgemm-gpu # onnx # opencv-python @@ -284,9 +294,12 @@ scikit-learn==1.3.2 # via -r benchmarks/dlrm/requirements.in scipy==1.11.3 # via scikit-learn +sentencepiece==0.1.99 + # via -r benchmarks/llama/requirements.in six==1.16.0 # via # asttokens + # fire # python-dateutil # tensorboard sympy==1.12 @@ -297,6 +310,8 @@ tensorboard==2.15.1 # via -r benchmarks/dlrm/requirements.in tensorboard-data-server==0.7.2 # via tensorboard +termcolor==2.4.0 + # via fire threadpoolctl==3.2.0 # via scikit-learn tokenizers==0.14.1 @@ -304,9 +319,18 @@ tokenizers==0.14.1 torch==2.1.0+rocm5.6 # via # -r benchmarks/accelerate_opt/requirements.in + # -r benchmarks/dlrm/requirements.in + # -r benchmarks/flops/requirements.in + # -r benchmarks/huggingface/requirements.in + # -r benchmarks/llama/requirements.in # -r benchmarks/rwkv/requirements.in + # -r benchmarks/stargan/requirements.in + # -r benchmarks/super-slomo/requirements.in + # -r benchmarks/timm/requirements.in + # -r benchmarks/torchvision/requirements.in # accelerate # deepspeed + # fairscale # pytorch-lightning # pytorch-triton-rocm # torchaudio @@ -324,14 +348,20 @@ torchrec==0.5.0 torchvision==0.16.0+rocm5.6 # via # -r benchmarks/accelerate_opt/requirements.in + # -r benchmarks/flops/requirements.in # -r benchmarks/stargan/requirements.in + # -r benchmarks/super-slomo/requirements.in + # -r benchmarks/timm/requirements.in + # -r benchmarks/torchvision/requirements.in torchviz==0.0.2 # via -r benchmarks/dlrm/requirements.in torchx==0.5.0 # via -r benchmarks/dlrm/requirements.in tqdm==4.66.1 # via + # -r benchmarks/dlrm/requirements.in # -r benchmarks/flops/requirements.in + # -r benchmarks/super-slomo/requirements.in # -r benchmarks/torchvision/requirements.in # datasets # deepspeed @@ -344,6 +374,7 @@ transformers==4.35.0 # via # -r benchmarks/accelerate_opt/requirements.in # -r benchmarks/huggingface/requirements.in + # -r benchmarks/llama/requirements.in typing-extensions==4.8.0 # via # huggingface-hub @@ -368,8 +399,17 @@ varname==0.10.0 # via giving voir==0.2.11 # via + # -c .pin/../constraints/rocm.txt # -r benchmarks/accelerate_opt/requirements.in + # -r benchmarks/dlrm/requirements.in + # -r benchmarks/flops/requirements.in + # -r benchmarks/huggingface/requirements.in + # -r benchmarks/llama/requirements.in # -r benchmarks/rwkv/requirements.in + # -r benchmarks/stargan/requirements.in + # -r benchmarks/super-slomo/requirements.in + # -r benchmarks/timm/requirements.in + # -r benchmarks/torchvision/requirements.in websocket-client==1.6.4 # via docker werkzeug==3.0.1 diff --git a/benchmarks/accelerate_opt/requirements.cuda.txt b/benchmarks/accelerate_opt/requirements.cuda.txt new file mode 100644 index 000000000..f979c6993 --- /dev/null +++ b/benchmarks/accelerate_opt/requirements.cuda.txt @@ -0,0 +1,396 @@ +# +# This file is autogenerated by pip-compile with Python 3.9 +# by the following command: +# +# pip-compile --output-file=benchmarks/accelerate_opt/requirements.cuda.txt .pin/tmp-constraints-cuda-opt.txt benchmarks/accelerate_opt/requirements.in +# +--extra-index-url https://download.pytorch.org/whl/cu118 + +accelerate==0.27.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -r benchmarks/accelerate_opt/requirements.in +aiohttp==3.9.3 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # datasets + # fsspec +aiosignal==1.3.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # aiohttp +antlr4-python3-runtime==4.9.3 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # omegaconf +asttokens==2.4.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # giving +async-timeout==4.0.3 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # aiohttp +attrs==23.2.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # aiohttp +certifi==2024.2.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # requests +charset-normalizer==3.3.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # requests +codefind==0.1.3 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # ptera +datasets==2.17.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -r benchmarks/accelerate_opt/requirements.in + # evaluate +deepspeed==0.13.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -r benchmarks/accelerate_opt/requirements.in +dill==0.3.8 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # datasets + # evaluate + # multiprocess +evaluate==0.4.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -r benchmarks/accelerate_opt/requirements.in +executing==1.2.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # varname +filelock==3.13.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # datasets + # huggingface-hub + # torch + # transformers + # triton +frozenlist==1.4.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # aiohttp + # aiosignal +fsspec[http]==2023.10.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # datasets + # evaluate + # huggingface-hub + # torch +giving==0.4.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # ptera + # voir +hjson==3.1.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # deepspeed +huggingface-hub==0.20.3 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # accelerate + # datasets + # evaluate + # tokenizers + # transformers +idna==3.6 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # requests + # yarl +jinja2==3.1.3 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +markdown-it-py==3.0.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # rich +markupsafe==2.1.5 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # jinja2 +mdurl==0.1.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # markdown-it-py +mpmath==1.3.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # sympy +multidict==6.0.5 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # aiohttp + # yarl +multiprocess==0.70.16 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # datasets + # evaluate +networkx==3.2.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +ninja==1.11.1.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # deepspeed +numpy==1.26.4 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # accelerate + # datasets + # deepspeed + # evaluate + # pandas + # pyarrow + # torchvision + # transformers +nvidia-cublas-cu11==11.11.3.6 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # nvidia-cudnn-cu11 + # nvidia-cusolver-cu11 + # torch +nvidia-cuda-cupti-cu11==11.8.87 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-cuda-nvrtc-cu11==11.8.89 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-cuda-runtime-cu11==11.8.89 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-cudnn-cu11==8.7.0.84 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-cufft-cu11==10.9.0.58 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-curand-cu11==10.3.0.86 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-cusolver-cu11==11.4.1.48 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-cusparse-cu11==11.7.5.86 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-nccl-cu11==2.19.3 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-nvtx-cu11==11.8.86 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +omegaconf==2.3.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # voir +ovld==0.3.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # voir +packaging==23.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # accelerate + # datasets + # deepspeed + # evaluate + # huggingface-hub + # transformers +pandas==2.2.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # datasets + # evaluate +pillow==10.2.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torchvision +psutil==5.9.8 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # accelerate + # deepspeed +ptera==1.4.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # voir +py-cpuinfo==9.0.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # deepspeed +pyarrow==15.0.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # datasets +pyarrow-hotfix==0.6 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # datasets +pydantic==1.10.14 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # deepspeed +pygments==2.17.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # rich +pynvml==11.5.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # deepspeed + # voir +python-dateutil==2.8.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # pandas +pytz==2024.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # pandas +pyyaml==6.0.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # accelerate + # datasets + # huggingface-hub + # omegaconf + # transformers +reactivex==4.0.4 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # giving +regex==2023.12.25 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # transformers +requests==2.31.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # datasets + # evaluate + # fsspec + # huggingface-hub + # responses + # torchvision + # transformers +responses==0.18.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # evaluate +rich==13.7.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -r benchmarks/accelerate_opt/requirements.in + # voir +safetensors==0.4.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # accelerate + # transformers +six==1.16.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # asttokens + # python-dateutil +sympy==1.12 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +tokenizers==0.15.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # transformers +torch==2.2.0+cu118 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -r benchmarks/accelerate_opt/requirements.in + # accelerate + # deepspeed + # torchaudio + # torchvision +torchaudio==2.2.0+cu118 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -r benchmarks/accelerate_opt/requirements.in +torchvision==0.17.0+cu118 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -r benchmarks/accelerate_opt/requirements.in +tqdm==4.66.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # datasets + # deepspeed + # evaluate + # huggingface-hub + # transformers +transformers==4.37.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -r benchmarks/accelerate_opt/requirements.in +triton==2.2.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +typing-extensions==4.9.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # huggingface-hub + # pydantic + # reactivex + # torch +tzdata==2023.4 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # pandas +urllib3==1.26.18 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # requests + # responses +varname==0.10.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # giving +voir==0.2.12 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -c .pin/../constraints/cuda.txt + # -r benchmarks/accelerate_opt/requirements.in +xxhash==3.4.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # datasets + # evaluate +yarl==1.9.4 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # aiohttp diff --git a/benchmarks/accelerate_opt/requirements.rocm.txt b/benchmarks/accelerate_opt/requirements.rocm.txt index b56ff798f..b1de81c3f 100644 --- a/benchmarks/accelerate_opt/requirements.rocm.txt +++ b/benchmarks/accelerate_opt/requirements.rocm.txt @@ -1,13 +1,15 @@ # -# This file is autogenerated by pip-compile with Python 3.11 +# This file is autogenerated by pip-compile with Python 3.9 # by the following command: # -# pip-compile --config=pyproject.toml --output-file=benchmarks/accelerate_opt/requirements.rocm.txt --resolver=backtracking .pin/tmp-constraints-rocm-opt.txt benchmarks/accelerate_opt/requirements.in +# pip-compile --output-file=benchmarks/accelerate_opt/requirements.rocm.txt .pin/tmp-constraints-rocm-opt.txt benchmarks/accelerate_opt/requirements.in # --extra-index-url https://download.pytorch.org/whl/rocm5.6/ accelerate==0.24.1 - # via -r benchmarks/accelerate_opt/requirements.in + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # -r benchmarks/accelerate_opt/requirements.in aiohttp==3.8.6 # via # -c .pin/../.pin/constraints-rocm-torch.txt @@ -52,10 +54,13 @@ codefind==0.1.3 # ptera datasets==2.14.6 # via + # -c .pin/../.pin/constraints-rocm-torch.txt # -r benchmarks/accelerate_opt/requirements.in # evaluate deepspeed==0.12.2 - # via -r benchmarks/accelerate_opt/requirements.in + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # -r benchmarks/accelerate_opt/requirements.in dill==0.3.7 # via # -c .pin/../.pin/constraints-rocm-torch.txt @@ -63,7 +68,9 @@ dill==0.3.7 # evaluate # multiprocess evaluate==0.4.1 - # via -r benchmarks/accelerate_opt/requirements.in + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # -r benchmarks/accelerate_opt/requirements.in executing==1.2.0 # via # -c .pin/../.pin/constraints-rocm-torch.txt @@ -262,6 +269,7 @@ responses==0.18.0 # evaluate rich==13.6.0 # via + # -c .pin/../.pin/constraints-rocm-torch.txt # -r benchmarks/accelerate_opt/requirements.in # voir safetensors==0.4.0 @@ -283,6 +291,7 @@ tokenizers==0.14.1 # transformers torch==2.1.0+rocm5.6 # via + # -c .pin/../.pin/constraints-rocm-torch.txt # -r benchmarks/accelerate_opt/requirements.in # accelerate # deepspeed @@ -290,9 +299,13 @@ torch==2.1.0+rocm5.6 # torchaudio # torchvision torchaudio==2.1.0+rocm5.6 - # via -r benchmarks/accelerate_opt/requirements.in + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # -r benchmarks/accelerate_opt/requirements.in torchvision==0.16.0+rocm5.6 - # via -r benchmarks/accelerate_opt/requirements.in + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # -r benchmarks/accelerate_opt/requirements.in tqdm==4.66.1 # via # -c .pin/../.pin/constraints-rocm-torch.txt @@ -302,7 +315,9 @@ tqdm==4.66.1 # huggingface-hub # transformers transformers==4.35.0 - # via -r benchmarks/accelerate_opt/requirements.in + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # -r benchmarks/accelerate_opt/requirements.in typing-extensions==4.8.0 # via # -c .pin/../.pin/constraints-rocm-torch.txt @@ -324,7 +339,10 @@ varname==0.10.0 # -c .pin/../.pin/constraints-rocm-torch.txt # giving voir==0.2.11 - # via -r benchmarks/accelerate_opt/requirements.in + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # -c .pin/../constraints/rocm.txt + # -r benchmarks/accelerate_opt/requirements.in xxhash==3.4.1 # via # -c .pin/../.pin/constraints-rocm-torch.txt diff --git a/benchmarks/dlrm/requirements.cuda.txt b/benchmarks/dlrm/requirements.cuda.txt new file mode 100644 index 000000000..f2c8e26c5 --- /dev/null +++ b/benchmarks/dlrm/requirements.cuda.txt @@ -0,0 +1,384 @@ +# +# This file is autogenerated by pip-compile with Python 3.9 +# by the following command: +# +# pip-compile --output-file=benchmarks/dlrm/requirements.cuda.txt .pin/tmp-constraints-cuda-dlrm.txt benchmarks/dlrm/requirements.in +# +--extra-index-url https://download.pytorch.org/whl/cu118 + +absl-py==2.1.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # tensorboard +antlr4-python3-runtime==4.9.3 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # omegaconf +asttokens==2.4.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # giving +cachetools==5.3.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # google-auth +certifi==2024.2.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # requests +charset-normalizer==3.3.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # requests +codefind==0.1.3 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # ptera +docker==7.0.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torchx +docstring-parser==0.8.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torchx +executing==1.2.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # varname +fbgemm-gpu==0.6.0+cu118 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torchrec +filelock==3.13.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch + # torchx + # triton +fsspec==2023.10.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch + # torchx +future==0.18.3 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -r benchmarks/dlrm/requirements.in +giving==0.4.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # ptera + # voir +google-auth==2.27.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # google-auth-oauthlib + # tensorboard +google-auth-oauthlib==1.2.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # tensorboard +graphviz==0.20.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torchviz +grpcio==1.60.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # tensorboard +idna==3.6 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # requests +importlib-metadata==7.0.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # markdown + # torchx +jinja2==3.1.3 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +joblib==1.3.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # scikit-learn +lightning-utilities==0.10.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torchmetrics +markdown==3.5.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # tensorboard +markdown-it-py==3.0.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # rich +markupsafe==2.1.5 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # jinja2 + # werkzeug +mdurl==0.1.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # markdown-it-py +mpmath==1.3.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # sympy +mypy-extensions==1.0.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # typing-inspect +networkx==3.2.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +numpy==1.26.4 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -r benchmarks/dlrm/requirements.in + # fbgemm-gpu + # onnx + # scikit-learn + # scipy + # tensorboard + # torchmetrics +nvidia-cublas-cu11==11.11.3.6 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # nvidia-cudnn-cu11 + # nvidia-cusolver-cu11 + # torch +nvidia-cuda-cupti-cu11==11.8.87 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-cuda-nvrtc-cu11==11.8.89 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-cuda-runtime-cu11==11.8.89 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-cudnn-cu11==8.7.0.84 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-cufft-cu11==10.9.0.58 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-curand-cu11==10.3.0.86 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-cusolver-cu11==11.4.1.48 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-cusparse-cu11==11.7.5.86 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-nccl-cu11==2.19.3 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-nvtx-cu11==11.8.86 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +oauthlib==3.2.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # requests-oauthlib +omegaconf==2.3.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # voir +onnx==1.15.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -r benchmarks/dlrm/requirements.in +ovld==0.3.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # voir +packaging==23.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # docker + # lightning-utilities + # torchmetrics +protobuf==4.25.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # onnx + # tensorboard +ptera==1.4.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # voir +pyasn1==0.5.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # pyasn1-modules + # rsa +pyasn1-modules==0.3.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # google-auth +pydot==2.0.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -r benchmarks/dlrm/requirements.in +pygments==2.17.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # rich +pynvml==11.5.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # voir +pyparsing==3.1.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # pydot +pyre-extensions==0.0.30 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torchx +pyyaml==6.0.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # omegaconf + # torchx +reactivex==4.0.4 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # giving +requests==2.31.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # docker + # requests-oauthlib + # tensorboard +requests-oauthlib==1.3.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # google-auth-oauthlib +rich==13.7.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # voir +rsa==4.9 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # google-auth +scikit-learn==1.4.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -r benchmarks/dlrm/requirements.in +scipy==1.12.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # scikit-learn +six==1.16.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # asttokens + # tensorboard +sympy==1.12 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +tabulate==0.9.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torchx +tensorboard==2.15.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -r benchmarks/dlrm/requirements.in +tensorboard-data-server==0.7.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # tensorboard +threadpoolctl==3.2.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # scikit-learn +torch==2.2.0+cu118 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -r benchmarks/dlrm/requirements.in + # torchmetrics + # torchviz +torchmetrics==1.0.3 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torchrec +torchrec==0.6.0+cu118 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -r benchmarks/dlrm/requirements.in +torchviz==0.0.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -r benchmarks/dlrm/requirements.in +torchx==0.5.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -r benchmarks/dlrm/requirements.in +tqdm==4.66.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -r benchmarks/dlrm/requirements.in + # torchrec +triton==2.2.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +typing-extensions==4.9.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # lightning-utilities + # pyre-extensions + # reactivex + # torch + # typing-inspect +typing-inspect==0.9.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # pyre-extensions +urllib3==1.26.18 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # docker + # requests + # torchx +varname==0.10.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # giving +voir==0.2.12 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -c .pin/../constraints/cuda.txt + # -r benchmarks/dlrm/requirements.in +werkzeug==3.0.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # tensorboard +zipp==3.17.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # importlib-metadata + +# The following packages are considered to be unsafe in a requirements file: +# setuptools diff --git a/benchmarks/dlrm/requirements.rocm.txt b/benchmarks/dlrm/requirements.rocm.txt index a36f32986..8f7aea241 100644 --- a/benchmarks/dlrm/requirements.rocm.txt +++ b/benchmarks/dlrm/requirements.rocm.txt @@ -1,8 +1,8 @@ # -# This file is autogenerated by pip-compile with Python 3.11 +# This file is autogenerated by pip-compile with Python 3.9 # by the following command: # -# pip-compile --config=pyproject.toml --output-file=benchmarks/dlrm/requirements.rocm.txt --resolver=backtracking .pin/tmp-constraints-rocm-dlrm.txt benchmarks/dlrm/requirements.in +# pip-compile --output-file=benchmarks/dlrm/requirements.rocm.txt .pin/tmp-constraints-rocm-dlrm.txt benchmarks/dlrm/requirements.in # --extra-index-url https://download.pytorch.org/whl/rocm5.6/ @@ -66,7 +66,9 @@ fsspec==2023.10.0 # torch # torchx future==0.18.3 - # via -r benchmarks/dlrm/requirements.in + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # -r benchmarks/dlrm/requirements.in giving==0.4.2 # via # -c .pin/../.pin/constraints-rocm-torch.txt @@ -96,6 +98,7 @@ idna==3.4 importlib-metadata==6.8.0 # via # -c .pin/../.pin/constraints-rocm-torch.txt + # markdown # torchx jinja2==3.1.2 # via @@ -144,6 +147,7 @@ networkx==3.2.1 # torch numpy==1.26.1 # via + # -c .pin/../.pin/constraints-rocm-torch.txt # -r benchmarks/dlrm/requirements.in # fbgemm-gpu # onnx @@ -160,7 +164,9 @@ omegaconf==2.3.0 # -c .pin/../.pin/constraints-rocm-torch.txt # voir onnx==1.15.0 - # via -r benchmarks/dlrm/requirements.in + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # -r benchmarks/dlrm/requirements.in ovld==0.3.2 # via # -c .pin/../.pin/constraints-rocm-torch.txt @@ -190,7 +196,9 @@ pyasn1-modules==0.3.0 # -c .pin/../.pin/constraints-rocm-torch.txt # google-auth pydot==1.4.2 - # via -r benchmarks/dlrm/requirements.in + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # -r benchmarks/dlrm/requirements.in pygments==2.16.1 # via # -c .pin/../.pin/constraints-rocm-torch.txt @@ -239,7 +247,9 @@ rsa==4.9 # -c .pin/../.pin/constraints-rocm-torch.txt # google-auth scikit-learn==1.3.2 - # via -r benchmarks/dlrm/requirements.in + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # -r benchmarks/dlrm/requirements.in scipy==1.11.3 # via # -c .pin/../.pin/constraints-rocm-torch.txt @@ -258,7 +268,9 @@ tabulate==0.9.0 # -c .pin/../.pin/constraints-rocm-torch.txt # torchx tensorboard==2.15.1 - # via -r benchmarks/dlrm/requirements.in + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # -r benchmarks/dlrm/requirements.in tensorboard-data-server==0.7.2 # via # -c .pin/../.pin/constraints-rocm-torch.txt @@ -269,6 +281,7 @@ threadpoolctl==3.2.0 # scikit-learn torch==2.1.0+rocm5.6 # via + # -c .pin/../.pin/constraints-rocm-torch.txt # -r benchmarks/dlrm/requirements.in # pytorch-triton-rocm # torchmetrics @@ -278,13 +291,20 @@ torchmetrics==1.0.3 # -c .pin/../.pin/constraints-rocm-torch.txt # torchrec torchrec==0.5.0 - # via -r benchmarks/dlrm/requirements.in + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # -r benchmarks/dlrm/requirements.in torchviz==0.0.2 - # via -r benchmarks/dlrm/requirements.in + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # -r benchmarks/dlrm/requirements.in torchx==0.5.0 - # via -r benchmarks/dlrm/requirements.in + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # -r benchmarks/dlrm/requirements.in tqdm==4.66.1 # via + # -c .pin/../.pin/constraints-rocm-torch.txt # -r benchmarks/dlrm/requirements.in # torchrec typing-extensions==4.8.0 @@ -310,7 +330,10 @@ varname==0.10.0 # -c .pin/../.pin/constraints-rocm-torch.txt # giving voir==0.2.11 - # via -r benchmarks/dlrm/requirements.in + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # -c .pin/../constraints/rocm.txt + # -r benchmarks/dlrm/requirements.in websocket-client==1.6.4 # via # -c .pin/../.pin/constraints-rocm-torch.txt diff --git a/benchmarks/flops/requirements.cuda.txt b/benchmarks/flops/requirements.cuda.txt new file mode 100644 index 000000000..e3be8c36c --- /dev/null +++ b/benchmarks/flops/requirements.cuda.txt @@ -0,0 +1,207 @@ +# +# This file is autogenerated by pip-compile with Python 3.9 +# by the following command: +# +# pip-compile --output-file=benchmarks/flops/requirements.cuda.txt .pin/tmp-constraints-cuda-flops.txt benchmarks/flops/requirements.in +# +--extra-index-url https://download.pytorch.org/whl/cu118 + +antlr4-python3-runtime==4.9.3 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # omegaconf +asttokens==2.4.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # giving +certifi==2024.2.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # requests +charset-normalizer==3.3.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # requests +codefind==0.1.3 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # ptera +executing==1.2.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # varname +filelock==3.13.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch + # triton +fsspec==2023.10.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +giving==0.4.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # ptera + # voir +idna==3.6 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # requests +jinja2==3.1.3 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +markdown-it-py==3.0.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # rich +markupsafe==2.1.5 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # jinja2 +mdurl==0.1.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # markdown-it-py +mpmath==1.3.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # sympy +networkx==3.2.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +numpy==1.26.4 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torchvision +nvidia-cublas-cu11==11.11.3.6 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # nvidia-cudnn-cu11 + # nvidia-cusolver-cu11 + # torch +nvidia-cuda-cupti-cu11==11.8.87 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-cuda-nvrtc-cu11==11.8.89 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-cuda-runtime-cu11==11.8.89 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-cudnn-cu11==8.7.0.84 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-cufft-cu11==10.9.0.58 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-curand-cu11==10.3.0.86 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-cusolver-cu11==11.4.1.48 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-cusparse-cu11==11.7.5.86 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-nccl-cu11==2.19.3 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-nvtx-cu11==11.8.86 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +omegaconf==2.3.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # voir +ovld==0.3.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # voir +pillow==10.2.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torchvision +ptera==1.4.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # voir +pygments==2.17.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # rich +pynvml==11.5.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # voir +pyyaml==6.0.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # omegaconf +reactivex==4.0.4 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # giving +requests==2.31.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torchvision +rich==13.7.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # voir +six==1.16.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # asttokens +sympy==1.12 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +torch==2.2.0+cu118 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -r benchmarks/flops/requirements.in + # torchvision +torchvision==0.17.0+cu118 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -r benchmarks/flops/requirements.in +tqdm==4.66.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -r benchmarks/flops/requirements.in +triton==2.2.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +typing-extensions==4.9.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # reactivex + # torch +urllib3==1.26.18 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # requests +varname==0.10.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # giving +voir==0.2.12 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -c .pin/../constraints/cuda.txt + # -r benchmarks/flops/requirements.in diff --git a/benchmarks/flops/requirements.rocm.txt b/benchmarks/flops/requirements.rocm.txt index 23d10b701..b7cfc21c9 100644 --- a/benchmarks/flops/requirements.rocm.txt +++ b/benchmarks/flops/requirements.rocm.txt @@ -1,8 +1,8 @@ # -# This file is autogenerated by pip-compile with Python 3.11 +# This file is autogenerated by pip-compile with Python 3.9 # by the following command: # -# pip-compile --config=pyproject.toml --output-file=benchmarks/flops/requirements.rocm.txt --resolver=backtracking .pin/tmp-constraints-rocm-flops.txt benchmarks/flops/requirements.in +# pip-compile --output-file=benchmarks/flops/requirements.rocm.txt .pin/tmp-constraints-rocm-flops.txt benchmarks/flops/requirements.in # --extra-index-url https://download.pytorch.org/whl/rocm5.6/ @@ -138,13 +138,18 @@ sympy==1.12 # torch torch==2.1.0+rocm5.6 # via + # -c .pin/../.pin/constraints-rocm-torch.txt # -r benchmarks/flops/requirements.in # pytorch-triton-rocm # torchvision torchvision==0.16.0+rocm5.6 - # via -r benchmarks/flops/requirements.in + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # -r benchmarks/flops/requirements.in tqdm==4.66.1 - # via -r benchmarks/flops/requirements.in + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # -r benchmarks/flops/requirements.in typing-extensions==4.8.0 # via # -c .pin/../.pin/constraints-rocm-torch.txt @@ -159,4 +164,7 @@ varname==0.10.0 # -c .pin/../.pin/constraints-rocm-torch.txt # giving voir==0.2.11 - # via -r benchmarks/flops/requirements.in + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # -c .pin/../constraints/rocm.txt + # -r benchmarks/flops/requirements.in diff --git a/benchmarks/huggingface/requirements.cuda.txt b/benchmarks/huggingface/requirements.cuda.txt new file mode 100644 index 000000000..a223cfe9a --- /dev/null +++ b/benchmarks/huggingface/requirements.cuda.txt @@ -0,0 +1,232 @@ +# +# This file is autogenerated by pip-compile with Python 3.9 +# by the following command: +# +# pip-compile --output-file=benchmarks/huggingface/requirements.cuda.txt .pin/tmp-constraints-cuda-hf.txt benchmarks/huggingface/requirements.in +# +--extra-index-url https://download.pytorch.org/whl/cu118 + +antlr4-python3-runtime==4.9.3 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # omegaconf +asttokens==2.4.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # giving +certifi==2024.2.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # requests +charset-normalizer==3.3.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # requests +codefind==0.1.3 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # ptera +executing==1.2.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # varname +filelock==3.13.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # huggingface-hub + # torch + # transformers + # triton +fsspec==2023.10.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # huggingface-hub + # torch +giving==0.4.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # ptera + # voir +huggingface-hub==0.20.3 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # tokenizers + # transformers +idna==3.6 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # requests +jinja2==3.1.3 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +markdown-it-py==3.0.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # rich +markupsafe==2.1.5 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # jinja2 +mdurl==0.1.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # markdown-it-py +mpmath==1.3.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # sympy +networkx==3.2.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +numpy==1.26.4 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # transformers +nvidia-cublas-cu11==11.11.3.6 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # nvidia-cudnn-cu11 + # nvidia-cusolver-cu11 + # torch +nvidia-cuda-cupti-cu11==11.8.87 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-cuda-nvrtc-cu11==11.8.89 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-cuda-runtime-cu11==11.8.89 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-cudnn-cu11==8.7.0.84 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-cufft-cu11==10.9.0.58 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-curand-cu11==10.3.0.86 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-cusolver-cu11==11.4.1.48 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-cusparse-cu11==11.7.5.86 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-nccl-cu11==2.19.3 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-nvtx-cu11==11.8.86 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +omegaconf==2.3.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # voir +ovld==0.3.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # voir +packaging==23.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # huggingface-hub + # transformers +ptera==1.4.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # voir +pygments==2.17.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # rich +pynvml==11.5.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # voir +pyyaml==6.0.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # huggingface-hub + # omegaconf + # transformers +reactivex==4.0.4 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # giving +regex==2023.12.25 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # transformers +requests==2.31.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # huggingface-hub + # transformers +rich==13.7.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # voir +safetensors==0.4.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # transformers +six==1.16.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # asttokens +sympy==1.12 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +tokenizers==0.15.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # transformers +torch==2.2.0+cu118 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -r benchmarks/huggingface/requirements.in +tqdm==4.66.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # huggingface-hub + # transformers +transformers==4.37.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -r benchmarks/huggingface/requirements.in +triton==2.2.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +typing-extensions==4.9.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # huggingface-hub + # reactivex + # torch +urllib3==1.26.18 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # requests +varname==0.10.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # giving +voir==0.2.12 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -c .pin/../constraints/cuda.txt + # -r benchmarks/huggingface/requirements.in diff --git a/benchmarks/huggingface/requirements.rocm.txt b/benchmarks/huggingface/requirements.rocm.txt index 4e39b0c45..df77376ea 100644 --- a/benchmarks/huggingface/requirements.rocm.txt +++ b/benchmarks/huggingface/requirements.rocm.txt @@ -1,8 +1,8 @@ # -# This file is autogenerated by pip-compile with Python 3.11 +# This file is autogenerated by pip-compile with Python 3.9 # by the following command: # -# pip-compile --config=pyproject.toml --output-file=benchmarks/huggingface/requirements.rocm.txt --resolver=backtracking .pin/tmp-constraints-rocm-hf.txt benchmarks/huggingface/requirements.in +# pip-compile --output-file=benchmarks/huggingface/requirements.rocm.txt .pin/tmp-constraints-rocm-hf.txt benchmarks/huggingface/requirements.in # --extra-index-url https://download.pytorch.org/whl/rocm5.6/ @@ -162,6 +162,7 @@ tokenizers==0.14.1 # transformers torch==2.1.0+rocm5.6 # via + # -c .pin/../.pin/constraints-rocm-torch.txt # -r benchmarks/huggingface/requirements.in # pytorch-triton-rocm tqdm==4.66.1 @@ -170,7 +171,9 @@ tqdm==4.66.1 # huggingface-hub # transformers transformers==4.35.0 - # via -r benchmarks/huggingface/requirements.in + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # -r benchmarks/huggingface/requirements.in typing-extensions==4.8.0 # via # -c .pin/../.pin/constraints-rocm-torch.txt @@ -186,4 +189,7 @@ varname==0.10.0 # -c .pin/../.pin/constraints-rocm-torch.txt # giving voir==0.2.11 - # via -r benchmarks/huggingface/requirements.in + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # -c .pin/../constraints/rocm.txt + # -r benchmarks/huggingface/requirements.in diff --git a/benchmarks/llama/requirements.cuda.txt b/benchmarks/llama/requirements.cuda.txt new file mode 100644 index 000000000..7601f7940 --- /dev/null +++ b/benchmarks/llama/requirements.cuda.txt @@ -0,0 +1,336 @@ +# +# This file is autogenerated by pip-compile with Python 3.9 +# by the following command: +# +# pip-compile --output-file=benchmarks/llama/requirements.cuda.txt .pin/tmp-constraints-cuda-llm.txt benchmarks/llama/requirements.in +# +--extra-index-url https://download.pytorch.org/whl/cu118 + +aiohttp==3.9.3 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # datasets + # fsspec +aiosignal==1.3.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # aiohttp +antlr4-python3-runtime==4.9.3 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # omegaconf +asttokens==2.4.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # giving +async-timeout==4.0.3 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # aiohttp +attrs==23.2.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # aiohttp +certifi==2024.2.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # requests +charset-normalizer==3.3.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # requests +codefind==0.1.3 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # ptera +datasets==2.17.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -r benchmarks/llama/requirements.in +dill==0.3.8 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # datasets + # multiprocess +executing==1.2.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # varname +fairscale==0.4.13 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -r benchmarks/llama/requirements.in +filelock==3.13.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # datasets + # huggingface-hub + # torch + # transformers + # triton +fire==0.5.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -r benchmarks/llama/requirements.in +frozenlist==1.4.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # aiohttp + # aiosignal +fsspec[http]==2023.10.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # datasets + # huggingface-hub + # torch +giving==0.4.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # ptera + # voir +huggingface-hub==0.20.3 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # datasets + # tokenizers + # transformers +idna==3.6 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # requests + # yarl +jinja2==3.1.3 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +markdown-it-py==3.0.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # rich +markupsafe==2.1.5 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # jinja2 +mdurl==0.1.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # markdown-it-py +mpmath==1.3.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # sympy +multidict==6.0.5 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # aiohttp + # yarl +multiprocess==0.70.16 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # datasets +networkx==3.2.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +numpy==1.26.4 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # datasets + # fairscale + # pandas + # pyarrow + # transformers +nvidia-cublas-cu11==11.11.3.6 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # nvidia-cudnn-cu11 + # nvidia-cusolver-cu11 + # torch +nvidia-cuda-cupti-cu11==11.8.87 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-cuda-nvrtc-cu11==11.8.89 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-cuda-runtime-cu11==11.8.89 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-cudnn-cu11==8.7.0.84 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-cufft-cu11==10.9.0.58 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-curand-cu11==10.3.0.86 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-cusolver-cu11==11.4.1.48 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-cusparse-cu11==11.7.5.86 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-nccl-cu11==2.19.3 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-nvtx-cu11==11.8.86 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +omegaconf==2.3.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # voir +ovld==0.3.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # voir +packaging==23.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # datasets + # huggingface-hub + # transformers +pandas==2.2.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # datasets +ptera==1.4.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # voir +pyarrow==15.0.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # datasets +pyarrow-hotfix==0.6 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # datasets +pygments==2.17.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # rich +pynvml==11.5.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # voir +python-dateutil==2.8.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # pandas +pytz==2024.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # pandas +pyyaml==6.0.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # datasets + # huggingface-hub + # omegaconf + # transformers +reactivex==4.0.4 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # giving +regex==2023.12.25 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # transformers +requests==2.31.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # datasets + # fsspec + # huggingface-hub + # transformers +rich==13.7.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # voir +safetensors==0.4.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # transformers +sentencepiece==0.1.99 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -r benchmarks/llama/requirements.in +six==1.16.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # asttokens + # fire + # python-dateutil +sympy==1.12 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +termcolor==2.4.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # fire +tokenizers==0.15.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # transformers +torch==2.2.0+cu118 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -r benchmarks/llama/requirements.in + # fairscale +tqdm==4.66.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # datasets + # huggingface-hub + # transformers +transformers==4.37.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -r benchmarks/llama/requirements.in +triton==2.2.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +typing-extensions==4.9.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # huggingface-hub + # reactivex + # torch +tzdata==2023.4 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # pandas +urllib3==1.26.18 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # requests +varname==0.10.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # giving +voir==0.2.12 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -c .pin/../constraints/cuda.txt + # -r benchmarks/llama/requirements.in +xxhash==3.4.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # datasets +yarl==1.9.4 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # aiohttp diff --git a/benchmarks/llama/requirements.rocm.txt b/benchmarks/llama/requirements.rocm.txt index eb26e2fa9..bcd5391d8 100644 --- a/benchmarks/llama/requirements.rocm.txt +++ b/benchmarks/llama/requirements.rocm.txt @@ -1,186 +1,295 @@ # -# This file is autogenerated by pip-compile with Python 3.11 +# This file is autogenerated by pip-compile with Python 3.9 # by the following command: # -# pip-compile --config=pyproject.toml --output-file=benchmarks/llama/requirements.rocm.txt --resolver=backtracking .pin/tmp-constraints-rocm-llm.txt benchmarks/llama/requirements.in +# pip-compile --output-file=benchmarks/llama/requirements.rocm.txt .pin/tmp-constraints-rocm-llm.txt benchmarks/llama/requirements.in # --extra-index-url https://download.pytorch.org/whl/rocm5.6/ aiohttp==3.8.6 # via + # -c .pin/../.pin/constraints-rocm-torch.txt # datasets # fsspec aiosignal==1.3.1 - # via aiohttp + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # aiohttp antlr4-python3-runtime==4.9.3 - # via omegaconf + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # omegaconf asttokens==2.4.1 - # via giving + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # giving async-timeout==4.0.3 - # via aiohttp + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # aiohttp attrs==23.1.0 - # via aiohttp + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # aiohttp certifi==2023.7.22 - # via requests + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # requests charset-normalizer==3.3.2 # via + # -c .pin/../.pin/constraints-rocm-torch.txt # aiohttp # requests cmake==3.27.7 - # via pytorch-triton-rocm + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # pytorch-triton-rocm codefind==0.1.3 - # via ptera + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # ptera datasets==2.14.6 - # via -r benchmarks/llama/requirements.in + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # -r benchmarks/llama/requirements.in dill==0.3.7 # via + # -c .pin/../.pin/constraints-rocm-torch.txt # datasets # multiprocess executing==1.2.0 - # via varname + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # varname fairscale==0.4.13 - # via -r benchmarks/llama/requirements.in + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # -r benchmarks/llama/requirements.in filelock==3.13.1 # via + # -c .pin/../.pin/constraints-rocm-torch.txt # huggingface-hub # pytorch-triton-rocm # torch # transformers fire==0.5.0 - # via -r benchmarks/llama/requirements.in + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # -r benchmarks/llama/requirements.in frozenlist==1.4.0 # via + # -c .pin/../.pin/constraints-rocm-torch.txt # aiohttp # aiosignal fsspec[http]==2023.10.0 # via + # -c .pin/../.pin/constraints-rocm-torch.txt # datasets # huggingface-hub # torch giving==0.4.2 # via + # -c .pin/../.pin/constraints-rocm-torch.txt # ptera # voir huggingface-hub==0.17.3 # via + # -c .pin/../.pin/constraints-rocm-torch.txt # datasets # tokenizers # transformers idna==3.4 # via + # -c .pin/../.pin/constraints-rocm-torch.txt # requests # yarl jinja2==3.1.2 - # via torch + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # torch lit==17.0.4 - # via pytorch-triton-rocm + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # pytorch-triton-rocm markdown-it-py==3.0.0 - # via rich + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # rich markupsafe==2.1.3 - # via jinja2 + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # jinja2 mdurl==0.1.2 - # via markdown-it-py + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # markdown-it-py mpmath==1.3.0 - # via sympy + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # sympy multidict==6.0.4 # via + # -c .pin/../.pin/constraints-rocm-torch.txt # aiohttp # yarl multiprocess==0.70.15 - # via datasets + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # datasets networkx==3.2.1 - # via torch + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # torch numpy==1.26.1 # via + # -c .pin/../.pin/constraints-rocm-torch.txt # datasets # fairscale # pandas # pyarrow # transformers omegaconf==2.3.0 - # via voir + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # voir ovld==0.3.2 - # via voir + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # voir packaging==23.2 # via + # -c .pin/../.pin/constraints-rocm-torch.txt # datasets # huggingface-hub # transformers pandas==2.1.2 - # via datasets + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # datasets ptera==1.4.1 - # via voir + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # voir pyarrow==14.0.0 - # via datasets + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # datasets pygments==2.16.1 - # via rich + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # rich pynvml==11.5.0 - # via voir + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # voir python-dateutil==2.8.2 - # via pandas + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # pandas pytorch-triton-rocm==2.1.0 - # via torch + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # torch pytz==2023.3.post1 - # via pandas + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # pandas pyyaml==6.0.1 # via + # -c .pin/../.pin/constraints-rocm-torch.txt # datasets # huggingface-hub # omegaconf # transformers reactivex==4.0.4 - # via giving + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # giving regex==2023.10.3 - # via transformers + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # transformers requests==2.31.0 # via + # -c .pin/../.pin/constraints-rocm-torch.txt # datasets # fsspec # huggingface-hub # transformers rich==13.6.0 - # via voir + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # voir safetensors==0.4.0 - # via transformers + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # transformers sentencepiece==0.1.99 - # via -r benchmarks/llama/requirements.in + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # -r benchmarks/llama/requirements.in six==1.16.0 # via + # -c .pin/../.pin/constraints-rocm-torch.txt # asttokens # fire # python-dateutil sympy==1.12 - # via torch -termcolor==2.3.0 - # via fire + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # torch +termcolor==2.4.0 + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # fire tokenizers==0.14.1 - # via transformers + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # transformers torch==2.1.0+rocm5.6 # via + # -c .pin/../.pin/constraints-rocm-torch.txt # -r benchmarks/llama/requirements.in # fairscale # pytorch-triton-rocm tqdm==4.66.1 # via + # -c .pin/../.pin/constraints-rocm-torch.txt # datasets # huggingface-hub # transformers transformers==4.35.0 - # via -r benchmarks/llama/requirements.in + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # -r benchmarks/llama/requirements.in typing-extensions==4.8.0 # via + # -c .pin/../.pin/constraints-rocm-torch.txt # huggingface-hub # reactivex # torch tzdata==2023.3 - # via pandas -urllib3==2.0.7 - # via requests + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # pandas +urllib3==1.26.18 + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # requests varname==0.10.0 - # via giving + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # giving voir==0.2.11 - # via -r benchmarks/llama/requirements.in + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # -c .pin/../constraints/rocm.txt + # -r benchmarks/llama/requirements.in xxhash==3.4.1 - # via datasets + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # datasets yarl==1.9.2 - # via aiohttp + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # aiohttp diff --git a/benchmarks/rwkv/requirements.cuda.txt b/benchmarks/rwkv/requirements.cuda.txt new file mode 100644 index 000000000..9fcea0ccd --- /dev/null +++ b/benchmarks/rwkv/requirements.cuda.txt @@ -0,0 +1,291 @@ +# +# This file is autogenerated by pip-compile with Python 3.9 +# by the following command: +# +# pip-compile --output-file=benchmarks/rwkv/requirements.cuda.txt .pin/tmp-constraints-cuda-rwkv.txt benchmarks/rwkv/requirements.in +# +--extra-index-url https://download.pytorch.org/whl/cu118 + +aiohttp==3.9.3 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # fsspec +aiosignal==1.3.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # aiohttp +antlr4-python3-runtime==4.9.3 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # omegaconf +asttokens==2.4.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # giving +async-timeout==4.0.3 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # aiohttp +attrs==23.2.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # aiohttp +certifi==2024.2.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # requests +charset-normalizer==3.3.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # requests +codefind==0.1.3 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # ptera +deepspeed==0.13.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -r benchmarks/rwkv/requirements.in +executing==1.2.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # varname +filelock==3.13.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch + # triton +frozenlist==1.4.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # aiohttp + # aiosignal +fsspec[http]==2023.10.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # pytorch-lightning + # torch +giving==0.4.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # ptera + # voir +hjson==3.1.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # deepspeed +idna==3.6 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # requests + # yarl +jinja2==3.1.3 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +lightning-utilities==0.10.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # pytorch-lightning + # torchmetrics +markdown-it-py==3.0.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # rich +markupsafe==2.1.5 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # jinja2 +mdurl==0.1.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # markdown-it-py +mpmath==1.3.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # sympy +multidict==6.0.5 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # aiohttp + # yarl +networkx==3.2.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +ninja==1.11.1.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -r benchmarks/rwkv/requirements.in + # deepspeed +numpy==1.26.4 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -r benchmarks/rwkv/requirements.in + # deepspeed + # pytorch-lightning + # torchmetrics +nvidia-cublas-cu11==11.11.3.6 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # nvidia-cudnn-cu11 + # nvidia-cusolver-cu11 + # torch +nvidia-cuda-cupti-cu11==11.8.87 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-cuda-nvrtc-cu11==11.8.89 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-cuda-runtime-cu11==11.8.89 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-cudnn-cu11==8.7.0.84 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-cufft-cu11==10.9.0.58 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-curand-cu11==10.3.0.86 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-cusolver-cu11==11.4.1.48 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-cusparse-cu11==11.7.5.86 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-nccl-cu11==2.19.3 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-nvtx-cu11==11.8.86 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +omegaconf==2.3.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # voir +ovld==0.3.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # voir +packaging==23.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # deepspeed + # lightning-utilities + # pytorch-lightning + # torchmetrics +psutil==5.9.8 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # deepspeed +ptera==1.4.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # voir +py-cpuinfo==9.0.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # deepspeed +pydantic==1.10.14 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -r benchmarks/rwkv/requirements.in + # deepspeed +pygments==2.17.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # rich +pynvml==11.5.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # deepspeed + # voir +pytorch-lightning==1.9.5 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -r benchmarks/rwkv/requirements.in +pyyaml==6.0.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # omegaconf + # pytorch-lightning +reactivex==4.0.4 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # giving +requests==2.31.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # fsspec +rich==13.7.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # voir +six==1.16.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # asttokens +sympy==1.12 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +torch==2.2.0+cu118 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -r benchmarks/rwkv/requirements.in + # deepspeed + # pytorch-lightning + # torchmetrics +torchmetrics==1.0.3 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # pytorch-lightning +tqdm==4.66.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # deepspeed + # pytorch-lightning +triton==2.2.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +typing-extensions==4.9.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # lightning-utilities + # pydantic + # pytorch-lightning + # reactivex + # torch +urllib3==1.26.18 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # requests +varname==0.10.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # giving +voir==0.2.12 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -c .pin/../constraints/cuda.txt + # -r benchmarks/rwkv/requirements.in +yarl==1.9.4 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # aiohttp + +# The following packages are considered to be unsafe in a requirements file: +# setuptools diff --git a/benchmarks/rwkv/requirements.rocm.txt b/benchmarks/rwkv/requirements.rocm.txt index e97d63520..5cb2ecfad 100644 --- a/benchmarks/rwkv/requirements.rocm.txt +++ b/benchmarks/rwkv/requirements.rocm.txt @@ -1,8 +1,8 @@ # -# This file is autogenerated by pip-compile with Python 3.11 +# This file is autogenerated by pip-compile with Python 3.9 # by the following command: # -# pip-compile --config=pyproject.toml --output-file=benchmarks/rwkv/requirements.rocm.txt --resolver=backtracking .pin/tmp-constraints-rocm-rwkv.txt benchmarks/rwkv/requirements.in +# pip-compile --output-file=benchmarks/rwkv/requirements.rocm.txt .pin/tmp-constraints-rocm-rwkv.txt benchmarks/rwkv/requirements.in # --extra-index-url https://download.pytorch.org/whl/rocm5.6/ @@ -48,7 +48,9 @@ codefind==0.1.3 # -c .pin/../.pin/constraints-rocm-torch.txt # ptera deepspeed==0.12.2 - # via -r benchmarks/rwkv/requirements.in + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # -r benchmarks/rwkv/requirements.in executing==1.2.0 # via # -c .pin/../.pin/constraints-rocm-torch.txt @@ -122,10 +124,12 @@ networkx==3.2.1 # torch ninja==1.11.1.1 # via + # -c .pin/../.pin/constraints-rocm-torch.txt # -r benchmarks/rwkv/requirements.in # deepspeed numpy==1.26.1 # via + # -c .pin/../.pin/constraints-rocm-torch.txt # -r benchmarks/rwkv/requirements.in # deepspeed # pytorch-lightning @@ -159,6 +163,7 @@ py-cpuinfo==9.0.0 # deepspeed pydantic==1.10.13 # via + # -c .pin/../.pin/constraints-rocm-torch.txt # -r benchmarks/rwkv/requirements.in # deepspeed pygments==2.16.1 @@ -171,7 +176,9 @@ pynvml==11.5.0 # deepspeed # voir pytorch-lightning==1.9.5 - # via -r benchmarks/rwkv/requirements.in + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # -r benchmarks/rwkv/requirements.in pytorch-triton-rocm==2.1.0 # via # -c .pin/../.pin/constraints-rocm-torch.txt @@ -203,6 +210,7 @@ sympy==1.12 # torch torch==2.1.0+rocm5.6 # via + # -c .pin/../.pin/constraints-rocm-torch.txt # -r benchmarks/rwkv/requirements.in # deepspeed # pytorch-lightning @@ -234,7 +242,10 @@ varname==0.10.0 # -c .pin/../.pin/constraints-rocm-torch.txt # giving voir==0.2.11 - # via -r benchmarks/rwkv/requirements.in + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # -c .pin/../constraints/rocm.txt + # -r benchmarks/rwkv/requirements.in yarl==1.9.2 # via # -c .pin/../.pin/constraints-rocm-torch.txt diff --git a/benchmarks/stargan/requirements.cuda.txt b/benchmarks/stargan/requirements.cuda.txt new file mode 100644 index 000000000..e8797a327 --- /dev/null +++ b/benchmarks/stargan/requirements.cuda.txt @@ -0,0 +1,204 @@ +# +# This file is autogenerated by pip-compile with Python 3.9 +# by the following command: +# +# pip-compile --output-file=benchmarks/stargan/requirements.cuda.txt .pin/tmp-constraints-cuda-stargan.txt benchmarks/stargan/requirements.in +# +--extra-index-url https://download.pytorch.org/whl/cu118 + +antlr4-python3-runtime==4.9.3 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # omegaconf +asttokens==2.4.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # giving +certifi==2024.2.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # requests +charset-normalizer==3.3.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # requests +codefind==0.1.3 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # ptera +executing==1.2.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # varname +filelock==3.13.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch + # triton +fsspec==2023.10.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +giving==0.4.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # ptera + # voir +idna==3.6 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # requests +jinja2==3.1.3 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +markdown-it-py==3.0.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # rich +markupsafe==2.1.5 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # jinja2 +mdurl==0.1.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # markdown-it-py +mpmath==1.3.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # sympy +networkx==3.2.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +numpy==1.26.4 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -r benchmarks/stargan/requirements.in + # torchvision +nvidia-cublas-cu11==11.11.3.6 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # nvidia-cudnn-cu11 + # nvidia-cusolver-cu11 + # torch +nvidia-cuda-cupti-cu11==11.8.87 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-cuda-nvrtc-cu11==11.8.89 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-cuda-runtime-cu11==11.8.89 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-cudnn-cu11==8.7.0.84 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-cufft-cu11==10.9.0.58 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-curand-cu11==10.3.0.86 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-cusolver-cu11==11.4.1.48 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-cusparse-cu11==11.7.5.86 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-nccl-cu11==2.19.3 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-nvtx-cu11==11.8.86 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +omegaconf==2.3.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # voir +ovld==0.3.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # voir +pillow==10.2.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torchvision +ptera==1.4.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # voir +pygments==2.17.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # rich +pynvml==11.5.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # voir +pyyaml==6.0.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # omegaconf +reactivex==4.0.4 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # giving +requests==2.31.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torchvision +rich==13.7.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # voir +six==1.16.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # asttokens +sympy==1.12 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +torch==2.2.0+cu118 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -r benchmarks/stargan/requirements.in + # torchvision +torchvision==0.17.0+cu118 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -r benchmarks/stargan/requirements.in +triton==2.2.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +typing-extensions==4.9.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # reactivex + # torch +urllib3==1.26.18 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # requests +varname==0.10.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # giving +voir==0.2.12 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -c .pin/../constraints/cuda.txt + # -r benchmarks/stargan/requirements.in diff --git a/benchmarks/stargan/requirements.rocm.txt b/benchmarks/stargan/requirements.rocm.txt index d2b904c55..6f5938ac5 100644 --- a/benchmarks/stargan/requirements.rocm.txt +++ b/benchmarks/stargan/requirements.rocm.txt @@ -1,8 +1,8 @@ # -# This file is autogenerated by pip-compile with Python 3.11 +# This file is autogenerated by pip-compile with Python 3.9 # by the following command: # -# pip-compile --config=pyproject.toml --output-file=benchmarks/stargan/requirements.rocm.txt --resolver=backtracking .pin/tmp-constraints-rocm-stargan.txt benchmarks/stargan/requirements.in +# pip-compile --output-file=benchmarks/stargan/requirements.rocm.txt .pin/tmp-constraints-rocm-stargan.txt benchmarks/stargan/requirements.in # --extra-index-url https://download.pytorch.org/whl/rocm5.6/ @@ -82,6 +82,7 @@ networkx==3.2.1 # torch numpy==1.26.1 # via + # -c .pin/../.pin/constraints-rocm-torch.txt # -r benchmarks/stargan/requirements.in # torchvision omegaconf==2.3.0 @@ -138,11 +139,14 @@ sympy==1.12 # torch torch==2.1.0+rocm5.6 # via + # -c .pin/../.pin/constraints-rocm-torch.txt # -r benchmarks/stargan/requirements.in # pytorch-triton-rocm # torchvision torchvision==0.16.0+rocm5.6 - # via -r benchmarks/stargan/requirements.in + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # -r benchmarks/stargan/requirements.in typing-extensions==4.8.0 # via # -c .pin/../.pin/constraints-rocm-torch.txt @@ -157,4 +161,7 @@ varname==0.10.0 # -c .pin/../.pin/constraints-rocm-torch.txt # giving voir==0.2.11 - # via -r benchmarks/stargan/requirements.in + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # -c .pin/../constraints/rocm.txt + # -r benchmarks/stargan/requirements.in diff --git a/benchmarks/super-slomo/requirements.cuda.txt b/benchmarks/super-slomo/requirements.cuda.txt new file mode 100644 index 000000000..6f4b9805a --- /dev/null +++ b/benchmarks/super-slomo/requirements.cuda.txt @@ -0,0 +1,213 @@ +# +# This file is autogenerated by pip-compile with Python 3.9 +# by the following command: +# +# pip-compile --output-file=benchmarks/super-slomo/requirements.cuda.txt .pin/tmp-constraints-cuda-super-slomo.txt benchmarks/super-slomo/requirements.in +# +--extra-index-url https://download.pytorch.org/whl/cu118 + +antlr4-python3-runtime==4.9.3 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # omegaconf +asttokens==2.4.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # giving +certifi==2024.2.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # requests +charset-normalizer==3.3.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # requests +codefind==0.1.3 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # ptera +executing==1.2.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # varname +filelock==3.13.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch + # triton +fsspec==2023.10.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +giving==0.4.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # ptera + # voir +idna==3.6 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # requests +jinja2==3.1.3 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +markdown-it-py==3.0.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # rich +markupsafe==2.1.5 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # jinja2 +mdurl==0.1.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # markdown-it-py +mpmath==1.3.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # sympy +networkx==3.2.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +numpy==1.26.4 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -r benchmarks/super-slomo/requirements.in + # opencv-python + # torchvision +nvidia-cublas-cu11==11.11.3.6 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # nvidia-cudnn-cu11 + # nvidia-cusolver-cu11 + # torch +nvidia-cuda-cupti-cu11==11.8.87 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-cuda-nvrtc-cu11==11.8.89 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-cuda-runtime-cu11==11.8.89 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-cudnn-cu11==8.7.0.84 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-cufft-cu11==10.9.0.58 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-curand-cu11==10.3.0.86 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-cusolver-cu11==11.4.1.48 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-cusparse-cu11==11.7.5.86 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-nccl-cu11==2.19.3 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-nvtx-cu11==11.8.86 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +omegaconf==2.3.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # voir +opencv-python==4.9.0.80 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -r benchmarks/super-slomo/requirements.in +ovld==0.3.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # voir +pillow==10.2.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torchvision +ptera==1.4.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # voir +pygments==2.17.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # rich +pynvml==11.5.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # voir +pyyaml==6.0.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # omegaconf +reactivex==4.0.4 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # giving +requests==2.31.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torchvision +rich==13.7.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # voir +six==1.16.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # asttokens +sympy==1.12 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +torch==2.2.0+cu118 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -r benchmarks/super-slomo/requirements.in + # torchvision +torchvision==0.17.0+cu118 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -r benchmarks/super-slomo/requirements.in +tqdm==4.66.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -r benchmarks/super-slomo/requirements.in +triton==2.2.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +typing-extensions==4.9.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # reactivex + # torch +urllib3==1.26.18 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # requests +varname==0.10.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # giving +voir==0.2.12 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -c .pin/../constraints/cuda.txt + # -r benchmarks/super-slomo/requirements.in diff --git a/benchmarks/super-slomo/requirements.rocm.txt b/benchmarks/super-slomo/requirements.rocm.txt index 02ff9f070..4ae1c575b 100644 --- a/benchmarks/super-slomo/requirements.rocm.txt +++ b/benchmarks/super-slomo/requirements.rocm.txt @@ -1,8 +1,8 @@ # -# This file is autogenerated by pip-compile with Python 3.11 +# This file is autogenerated by pip-compile with Python 3.9 # by the following command: # -# pip-compile --config=pyproject.toml --output-file=benchmarks/super-slomo/requirements.rocm.txt --resolver=backtracking .pin/tmp-constraints-rocm-super-slomo.txt benchmarks/super-slomo/requirements.in +# pip-compile --output-file=benchmarks/super-slomo/requirements.rocm.txt .pin/tmp-constraints-rocm-super-slomo.txt benchmarks/super-slomo/requirements.in # --extra-index-url https://download.pytorch.org/whl/rocm5.6/ @@ -82,6 +82,7 @@ networkx==3.2.1 # torch numpy==1.26.1 # via + # -c .pin/../.pin/constraints-rocm-torch.txt # -r benchmarks/super-slomo/requirements.in # opencv-python # torchvision @@ -90,7 +91,9 @@ omegaconf==2.3.0 # -c .pin/../.pin/constraints-rocm-torch.txt # voir opencv-python==4.8.1.78 - # via -r benchmarks/super-slomo/requirements.in + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # -r benchmarks/super-slomo/requirements.in ovld==0.3.2 # via # -c .pin/../.pin/constraints-rocm-torch.txt @@ -141,13 +144,18 @@ sympy==1.12 # torch torch==2.1.0+rocm5.6 # via + # -c .pin/../.pin/constraints-rocm-torch.txt # -r benchmarks/super-slomo/requirements.in # pytorch-triton-rocm # torchvision torchvision==0.16.0+rocm5.6 - # via -r benchmarks/super-slomo/requirements.in + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # -r benchmarks/super-slomo/requirements.in tqdm==4.66.1 - # via -r benchmarks/super-slomo/requirements.in + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # -r benchmarks/super-slomo/requirements.in typing-extensions==4.8.0 # via # -c .pin/../.pin/constraints-rocm-torch.txt @@ -162,4 +170,7 @@ varname==0.10.0 # -c .pin/../.pin/constraints-rocm-torch.txt # giving voir==0.2.11 - # via -r benchmarks/super-slomo/requirements.in + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # -c .pin/../constraints/rocm.txt + # -r benchmarks/super-slomo/requirements.in diff --git a/benchmarks/timm/requirements.cuda.txt b/benchmarks/timm/requirements.cuda.txt new file mode 100644 index 000000000..00ec850b6 --- /dev/null +++ b/benchmarks/timm/requirements.cuda.txt @@ -0,0 +1,225 @@ +# +# This file is autogenerated by pip-compile with Python 3.9 +# by the following command: +# +# pip-compile --output-file=benchmarks/timm/requirements.cuda.txt .pin/tmp-constraints-cuda-timm.txt benchmarks/timm/requirements.in +# +--extra-index-url https://download.pytorch.org/whl/cu118 + +antlr4-python3-runtime==4.9.3 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # omegaconf +asttokens==2.4.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # giving +certifi==2024.2.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # requests +charset-normalizer==3.3.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # requests +codefind==0.1.3 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # ptera +executing==1.2.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # varname +filelock==3.13.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # huggingface-hub + # torch + # triton +fsspec==2023.10.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # huggingface-hub + # torch +giving==0.4.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # ptera + # voir +huggingface-hub==0.20.3 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -r benchmarks/timm/requirements.in +idna==3.6 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # requests +jinja2==3.1.3 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +markdown-it-py==3.0.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # rich +markupsafe==2.1.5 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # jinja2 +mdurl==0.1.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # markdown-it-py +mpmath==1.3.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # sympy +networkx==3.2.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +numpy==1.26.4 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torchvision +nvidia-cublas-cu11==11.11.3.6 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # nvidia-cudnn-cu11 + # nvidia-cusolver-cu11 + # torch +nvidia-cuda-cupti-cu11==11.8.87 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-cuda-nvrtc-cu11==11.8.89 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-cuda-runtime-cu11==11.8.89 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-cudnn-cu11==8.7.0.84 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-cufft-cu11==10.9.0.58 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-curand-cu11==10.3.0.86 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-cusolver-cu11==11.4.1.48 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-cusparse-cu11==11.7.5.86 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-nccl-cu11==2.19.3 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +nvidia-nvtx-cu11==11.8.86 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +omegaconf==2.3.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # voir +ovld==0.3.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # voir +packaging==23.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # huggingface-hub +pillow==10.2.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torchvision +ptera==1.4.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # voir +pygments==2.17.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # rich +pynvml==11.5.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # voir +pyyaml==6.0.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -r benchmarks/timm/requirements.in + # huggingface-hub + # omegaconf +reactivex==4.0.4 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # giving +requests==2.31.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # huggingface-hub + # torchvision +rich==13.7.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # voir +safetensors==0.4.2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -r benchmarks/timm/requirements.in +six==1.16.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # asttokens +sympy==1.12 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +torch==2.2.0+cu118 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -r benchmarks/timm/requirements.in + # torchvision +torchvision==0.17.0+cu118 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -r benchmarks/timm/requirements.in +tqdm==4.66.1 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # huggingface-hub +triton==2.2.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch +typing-extensions==4.9.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # huggingface-hub + # reactivex + # torch +urllib3==1.26.18 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # requests +varname==0.10.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # giving +voir==0.2.12 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -c .pin/../constraints/cuda.txt + # -r benchmarks/timm/requirements.in diff --git a/benchmarks/timm/requirements.rocm.txt b/benchmarks/timm/requirements.rocm.txt index 6b15125f5..870523e20 100644 --- a/benchmarks/timm/requirements.rocm.txt +++ b/benchmarks/timm/requirements.rocm.txt @@ -1,8 +1,8 @@ # -# This file is autogenerated by pip-compile with Python 3.11 +# This file is autogenerated by pip-compile with Python 3.9 # by the following command: # -# pip-compile --config=pyproject.toml --output-file=benchmarks/timm/requirements.rocm.txt --resolver=backtracking .pin/tmp-constraints-rocm-timm.txt benchmarks/timm/requirements.in +# pip-compile --output-file=benchmarks/timm/requirements.rocm.txt .pin/tmp-constraints-rocm-timm.txt benchmarks/timm/requirements.in # --extra-index-url https://download.pytorch.org/whl/rocm5.6/ @@ -51,7 +51,9 @@ giving==0.4.2 # ptera # voir huggingface-hub==0.17.3 - # via -r benchmarks/timm/requirements.in + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # -r benchmarks/timm/requirements.in idna==3.4 # via # -c .pin/../.pin/constraints-rocm-torch.txt @@ -122,6 +124,7 @@ pytorch-triton-rocm==2.1.0 # torch pyyaml==6.0.1 # via + # -c .pin/../.pin/constraints-rocm-torch.txt # -r benchmarks/timm/requirements.in # huggingface-hub # omegaconf @@ -139,7 +142,9 @@ rich==13.6.0 # -c .pin/../.pin/constraints-rocm-torch.txt # voir safetensors==0.4.0 - # via -r benchmarks/timm/requirements.in + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # -r benchmarks/timm/requirements.in six==1.16.0 # via # -c .pin/../.pin/constraints-rocm-torch.txt @@ -150,11 +155,14 @@ sympy==1.12 # torch torch==2.1.0+rocm5.6 # via + # -c .pin/../.pin/constraints-rocm-torch.txt # -r benchmarks/timm/requirements.in # pytorch-triton-rocm # torchvision torchvision==0.16.0+rocm5.6 - # via -r benchmarks/timm/requirements.in + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # -r benchmarks/timm/requirements.in tqdm==4.66.1 # via # -c .pin/../.pin/constraints-rocm-torch.txt @@ -174,4 +182,7 @@ varname==0.10.0 # -c .pin/../.pin/constraints-rocm-torch.txt # giving voir==0.2.11 - # via -r benchmarks/timm/requirements.in + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # -c .pin/../constraints/rocm.txt + # -r benchmarks/timm/requirements.in diff --git a/benchmarks/torchvision/main.py b/benchmarks/torchvision/main.py index 1177d1953..d7518d179 100644 --- a/benchmarks/torchvision/main.py +++ b/benchmarks/torchvision/main.py @@ -16,23 +16,6 @@ normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) -class Stats: - def __init__(self): - self.count = 0 - self.epoch_count = 0 - - def newbatch(self, bs): - self.count += bs.shape[0] - self.epoch_count += bs.shape[0] - - def newepoch(self): - self.epoch_count = 0 - - - -stats = Stats() - - def is_tf32_allowed(args): return "tf32" in args.precision @@ -61,29 +44,17 @@ def scaling(enable): def train_epoch(model, criterion, optimizer, loader, device, scaler=None, timer=None): - global stats - - stats.newepoch() model.train() s = time.time() p = time.time() - def iterator(loader, timer): + def toiterator(loader, timer): with timer.timeit("loader"): - iterator = iter(loader) - - while True: - with timer.timeit("next"): - try: - batch = next(iterator) - except StopIteration: - return - - yield batch + return iter(loader) # this is what computes the batch size - for inp, target in voir.iterate("train", iterator(loader, timer), True): + for inp, target in timer.iterator(voir.iterate("train", toiterator(loader, timer), True)): with timer.timeit("batch"): inp = inp.to(device) @@ -127,6 +98,18 @@ def __len__(self): def main(): + from voir.phase import StopProgram + + try: + with timeit("main") as main_timer: + _main(main_timer) + + main_timer.show() + except StopProgram: + main_timer.show() + raise + +def _main(main_timer): parser = argparse.ArgumentParser(description="Torchvision models") parser.add_argument( "--batch-size", @@ -237,8 +220,11 @@ def main(): train_loader = torch.utils.data.DataLoader( train, batch_size=args.batch_size, - shuffle=True, num_workers=args.num_workers, + sampler=torch.utils.data.RandomSampler( + train, + replacement=True, + num_samples=len(train) * args.epochs) ) else: train_loader = SyntheticData( @@ -254,7 +240,7 @@ def main(): else: scaler = None - with timeit("train") as train_timer: + with main_timer.timeit("train") as train_timer: with given() as gv: if not args.no_stdout: gv.where("loss").display() @@ -272,7 +258,7 @@ def main(): model, criterion, optimizer, train_loader, device, scaler=scaler, timer=epoch_timer ) - train_timer.show() + break if __name__ == "__main__": - main() + main() \ No newline at end of file diff --git a/benchmarks/torchvision/requirements.cuda.txt b/benchmarks/torchvision/requirements.cuda.txt index d35abd90a..281055fd8 100644 --- a/benchmarks/torchvision/requirements.cuda.txt +++ b/benchmarks/torchvision/requirements.cuda.txt @@ -1,5 +1,5 @@ # -# This file is autogenerated by pip-compile with Python 3.12 +# This file is autogenerated by pip-compile with Python 3.9 # by the following command: # # pip-compile --output-file=benchmarks/torchvision/requirements.cuda.txt .pin/tmp-constraints-cuda-torchvision.txt benchmarks/torchvision/requirements.in @@ -7,107 +7,201 @@ --extra-index-url https://download.pytorch.org/whl/cu118 antlr4-python3-runtime==4.9.3 - # via omegaconf + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # omegaconf asttokens==2.4.1 - # via giving + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # giving certifi==2024.2.2 - # via requests + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # requests charset-normalizer==3.3.2 - # via requests + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # requests codefind==0.1.3 - # via ptera + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # ptera executing==1.2.0 - # via varname + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # varname filelock==3.13.1 - # via torch -fsspec==2024.2.0 - # via torch + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch + # triton +fsspec==2023.10.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch giving==0.4.2 # via + # -c .pin/../.pin/constraints-cuda-torch.txt # ptera # voir idna==3.6 - # via requests + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # requests jinja2==3.1.3 - # via torch + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch markdown-it-py==3.0.0 - # via rich + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # rich markupsafe==2.1.5 - # via jinja2 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # jinja2 mdurl==0.1.2 - # via markdown-it-py + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # markdown-it-py mpmath==1.3.0 - # via sympy + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # sympy networkx==3.2.1 - # via torch + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch numpy==1.26.4 - # via torchvision + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torchvision nvidia-cublas-cu11==11.11.3.6 # via + # -c .pin/../.pin/constraints-cuda-torch.txt # nvidia-cudnn-cu11 # nvidia-cusolver-cu11 # torch nvidia-cuda-cupti-cu11==11.8.87 - # via torch + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch nvidia-cuda-nvrtc-cu11==11.8.89 - # via torch + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch nvidia-cuda-runtime-cu11==11.8.89 - # via torch + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch nvidia-cudnn-cu11==8.7.0.84 - # via torch + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch nvidia-cufft-cu11==10.9.0.58 - # via torch + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch nvidia-curand-cu11==10.3.0.86 - # via torch + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch nvidia-cusolver-cu11==11.4.1.48 - # via torch + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch nvidia-cusparse-cu11==11.7.5.86 - # via torch + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch nvidia-nccl-cu11==2.19.3 - # via torch + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch nvidia-nvtx-cu11==11.8.86 - # via torch + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch omegaconf==2.3.0 - # via voir + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # voir ovld==0.3.2 - # via voir + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # voir pillow==10.2.0 - # via torchvision + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torchvision ptera==1.4.1 - # via voir + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # voir pygments==2.17.2 - # via rich + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # rich pynvml==11.5.0 - # via voir + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # voir pyyaml==6.0.1 - # via omegaconf + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # omegaconf reactivex==4.0.4 - # via giving + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # giving requests==2.31.0 - # via torchvision + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torchvision rich==13.7.0 - # via voir + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # voir six==1.16.0 - # via asttokens + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # asttokens sympy==1.12 - # via torch + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch torch==2.2.0+cu118 # via + # -c .pin/../.pin/constraints-cuda-torch.txt # -r benchmarks/torchvision/requirements.in # torchvision torchvision==0.17.0+cu118 - # via -r benchmarks/torchvision/requirements.in + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -r benchmarks/torchvision/requirements.in tqdm==4.66.1 - # via -r benchmarks/torchvision/requirements.in + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # -r benchmarks/torchvision/requirements.in +triton==2.2.0 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # torch typing-extensions==4.9.0 # via + # -c .pin/../.pin/constraints-cuda-torch.txt # reactivex # torch -urllib3==2.2.0 - # via requests +urllib3==1.26.18 + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # requests varname==0.10.0 - # via giving + # via + # -c .pin/../.pin/constraints-cuda-torch.txt + # giving voir==0.2.12 # via + # -c .pin/../.pin/constraints-cuda-torch.txt # -c .pin/../constraints/cuda.txt # -r benchmarks/torchvision/requirements.in diff --git a/benchmarks/torchvision/requirements.rocm.txt b/benchmarks/torchvision/requirements.rocm.txt index 618dff8f8..4601266de 100644 --- a/benchmarks/torchvision/requirements.rocm.txt +++ b/benchmarks/torchvision/requirements.rocm.txt @@ -1,8 +1,8 @@ # -# This file is autogenerated by pip-compile with Python 3.11 +# This file is autogenerated by pip-compile with Python 3.9 # by the following command: # -# pip-compile --config=pyproject.toml --output-file=benchmarks/torchvision/requirements.rocm.txt --resolver=backtracking .pin/tmp-constraints-rocm-torchvision.txt benchmarks/torchvision/requirements.in +# pip-compile --output-file=benchmarks/torchvision/requirements.rocm.txt .pin/tmp-constraints-rocm-torchvision.txt benchmarks/torchvision/requirements.in # --extra-index-url https://download.pytorch.org/whl/rocm5.6/ @@ -138,13 +138,18 @@ sympy==1.12 # torch torch==2.1.0+rocm5.6 # via + # -c .pin/../.pin/constraints-rocm-torch.txt # -r benchmarks/torchvision/requirements.in # pytorch-triton-rocm # torchvision torchvision==0.16.0+rocm5.6 - # via -r benchmarks/torchvision/requirements.in + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # -r benchmarks/torchvision/requirements.in tqdm==4.66.1 - # via -r benchmarks/torchvision/requirements.in + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # -r benchmarks/torchvision/requirements.in typing-extensions==4.8.0 # via # -c .pin/../.pin/constraints-rocm-torch.txt @@ -159,4 +164,7 @@ varname==0.10.0 # -c .pin/../.pin/constraints-rocm-torch.txt # giving voir==0.2.11 - # via -r benchmarks/torchvision/requirements.in + # via + # -c .pin/../.pin/constraints-rocm-torch.txt + # -c .pin/../constraints/rocm.txt + # -r benchmarks/torchvision/requirements.in diff --git a/commands.sh b/commands.sh deleted file mode 100644 index ce296f888..000000000 --- a/commands.sh +++ /dev/null @@ -1,26 +0,0 @@ -# --- -# Virtual Env -# =========== -export VIRTUAL_ENV="/Tmp/slurm.4123709.0/base/venv/torch" - - -# --- -# Milabench -# ========= -export MILABENCH_DIR_BASE="/Tmp/slurm.4123709.0/base" -export MILABENCH_DIR_VENV="/Tmp/slurm.4123709.0/base/venv/torch" -export MILABENCH_DIR_DATA="/Tmp/slurm.4123709.0/base/data" -export MILABENCH_DIR_RUNS="/Tmp/slurm.4123709.0/base/runs" -export MILABENCH_DIR_EXTRA="/Tmp/slurm.4123709.0/base/extra/torchvision" -export MILABENCH_DIR_CACHE="/Tmp/slurm.4123709.0/base/cache" -export MILABENCH_CONFIG='{"system": {"arch": "cuda", "sshkey": null, "nodes": [{"ip": "127.0.0.1", "main": true, "name": "0", "port": 22, "user": "username", "hostname": "localhost", "aliaslist": [], "ipaddrlist": ["70:b5:e8:f0:5a:08", "fe80::1270:fd03:cd:a394%ibp161s0", "::1", "172.16.9.28", "fe80::72b5:e8ff:fef0:5a08%eno8303", "00:00:00:00:00:00", "00:00:02:5d:fe:80:00:00:00:00:00:00:10:70:fd:03:00:cd:a3:94", "10.20.9.28", "00:00:00:bf:fe:80:00:00:00:00:00:00:10:70:fd:03:00:e6:1b:38", "fe80::1270:fd03:e6:1b38%ibp37s0", "127.0.0.1", "10.20.137.28"], "local": true}], "gpu": {"capacity": "0 MiB"}, "self": {"ip": "127.0.0.1", "main": true, "name": "0", "port": 22, "user": "username", "hostname": "localhost", "aliaslist": [], "ipaddrlist": ["70:b5:e8:f0:5a:08", "fe80::1270:fd03:cd:a394%ibp161s0", "::1", "172.16.9.28", "fe80::72b5:e8ff:fef0:5a08%eno8303", "00:00:00:00:00:00", "00:00:02:5d:fe:80:00:00:00:00:00:00:10:70:fd:03:00:cd:a3:94", "10.20.9.28", "00:00:00:bf:fe:80:00:00:00:00:00:00:10:70:fd:03:00:e6:1b:38", "fe80::1270:fd03:e6:1b38%ibp37s0", "127.0.0.1", "10.20.137.28"], "local": true}}, "dirs": {"base": "/Tmp/slurm.4123709.0/base", "venv": "/Tmp/slurm.4123709.0/base/venv/torch", "data": "/Tmp/slurm.4123709.0/base/data", "runs": "/Tmp/slurm.4123709.0/base/runs", "extra": "/Tmp/slurm.4123709.0/base/extra/torchvision", "cache": "/Tmp/slurm.4123709.0/base/cache"}, "group": "torchvision", "install_group": "torch", "install_variant": "cuda", "run_name": "dev", "enabled": true, "capabilities": {"nodes": 1}, "max_duration": 600, "voir": {"options": {"stop": 60, "interval": "1s"}}, "validation": {"usage": {"gpu_load_threshold": 0.5, "gpu_mem_threshold": 0.5}}, "config_base": "/home/mila/d/delaunap/milabench/config", "config_file": "/home/mila/d/delaunap/milabench/config/standard.yaml", "definition": "/home/mila/d/delaunap/milabench/benchmarks/torchvision", "plan": {"method": "per_gpu"}, "argv": {"--precision": "tf32-fp16", "--lr": 0.01, "--no-stdout": true, "--epochs": 50, "--model": "resnet50", "--batch-size": 64}, "tags": ["classification", "convnet", "resnet", "vision"], "weight": 1.0, "name": "resnet50", "tag": ["resnet50"]}' - -source $VIRTUAL_ENV/bin/activate - -# --- -# resnet50 -# ======== -( - python /home/mila/d/delaunap/milabench/benchmarks/torchvision/main.py --precision tf32-fp16 --lr 0.01 --no-stdout --epochs 10 --model resnet50 --batch-size 64 -) - diff --git a/milabench/_version.py b/milabench/_version.py index 3b9311daf..bc1e09c71 100644 --- a/milabench/_version.py +++ b/milabench/_version.py @@ -1,5 +1,5 @@ """This file is generated, do not modify""" -__tag__ = "v0.0.6-45-gac2ebf69" -__commit__ = "ac2ebf69ce2d44242a726b81531894f5b3049522" -__date__ = "2024-02-05 12:05:56 -0500" +__tag__ = "v0.0.6-54-ge75f56f1" +__commit__ = "e75f56f1a743da6ca5c46baac352519028da53d9" +__date__ = "2024-02-08 15:45:29 -0500" diff --git a/milabench/cli/dry.py b/milabench/cli/dry.py index d2ec5b528..9e81c192a 100644 --- a/milabench/cli/dry.py +++ b/milabench/cli/dry.py @@ -83,16 +83,16 @@ def section(self, title): self.echo("---") self.echo(title) self.echo("=" * len(title)) - + def echo(self, msg): - self.print(f"echo \"{msg}\"") + self.print(f'echo "{msg}"') def comment(self, cmt): self.print(f"# {cmt}") def env(self, env): for k, v in env.items(): - self.print(f'export {k}={shlex.quote(v)}') + self.print(f"export {k}={shlex.quote(v)}") self.print() @contextmanager @@ -120,9 +120,9 @@ def command(self, *args, env=None, **kwargs): sufix = "" if True: sufix = "&" - + frags = [prefix] + [str(a) for a in args] + [sufix] - + self.print(" ".join(filter(lambda x: x != "", frags))) @@ -142,10 +142,10 @@ def arguments(): ngpu: Option & int = 8 capacity: Option & int = 80000 nnodes: Option & int = 2 - + # [negate] withenv: Option & bool = True - + # [negate] usevoir: Option & bool = True return Arguments(nnodes, ngpu, capacity, withenv, usevoir) @@ -204,11 +204,11 @@ def cli_dry(args=None): if first_pack and args.withenv: first_pack = False gen.section("Virtual Env") - + venv = pack.core._nox_session.env["VIRTUAL_ENV"] - gen.env(VIRTUAL_ENV=VIRTUAL_ENV) + gen.env({"VIRTUAL_ENV": venv}) gen.print("source $VIRTUAL_ENV/bin/activate") - + gen.section("Milabench") gen.env(pack.make_env()) diff --git a/milabench/commands/__init__.py b/milabench/commands/__init__.py index e97404758..cf1997c67 100644 --- a/milabench/commands/__init__.py +++ b/milabench/commands/__init__.py @@ -453,18 +453,18 @@ def __init__(self, executor: SingleCmdCommand, *torchrun_argv, **kwargs) -> None def _argv(self, **kwargs): devices = self.pack.config.get("devices", []) nproc = len(devices) - + if nproc > 1: argv = [*super()._argv(**kwargs), f"--nproc_per_node={nproc}"] - + # Check if the sub-executor targets a module or not cmd = next(iter(self.exec.argv()), None) - + if cmd: # python or voir; tell it to not prepend python since we are doing it if cmd in ("python", "voir"): argv.append("--no-python") - + # if the command exists and it is not a path assume it is a module # script is not a file, maybe it is a module elif not XPath(cmd).exists(): diff --git a/milabench/log.py b/milabench/log.py index 5826d309b..03e0b75fb 100644 --- a/milabench/log.py +++ b/milabench/log.py @@ -5,6 +5,7 @@ import time from collections import defaultdict from datetime import datetime +from io import StringIO from blessed import Terminal from rich.console import Console @@ -167,21 +168,42 @@ def __init__(self, pipe): self.pipe = pipe self.files = {} + def _buffer_open(self, entry): + self.files[entry.tag] = StringIO() + + def _file_open(self, entry): + file = entry.pack.logfile(self.pipe) + os.makedirs(XPath(file).parent, exist_ok=True) + self.files[entry.tag] = open(file, "w").__enter__() + def file(self, entry): if entry.tag not in self.files: - file = entry.pack.logfile(self.pipe) - os.makedirs(XPath(file).parent, exist_ok=True) - self.files[entry.tag] = open(file, "w").__enter__() + self._file_open(entry) + return self.files[entry.tag] def log(self, entry): pass + def _buffer_cleanup(self, entry): + buffer = self.files[entry.tag] + + file = entry.pack.logfile(self.pipe) + os.makedirs(XPath(file).parent, exist_ok=True) + + with open(file, "w") as fp: + fp.write(buffer.getvalue()) + + del self.files[entry.tag] + + def _file_cleanup(self, entry): + self.files[entry.tag].__exit__(None, None, None) + del self.files[entry.tag] + def cleanup(self, entry): if entry.event == "end": if entry.tag in self.files: - self.files[entry.tag].__exit__(None, None, None) - del self.files[entry.tag] + self._file_cleanup(entry) def __call__(self, entry): self.log(entry) @@ -300,9 +322,9 @@ def on_data(self, entry, data, row): load = int(data.get("load", 0) * 100) currm, totalm = data.get("memory", [0, 0]) temp = int(data.get("temperature", 0)) - row[ - f"gpu:{gpuid}" - ] = f"{load}% load | {currm:.0f}/{totalm:.0f} MB | {temp}C" + row[f"gpu:{gpuid}"] = ( + f"{load}% load | {currm:.0f}/{totalm:.0f} MB | {temp}C" + ) row["gpu_load"] = f"{load}%" row["gpu_mem"] = f"{currm:.0f}/{totalm:.0f} MB" row["gpu_temp"] = f"{temp}C" @@ -376,9 +398,9 @@ def on_data(self, entry, data, row): load = int(data.get("load", 0) * 100) currm, totalm = data.get("memory", [0, 0]) temp = int(data.get("temperature", 0)) - row[ - f"gpu:{gpuid}" - ] = f"{load}% load | {currm:.0f}/{totalm:.0f} MB | {temp}C" + row[f"gpu:{gpuid}"] = ( + f"{load}% load | {currm:.0f}/{totalm:.0f} MB | {temp}C" + ) else: task = data.pop("task", "") units = data.pop("units", "") diff --git a/milabench/main.py b/milabench/main.py new file mode 100644 index 000000000..059c7fbf0 --- /dev/null +++ b/milabench/main.py @@ -0,0 +1,4 @@ +from milabench.cli import main + +if __name__ == "__main__": + main() diff --git a/milabench/merge.py b/milabench/merge.py index e5010c629..a9efa4cec 100644 --- a/milabench/merge.py +++ b/milabench/merge.py @@ -1,6 +1,5 @@ """Utilities to merge dictionaries and other data structures.""" - from collections import deque from functools import reduce from typing import Union diff --git a/milabench/scripts/vcs.py b/milabench/scripts/vcs.py index f1a8c4ddf..0f895f886 100644 --- a/milabench/scripts/vcs.py +++ b/milabench/scripts/vcs.py @@ -1,5 +1,6 @@ """Use to retrieve GIT version info, this file cannot import milabench modules as it is executed as part of the installation process""" + import os import subprocess import warnings diff --git a/milabench/utils.py b/milabench/utils.py index 63cba6b2d..42d0adbef 100644 --- a/milabench/utils.py +++ b/milabench/utils.py @@ -118,7 +118,7 @@ def relativize(pth): pth = XPath(pth) if pth.is_absolute(): - return pth.relative_to(XPath(here.parent).absolute()) + return pth.relative_to(XPath(here.parent).absolute()) else: return pth diff --git a/scripts/interactive.sh b/scripts/interactive.sh index 6d25f6f86..60eea1fe5 100644 --- a/scripts/interactive.sh +++ b/scripts/interactive.sh @@ -7,6 +7,7 @@ export ENV="$SLURM_TMPDIR/env" export MILABENCH_SOURCE="$HOME/milabench" export BASE="$SLURM_TMPDIR/base" export ARCH="cuda" +export PYTHON=3.9 if [ ! -d "$ENV" ] && [ "$ENV" != "base" ] && [ ! -d "$CONDA_ENVS/$ENV" ]; then conda create --prefix $ENV python=$PYTHON -y diff --git a/test.out b/test.out deleted file mode 100644 index 6a9b71594..000000000 --- a/test.out +++ /dev/null @@ -1,21141 +0,0 @@ - PYTHON: 3.9 - branch: new_pytorch_stable - origin: https://github.com/mila-iqia/milabench.git - config: /Tmp/slurm.4112514.0/milabench/config/standard.yaml - env: ./env - args: --exclude opt-6_7b -Retrieving notices: ...working... done -Collecting package metadata (current_repodata.json): ...working... done -Solving environment: ...working... done - - -==> WARNING: A newer version of conda exists. <== - current version: 23.5.2 - latest version: 24.1.0 - -Please update conda by running - - $ conda update -n base -c defaults conda - -Or to minimize the number of packages updated during conda update use - - conda install conda=24.1.0 - - - -## Package Plan ## - - environment location: /Tmp/slurm.4112514.0/env - - added / updated specs: - - python=3.9 - - -The following packages will be downloaded: - - package | build - ---------------------------|----------------- - openssl-3.0.13 | h7f8727e_0 5.2 MB - ------------------------------------------------------------ - Total: 5.2 MB - -The following NEW packages will be INSTALLED: - - _libgcc_mutex pkgs/main/linux-64::_libgcc_mutex-0.1-main - _openmp_mutex pkgs/main/linux-64::_openmp_mutex-5.1-1_gnu - ca-certificates pkgs/main/linux-64::ca-certificates-2023.12.12-h06a4308_0 - ld_impl_linux-64 pkgs/main/linux-64::ld_impl_linux-64-2.38-h1181459_1 - libffi pkgs/main/linux-64::libffi-3.4.4-h6a678d5_0 - libgcc-ng pkgs/main/linux-64::libgcc-ng-11.2.0-h1234567_1 - libgomp pkgs/main/linux-64::libgomp-11.2.0-h1234567_1 - libstdcxx-ng pkgs/main/linux-64::libstdcxx-ng-11.2.0-h1234567_1 - ncurses pkgs/main/linux-64::ncurses-6.4-h6a678d5_0 - openssl pkgs/main/linux-64::openssl-3.0.13-h7f8727e_0 - pip pkgs/main/linux-64::pip-23.3.1-py39h06a4308_0 - python pkgs/main/linux-64::python-3.9.18-h955ad1f_0 - readline pkgs/main/linux-64::readline-8.2-h5eee18b_0 - setuptools pkgs/main/linux-64::setuptools-68.2.2-py39h06a4308_0 - sqlite pkgs/main/linux-64::sqlite-3.41.2-h5eee18b_0 - tk pkgs/main/linux-64::tk-8.6.12-h1ccaba5_0 - tzdata pkgs/main/noarch::tzdata-2023d-h04d1e81_0 - wheel pkgs/main/linux-64::wheel-0.41.2-py39h06a4308_0 - xz pkgs/main/linux-64::xz-5.4.5-h5eee18b_0 - zlib pkgs/main/linux-64::zlib-1.2.13-h5eee18b_0 - - - -Downloading and Extracting Packages - openssl-3.0.13 | 5.2 MB | | 0% openssl-3.0.13 | 5.2 MB | 3 | 3% openssl-3.0.13 | 5.2 MB | ########## | 100% openssl-3.0.13 | 5.2 MB | ########## | 100% -Preparing transaction: ...working... done -Verifying transaction: ...working... done -Executing transaction: ...working... done -# -# To activate this environment, use -# -# $ conda activate /Tmp/slurm.4112514.0/env -# -# To deactivate an active environment, use -# -# $ conda deactivate - -Cloning into 'milabench'... -Obtaining file:///Tmp/slurm.4112514.0/milabench - Installing build dependencies: started - Installing build dependencies: finished with status 'done' - Checking if build backend supports build_editable: started - Checking if build backend supports build_editable: finished with status 'done' - Getting requirements to build editable: started - Getting requirements to build editable: finished with status 'done' - Preparing editable metadata (pyproject.toml): started - Preparing editable metadata (pyproject.toml): finished with status 'done' -Collecting GitPython<4.0.0,>=3.1.24 (from milabench==0.1.0) - Downloading GitPython-3.1.41-py3-none-any.whl.metadata (14 kB) -Collecting PyYAML<7.0,>=6.0 (from milabench==0.1.0) - Downloading PyYAML-6.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (2.1 kB) -Collecting blessed<2.0.0,>=1.19.1 (from milabench==0.1.0) - Downloading blessed-1.20.0-py2.py3-none-any.whl (58 kB) - ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58.4/58.4 kB 5.0 MB/s eta 0:00:00 -Collecting coleo<0.4.0,>=0.3.0 (from milabench==0.1.0) - Downloading coleo-0.3.3-py3-none-any.whl.metadata (13 kB) -Collecting cp-template<0.4.0,>=0.3.0 (from milabench==0.1.0) - Downloading cp_template-0.3.0-py3-none-any.whl (3.3 kB) -Collecting giving<0.5.0,>=0.4.0 (from milabench==0.1.0) - Downloading giving-0.4.2-py3-none-any.whl (28 kB) -Collecting hrepr<0.5.0,>=0.4.0 (from milabench==0.1.0) - Downloading hrepr-0.4.1-py3-none-any.whl (21 kB) -Collecting nox<2022.0.0,>=2021.10.1 (from milabench==0.1.0) - Downloading nox-2021.10.1-py3-none-any.whl (49 kB) - ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 49.7/49.7 kB 40.0 MB/s eta 0:00:00 -Collecting numpy>=1.23.0 (from milabench==0.1.0) - Downloading numpy-1.26.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (61 kB) - ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 61.2/61.2 kB 34.7 MB/s eta 0:00:00 -Collecting omegaconf<3.0.0,>=2.3.0 (from milabench==0.1.0) - Downloading omegaconf-2.3.0-py3-none-any.whl (79 kB) - ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 79.5/79.5 kB 38.5 MB/s eta 0:00:00 -Collecting ovld<0.4.0,>=0.3.2 (from milabench==0.1.0) - Downloading ovld-0.3.2-py3-none-any.whl (16 kB) -Collecting pandas<2.0.0,>=1.4.2 (from milabench==0.1.0) - Downloading pandas-1.5.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.2 MB) - ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 12.2/12.2 MB 94.4 MB/s eta 0:00:00 -Collecting pathspec<0.10.0,>=0.9.0 (from milabench==0.1.0) - Downloading pathspec-0.9.0-py2.py3-none-any.whl (31 kB) -Collecting pip-tools<7.0.0,>=6.12.3 (from milabench==0.1.0) - Downloading pip_tools-6.14.0-py3-none-any.whl.metadata (23 kB) -Collecting ptera<2.0.0,>=1.2.0 (from milabench==0.1.0) - Downloading ptera-1.4.1-py3-none-any.whl (39 kB) -Collecting pynvml<12.0.0,>=11.4.1 (from milabench==0.1.0) - Downloading pynvml-11.5.0-py3-none-any.whl (53 kB) - ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 53.1/53.1 kB 39.4 MB/s eta 0:00:00 -Collecting requests<3.0.0,>=2.26.0 (from milabench==0.1.0) - Downloading requests-2.31.0-py3-none-any.whl.metadata (4.6 kB) -Collecting rich<14.0.0,>=13.3.2 (from milabench==0.1.0) - Downloading rich-13.7.0-py3-none-any.whl.metadata (18 kB) -Collecting tqdm<5.0.0,>=4.64.1 (from milabench==0.1.0) - Downloading tqdm-4.66.1-py3-none-any.whl.metadata (57 kB) - ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 57.6/57.6 kB 42.4 MB/s eta 0:00:00 -Collecting voir<0.3.0,>=0.2.9 (from milabench==0.1.0) - Downloading voir-0.2.12-py3-none-any.whl.metadata (791 bytes) -Collecting wcwidth>=0.1.4 (from blessed<2.0.0,>=1.19.1->milabench==0.1.0) - Downloading wcwidth-0.2.13-py2.py3-none-any.whl.metadata (14 kB) -Collecting six>=1.9.0 (from blessed<2.0.0,>=1.19.1->milabench==0.1.0) - Downloading six-1.16.0-py2.py3-none-any.whl (11 kB) -Collecting pystache<0.7.0,>=0.6.0 (from cp-template<0.4.0,>=0.3.0->milabench==0.1.0) - Downloading pystache-0.6.5-py3-none-any.whl.metadata (14 kB) -Collecting gitdb<5,>=4.0.1 (from GitPython<4.0.0,>=3.1.24->milabench==0.1.0) - Downloading gitdb-4.0.11-py3-none-any.whl.metadata (1.2 kB) -Collecting asttokens<3.0.0,>=2.2.1 (from giving<0.5.0,>=0.4.0->milabench==0.1.0) - Downloading asttokens-2.4.1-py2.py3-none-any.whl.metadata (5.2 kB) -Collecting reactivex<5.0.0,>=4.0.0 (from giving<0.5.0,>=0.4.0->milabench==0.1.0) - Downloading reactivex-4.0.4-py3-none-any.whl (217 kB) - ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 217.8/217.8 kB 100.6 MB/s eta 0:00:00 -Collecting varname<0.11.0,>=0.10.0 (from giving<0.5.0,>=0.4.0->milabench==0.1.0) - Downloading varname-0.10.0-py3-none-any.whl (22 kB) -Collecting argcomplete<2.0,>=1.9.4 (from nox<2022.0.0,>=2021.10.1->milabench==0.1.0) - Downloading argcomplete-1.12.3-py2.py3-none-any.whl (38 kB) -Collecting colorlog<7.0.0,>=2.6.1 (from nox<2022.0.0,>=2021.10.1->milabench==0.1.0) - Downloading colorlog-6.8.2-py3-none-any.whl.metadata (10 kB) -Collecting packaging>=20.9 (from nox<2022.0.0,>=2021.10.1->milabench==0.1.0) - Downloading packaging-23.2-py3-none-any.whl.metadata (3.2 kB) -Collecting py<2.0.0,>=1.4.0 (from nox<2022.0.0,>=2021.10.1->milabench==0.1.0) - Downloading py-1.11.0-py2.py3-none-any.whl (98 kB) - ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 98.7/98.7 kB 71.4 MB/s eta 0:00:00 -Collecting virtualenv>=14.0.0 (from nox<2022.0.0,>=2021.10.1->milabench==0.1.0) - Downloading virtualenv-20.25.0-py3-none-any.whl.metadata (4.5 kB) -Collecting antlr4-python3-runtime==4.9.* (from omegaconf<3.0.0,>=2.3.0->milabench==0.1.0) - Downloading antlr4-python3-runtime-4.9.3.tar.gz (117 kB) - ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 117.0/117.0 kB 84.5 MB/s eta 0:00:00 - Preparing metadata (setup.py): started - Preparing metadata (setup.py): finished with status 'done' -Collecting python-dateutil>=2.8.1 (from pandas<2.0.0,>=1.4.2->milabench==0.1.0) - Downloading python_dateutil-2.8.2-py2.py3-none-any.whl (247 kB) - ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 247.7/247.7 kB 117.8 MB/s eta 0:00:00 -Collecting pytz>=2020.1 (from pandas<2.0.0,>=1.4.2->milabench==0.1.0) - Downloading pytz-2024.1-py2.py3-none-any.whl.metadata (22 kB) -Collecting build (from pip-tools<7.0.0,>=6.12.3->milabench==0.1.0) - Downloading build-1.0.3-py3-none-any.whl.metadata (4.2 kB) -Collecting click>=8 (from pip-tools<7.0.0,>=6.12.3->milabench==0.1.0) - Downloading click-8.1.7-py3-none-any.whl.metadata (3.0 kB) -Requirement already satisfied: pip>=22.2 in ./env/lib/python3.9/site-packages (from pip-tools<7.0.0,>=6.12.3->milabench==0.1.0) (23.3.1) -Requirement already satisfied: setuptools in ./env/lib/python3.9/site-packages (from pip-tools<7.0.0,>=6.12.3->milabench==0.1.0) (68.2.2) -Requirement already satisfied: wheel in ./env/lib/python3.9/site-packages (from pip-tools<7.0.0,>=6.12.3->milabench==0.1.0) (0.41.2) -Collecting tomli (from pip-tools<7.0.0,>=6.12.3->milabench==0.1.0) - Downloading tomli-2.0.1-py3-none-any.whl (12 kB) -Collecting codefind<0.2.0,>=0.1.2 (from ptera<2.0.0,>=1.2.0->milabench==0.1.0) - Downloading codefind-0.1.3-py3-none-any.whl (3.1 kB) -Collecting charset-normalizer<4,>=2 (from requests<3.0.0,>=2.26.0->milabench==0.1.0) - Downloading charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (33 kB) -Collecting idna<4,>=2.5 (from requests<3.0.0,>=2.26.0->milabench==0.1.0) - Downloading idna-3.6-py3-none-any.whl.metadata (9.9 kB) -Collecting urllib3<3,>=1.21.1 (from requests<3.0.0,>=2.26.0->milabench==0.1.0) - Downloading urllib3-2.2.0-py3-none-any.whl.metadata (6.4 kB) -Collecting certifi>=2017.4.17 (from requests<3.0.0,>=2.26.0->milabench==0.1.0) - Downloading certifi-2024.2.2-py3-none-any.whl.metadata (2.2 kB) -Collecting markdown-it-py>=2.2.0 (from rich<14.0.0,>=13.3.2->milabench==0.1.0) - Downloading markdown_it_py-3.0.0-py3-none-any.whl.metadata (6.9 kB) -Collecting pygments<3.0.0,>=2.13.0 (from rich<14.0.0,>=13.3.2->milabench==0.1.0) - Downloading pygments-2.17.2-py3-none-any.whl.metadata (2.6 kB) -Collecting smmap<6,>=3.0.1 (from gitdb<5,>=4.0.1->GitPython<4.0.0,>=3.1.24->milabench==0.1.0) - Downloading smmap-5.0.1-py3-none-any.whl.metadata (4.3 kB) -Collecting mdurl~=0.1 (from markdown-it-py>=2.2.0->rich<14.0.0,>=13.3.2->milabench==0.1.0) - Downloading mdurl-0.1.2-py3-none-any.whl (10.0 kB) -Collecting importlib-metadata>=4.6 (from pystache<0.7.0,>=0.6.0->cp-template<0.4.0,>=0.3.0->milabench==0.1.0) - Downloading importlib_metadata-7.0.1-py3-none-any.whl.metadata (4.9 kB) -Collecting typing-extensions<5.0.0,>=4.1.1 (from reactivex<5.0.0,>=4.0.0->giving<0.5.0,>=0.4.0->milabench==0.1.0) - Downloading typing_extensions-4.9.0-py3-none-any.whl.metadata (3.0 kB) -Collecting executing<2.0,>=1.1 (from varname<0.11.0,>=0.10.0->giving<0.5.0,>=0.4.0->milabench==0.1.0) - Downloading executing-1.2.0-py2.py3-none-any.whl (24 kB) -Collecting distlib<1,>=0.3.7 (from virtualenv>=14.0.0->nox<2022.0.0,>=2021.10.1->milabench==0.1.0) - Downloading distlib-0.3.8-py2.py3-none-any.whl.metadata (5.1 kB) -Collecting filelock<4,>=3.12.2 (from virtualenv>=14.0.0->nox<2022.0.0,>=2021.10.1->milabench==0.1.0) - Downloading filelock-3.13.1-py3-none-any.whl.metadata (2.8 kB) -Collecting platformdirs<5,>=3.9.1 (from virtualenv>=14.0.0->nox<2022.0.0,>=2021.10.1->milabench==0.1.0) - Downloading platformdirs-4.2.0-py3-none-any.whl.metadata (11 kB) -Collecting pyproject_hooks (from build->pip-tools<7.0.0,>=6.12.3->milabench==0.1.0) - Downloading pyproject_hooks-1.0.0-py3-none-any.whl (9.3 kB) -Collecting zipp>=0.5 (from importlib-metadata>=4.6->pystache<0.7.0,>=0.6.0->cp-template<0.4.0,>=0.3.0->milabench==0.1.0) - Downloading zipp-3.17.0-py3-none-any.whl.metadata (3.7 kB) -Downloading coleo-0.3.3-py3-none-any.whl (12 kB) -Downloading GitPython-3.1.41-py3-none-any.whl (196 kB) - ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 196.4/196.4 kB 108.7 MB/s eta 0:00:00 -Downloading numpy-1.26.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.2 MB) - ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 18.2/18.2 MB 102.2 MB/s eta 0:00:00 -Downloading pip_tools-6.14.0-py3-none-any.whl (55 kB) - ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 55.9/55.9 kB 36.8 MB/s eta 0:00:00 -Downloading PyYAML-6.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (738 kB) - ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 738.9/738.9 kB 111.7 MB/s eta 0:00:00 -Downloading requests-2.31.0-py3-none-any.whl (62 kB) - ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 62.6/62.6 kB 50.1 MB/s eta 0:00:00 -Downloading rich-13.7.0-py3-none-any.whl (240 kB) - ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 240.6/240.6 kB 116.8 MB/s eta 0:00:00 -Downloading tqdm-4.66.1-py3-none-any.whl (78 kB) - ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 78.3/78.3 kB 60.4 MB/s eta 0:00:00 -Downloading voir-0.2.12-py3-none-any.whl (35 kB) -Downloading asttokens-2.4.1-py2.py3-none-any.whl (27 kB) -Downloading certifi-2024.2.2-py3-none-any.whl (163 kB) - ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 163.8/163.8 kB 86.9 MB/s eta 0:00:00 -Downloading charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (142 kB) - ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 142.3/142.3 kB 91.5 MB/s eta 0:00:00 -Downloading click-8.1.7-py3-none-any.whl (97 kB) - ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 97.9/97.9 kB 62.1 MB/s eta 0:00:00 -Downloading colorlog-6.8.2-py3-none-any.whl (11 kB) -Downloading gitdb-4.0.11-py3-none-any.whl (62 kB) - ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 62.7/62.7 kB 50.8 MB/s eta 0:00:00 -Downloading idna-3.6-py3-none-any.whl (61 kB) - ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 61.6/61.6 kB 49.9 MB/s eta 0:00:00 -Downloading markdown_it_py-3.0.0-py3-none-any.whl (87 kB) - ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 87.5/87.5 kB 69.7 MB/s eta 0:00:00 -Downloading packaging-23.2-py3-none-any.whl (53 kB) - ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 53.0/53.0 kB 43.5 MB/s eta 0:00:00 -Downloading pygments-2.17.2-py3-none-any.whl (1.2 MB) - ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.2/1.2 MB 113.2 MB/s eta 0:00:00 -Downloading pystache-0.6.5-py3-none-any.whl (81 kB) - ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 81.3/81.3 kB 64.9 MB/s eta 0:00:00 -Downloading pytz-2024.1-py2.py3-none-any.whl (505 kB) - ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 505.5/505.5 kB 144.9 MB/s eta 0:00:00 -Downloading urllib3-2.2.0-py3-none-any.whl (120 kB) - ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 120.9/120.9 kB 27.4 MB/s eta 0:00:00 -Downloading virtualenv-20.25.0-py3-none-any.whl (3.8 MB) - ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 3.8/3.8 MB 74.7 MB/s eta 0:00:00 -Downloading wcwidth-0.2.13-py2.py3-none-any.whl (34 kB) -Downloading build-1.0.3-py3-none-any.whl (18 kB) -Downloading distlib-0.3.8-py2.py3-none-any.whl (468 kB) - ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 468.9/468.9 kB 103.7 MB/s eta 0:00:00 -Downloading filelock-3.13.1-py3-none-any.whl (11 kB) -Downloading importlib_metadata-7.0.1-py3-none-any.whl (23 kB) -Downloading platformdirs-4.2.0-py3-none-any.whl (17 kB) -Downloading smmap-5.0.1-py3-none-any.whl (24 kB) -Downloading typing_extensions-4.9.0-py3-none-any.whl (32 kB) -Downloading zipp-3.17.0-py3-none-any.whl (7.4 kB) -Building wheels for collected packages: milabench, antlr4-python3-runtime - Building editable for milabench (pyproject.toml): started - Building editable for milabench (pyproject.toml): finished with status 'done' - Created wheel for milabench: filename=milabench-0.1.0-py3-none-any.whl size=2407 sha256=36ad1d0b1285e68dcea126d71746224c1d8d666bb7952f9cdff7c59b08da3141 - Stored in directory: /tmp/pip-ephem-wheel-cache-h2wtdsj0/wheels/2b/c1/5d/4302c2fe879e61c9fa75a2f8f376953fcde91551f55df14fa8 - Building wheel for antlr4-python3-runtime (setup.py): started - Building wheel for antlr4-python3-runtime (setup.py): finished with status 'done' - Created wheel for antlr4-python3-runtime: filename=antlr4_python3_runtime-4.9.3-py3-none-any.whl size=144554 sha256=a5b64a7a3b06dbed49dd08c4508d5bf9ac4f90fb944d345aea7bc0af099c54be - Stored in directory: /Tmp/slurm.4112514.0/base/cache/pip/wheels/23/cf/80/f3efa822e6ab23277902ee9165fe772eeb1dfb8014f359020a -Successfully built milabench antlr4-python3-runtime -Installing collected packages: wcwidth, pytz, executing, distlib, argcomplete, antlr4-python3-runtime, zipp, varname, urllib3, typing-extensions, tqdm, tomli, smmap, six, PyYAML, pynvml, pygments, py, platformdirs, pathspec, packaging, ovld, numpy, mdurl, idna, filelock, colorlog, codefind, click, charset-normalizer, certifi, virtualenv, requests, reactivex, python-dateutil, pyproject_hooks, omegaconf, markdown-it-py, importlib-metadata, hrepr, gitdb, blessed, asttokens, rich, pystache, pandas, nox, giving, GitPython, build, ptera, pip-tools, voir, coleo, cp-template, milabench -Successfully installed GitPython-3.1.41 PyYAML-6.0.1 antlr4-python3-runtime-4.9.3 argcomplete-1.12.3 asttokens-2.4.1 blessed-1.20.0 build-1.0.3 certifi-2024.2.2 charset-normalizer-3.3.2 click-8.1.7 codefind-0.1.3 coleo-0.3.3 colorlog-6.8.2 cp-template-0.3.0 distlib-0.3.8 executing-1.2.0 filelock-3.13.1 gitdb-4.0.11 giving-0.4.2 hrepr-0.4.1 idna-3.6 importlib-metadata-7.0.1 markdown-it-py-3.0.0 mdurl-0.1.2 milabench-0.1.0 nox-2021.10.1 numpy-1.26.3 omegaconf-2.3.0 ovld-0.3.2 packaging-23.2 pandas-1.5.3 pathspec-0.9.0 pip-tools-6.14.0 platformdirs-4.2.0 ptera-1.4.1 py-1.11.0 pygments-2.17.2 pynvml-11.5.0 pyproject_hooks-1.0.0 pystache-0.6.5 python-dateutil-2.8.2 pytz-2024.1 reactivex-4.0.4 requests-2.31.0 rich-13.7.0 six-1.16.0 smmap-5.0.1 tomli-2.0.1 tqdm-4.66.1 typing-extensions-4.9.0 urllib3-2.2.0 varname-0.10.0 virtualenv-20.25.0 voir-0.2.12 wcwidth-0.2.13 zipp-3.17.0 - -The following have been reloaded with a version change: - 1) gcc/7.4.0 => gcc/9.3.0 - -[=== Module cudatoolkit/11.8 loaded ===] - -Install -------- -resnet50 [start] pip install -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt [at 2024-02-05 09:10:08.165918] -resnet50 [stdout] Looking in indexes: https://pypi.org/simple, https://download.pytorch.org/whl/cu118 -resnet50 [stdout] Collecting antlr4-python3-runtime==4.9.3 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 9)) -resnet50 [stdout] Using cached antlr4_python3_runtime-4.9.3-py3-none-any.whl -resnet50 [stdout] Collecting asttokens==2.4.1 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 13)) -resnet50 [stdout] Using cached asttokens-2.4.1-py2.py3-none-any.whl.metadata (5.2 kB) -resnet50 [stdout] Collecting certifi==2024.2.2 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 17)) -resnet50 [stdout] Using cached certifi-2024.2.2-py3-none-any.whl.metadata (2.2 kB) -resnet50 [stdout] Collecting charset-normalizer==3.3.2 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 21)) -resnet50 [stdout] Using cached charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (33 kB) -resnet50 [stdout] Collecting codefind==0.1.3 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 25)) -resnet50 [stdout] Using cached codefind-0.1.3-py3-none-any.whl (3.1 kB) -resnet50 [stdout] Collecting executing==1.2.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 29)) -resnet50 [stdout] Using cached executing-1.2.0-py2.py3-none-any.whl (24 kB) -resnet50 [stdout] Collecting filelock==3.13.1 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 33)) -resnet50 [stdout] Using cached filelock-3.13.1-py3-none-any.whl.metadata (2.8 kB) -resnet50 [stdout] Collecting fsspec==2023.10.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 38)) -resnet50 [stdout] Downloading fsspec-2023.10.0-py3-none-any.whl.metadata (6.8 kB) -resnet50 [stdout] Collecting giving==0.4.2 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 42)) -resnet50 [stdout] Using cached giving-0.4.2-py3-none-any.whl (28 kB) -resnet50 [stdout] Collecting idna==3.6 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 47)) -resnet50 [stdout] Using cached idna-3.6-py3-none-any.whl.metadata (9.9 kB) -resnet50 [stdout] Collecting jinja2==3.1.3 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 51)) -resnet50 [stdout] Downloading Jinja2-3.1.3-py3-none-any.whl.metadata (3.3 kB) -resnet50 [stdout] Collecting markdown-it-py==3.0.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 55)) -resnet50 [stdout] Using cached markdown_it_py-3.0.0-py3-none-any.whl.metadata (6.9 kB) -resnet50 [stdout] Collecting markupsafe==2.1.5 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 59)) -resnet50 [stdout] Downloading MarkupSafe-2.1.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (3.0 kB) -resnet50 [stdout] Collecting mdurl==0.1.2 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 63)) -resnet50 [stdout] Using cached mdurl-0.1.2-py3-none-any.whl (10.0 kB) -resnet50 [stdout] Collecting mpmath==1.3.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 67)) -resnet50 [stdout] Downloading https://download.pytorch.org/whl/mpmath-1.3.0-py3-none-any.whl (536 kB) -resnet50 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 536.2/536.2 kB 14.9 MB/s eta 0:00:00 -resnet50 [stdout] -resnet50 [stdout] Collecting networkx==3.2.1 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 71)) -resnet50 [stdout] Downloading https://download.pytorch.org/whl/networkx-3.2.1-py3-none-any.whl (1.6 MB) -resnet50 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.6/1.6 MB 81.5 MB/s eta 0:00:00 -resnet50 [stdout] -resnet50 [stdout] Collecting numpy==1.26.3 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 75)) -resnet50 [stdout] Using cached numpy-1.26.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (61 kB) -resnet50 [stdout] Collecting nvidia-cublas-cu11==11.11.3.6 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 79)) -resnet50 [stdout] Downloading https://download.pytorch.org/whl/cu118/nvidia_cublas_cu11-11.11.3.6-py3-none-manylinux1_x86_64.whl (417.9 MB) -resnet50 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 417.9/417.9 MB 25.4 MB/s eta 0:00:00 -resnet50 [stdout] -resnet50 [stdout] Collecting nvidia-cuda-cupti-cu11==11.8.87 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 85)) -resnet50 [stdout] Downloading https://download.pytorch.org/whl/cu118/nvidia_cuda_cupti_cu11-11.8.87-py3-none-manylinux1_x86_64.whl (13.1 MB) -resnet50 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 13.1/13.1 MB 104.2 MB/s eta 0:00:00 -resnet50 [stdout] -resnet50 [stdout] Collecting nvidia-cuda-nvrtc-cu11==11.8.89 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 89)) -resnet50 [stdout] Downloading https://download.pytorch.org/whl/cu118/nvidia_cuda_nvrtc_cu11-11.8.89-py3-none-manylinux1_x86_64.whl (23.2 MB) -resnet50 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 23.2/23.2 MB 96.9 MB/s eta 0:00:00 -resnet50 [stdout] -resnet50 [stdout] Collecting nvidia-cuda-runtime-cu11==11.8.89 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 93)) -resnet50 [stdout] Downloading https://download.pytorch.org/whl/cu118/nvidia_cuda_runtime_cu11-11.8.89-py3-none-manylinux1_x86_64.whl (875 kB) -resnet50 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 875.6/875.6 kB 116.5 MB/s eta 0:00:00 -resnet50 [stdout] -resnet50 [stdout] Collecting nvidia-cudnn-cu11==8.7.0.84 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 97)) -resnet50 [stdout] Downloading https://download.pytorch.org/whl/cu118/nvidia_cudnn_cu11-8.7.0.84-py3-none-manylinux1_x86_64.whl (728.5 MB) -resnet50 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 728.5/728.5 MB 16.6 MB/s eta 0:00:00 -resnet50 [stdout] -resnet50 [stdout] Collecting nvidia-cufft-cu11==10.9.0.58 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 101)) -resnet50 [stdout] Downloading https://download.pytorch.org/whl/cu118/nvidia_cufft_cu11-10.9.0.58-py3-none-manylinux1_x86_64.whl (168.4 MB) -resnet50 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 168.4/168.4 MB 45.7 MB/s eta 0:00:00 -resnet50 [stdout] -resnet50 [stdout] Collecting nvidia-curand-cu11==10.3.0.86 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 105)) -resnet50 [stdout] Downloading https://download.pytorch.org/whl/cu118/nvidia_curand_cu11-10.3.0.86-py3-none-manylinux1_x86_64.whl (58.1 MB) -resnet50 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58.1/58.1 MB 77.0 MB/s eta 0:00:00 -resnet50 [stdout] -resnet50 [stdout] Collecting nvidia-cusolver-cu11==11.4.1.48 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 109)) -resnet50 [stdout] Downloading https://download.pytorch.org/whl/cu118/nvidia_cusolver_cu11-11.4.1.48-py3-none-manylinux1_x86_64.whl (128.2 MB) -resnet50 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 128.2/128.2 MB 53.3 MB/s eta 0:00:00 -resnet50 [stdout] -resnet50 [stdout] Collecting nvidia-cusparse-cu11==11.7.5.86 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 113)) -resnet50 [stdout] Downloading https://download.pytorch.org/whl/cu118/nvidia_cusparse_cu11-11.7.5.86-py3-none-manylinux1_x86_64.whl (204.1 MB) -resnet50 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 204.1/204.1 MB 37.1 MB/s eta 0:00:00 -resnet50 [stdout] -resnet50 [stdout] Collecting nvidia-nccl-cu11==2.19.3 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 117)) -resnet50 [stdout] Downloading https://download.pytorch.org/whl/cu118/nvidia_nccl_cu11-2.19.3-py3-none-manylinux1_x86_64.whl (135.3 MB) -resnet50 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 135.3/135.3 MB 54.0 MB/s eta 0:00:00 -resnet50 [stdout] -resnet50 [stdout] Collecting nvidia-nvtx-cu11==11.8.86 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 121)) -resnet50 [stdout] Downloading https://download.pytorch.org/whl/cu118/nvidia_nvtx_cu11-11.8.86-py3-none-manylinux1_x86_64.whl (99 kB) -resnet50 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 99.1/99.1 kB 69.0 MB/s eta 0:00:00 -resnet50 [stdout] -resnet50 [stdout] Collecting omegaconf==2.3.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 125)) -resnet50 [stdout] Using cached omegaconf-2.3.0-py3-none-any.whl (79 kB) -resnet50 [stdout] Collecting ovld==0.3.2 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 129)) -resnet50 [stdout] Using cached ovld-0.3.2-py3-none-any.whl (16 kB) -resnet50 [stdout] Collecting pillow==10.2.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 133)) -resnet50 [stdout] Downloading https://download.pytorch.org/whl/pillow-10.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.4 MB) -resnet50 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 4.4/4.4 MB 26.3 MB/s eta 0:00:00 -resnet50 [stdout] -resnet50 [stdout] Collecting ptera==1.4.1 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 137)) -resnet50 [stdout] Using cached ptera-1.4.1-py3-none-any.whl (39 kB) -resnet50 [stdout] Collecting pygments==2.17.2 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 141)) -resnet50 [stdout] Using cached pygments-2.17.2-py3-none-any.whl.metadata (2.6 kB) -resnet50 [stdout] Collecting pynvml==11.5.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 145)) -resnet50 [stdout] Using cached pynvml-11.5.0-py3-none-any.whl (53 kB) -resnet50 [stdout] Collecting pyyaml==6.0.1 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 149)) -resnet50 [stdout] Using cached PyYAML-6.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (2.1 kB) -resnet50 [stdout] Collecting reactivex==4.0.4 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 153)) -resnet50 [stdout] Using cached reactivex-4.0.4-py3-none-any.whl (217 kB) -resnet50 [stdout] Collecting requests==2.31.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 157)) -resnet50 [stdout] Using cached requests-2.31.0-py3-none-any.whl.metadata (4.6 kB) -resnet50 [stdout] Collecting rich==13.7.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 161)) -resnet50 [stdout] Using cached rich-13.7.0-py3-none-any.whl.metadata (18 kB) -resnet50 [stdout] Collecting six==1.16.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 165)) -resnet50 [stdout] Using cached six-1.16.0-py2.py3-none-any.whl (11 kB) -resnet50 [stdout] Collecting sympy==1.12 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 169)) -resnet50 [stdout] Downloading https://download.pytorch.org/whl/sympy-1.12-py3-none-any.whl (5.7 MB) -resnet50 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 5.7/5.7 MB 109.0 MB/s eta 0:00:00 -resnet50 [stdout] -resnet50 [stdout] Collecting torch==2.2.0+cu118 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 173)) -resnet50 [stdout] Downloading https://download.pytorch.org/whl/cu118/torch-2.2.0%2Bcu118-cp39-cp39-linux_x86_64.whl (811.7 MB) -resnet50 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 811.7/811.7 MB 14.8 MB/s eta 0:00:00 -resnet50 [stdout] -resnet50 [stdout] Collecting torchvision==0.17.0+cu118 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 177)) -resnet50 [stdout] Downloading https://download.pytorch.org/whl/cu118/torchvision-0.17.0%2Bcu118-cp39-cp39-linux_x86_64.whl (6.2 MB) -resnet50 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 6.2/6.2 MB 34.7 MB/s eta 0:00:00 -resnet50 [stdout] -resnet50 [stdout] Collecting tqdm==4.66.1 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 179)) -resnet50 [stdout] Using cached tqdm-4.66.1-py3-none-any.whl.metadata (57 kB) -resnet50 [stdout] Collecting triton==2.2.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 181)) -resnet50 [stdout] Downloading https://download.pytorch.org/whl/triton-2.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (167.9 MB) -resnet50 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 167.9/167.9 MB 43.9 MB/s eta 0:00:00 -resnet50 [stdout] -resnet50 [stdout] Collecting typing-extensions==4.9.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 185)) -resnet50 [stdout] Using cached typing_extensions-4.9.0-py3-none-any.whl.metadata (3.0 kB) -resnet50 [stdout] Collecting urllib3==1.26.18 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 190)) -resnet50 [stdout] Downloading urllib3-1.26.18-py2.py3-none-any.whl.metadata (48 kB) -resnet50 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 48.9/48.9 kB 5.7 MB/s eta 0:00:00 -resnet50 [stdout] -resnet50 [stdout] Collecting varname==0.10.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 194)) -resnet50 [stdout] Using cached varname-0.10.0-py3-none-any.whl (22 kB) -resnet50 [stdout] Collecting voir==0.2.12 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt (line 198)) -resnet50 [stdout] Using cached voir-0.2.12-py3-none-any.whl.metadata (791 bytes) -resnet50 [stdout] Using cached asttokens-2.4.1-py2.py3-none-any.whl (27 kB) -resnet50 [stdout] Using cached certifi-2024.2.2-py3-none-any.whl (163 kB) -resnet50 [stdout] Using cached charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (142 kB) -resnet50 [stdout] Using cached filelock-3.13.1-py3-none-any.whl (11 kB) -resnet50 [stdout] Downloading fsspec-2023.10.0-py3-none-any.whl (166 kB) -resnet50 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 166.4/166.4 kB 14.7 MB/s eta 0:00:00 -resnet50 [stdout] -resnet50 [stdout] Using cached idna-3.6-py3-none-any.whl (61 kB) -resnet50 [stdout] Downloading Jinja2-3.1.3-py3-none-any.whl (133 kB) -resnet50 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 133.2/133.2 kB 77.7 MB/s eta 0:00:00 -resnet50 [stdout] -resnet50 [stdout] Using cached markdown_it_py-3.0.0-py3-none-any.whl (87 kB) -resnet50 [stdout] Downloading MarkupSafe-2.1.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (25 kB) -resnet50 [stdout] Using cached numpy-1.26.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.2 MB) -resnet50 [stdout] Using cached pygments-2.17.2-py3-none-any.whl (1.2 MB) -resnet50 [stdout] Using cached PyYAML-6.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (738 kB) -resnet50 [stdout] Using cached requests-2.31.0-py3-none-any.whl (62 kB) -resnet50 [stdout] Using cached rich-13.7.0-py3-none-any.whl (240 kB) -resnet50 [stdout] Using cached tqdm-4.66.1-py3-none-any.whl (78 kB) -resnet50 [stdout] Using cached typing_extensions-4.9.0-py3-none-any.whl (32 kB) -resnet50 [stdout] Downloading urllib3-1.26.18-py2.py3-none-any.whl (143 kB) -resnet50 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 143.8/143.8 kB 76.2 MB/s eta 0:00:00 -resnet50 [stdout] -resnet50 [stdout] Using cached voir-0.2.12-py3-none-any.whl (35 kB) -resnet50 [stdout] Installing collected packages: mpmath, executing, antlr4-python3-runtime, varname, urllib3, typing-extensions, tqdm, sympy, six, pyyaml, pynvml, pygments, pillow, ovld, nvidia-nvtx-cu11, nvidia-nccl-cu11, nvidia-cusparse-cu11, nvidia-curand-cu11, nvidia-cufft-cu11, nvidia-cuda-runtime-cu11, nvidia-cuda-nvrtc-cu11, nvidia-cuda-cupti-cu11, nvidia-cublas-cu11, numpy, networkx, mdurl, markupsafe, idna, fsspec, filelock, codefind, charset-normalizer, certifi, triton, requests, reactivex, omegaconf, nvidia-cusolver-cu11, nvidia-cudnn-cu11, markdown-it-py, jinja2, asttokens, torch, rich, giving, torchvision, ptera, voir -resnet50 [stdout] Successfully installed antlr4-python3-runtime-4.9.3 asttokens-2.4.1 certifi-2024.2.2 charset-normalizer-3.3.2 codefind-0.1.3 executing-1.2.0 filelock-3.13.1 fsspec-2023.10.0 giving-0.4.2 idna-3.6 jinja2-3.1.3 markdown-it-py-3.0.0 markupsafe-2.1.5 mdurl-0.1.2 mpmath-1.3.0 networkx-3.2.1 numpy-1.26.3 nvidia-cublas-cu11-11.11.3.6 nvidia-cuda-cupti-cu11-11.8.87 nvidia-cuda-nvrtc-cu11-11.8.89 nvidia-cuda-runtime-cu11-11.8.89 nvidia-cudnn-cu11-8.7.0.84 nvidia-cufft-cu11-10.9.0.58 nvidia-curand-cu11-10.3.0.86 nvidia-cusolver-cu11-11.4.1.48 nvidia-cusparse-cu11-11.7.5.86 nvidia-nccl-cu11-2.19.3 nvidia-nvtx-cu11-11.8.86 omegaconf-2.3.0 ovld-0.3.2 pillow-10.2.0 ptera-1.4.1 pygments-2.17.2 pynvml-11.5.0 pyyaml-6.0.1 reactivex-4.0.4 requests-2.31.0 rich-13.7.0 six-1.16.0 sympy-1.12 torch-2.2.0+cu118 torchvision-0.17.0+cu118 tqdm-4.66.1 triton-2.2.0 typing-extensions-4.9.0 urllib3-1.26.18 varname-0.10.0 voir-0.2.12 -resnet50 [stderr] -resnet50 [stderr] [notice] A new release of pip is available: 23.3.2 -> 24.0 -resnet50 [stderr] [notice] To update, run: pip install --upgrade pip -resnet50 [end] pip install -r /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/requirements.cuda.txt [at 2024-02-05 09:11:34.293664] -convnext_large-fp32 [message] Benchmark convnext_large-fp32 is already installed -convnext_large-fp16 [message] Benchmark convnext_large-fp16 is already installed -convnext_large-tf32 [message] Benchmark convnext_large-tf32 is already installed -convnext_large-tf32-fp16 [message] Benchmark convnext_large-tf32-fp16 is already installed -regnet_y_128gf [message] Benchmark regnet_y_128gf is already installed -bert-fp32 [start] pip install -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt [at 2024-02-05 09:11:34.298894] -bert-fp32 [stdout] Looking in indexes: https://pypi.org/simple, https://download.pytorch.org/whl/cu118 -bert-fp32 [stdout] Requirement already satisfied: antlr4-python3-runtime==4.9.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 9)) (4.9.3) -bert-fp32 [stdout] Requirement already satisfied: asttokens==2.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 13)) (2.4.1) -bert-fp32 [stdout] Requirement already satisfied: certifi==2024.2.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 17)) (2024.2.2) -bert-fp32 [stdout] Requirement already satisfied: charset-normalizer==3.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 21)) (3.3.2) -bert-fp32 [stdout] Requirement already satisfied: codefind==0.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 25)) (0.1.3) -bert-fp32 [stdout] Requirement already satisfied: executing==1.2.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 29)) (1.2.0) -bert-fp32 [stdout] Requirement already satisfied: filelock==3.13.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 33)) (3.13.1) -bert-fp32 [stdout] Requirement already satisfied: fsspec==2023.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 40)) (2023.10.0) -bert-fp32 [stdout] Requirement already satisfied: giving==0.4.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 45)) (0.4.2) -bert-fp32 [stdout] Collecting huggingface-hub==0.20.3 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 50)) -bert-fp32 [stdout] Downloading huggingface_hub-0.20.3-py3-none-any.whl.metadata (12 kB) -bert-fp32 [stdout] Requirement already satisfied: idna==3.6 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 55)) (3.6) -bert-fp32 [stdout] Requirement already satisfied: jinja2==3.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 59)) (3.1.3) -bert-fp32 [stdout] Requirement already satisfied: markdown-it-py==3.0.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 63)) (3.0.0) -bert-fp32 [stdout] Requirement already satisfied: markupsafe==2.1.5 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 67)) (2.1.5) -bert-fp32 [stdout] Requirement already satisfied: mdurl==0.1.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 71)) (0.1.2) -bert-fp32 [stdout] Requirement already satisfied: mpmath==1.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 75)) (1.3.0) -bert-fp32 [stdout] Requirement already satisfied: networkx==3.2.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 79)) (3.2.1) -bert-fp32 [stdout] Requirement already satisfied: numpy==1.26.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 83)) (1.26.3) -bert-fp32 [stdout] Requirement already satisfied: nvidia-cublas-cu11==11.11.3.6 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 87)) (11.11.3.6) -bert-fp32 [stdout] Requirement already satisfied: nvidia-cuda-cupti-cu11==11.8.87 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 93)) (11.8.87) -bert-fp32 [stdout] Requirement already satisfied: nvidia-cuda-nvrtc-cu11==11.8.89 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 97)) (11.8.89) -bert-fp32 [stdout] Requirement already satisfied: nvidia-cuda-runtime-cu11==11.8.89 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 101)) (11.8.89) -bert-fp32 [stdout] Requirement already satisfied: nvidia-cudnn-cu11==8.7.0.84 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 105)) (8.7.0.84) -bert-fp32 [stdout] Requirement already satisfied: nvidia-cufft-cu11==10.9.0.58 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 109)) (10.9.0.58) -bert-fp32 [stdout] Requirement already satisfied: nvidia-curand-cu11==10.3.0.86 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 113)) (10.3.0.86) -bert-fp32 [stdout] Requirement already satisfied: nvidia-cusolver-cu11==11.4.1.48 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 117)) (11.4.1.48) -bert-fp32 [stdout] Requirement already satisfied: nvidia-cusparse-cu11==11.7.5.86 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 121)) (11.7.5.86) -bert-fp32 [stdout] Requirement already satisfied: nvidia-nccl-cu11==2.19.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 125)) (2.19.3) -bert-fp32 [stdout] Requirement already satisfied: nvidia-nvtx-cu11==11.8.86 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 129)) (11.8.86) -bert-fp32 [stdout] Requirement already satisfied: omegaconf==2.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 133)) (2.3.0) -bert-fp32 [stdout] Requirement already satisfied: ovld==0.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 137)) (0.3.2) -bert-fp32 [stdout] Collecting packaging==23.2 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 141)) -bert-fp32 [stdout] Using cached packaging-23.2-py3-none-any.whl.metadata (3.2 kB) -bert-fp32 [stdout] Requirement already satisfied: ptera==1.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 146)) (1.4.1) -bert-fp32 [stdout] Requirement already satisfied: pygments==2.17.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 150)) (2.17.2) -bert-fp32 [stdout] Requirement already satisfied: pynvml==11.5.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 154)) (11.5.0) -bert-fp32 [stdout] Requirement already satisfied: pyyaml==6.0.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 158)) (6.0.1) -bert-fp32 [stdout] Requirement already satisfied: reactivex==4.0.4 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 164)) (4.0.4) -bert-fp32 [stdout] Collecting regex==2023.12.25 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 168)) -bert-fp32 [stdout] Downloading regex-2023.12.25-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (40 kB) -bert-fp32 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 40.9/40.9 kB 5.0 MB/s eta 0:00:00 -bert-fp32 [stdout] -bert-fp32 [stdout] Requirement already satisfied: requests==2.31.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 172)) (2.31.0) -bert-fp32 [stdout] Requirement already satisfied: rich==13.7.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 177)) (13.7.0) -bert-fp32 [stdout] Collecting safetensors==0.4.2 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 181)) -bert-fp32 [stdout] Downloading safetensors-0.4.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (3.8 kB) -bert-fp32 [stdout] Requirement already satisfied: six==1.16.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 185)) (1.16.0) -bert-fp32 [stdout] Requirement already satisfied: sympy==1.12 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 189)) (1.12) -bert-fp32 [stdout] Collecting tokenizers==0.15.1 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 193)) -bert-fp32 [stdout] Downloading tokenizers-0.15.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (6.7 kB) -bert-fp32 [stdout] Requirement already satisfied: torch==2.2.0+cu118 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 197)) (2.2.0+cu118) -bert-fp32 [stdout] Requirement already satisfied: tqdm==4.66.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 199)) (4.66.1) -bert-fp32 [stdout] Collecting transformers==4.37.2 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 204)) -bert-fp32 [stdout] Downloading transformers-4.37.2-py3-none-any.whl.metadata (129 kB) -bert-fp32 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 129.4/129.4 kB 14.2 MB/s eta 0:00:00 -bert-fp32 [stdout] -bert-fp32 [stdout] Requirement already satisfied: triton==2.2.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 206)) (2.2.0) -bert-fp32 [stdout] Requirement already satisfied: typing-extensions==4.9.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 210)) (4.9.0) -bert-fp32 [stdout] Requirement already satisfied: urllib3==1.26.18 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 216)) (1.26.18) -bert-fp32 [stdout] Requirement already satisfied: varname==0.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 220)) (0.10.0) -bert-fp32 [stdout] Requirement already satisfied: voir==0.2.12 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt (line 224)) (0.2.12) -bert-fp32 [stdout] Downloading huggingface_hub-0.20.3-py3-none-any.whl (330 kB) -bert-fp32 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 330.1/330.1 kB 35.1 MB/s eta 0:00:00 -bert-fp32 [stdout] -bert-fp32 [stdout] Using cached packaging-23.2-py3-none-any.whl (53 kB) -bert-fp32 [stdout] Downloading regex-2023.12.25-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (773 kB) -bert-fp32 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 773.4/773.4 kB 75.6 MB/s eta 0:00:00 -bert-fp32 [stdout] -bert-fp32 [stdout] Downloading safetensors-0.4.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB) -bert-fp32 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.3/1.3 MB 8.2 MB/s eta 0:00:00 -bert-fp32 [stdout] -bert-fp32 [stdout] Downloading tokenizers-0.15.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.6 MB) -bert-fp32 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 3.6/3.6 MB 97.8 MB/s eta 0:00:00 -bert-fp32 [stdout] -bert-fp32 [stdout] Downloading transformers-4.37.2-py3-none-any.whl (8.4 MB) -bert-fp32 [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 8.4/8.4 MB 79.9 MB/s eta 0:00:00 -bert-fp32 [stdout] -bert-fp32 [stdout] Installing collected packages: safetensors, regex, packaging, huggingface-hub, tokenizers, transformers -bert-fp32 [stdout] Successfully installed huggingface-hub-0.20.3 packaging-23.2 regex-2023.12.25 safetensors-0.4.2 tokenizers-0.15.1 transformers-4.37.2 -bert-fp32 [stderr] -bert-fp32 [stderr] [notice] A new release of pip is available: 23.3.2 -> 24.0 -bert-fp32 [stderr] [notice] To update, run: pip install --upgrade pip -bert-fp32 [end] pip install -r /Tmp/slurm.4112514.0/milabench/benchmarks/huggingface/requirements.cuda.txt [at 2024-02-05 09:11:41.002117] -bert-fp16 [message] Benchmark bert-fp16 is already installed -bert-tf32 [message] Benchmark bert-tf32 is already installed -bert-tf32-fp16 [message] Benchmark bert-tf32-fp16 is already installed -t5 [message] Benchmark t5 is already installed -reformer [message] Benchmark reformer is already installed -whisper [message] Benchmark whisper is already installed -resnet152 [start] pip install -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt [at 2024-02-05 09:11:41.008325] -resnet152 [stdout] Looking in indexes: https://pypi.org/simple, https://download.pytorch.org/whl/cu118 -resnet152 [stdout] Requirement already satisfied: antlr4-python3-runtime==4.9.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 9)) (4.9.3) -resnet152 [stdout] Requirement already satisfied: asttokens==2.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 13)) (2.4.1) -resnet152 [stdout] Requirement already satisfied: certifi==2024.2.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 17)) (2024.2.2) -resnet152 [stdout] Requirement already satisfied: charset-normalizer==3.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 21)) (3.3.2) -resnet152 [stdout] Requirement already satisfied: codefind==0.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 25)) (0.1.3) -resnet152 [stdout] Requirement already satisfied: executing==1.2.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 29)) (1.2.0) -resnet152 [stdout] Requirement already satisfied: filelock==3.13.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 33)) (3.13.1) -resnet152 [stdout] Requirement already satisfied: fsspec==2023.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 39)) (2023.10.0) -resnet152 [stdout] Requirement already satisfied: giving==0.4.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 44)) (0.4.2) -resnet152 [stdout] Requirement already satisfied: huggingface-hub==0.20.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 49)) (0.20.3) -resnet152 [stdout] Requirement already satisfied: idna==3.6 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 51)) (3.6) -resnet152 [stdout] Requirement already satisfied: jinja2==3.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 55)) (3.1.3) -resnet152 [stdout] Requirement already satisfied: markdown-it-py==3.0.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 59)) (3.0.0) -resnet152 [stdout] Requirement already satisfied: markupsafe==2.1.5 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 63)) (2.1.5) -resnet152 [stdout] Requirement already satisfied: mdurl==0.1.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 67)) (0.1.2) -resnet152 [stdout] Requirement already satisfied: mpmath==1.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 71)) (1.3.0) -resnet152 [stdout] Requirement already satisfied: networkx==3.2.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 75)) (3.2.1) -resnet152 [stdout] Requirement already satisfied: numpy==1.26.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 79)) (1.26.3) -resnet152 [stdout] Requirement already satisfied: nvidia-cublas-cu11==11.11.3.6 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 83)) (11.11.3.6) -resnet152 [stdout] Requirement already satisfied: nvidia-cuda-cupti-cu11==11.8.87 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 89)) (11.8.87) -resnet152 [stdout] Requirement already satisfied: nvidia-cuda-nvrtc-cu11==11.8.89 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 93)) (11.8.89) -resnet152 [stdout] Requirement already satisfied: nvidia-cuda-runtime-cu11==11.8.89 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 97)) (11.8.89) -resnet152 [stdout] Requirement already satisfied: nvidia-cudnn-cu11==8.7.0.84 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 101)) (8.7.0.84) -resnet152 [stdout] Requirement already satisfied: nvidia-cufft-cu11==10.9.0.58 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 105)) (10.9.0.58) -resnet152 [stdout] Requirement already satisfied: nvidia-curand-cu11==10.3.0.86 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 109)) (10.3.0.86) -resnet152 [stdout] Requirement already satisfied: nvidia-cusolver-cu11==11.4.1.48 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 113)) (11.4.1.48) -resnet152 [stdout] Requirement already satisfied: nvidia-cusparse-cu11==11.7.5.86 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 117)) (11.7.5.86) -resnet152 [stdout] Requirement already satisfied: nvidia-nccl-cu11==2.19.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 121)) (2.19.3) -resnet152 [stdout] Requirement already satisfied: nvidia-nvtx-cu11==11.8.86 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 125)) (11.8.86) -resnet152 [stdout] Requirement already satisfied: omegaconf==2.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 129)) (2.3.0) -resnet152 [stdout] Requirement already satisfied: ovld==0.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 133)) (0.3.2) -resnet152 [stdout] Requirement already satisfied: packaging==23.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 137)) (23.2) -resnet152 [stdout] Requirement already satisfied: pillow==10.2.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 141)) (10.2.0) -resnet152 [stdout] Requirement already satisfied: ptera==1.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 145)) (1.4.1) -resnet152 [stdout] Requirement already satisfied: pygments==2.17.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 149)) (2.17.2) -resnet152 [stdout] Requirement already satisfied: pynvml==11.5.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 153)) (11.5.0) -resnet152 [stdout] Requirement already satisfied: pyyaml==6.0.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 157)) (6.0.1) -resnet152 [stdout] Requirement already satisfied: reactivex==4.0.4 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 162)) (4.0.4) -resnet152 [stdout] Requirement already satisfied: requests==2.31.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 166)) (2.31.0) -resnet152 [stdout] Requirement already satisfied: rich==13.7.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 171)) (13.7.0) -resnet152 [stdout] Requirement already satisfied: safetensors==0.4.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 175)) (0.4.2) -resnet152 [stdout] Requirement already satisfied: six==1.16.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 177)) (1.16.0) -resnet152 [stdout] Requirement already satisfied: sympy==1.12 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 181)) (1.12) -resnet152 [stdout] Requirement already satisfied: torch==2.2.0+cu118 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 185)) (2.2.0+cu118) -resnet152 [stdout] Requirement already satisfied: torchvision==0.17.0+cu118 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 189)) (0.17.0+cu118) -resnet152 [stdout] Requirement already satisfied: tqdm==4.66.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 191)) (4.66.1) -resnet152 [stdout] Requirement already satisfied: triton==2.2.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 195)) (2.2.0) -resnet152 [stdout] Requirement already satisfied: typing-extensions==4.9.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 199)) (4.9.0) -resnet152 [stdout] Requirement already satisfied: urllib3==1.26.18 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 205)) (1.26.18) -resnet152 [stdout] Requirement already satisfied: varname==0.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 209)) (0.10.0) -resnet152 [stdout] Requirement already satisfied: voir==0.2.12 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt (line 213)) (0.2.12) -resnet152 [stderr] -resnet152 [stderr] [notice] A new release of pip is available: 23.3.2 -> 24.0 -resnet152 [stderr] [notice] To update, run: pip install --upgrade pip -resnet152 [end] pip install -r /Tmp/slurm.4112514.0/milabench/benchmarks/timm/requirements.cuda.txt [at 2024-02-05 09:11:42.105521] -resnet152-multi [message] Benchmark resnet152-multi is already installed -davit_large [message] Benchmark davit_large is already installed -davit_large-multi [message] Benchmark davit_large-multi is already installed -focalnet [message] Benchmark focalnet is already installed -opt-1_3b [start] pip install -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt [at 2024-02-05 09:11:42.815259] -opt-1_3b [stdout] Looking in indexes: https://pypi.org/simple, https://download.pytorch.org/whl/cu118 -opt-1_3b [stdout] Collecting accelerate==0.26.1 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 9)) -opt-1_3b [stdout] Downloading accelerate-0.26.1-py3-none-any.whl.metadata (18 kB) -opt-1_3b [stdout] Collecting aiohttp==3.9.3 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 11)) -opt-1_3b [stdout] Downloading aiohttp-3.9.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (7.4 kB) -opt-1_3b [stdout] Collecting aiosignal==1.3.1 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 16)) -opt-1_3b [stdout] Downloading aiosignal-1.3.1-py3-none-any.whl (7.6 kB) -opt-1_3b [stdout] Collecting annotated-types==0.6.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 20)) -opt-1_3b [stdout] Downloading annotated_types-0.6.0-py3-none-any.whl.metadata (12 kB) -opt-1_3b [stdout] Requirement already satisfied: antlr4-python3-runtime==4.9.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 24)) (4.9.3) -opt-1_3b [stdout] Requirement already satisfied: asttokens==2.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 28)) (2.4.1) -opt-1_3b [stdout] Collecting async-timeout==4.0.3 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 32)) -opt-1_3b [stdout] Downloading async_timeout-4.0.3-py3-none-any.whl.metadata (4.2 kB) -opt-1_3b [stdout] Collecting asyncssh==2.14.2 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 36)) -opt-1_3b [stdout] Downloading asyncssh-2.14.2-py3-none-any.whl.metadata (9.9 kB) -opt-1_3b [stdout] Collecting attrs==23.2.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 38)) -opt-1_3b [stdout] Downloading attrs-23.2.0-py3-none-any.whl.metadata (9.5 kB) -opt-1_3b [stdout] Requirement already satisfied: certifi==2024.2.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 42)) (2024.2.2) -opt-1_3b [stdout] Collecting cffi==1.16.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 46)) -opt-1_3b [stdout] Downloading cffi-1.16.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (1.5 kB) -opt-1_3b [stdout] Requirement already satisfied: charset-normalizer==3.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 50)) (3.3.2) -opt-1_3b [stdout] Requirement already satisfied: codefind==0.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 54)) (0.1.3) -opt-1_3b [stdout] Collecting cryptography==42.0.2 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 58)) -opt-1_3b [stdout] Downloading cryptography-42.0.2-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (5.3 kB) -opt-1_3b [stdout] Collecting datasets==2.16.1 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 62)) -opt-1_3b [stdout] Downloading datasets-2.16.1-py3-none-any.whl.metadata (20 kB) -opt-1_3b [stdout] Collecting deepspeed==0.13.1 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 66)) -opt-1_3b [stdout] Downloading deepspeed-0.13.1.tar.gz (1.3 MB) -opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.3/1.3 MB 30.8 MB/s eta 0:00:00 -opt-1_3b [stdout] -opt-1_3b [stdout] Preparing metadata (setup.py): started -opt-1_3b [stdout] Preparing metadata (setup.py): finished with status 'done' -opt-1_3b [stdout] Collecting dill==0.3.7 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 68)) -opt-1_3b [stdout] Downloading dill-0.3.7-py3-none-any.whl.metadata (9.9 kB) -opt-1_3b [stdout] Collecting evaluate==0.4.1 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 74)) -opt-1_3b [stdout] Downloading evaluate-0.4.1-py3-none-any.whl.metadata (9.4 kB) -opt-1_3b [stdout] Requirement already satisfied: executing==1.2.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 76)) (1.2.0) -opt-1_3b [stdout] Requirement already satisfied: filelock==3.13.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 80)) (3.13.1) -opt-1_3b [stdout] Collecting frozenlist==1.4.1 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 88)) -opt-1_3b [stdout] Downloading frozenlist-1.4.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (12 kB) -opt-1_3b [stdout] Requirement already satisfied: fsspec==2023.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from fsspec[http]==2023.10.0->-r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 93)) (2023.10.0) -opt-1_3b [stdout] Requirement already satisfied: giving==0.4.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 100)) (0.4.2) -opt-1_3b [stdout] Collecting hjson==3.1.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 105)) -opt-1_3b [stdout] Downloading hjson-3.1.0-py3-none-any.whl (54 kB) -opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54.0/54.0 kB 41.7 MB/s eta 0:00:00 -opt-1_3b [stdout] -opt-1_3b [stdout] Requirement already satisfied: huggingface-hub==0.20.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 109)) (0.20.3) -opt-1_3b [stdout] Requirement already satisfied: idna==3.6 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 117)) (3.6) -opt-1_3b [stdout] Requirement already satisfied: jinja2==3.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 122)) (3.1.3) -opt-1_3b [stdout] Requirement already satisfied: markdown-it-py==3.0.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 126)) (3.0.0) -opt-1_3b [stdout] Requirement already satisfied: markupsafe==2.1.5 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 130)) (2.1.5) -opt-1_3b [stdout] Requirement already satisfied: mdurl==0.1.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 134)) (0.1.2) -opt-1_3b [stdout] Requirement already satisfied: mpmath==1.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 138)) (1.3.0) -opt-1_3b [stdout] Collecting multidict==6.0.5 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 142)) -opt-1_3b [stdout] Downloading multidict-6.0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (4.2 kB) -opt-1_3b [stdout] Collecting multiprocess==0.70.15 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 147)) -opt-1_3b [stdout] Downloading multiprocess-0.70.15-py39-none-any.whl.metadata (7.2 kB) -opt-1_3b [stdout] Requirement already satisfied: networkx==3.2.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 152)) (3.2.1) -opt-1_3b [stdout] Collecting ninja==1.11.1.1 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 156)) -opt-1_3b [stdout] Downloading ninja-1.11.1.1-py2.py3-none-manylinux1_x86_64.manylinux_2_5_x86_64.whl.metadata (5.3 kB) -opt-1_3b [stdout] Requirement already satisfied: numpy==1.26.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 160)) (1.26.3) -opt-1_3b [stdout] Requirement already satisfied: nvidia-cublas-cu11==11.11.3.6 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 171)) (11.11.3.6) -opt-1_3b [stdout] Requirement already satisfied: nvidia-cuda-cupti-cu11==11.8.87 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 177)) (11.8.87) -opt-1_3b [stdout] Requirement already satisfied: nvidia-cuda-nvrtc-cu11==11.8.89 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 181)) (11.8.89) -opt-1_3b [stdout] Requirement already satisfied: nvidia-cuda-runtime-cu11==11.8.89 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 185)) (11.8.89) -opt-1_3b [stdout] Requirement already satisfied: nvidia-cudnn-cu11==8.7.0.84 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 189)) (8.7.0.84) -opt-1_3b [stdout] Requirement already satisfied: nvidia-cufft-cu11==10.9.0.58 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 193)) (10.9.0.58) -opt-1_3b [stdout] Requirement already satisfied: nvidia-curand-cu11==10.3.0.86 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 197)) (10.3.0.86) -opt-1_3b [stdout] Requirement already satisfied: nvidia-cusolver-cu11==11.4.1.48 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 201)) (11.4.1.48) -opt-1_3b [stdout] Requirement already satisfied: nvidia-cusparse-cu11==11.7.5.86 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 205)) (11.7.5.86) -opt-1_3b [stdout] Requirement already satisfied: nvidia-nccl-cu11==2.19.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 209)) (2.19.3) -opt-1_3b [stdout] Requirement already satisfied: nvidia-nvtx-cu11==11.8.86 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 213)) (11.8.86) -opt-1_3b [stdout] Requirement already satisfied: omegaconf==2.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 217)) (2.3.0) -opt-1_3b [stdout] Requirement already satisfied: ovld==0.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 221)) (0.3.2) -opt-1_3b [stdout] Requirement already satisfied: packaging==23.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 225)) (23.2) -opt-1_3b [stdout] Collecting pandas==2.2.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 234)) -opt-1_3b [stdout] Downloading pandas-2.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (19 kB) -opt-1_3b [stdout] Requirement already satisfied: pillow==10.2.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 239)) (10.2.0) -opt-1_3b [stdout] Collecting psutil==5.9.8 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 243)) -opt-1_3b [stdout] Downloading psutil-5.9.8-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (21 kB) -opt-1_3b [stdout] Requirement already satisfied: ptera==1.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 248)) (1.4.1) -opt-1_3b [stdout] Collecting py-cpuinfo==9.0.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 252)) -opt-1_3b [stdout] Downloading py_cpuinfo-9.0.0-py3-none-any.whl (22 kB) -opt-1_3b [stdout] Collecting pyarrow==15.0.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 256)) -opt-1_3b [stdout] Downloading pyarrow-15.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (3.0 kB) -opt-1_3b [stdout] Collecting pyarrow-hotfix==0.6 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 260)) -opt-1_3b [stdout] Downloading pyarrow_hotfix-0.6-py3-none-any.whl.metadata (3.6 kB) -opt-1_3b [stdout] Collecting pycparser==2.21 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 264)) -opt-1_3b [stdout] Downloading pycparser-2.21-py2.py3-none-any.whl (118 kB) -opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 118.7/118.7 kB 69.2 MB/s eta 0:00:00 -opt-1_3b [stdout] -opt-1_3b [stdout] Collecting pydantic==2.6.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 268)) -opt-1_3b [stdout] Downloading pydantic-2.6.0-py3-none-any.whl.metadata (81 kB) -opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 81.8/81.8 kB 40.5 MB/s eta 0:00:00 -opt-1_3b [stdout] -opt-1_3b [stdout] Collecting pydantic-core==2.16.1 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 272)) -opt-1_3b [stdout] Downloading pydantic_core-2.16.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (6.5 kB) -opt-1_3b [stdout] Requirement already satisfied: pygments==2.17.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 276)) (2.17.2) -opt-1_3b [stdout] Requirement already satisfied: pynvml==11.5.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 280)) (11.5.0) -opt-1_3b [stdout] Collecting python-dateutil==2.8.2 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 285)) -opt-1_3b [stdout] Using cached python_dateutil-2.8.2-py2.py3-none-any.whl (247 kB) -opt-1_3b [stdout] Collecting pytz==2024.1 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 289)) -opt-1_3b [stdout] Using cached pytz-2024.1-py2.py3-none-any.whl.metadata (22 kB) -opt-1_3b [stdout] Requirement already satisfied: pyyaml==6.0.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 293)) (6.0.1) -opt-1_3b [stdout] Requirement already satisfied: reactivex==4.0.4 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 301)) (4.0.4) -opt-1_3b [stdout] Requirement already satisfied: regex==2023.12.25 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 305)) (2023.12.25) -opt-1_3b [stdout] Requirement already satisfied: requests==2.31.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 309)) (2.31.0) -opt-1_3b [stdout] Collecting responses==0.18.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 319)) -opt-1_3b [stdout] Downloading responses-0.18.0-py3-none-any.whl (38 kB) -opt-1_3b [stdout] Requirement already satisfied: rich==13.7.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 323)) (13.7.0) -opt-1_3b [stdout] Requirement already satisfied: safetensors==0.4.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 327)) (0.4.2) -opt-1_3b [stdout] Requirement already satisfied: six==1.16.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 332)) (1.16.0) -opt-1_3b [stdout] Requirement already satisfied: sympy==1.12 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 337)) (1.12) -opt-1_3b [stdout] Requirement already satisfied: tokenizers==0.15.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 341)) (0.15.1) -opt-1_3b [stdout] Requirement already satisfied: torch==2.2.0+cu118 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 345)) (2.2.0+cu118) -opt-1_3b [stdout] Collecting torchaudio==2.2.0+cu118 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 352)) -opt-1_3b [stdout] Downloading https://download.pytorch.org/whl/cu118/torchaudio-2.2.0%2Bcu118-cp39-cp39-linux_x86_64.whl (3.3 MB) -opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 3.3/3.3 MB 7.7 MB/s eta 0:00:00 -opt-1_3b [stdout] -opt-1_3b [stdout] Requirement already satisfied: torchvision==0.17.0+cu118 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 354)) (0.17.0+cu118) -opt-1_3b [stdout] Requirement already satisfied: tqdm==4.66.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 356)) (4.66.1) -opt-1_3b [stdout] Requirement already satisfied: transformers==4.37.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 364)) (4.37.2) -opt-1_3b [stdout] Requirement already satisfied: triton==2.2.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 366)) (2.2.0) -opt-1_3b [stdout] Requirement already satisfied: typing-extensions==4.9.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 370)) (4.9.0) -opt-1_3b [stdout] Collecting tzdata==2023.4 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 379)) -opt-1_3b [stdout] Downloading tzdata-2023.4-py2.py3-none-any.whl.metadata (1.4 kB) -opt-1_3b [stdout] Requirement already satisfied: urllib3==1.26.18 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 383)) (1.26.18) -opt-1_3b [stdout] Requirement already satisfied: varname==0.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 388)) (0.10.0) -opt-1_3b [stdout] Requirement already satisfied: voir==0.2.12 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 392)) (0.2.12) -opt-1_3b [stdout] Collecting xxhash==3.4.1 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 394)) -opt-1_3b [stdout] Downloading xxhash-3.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (12 kB) -opt-1_3b [stdout] Collecting yarl==1.9.4 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt (line 399)) -opt-1_3b [stdout] Downloading yarl-1.9.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (31 kB) -opt-1_3b [stdout] Downloading accelerate-0.26.1-py3-none-any.whl (270 kB) -opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 270.9/270.9 kB 83.1 MB/s eta 0:00:00 -opt-1_3b [stdout] -opt-1_3b [stdout] Downloading aiohttp-3.9.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB) -opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.2/1.2 MB 8.1 MB/s eta 0:00:00 -opt-1_3b [stdout] -opt-1_3b [stdout] Downloading annotated_types-0.6.0-py3-none-any.whl (12 kB) -opt-1_3b [stdout] Downloading async_timeout-4.0.3-py3-none-any.whl (5.7 kB) -opt-1_3b [stdout] Downloading asyncssh-2.14.2-py3-none-any.whl (352 kB) -opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 352.5/352.5 kB 133.6 MB/s eta 0:00:00 -opt-1_3b [stdout] -opt-1_3b [stdout] Downloading attrs-23.2.0-py3-none-any.whl (60 kB) -opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 60.8/60.8 kB 40.4 MB/s eta 0:00:00 -opt-1_3b [stdout] -opt-1_3b [stdout] Downloading cffi-1.16.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (443 kB) -opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 443.4/443.4 kB 110.8 MB/s eta 0:00:00 -opt-1_3b [stdout] -opt-1_3b [stdout] Downloading cryptography-42.0.2-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.6 MB) -opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 4.6/4.6 MB 108.8 MB/s eta 0:00:00 -opt-1_3b [stdout] -opt-1_3b [stdout] Downloading datasets-2.16.1-py3-none-any.whl (507 kB) -opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 507.1/507.1 kB 113.2 MB/s eta 0:00:00 -opt-1_3b [stdout] -opt-1_3b [stdout] Downloading dill-0.3.7-py3-none-any.whl (115 kB) -opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 115.3/115.3 kB 80.4 MB/s eta 0:00:00 -opt-1_3b [stdout] -opt-1_3b [stdout] Downloading evaluate-0.4.1-py3-none-any.whl (84 kB) -opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 84.1/84.1 kB 60.9 MB/s eta 0:00:00 -opt-1_3b [stdout] -opt-1_3b [stdout] Downloading frozenlist-1.4.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (240 kB) -opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 240.7/240.7 kB 114.9 MB/s eta 0:00:00 -opt-1_3b [stdout] -opt-1_3b [stdout] Downloading multidict-6.0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (123 kB) -opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 123.8/123.8 kB 83.4 MB/s eta 0:00:00 -opt-1_3b [stdout] -opt-1_3b [stdout] Downloading multiprocess-0.70.15-py39-none-any.whl (133 kB) -opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 133.3/133.3 kB 86.8 MB/s eta 0:00:00 -opt-1_3b [stdout] -opt-1_3b [stdout] Downloading ninja-1.11.1.1-py2.py3-none-manylinux1_x86_64.manylinux_2_5_x86_64.whl (307 kB) -opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 307.2/307.2 kB 116.1 MB/s eta 0:00:00 -opt-1_3b [stdout] -opt-1_3b [stdout] Downloading pandas-2.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.0 MB) -opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 13.0/13.0 MB 105.5 MB/s eta 0:00:00 -opt-1_3b [stdout] -opt-1_3b [stdout] Downloading psutil-5.9.8-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (288 kB) -opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 288.2/288.2 kB 124.1 MB/s eta 0:00:00 -opt-1_3b [stdout] -opt-1_3b [stdout] Downloading pyarrow-15.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (38.4 MB) -opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 38.4/38.4 MB 87.1 MB/s eta 0:00:00 -opt-1_3b [stdout] -opt-1_3b [stdout] Downloading pyarrow_hotfix-0.6-py3-none-any.whl (7.9 kB) -opt-1_3b [stdout] Downloading pydantic-2.6.0-py3-none-any.whl (394 kB) -opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 394.2/394.2 kB 135.5 MB/s eta 0:00:00 -opt-1_3b [stdout] -opt-1_3b [stdout] Downloading pydantic_core-2.16.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB) -opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2.2/2.2 MB 82.1 MB/s eta 0:00:00 -opt-1_3b [stdout] -opt-1_3b [stdout] Using cached pytz-2024.1-py2.py3-none-any.whl (505 kB) -opt-1_3b [stdout] Downloading tzdata-2023.4-py2.py3-none-any.whl (346 kB) -opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 346.6/346.6 kB 130.4 MB/s eta 0:00:00 -opt-1_3b [stdout] -opt-1_3b [stdout] Downloading xxhash-3.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (193 kB) -opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 193.8/193.8 kB 106.5 MB/s eta 0:00:00 -opt-1_3b [stdout] -opt-1_3b [stdout] Downloading yarl-1.9.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (304 kB) -opt-1_3b [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 304.3/304.3 kB 114.3 MB/s eta 0:00:00 -opt-1_3b [stdout] -opt-1_3b [stdout] Building wheels for collected packages: deepspeed -opt-1_3b [stdout] Building wheel for deepspeed (setup.py): started -opt-1_3b [stdout] Building wheel for deepspeed (setup.py): finished with status 'done' -opt-1_3b [stdout] Created wheel for deepspeed: filename=deepspeed-0.13.1-py3-none-any.whl size=1350302 sha256=a487f1ee03eacf22b7f39412c26191aababed54613e4deab1318c3bec161b23e -opt-1_3b [stdout] Stored in directory: /Tmp/slurm.4112514.0/base/cache/pip/wheels/bf/b3/11/0d933b61a5b4edfb429f8b10c510a961d0c76f61aae9337639 -opt-1_3b [stdout] Successfully built deepspeed -opt-1_3b [stdout] Installing collected packages: pytz, py-cpuinfo, ninja, hjson, xxhash, tzdata, python-dateutil, pydantic-core, pycparser, pyarrow-hotfix, pyarrow, psutil, multidict, frozenlist, dill, attrs, async-timeout, annotated-types, yarl, responses, pydantic, pandas, multiprocess, cffi, aiosignal, torchaudio, deepspeed, cryptography, aiohttp, accelerate, asyncssh, datasets, evaluate -opt-1_3b [stdout] Successfully installed accelerate-0.26.1 aiohttp-3.9.3 aiosignal-1.3.1 annotated-types-0.6.0 async-timeout-4.0.3 asyncssh-2.14.2 attrs-23.2.0 cffi-1.16.0 cryptography-42.0.2 datasets-2.16.1 deepspeed-0.13.1 dill-0.3.7 evaluate-0.4.1 frozenlist-1.4.1 hjson-3.1.0 multidict-6.0.5 multiprocess-0.70.15 ninja-1.11.1.1 pandas-2.2.0 psutil-5.9.8 py-cpuinfo-9.0.0 pyarrow-15.0.0 pyarrow-hotfix-0.6 pycparser-2.21 pydantic-2.6.0 pydantic-core-2.16.1 python-dateutil-2.8.2 pytz-2024.1 responses-0.18.0 torchaudio-2.2.0+cu118 tzdata-2023.4 xxhash-3.4.1 yarl-1.9.4 -opt-1_3b [stderr] -opt-1_3b [stderr] [notice] A new release of pip is available: 23.3.2 -> 24.0 -opt-1_3b [stderr] [notice] To update, run: pip install --upgrade pip -opt-1_3b [end] pip install -r /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/requirements.cuda.txt [at 2024-02-05 09:12:03.456654] -opt-1_3b-multinode [message] Benchmark opt-1_3b-multinode is already installed -opt-6_7b-multinode [message] Benchmark opt-6_7b-multinode is already installed -stargan [start] pip install -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt [at 2024-02-05 09:12:03.461082] -stargan [stdout] Looking in indexes: https://pypi.org/simple, https://download.pytorch.org/whl/cu118 -stargan [stdout] Requirement already satisfied: antlr4-python3-runtime==4.9.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 9)) (4.9.3) -stargan [stdout] Requirement already satisfied: asttokens==2.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 13)) (2.4.1) -stargan [stdout] Requirement already satisfied: certifi==2024.2.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 17)) (2024.2.2) -stargan [stdout] Requirement already satisfied: charset-normalizer==3.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 21)) (3.3.2) -stargan [stdout] Requirement already satisfied: codefind==0.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 25)) (0.1.3) -stargan [stdout] Requirement already satisfied: executing==1.2.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 29)) (1.2.0) -stargan [stdout] Requirement already satisfied: filelock==3.13.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 33)) (3.13.1) -stargan [stdout] Requirement already satisfied: fsspec==2023.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 38)) (2023.10.0) -stargan [stdout] Requirement already satisfied: giving==0.4.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 42)) (0.4.2) -stargan [stdout] Requirement already satisfied: idna==3.6 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 47)) (3.6) -stargan [stdout] Requirement already satisfied: jinja2==3.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 51)) (3.1.3) -stargan [stdout] Requirement already satisfied: markdown-it-py==3.0.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 55)) (3.0.0) -stargan [stdout] Requirement already satisfied: markupsafe==2.1.5 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 59)) (2.1.5) -stargan [stdout] Requirement already satisfied: mdurl==0.1.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 63)) (0.1.2) -stargan [stdout] Requirement already satisfied: mpmath==1.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 67)) (1.3.0) -stargan [stdout] Requirement already satisfied: networkx==3.2.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 71)) (3.2.1) -stargan [stdout] Requirement already satisfied: numpy==1.26.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 75)) (1.26.3) -stargan [stdout] Requirement already satisfied: nvidia-cublas-cu11==11.11.3.6 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 79)) (11.11.3.6) -stargan [stdout] Requirement already satisfied: nvidia-cuda-cupti-cu11==11.8.87 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 85)) (11.8.87) -stargan [stdout] Requirement already satisfied: nvidia-cuda-nvrtc-cu11==11.8.89 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 89)) (11.8.89) -stargan [stdout] Requirement already satisfied: nvidia-cuda-runtime-cu11==11.8.89 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 93)) (11.8.89) -stargan [stdout] Requirement already satisfied: nvidia-cudnn-cu11==8.7.0.84 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 97)) (8.7.0.84) -stargan [stdout] Requirement already satisfied: nvidia-cufft-cu11==10.9.0.58 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 101)) (10.9.0.58) -stargan [stdout] Requirement already satisfied: nvidia-curand-cu11==10.3.0.86 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 105)) (10.3.0.86) -stargan [stdout] Requirement already satisfied: nvidia-cusolver-cu11==11.4.1.48 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 109)) (11.4.1.48) -stargan [stdout] Requirement already satisfied: nvidia-cusparse-cu11==11.7.5.86 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 113)) (11.7.5.86) -stargan [stdout] Requirement already satisfied: nvidia-nccl-cu11==2.19.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 117)) (2.19.3) -stargan [stdout] Requirement already satisfied: nvidia-nvtx-cu11==11.8.86 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 121)) (11.8.86) -stargan [stdout] Requirement already satisfied: omegaconf==2.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 125)) (2.3.0) -stargan [stdout] Requirement already satisfied: ovld==0.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 129)) (0.3.2) -stargan [stdout] Requirement already satisfied: pillow==10.2.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 133)) (10.2.0) -stargan [stdout] Requirement already satisfied: ptera==1.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 137)) (1.4.1) -stargan [stdout] Requirement already satisfied: pygments==2.17.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 141)) (2.17.2) -stargan [stdout] Requirement already satisfied: pynvml==11.5.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 145)) (11.5.0) -stargan [stdout] Requirement already satisfied: pyyaml==6.0.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 149)) (6.0.1) -stargan [stdout] Requirement already satisfied: reactivex==4.0.4 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 153)) (4.0.4) -stargan [stdout] Requirement already satisfied: requests==2.31.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 157)) (2.31.0) -stargan [stdout] Requirement already satisfied: rich==13.7.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 161)) (13.7.0) -stargan [stdout] Requirement already satisfied: six==1.16.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 165)) (1.16.0) -stargan [stdout] Requirement already satisfied: sympy==1.12 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 169)) (1.12) -stargan [stdout] Requirement already satisfied: torch==2.2.0+cu118 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 173)) (2.2.0+cu118) -stargan [stdout] Requirement already satisfied: torchvision==0.17.0+cu118 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 177)) (0.17.0+cu118) -stargan [stdout] Requirement already satisfied: triton==2.2.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 179)) (2.2.0) -stargan [stdout] Requirement already satisfied: typing-extensions==4.9.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 183)) (4.9.0) -stargan [stdout] Requirement already satisfied: urllib3==1.26.18 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 188)) (1.26.18) -stargan [stdout] Requirement already satisfied: varname==0.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 192)) (0.10.0) -stargan [stdout] Requirement already satisfied: voir==0.2.12 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt (line 196)) (0.2.12) -stargan [stderr] -stargan [stderr] [notice] A new release of pip is available: 23.3.2 -> 24.0 -stargan [stderr] [notice] To update, run: pip install --upgrade pip -stargan [end] pip install -r /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/requirements.cuda.txt [at 2024-02-05 09:12:04.858546] -super-slomo [start] pip install -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt [at 2024-02-05 09:12:04.862213] -super-slomo [stdout] Looking in indexes: https://pypi.org/simple, https://download.pytorch.org/whl/cu118 -super-slomo [stdout] Requirement already satisfied: antlr4-python3-runtime==4.9.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 9)) (4.9.3) -super-slomo [stdout] Requirement already satisfied: asttokens==2.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 13)) (2.4.1) -super-slomo [stdout] Requirement already satisfied: certifi==2024.2.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 17)) (2024.2.2) -super-slomo [stdout] Requirement already satisfied: charset-normalizer==3.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 21)) (3.3.2) -super-slomo [stdout] Requirement already satisfied: codefind==0.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 25)) (0.1.3) -super-slomo [stdout] Requirement already satisfied: executing==1.2.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 29)) (1.2.0) -super-slomo [stdout] Requirement already satisfied: filelock==3.13.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 33)) (3.13.1) -super-slomo [stdout] Requirement already satisfied: fsspec==2023.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 38)) (2023.10.0) -super-slomo [stdout] Requirement already satisfied: giving==0.4.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 42)) (0.4.2) -super-slomo [stdout] Requirement already satisfied: idna==3.6 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 47)) (3.6) -super-slomo [stdout] Requirement already satisfied: jinja2==3.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 51)) (3.1.3) -super-slomo [stdout] Requirement already satisfied: markdown-it-py==3.0.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 55)) (3.0.0) -super-slomo [stdout] Requirement already satisfied: markupsafe==2.1.5 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 59)) (2.1.5) -super-slomo [stdout] Requirement already satisfied: mdurl==0.1.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 63)) (0.1.2) -super-slomo [stdout] Requirement already satisfied: mpmath==1.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 67)) (1.3.0) -super-slomo [stdout] Requirement already satisfied: networkx==3.2.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 71)) (3.2.1) -super-slomo [stdout] Requirement already satisfied: numpy==1.26.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 75)) (1.26.3) -super-slomo [stdout] Requirement already satisfied: nvidia-cublas-cu11==11.11.3.6 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 80)) (11.11.3.6) -super-slomo [stdout] Requirement already satisfied: nvidia-cuda-cupti-cu11==11.8.87 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 86)) (11.8.87) -super-slomo [stdout] Requirement already satisfied: nvidia-cuda-nvrtc-cu11==11.8.89 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 90)) (11.8.89) -super-slomo [stdout] Requirement already satisfied: nvidia-cuda-runtime-cu11==11.8.89 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 94)) (11.8.89) -super-slomo [stdout] Requirement already satisfied: nvidia-cudnn-cu11==8.7.0.84 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 98)) (8.7.0.84) -super-slomo [stdout] Requirement already satisfied: nvidia-cufft-cu11==10.9.0.58 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 102)) (10.9.0.58) -super-slomo [stdout] Requirement already satisfied: nvidia-curand-cu11==10.3.0.86 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 106)) (10.3.0.86) -super-slomo [stdout] Requirement already satisfied: nvidia-cusolver-cu11==11.4.1.48 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 110)) (11.4.1.48) -super-slomo [stdout] Requirement already satisfied: nvidia-cusparse-cu11==11.7.5.86 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 114)) (11.7.5.86) -super-slomo [stdout] Requirement already satisfied: nvidia-nccl-cu11==2.19.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 118)) (2.19.3) -super-slomo [stdout] Requirement already satisfied: nvidia-nvtx-cu11==11.8.86 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 122)) (11.8.86) -super-slomo [stdout] Requirement already satisfied: omegaconf==2.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 126)) (2.3.0) -super-slomo [stdout] Collecting opencv-python==4.9.0.80 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 130)) -super-slomo [stdout] Downloading opencv_python-4.9.0.80-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (20 kB) -super-slomo [stdout] Requirement already satisfied: ovld==0.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 132)) (0.3.2) -super-slomo [stdout] Requirement already satisfied: pillow==10.2.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 136)) (10.2.0) -super-slomo [stdout] Requirement already satisfied: ptera==1.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 140)) (1.4.1) -super-slomo [stdout] Requirement already satisfied: pygments==2.17.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 144)) (2.17.2) -super-slomo [stdout] Requirement already satisfied: pynvml==11.5.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 148)) (11.5.0) -super-slomo [stdout] Requirement already satisfied: pyyaml==6.0.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 152)) (6.0.1) -super-slomo [stdout] Requirement already satisfied: reactivex==4.0.4 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 156)) (4.0.4) -super-slomo [stdout] Requirement already satisfied: requests==2.31.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 160)) (2.31.0) -super-slomo [stdout] Requirement already satisfied: rich==13.7.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 164)) (13.7.0) -super-slomo [stdout] Requirement already satisfied: six==1.16.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 168)) (1.16.0) -super-slomo [stdout] Requirement already satisfied: sympy==1.12 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 172)) (1.12) -super-slomo [stdout] Requirement already satisfied: torch==2.2.0+cu118 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 176)) (2.2.0+cu118) -super-slomo [stdout] Requirement already satisfied: torchvision==0.17.0+cu118 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 180)) (0.17.0+cu118) -super-slomo [stdout] Requirement already satisfied: tqdm==4.66.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 182)) (4.66.1) -super-slomo [stdout] Requirement already satisfied: triton==2.2.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 184)) (2.2.0) -super-slomo [stdout] Requirement already satisfied: typing-extensions==4.9.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 188)) (4.9.0) -super-slomo [stdout] Requirement already satisfied: urllib3==1.26.18 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 193)) (1.26.18) -super-slomo [stdout] Requirement already satisfied: varname==0.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 197)) (0.10.0) -super-slomo [stdout] Requirement already satisfied: voir==0.2.12 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt (line 201)) (0.2.12) -super-slomo [stdout] Downloading opencv_python-4.9.0.80-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (62.2 MB) -super-slomo [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 62.2/62.2 MB 75.8 MB/s eta 0:00:00 -super-slomo [stdout] -super-slomo [stdout] Installing collected packages: opencv-python -super-slomo [stdout] Successfully installed opencv-python-4.9.0.80 -super-slomo [stderr] -super-slomo [stderr] [notice] A new release of pip is available: 23.3.2 -> 24.0 -super-slomo [stderr] [notice] To update, run: pip install --upgrade pip -super-slomo [end] pip install -r /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/requirements.cuda.txt [at 2024-02-05 09:12:08.052145] -dlrm [start] pip install -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt [at 2024-02-05 09:12:08.467956] -dlrm [stdout] Looking in indexes: https://pypi.org/simple, https://download.pytorch.org/whl/cu118 -dlrm [stdout] Collecting absl-py==2.1.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 9)) -dlrm [stdout] Downloading absl_py-2.1.0-py3-none-any.whl.metadata (2.3 kB) -dlrm [stdout] Requirement already satisfied: antlr4-python3-runtime==4.9.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 13)) (4.9.3) -dlrm [stdout] Requirement already satisfied: asttokens==2.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 17)) (2.4.1) -dlrm [stdout] Collecting cachetools==5.3.2 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 21)) -dlrm [stdout] Downloading cachetools-5.3.2-py3-none-any.whl.metadata (5.2 kB) -dlrm [stdout] Requirement already satisfied: certifi==2024.2.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 25)) (2024.2.2) -dlrm [stdout] Requirement already satisfied: charset-normalizer==3.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 29)) (3.3.2) -dlrm [stdout] Requirement already satisfied: codefind==0.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 33)) (0.1.3) -dlrm [stdout] Collecting docker==7.0.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 37)) -dlrm [stdout] Downloading docker-7.0.0-py3-none-any.whl.metadata (3.5 kB) -dlrm [stdout] Collecting docstring-parser==0.8.1 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 41)) -dlrm [stdout] Downloading docstring_parser-0.8.1.tar.gz (14 kB) -dlrm [stdout] Installing build dependencies: started -dlrm [stdout] Installing build dependencies: finished with status 'done' -dlrm [stdout] Getting requirements to build wheel: started -dlrm [stdout] Getting requirements to build wheel: finished with status 'done' -dlrm [stdout] Preparing metadata (pyproject.toml): started -dlrm [stdout] Preparing metadata (pyproject.toml): finished with status 'done' -dlrm [stdout] Requirement already satisfied: executing==1.2.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 45)) (1.2.0) -dlrm [stdout] Collecting fbgemm-gpu==0.6.0+cu118 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 49)) -dlrm [stdout] Downloading https://download.pytorch.org/whl/cu118/fbgemm_gpu-0.6.0%2Bcu118-cp39-cp39-manylinux2014_x86_64.whl (231.2 MB) -dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 231.2/231.2 MB 38.5 MB/s eta 0:00:00 -dlrm [stdout] -dlrm [stdout] Requirement already satisfied: filelock==3.13.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 53)) (3.13.1) -dlrm [stdout] Requirement already satisfied: fsspec==2023.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 59)) (2023.10.0) -dlrm [stdout] Collecting future==0.18.3 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 64)) -dlrm [stdout] Downloading future-0.18.3.tar.gz (840 kB) -dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 840.9/840.9 kB 23.1 MB/s eta 0:00:00 -dlrm [stdout] -dlrm [stdout] Preparing metadata (setup.py): started -dlrm [stdout] Preparing metadata (setup.py): finished with status 'done' -dlrm [stdout] Requirement already satisfied: giving==0.4.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 66)) (0.4.2) -dlrm [stdout] Collecting google-auth==2.27.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 71)) -dlrm [stdout] Downloading google_auth-2.27.0-py2.py3-none-any.whl.metadata (4.7 kB) -dlrm [stdout] Collecting google-auth-oauthlib==1.2.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 76)) -dlrm [stdout] Downloading google_auth_oauthlib-1.2.0-py2.py3-none-any.whl.metadata (2.7 kB) -dlrm [stdout] Collecting graphviz==0.20.1 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 80)) -dlrm [stdout] Downloading graphviz-0.20.1-py3-none-any.whl (47 kB) -dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 47.0/47.0 kB 37.5 MB/s eta 0:00:00 -dlrm [stdout] -dlrm [stdout] Collecting grpcio==1.60.1 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 84)) -dlrm [stdout] Downloading grpcio-1.60.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (4.0 kB) -dlrm [stdout] Requirement already satisfied: idna==3.6 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 88)) (3.6) -dlrm [stdout] Collecting importlib-metadata==7.0.1 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 92)) -dlrm [stdout] Using cached importlib_metadata-7.0.1-py3-none-any.whl.metadata (4.9 kB) -dlrm [stdout] Requirement already satisfied: jinja2==3.1.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 97)) (3.1.3) -dlrm [stdout] Collecting joblib==1.3.2 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 101)) -dlrm [stdout] Downloading joblib-1.3.2-py3-none-any.whl.metadata (5.4 kB) -dlrm [stdout] Collecting lightning-utilities==0.10.1 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 105)) -dlrm [stdout] Downloading lightning_utilities-0.10.1-py3-none-any.whl.metadata (4.8 kB) -dlrm [stdout] Collecting markdown==3.5.2 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 109)) -dlrm [stdout] Downloading Markdown-3.5.2-py3-none-any.whl.metadata (7.0 kB) -dlrm [stdout] Requirement already satisfied: markdown-it-py==3.0.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 113)) (3.0.0) -dlrm [stdout] Requirement already satisfied: markupsafe==2.1.5 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 117)) (2.1.5) -dlrm [stdout] Requirement already satisfied: mdurl==0.1.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 122)) (0.1.2) -dlrm [stdout] Requirement already satisfied: mpmath==1.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 126)) (1.3.0) -dlrm [stdout] Collecting mypy-extensions==1.0.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 130)) -dlrm [stdout] Downloading mypy_extensions-1.0.0-py3-none-any.whl (4.7 kB) -dlrm [stdout] Requirement already satisfied: networkx==3.2.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 134)) (3.2.1) -dlrm [stdout] Requirement already satisfied: numpy==1.26.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 138)) (1.26.3) -dlrm [stdout] Requirement already satisfied: nvidia-cublas-cu11==11.11.3.6 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 147)) (11.11.3.6) -dlrm [stdout] Requirement already satisfied: nvidia-cuda-cupti-cu11==11.8.87 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 153)) (11.8.87) -dlrm [stdout] Requirement already satisfied: nvidia-cuda-nvrtc-cu11==11.8.89 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 157)) (11.8.89) -dlrm [stdout] Requirement already satisfied: nvidia-cuda-runtime-cu11==11.8.89 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 161)) (11.8.89) -dlrm [stdout] Requirement already satisfied: nvidia-cudnn-cu11==8.7.0.84 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 165)) (8.7.0.84) -dlrm [stdout] Requirement already satisfied: nvidia-cufft-cu11==10.9.0.58 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 169)) (10.9.0.58) -dlrm [stdout] Requirement already satisfied: nvidia-curand-cu11==10.3.0.86 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 173)) (10.3.0.86) -dlrm [stdout] Requirement already satisfied: nvidia-cusolver-cu11==11.4.1.48 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 177)) (11.4.1.48) -dlrm [stdout] Requirement already satisfied: nvidia-cusparse-cu11==11.7.5.86 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 181)) (11.7.5.86) -dlrm [stdout] Requirement already satisfied: nvidia-nccl-cu11==2.19.3 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 185)) (2.19.3) -dlrm [stdout] Requirement already satisfied: nvidia-nvtx-cu11==11.8.86 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 189)) (11.8.86) -dlrm [stdout] Collecting oauthlib==3.2.2 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 193)) -dlrm [stdout] Downloading oauthlib-3.2.2-py3-none-any.whl (151 kB) -dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 151.7/151.7 kB 100.3 MB/s eta 0:00:00 -dlrm [stdout] -dlrm [stdout] Requirement already satisfied: omegaconf==2.3.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 197)) (2.3.0) -dlrm [stdout] Collecting onnx==1.15.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 201)) -dlrm [stdout] Downloading onnx-1.15.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (15 kB) -dlrm [stdout] Requirement already satisfied: ovld==0.3.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 203)) (0.3.2) -dlrm [stdout] Requirement already satisfied: packaging==23.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 207)) (23.2) -dlrm [stdout] Collecting protobuf==4.23.4 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 213)) -dlrm [stdout] Downloading protobuf-4.23.4-cp37-abi3-manylinux2014_x86_64.whl.metadata (540 bytes) -dlrm [stdout] Requirement already satisfied: ptera==1.4.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 218)) (1.4.1) -dlrm [stdout] Collecting pyasn1==0.5.1 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 222)) -dlrm [stdout] Downloading pyasn1-0.5.1-py2.py3-none-any.whl.metadata (8.6 kB) -dlrm [stdout] Collecting pyasn1-modules==0.3.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 227)) -dlrm [stdout] Downloading pyasn1_modules-0.3.0-py2.py3-none-any.whl (181 kB) -dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 181.3/181.3 kB 100.1 MB/s eta 0:00:00 -dlrm [stdout] -dlrm [stdout] Collecting pydot==2.0.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 231)) -dlrm [stdout] Downloading pydot-2.0.0-py3-none-any.whl.metadata (9.6 kB) -dlrm [stdout] Requirement already satisfied: pygments==2.17.2 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 233)) (2.17.2) -dlrm [stdout] Requirement already satisfied: pynvml==11.5.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 237)) (11.5.0) -dlrm [stdout] Collecting pyparsing==3.1.1 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 241)) -dlrm [stdout] Downloading pyparsing-3.1.1-py3-none-any.whl.metadata (5.1 kB) -dlrm [stdout] Collecting pyre-extensions==0.0.30 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 245)) -dlrm [stdout] Downloading pyre_extensions-0.0.30-py3-none-any.whl (12 kB) -dlrm [stdout] Requirement already satisfied: pyyaml==6.0.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 249)) (6.0.1) -dlrm [stdout] Requirement already satisfied: reactivex==4.0.4 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 254)) (4.0.4) -dlrm [stdout] Requirement already satisfied: requests==2.31.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 258)) (2.31.0) -dlrm [stdout] Collecting requests-oauthlib==1.3.1 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 264)) -dlrm [stdout] Downloading requests_oauthlib-1.3.1-py2.py3-none-any.whl (23 kB) -dlrm [stdout] Requirement already satisfied: rich==13.7.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 268)) (13.7.0) -dlrm [stdout] Collecting rsa==4.9 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 272)) -dlrm [stdout] Downloading rsa-4.9-py3-none-any.whl (34 kB) -dlrm [stdout] Collecting scikit-learn==1.4.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 276)) -dlrm [stdout] Downloading scikit_learn-1.4.0-1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (11 kB) -dlrm [stdout] Collecting scipy==1.12.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 278)) -dlrm [stdout] Downloading scipy-1.12.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (60 kB) -dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 60.4/60.4 kB 38.2 MB/s eta 0:00:00 -dlrm [stdout] -dlrm [stdout] Requirement already satisfied: six==1.16.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 282)) (1.16.0) -dlrm [stdout] Requirement already satisfied: sympy==1.12 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 287)) (1.12) -dlrm [stdout] Collecting tabulate==0.9.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 291)) -dlrm [stdout] Downloading tabulate-0.9.0-py3-none-any.whl (35 kB) -dlrm [stdout] Collecting tensorboard==2.15.1 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 295)) -dlrm [stdout] Downloading tensorboard-2.15.1-py3-none-any.whl.metadata (1.7 kB) -dlrm [stdout] Collecting tensorboard-data-server==0.7.2 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 297)) -dlrm [stdout] Downloading tensorboard_data_server-0.7.2-py3-none-any.whl.metadata (1.1 kB) -dlrm [stdout] Collecting threadpoolctl==3.2.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 301)) -dlrm [stdout] Downloading threadpoolctl-3.2.0-py3-none-any.whl.metadata (10.0 kB) -dlrm [stdout] Requirement already satisfied: torch==2.2.0+cu118 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 305)) (2.2.0+cu118) -dlrm [stdout] Collecting torchmetrics==1.0.3 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 310)) -dlrm [stdout] Downloading https://download.pytorch.org/whl/torchmetrics-1.0.3-py3-none-any.whl (731 kB) -dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 731.6/731.6 kB 105.5 MB/s eta 0:00:00 -dlrm [stdout] -dlrm [stdout] Collecting torchrec==0.6.0+cu118 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 314)) -dlrm [stdout] Downloading https://download.pytorch.org/whl/cu118/torchrec-0.6.0%2Bcu118-py3-none-any.whl (429 kB) -dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 429.6/429.6 kB 12.2 MB/s eta 0:00:00 -dlrm [stdout] -dlrm [stdout] Collecting torchviz==0.0.2 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 316)) -dlrm [stdout] Downloading torchviz-0.0.2.tar.gz (4.9 kB) -dlrm [stdout] Preparing metadata (setup.py): started -dlrm [stdout] Preparing metadata (setup.py): finished with status 'done' -dlrm [stdout] Collecting torchx==0.5.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 318)) -dlrm [stdout] Downloading torchx-0.5.0-py3-none-any.whl (251 kB) -dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 251.2/251.2 kB 70.4 MB/s eta 0:00:00 -dlrm [stdout] -dlrm [stdout] Requirement already satisfied: tqdm==4.66.1 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 320)) (4.66.1) -dlrm [stdout] Requirement already satisfied: triton==2.2.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 324)) (2.2.0) -dlrm [stdout] Requirement already satisfied: typing-extensions==4.9.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 328)) (4.9.0) -dlrm [stdout] Collecting typing-inspect==0.9.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 336)) -dlrm [stdout] Downloading typing_inspect-0.9.0-py3-none-any.whl.metadata (1.5 kB) -dlrm [stdout] Requirement already satisfied: urllib3==1.26.18 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 340)) (1.26.18) -dlrm [stdout] Requirement already satisfied: varname==0.10.0 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 346)) (0.10.0) -dlrm [stdout] Requirement already satisfied: voir==0.2.12 in ./base/venv/torch/lib/python3.9/site-packages (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 350)) (0.2.12) -dlrm [stdout] Collecting werkzeug==3.0.1 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 352)) -dlrm [stdout] Downloading werkzeug-3.0.1-py3-none-any.whl.metadata (4.1 kB) -dlrm [stdout] Collecting zipp==3.17.0 (from -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 356)) -dlrm [stdout] Using cached zipp-3.17.0-py3-none-any.whl.metadata (3.7 kB) -dlrm [stdout] Requirement already satisfied: setuptools in ./base/venv/torch/lib/python3.9/site-packages (from lightning-utilities==0.10.1->-r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt (line 105)) (69.0.3) -dlrm [stdout] Downloading absl_py-2.1.0-py3-none-any.whl (133 kB) -dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 133.7/133.7 kB 85.2 MB/s eta 0:00:00 -dlrm [stdout] -dlrm [stdout] Downloading cachetools-5.3.2-py3-none-any.whl (9.3 kB) -dlrm [stdout] Downloading docker-7.0.0-py3-none-any.whl (147 kB) -dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 147.6/147.6 kB 94.8 MB/s eta 0:00:00 -dlrm [stdout] -dlrm [stdout] Downloading google_auth-2.27.0-py2.py3-none-any.whl (186 kB) -dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 186.8/186.8 kB 84.8 MB/s eta 0:00:00 -dlrm [stdout] -dlrm [stdout] Downloading google_auth_oauthlib-1.2.0-py2.py3-none-any.whl (24 kB) -dlrm [stdout] Downloading grpcio-1.60.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.4 MB) -dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 5.4/5.4 MB 98.9 MB/s eta 0:00:00 -dlrm [stdout] -dlrm [stdout] Using cached importlib_metadata-7.0.1-py3-none-any.whl (23 kB) -dlrm [stdout] Downloading joblib-1.3.2-py3-none-any.whl (302 kB) -dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 302.2/302.2 kB 107.3 MB/s eta 0:00:00 -dlrm [stdout] -dlrm [stdout] Downloading lightning_utilities-0.10.1-py3-none-any.whl (24 kB) -dlrm [stdout] Downloading Markdown-3.5.2-py3-none-any.whl (103 kB) -dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 103.9/103.9 kB 72.3 MB/s eta 0:00:00 -dlrm [stdout] -dlrm [stdout] Downloading onnx-1.15.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.7 MB) -dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 15.7/15.7 MB 103.8 MB/s eta 0:00:00 -dlrm [stdout] -dlrm [stdout] Downloading protobuf-4.23.4-cp37-abi3-manylinux2014_x86_64.whl (304 kB) -dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 304.5/304.5 kB 125.6 MB/s eta 0:00:00 -dlrm [stdout] -dlrm [stdout] Downloading pyasn1-0.5.1-py2.py3-none-any.whl (84 kB) -dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 84.9/84.9 kB 5.5 MB/s eta 0:00:00 -dlrm [stdout] -dlrm [stdout] Downloading pydot-2.0.0-py3-none-any.whl (22 kB) -dlrm [stdout] Downloading pyparsing-3.1.1-py3-none-any.whl (103 kB) -dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 103.1/103.1 kB 75.1 MB/s eta 0:00:00 -dlrm [stdout] -dlrm [stdout] Downloading scikit_learn-1.4.0-1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.1 MB) -dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 12.1/12.1 MB 106.7 MB/s eta 0:00:00 -dlrm [stdout] -dlrm [stdout] Downloading scipy-1.12.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (38.5 MB) -dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 38.5/38.5 MB 89.3 MB/s eta 0:00:00 -dlrm [stdout] -dlrm [stdout] Downloading tensorboard-2.15.1-py3-none-any.whl (5.5 MB) -dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 5.5/5.5 MB 109.2 MB/s eta 0:00:00 -dlrm [stdout] -dlrm [stdout] Downloading tensorboard_data_server-0.7.2-py3-none-any.whl (2.4 kB) -dlrm [stdout] Downloading threadpoolctl-3.2.0-py3-none-any.whl (15 kB) -dlrm [stdout] Downloading typing_inspect-0.9.0-py3-none-any.whl (8.8 kB) -dlrm [stdout] Downloading werkzeug-3.0.1-py3-none-any.whl (226 kB) -dlrm [stdout] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 226.7/226.7 kB 98.2 MB/s eta 0:00:00 -dlrm [stdout] -dlrm [stdout] Using cached zipp-3.17.0-py3-none-any.whl (7.4 kB) -dlrm [stdout] Building wheels for collected packages: docstring-parser, future, torchviz -dlrm [stdout] Building wheel for docstring-parser (pyproject.toml): started -dlrm [stdout] Building wheel for docstring-parser (pyproject.toml): finished with status 'done' -dlrm [stdout] Created wheel for docstring-parser: filename=docstring_parser-0.8.1-py3-none-any.whl size=19661 sha256=fcea89bef83d23ba122797c1d9d24b608a5e78bb6b542cc8fa2e6074066675b0 -dlrm [stdout] Stored in directory: /Tmp/slurm.4112514.0/base/cache/pip/wheels/35/b6/65/eda0a6497d7e3275201108c17e12c945989eb0d6e9dcc8eca2 -dlrm [stdout] Building wheel for future (setup.py): started -dlrm [stdout] Building wheel for future (setup.py): finished with status 'done' -dlrm [stdout] Created wheel for future: filename=future-0.18.3-py3-none-any.whl size=492024 sha256=24d10f57b8f6fec1548a3a73b10d59b3e1c4a3ff0512b3674faf8983242e4f84 -dlrm [stdout] Stored in directory: /Tmp/slurm.4112514.0/base/cache/pip/wheels/bf/5d/6a/2e53874f7ec4e2bede522385439531fafec8fafe005b5c3d1b -dlrm [stdout] Building wheel for torchviz (setup.py): started -dlrm [stdout] Building wheel for torchviz (setup.py): finished with status 'done' -dlrm [stdout] Created wheel for torchviz: filename=torchviz-0.0.2-py3-none-any.whl size=4131 sha256=c7041bab0501ef994420e186abddaa461334bf39157996f51667f2b5d2e3cb66 -dlrm [stdout] Stored in directory: /Tmp/slurm.4112514.0/base/cache/pip/wheels/29/65/6e/db2515eb1dc760fecd36b40d54df65c1e18534013f1c037e2e -dlrm [stdout] Successfully built docstring-parser future torchviz -dlrm [stdout] Installing collected packages: zipp, werkzeug, threadpoolctl, tensorboard-data-server, tabulate, scipy, pyparsing, pyasn1, protobuf, oauthlib, mypy-extensions, lightning-utilities, joblib, grpcio, graphviz, future, fbgemm-gpu, docstring-parser, cachetools, absl-py, typing-inspect, scikit-learn, rsa, requests-oauthlib, pydot, pyasn1-modules, onnx, importlib-metadata, docker, torchviz, torchmetrics, pyre-extensions, markdown, google-auth, torchx, torchrec, google-auth-oauthlib, tensorboard -dlrm [stdout] Successfully installed absl-py-2.1.0 cachetools-5.3.2 docker-7.0.0 docstring-parser-0.8.1 fbgemm-gpu-0.6.0+cu118 future-0.18.3 google-auth-2.27.0 google-auth-oauthlib-1.2.0 graphviz-0.20.1 grpcio-1.60.1 importlib-metadata-7.0.1 joblib-1.3.2 lightning-utilities-0.10.1 markdown-3.5.2 mypy-extensions-1.0.0 oauthlib-3.2.2 onnx-1.15.0 protobuf-4.23.4 pyasn1-0.5.1 pyasn1-modules-0.3.0 pydot-2.0.0 pyparsing-3.1.1 pyre-extensions-0.0.30 requests-oauthlib-1.3.1 rsa-4.9 scikit-learn-1.4.0 scipy-1.12.0 tabulate-0.9.0 tensorboard-2.15.1 tensorboard-data-server-0.7.2 threadpoolctl-3.2.0 torchmetrics-1.0.3 torchrec-0.6.0+cu118 torchviz-0.0.2 torchx-0.5.0 typing-inspect-0.9.0 werkzeug-3.0.1 zipp-3.17.0 -dlrm [stderr] -dlrm [stderr] [notice] A new release of pip is available: 23.3.2 -> 24.0 -dlrm [stderr] [notice] To update, run: pip install --upgrade pip -dlrm [end] pip install -r /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/requirements.cuda.txt [at 2024-02-05 09:12:33.592261] -[DONE] Reports directory: /Tmp/slurm.4112514.0/base/runs/install.2024-02-05_09:10:07.243596 - -Prepare -------- -resnet50 [start] /Tmp/slurm.4112514.0/milabench/benchmarks/torchvision/prepare.py --precision tf32-fp16 --lr 0.01 --no-stdout --epochs 50 --model resnet50 --batch-size 64 [at 2024-02-05 09:12:34.806258] -resnet50 [stdout] Generating fake data into /Tmp/slurm.4112514.0/base/data/FakeImageNet... -resnet50 [stdout] Generating train -resnet50 [stderr] 0%| | 0/4096 [00:00", -opt-1_3b [stderr] "torch_dtype": "float16", -opt-1_3b [stderr] "transformers_version": "4.37.2", -opt-1_3b [stderr] "use_cache": true, -opt-1_3b [stderr] "vocab_size": 50272, -opt-1_3b [stderr] "word_embed_proj_dim": 2048 -opt-1_3b [stderr] } -opt-1_3b [stderr] -opt-1_3b [stderr] tokenizer_config.json: 0%| | 0.00/685 [00:00", -opt-1_3b [stderr] "torch_dtype": "float16", -opt-1_3b [stderr] "transformers_version": "4.37.2", -opt-1_3b [stderr] "use_cache": true, -opt-1_3b [stderr] "vocab_size": 50272, -opt-1_3b [stderr] "word_embed_proj_dim": 2048 -opt-1_3b [stderr] } -opt-1_3b [stderr] -opt-1_3b [stderr] vocab.json: 0%| | 0.00/899k [00:00", -opt-1_3b [stderr] "torch_dtype": "float16", -opt-1_3b [stderr] "transformers_version": "4.37.2", -opt-1_3b [stderr] "use_cache": true, -opt-1_3b [stderr] "vocab_size": 50272, -opt-1_3b [stderr] "word_embed_proj_dim": 2048 -opt-1_3b [stderr] } -opt-1_3b [stderr] -opt-1_3b [stderr] loading configuration file config.json from cache at /Tmp/slurm.4112514.0/base/cache/hub/models--facebook--opt-1.3b/snapshots/3f5c25d0bc631cb57ac65913f76e22c2dfb61d62/config.json -opt-1_3b [stderr] Model config OPTConfig { -opt-1_3b [stderr] "_name_or_path": "facebook/opt-1.3b", -opt-1_3b [stderr] "_remove_final_layer_norm": false, -opt-1_3b [stderr] "activation_dropout": 0.0, -opt-1_3b [stderr] "activation_function": "relu", -opt-1_3b [stderr] "architectures": [ -opt-1_3b [stderr] "OPTForCausalLM" -opt-1_3b [stderr] ], -opt-1_3b [stderr] "attention_dropout": 0.0, -opt-1_3b [stderr] "bos_token_id": 2, -opt-1_3b [stderr] "do_layer_norm_before": true, -opt-1_3b [stderr] "dropout": 0.1, -opt-1_3b [stderr] "enable_bias": true, -opt-1_3b [stderr] "eos_token_id": 2, -opt-1_3b [stderr] "ffn_dim": 8192, -opt-1_3b [stderr] "hidden_size": 2048, -opt-1_3b [stderr] "init_std": 0.02, -opt-1_3b [stderr] "layer_norm_elementwise_affine": true, -opt-1_3b [stderr] "layerdrop": 0.0, -opt-1_3b [stderr] "max_position_embeddings": 2048, -opt-1_3b [stderr] "model_type": "opt", -opt-1_3b [stderr] "num_attention_heads": 32, -opt-1_3b [stderr] "num_hidden_layers": 24, -opt-1_3b [stderr] "pad_token_id": 1, -opt-1_3b [stderr] "prefix": "", -opt-1_3b [stderr] "torch_dtype": "float16", -opt-1_3b [stderr] "transformers_version": "4.37.2", -opt-1_3b [stderr] "use_cache": true, -opt-1_3b [stderr] "vocab_size": 50272, -opt-1_3b [stderr] "word_embed_proj_dim": 2048 -opt-1_3b [stderr] } -opt-1_3b [stderr] -opt-1_3b [stderr] Running tokenizer on dataset (num_proc=8): 0%| | 0/4358 [00:00", -opt-1_3b-multinode [stderr] "torch_dtype": "float16", -opt-1_3b-multinode [stderr] "transformers_version": "4.37.2", -opt-1_3b-multinode [stderr] "use_cache": true, -opt-1_3b-multinode [stderr] "vocab_size": 50272, -opt-1_3b-multinode [stderr] "word_embed_proj_dim": 2048 -opt-1_3b-multinode [stderr] } -opt-1_3b-multinode [stderr] -opt-1_3b-multinode [stderr] loading configuration file config.json from cache at /Tmp/slurm.4112514.0/base/cache/hub/models--facebook--opt-1.3b/snapshots/3f5c25d0bc631cb57ac65913f76e22c2dfb61d62/config.json -opt-1_3b-multinode [stderr] Model config OPTConfig { -opt-1_3b-multinode [stderr] "_name_or_path": "facebook/opt-1.3b", -opt-1_3b-multinode [stderr] "_remove_final_layer_norm": false, -opt-1_3b-multinode [stderr] "activation_dropout": 0.0, -opt-1_3b-multinode [stderr] "activation_function": "relu", -opt-1_3b-multinode [stderr] "architectures": [ -opt-1_3b-multinode [stderr] "OPTForCausalLM" -opt-1_3b-multinode [stderr] ], -opt-1_3b-multinode [stderr] "attention_dropout": 0.0, -opt-1_3b-multinode [stderr] "bos_token_id": 2, -opt-1_3b-multinode [stderr] "do_layer_norm_before": true, -opt-1_3b-multinode [stderr] "dropout": 0.1, -opt-1_3b-multinode [stderr] "enable_bias": true, -opt-1_3b-multinode [stderr] "eos_token_id": 2, -opt-1_3b-multinode [stderr] "ffn_dim": 8192, -opt-1_3b-multinode [stderr] "hidden_size": 2048, -opt-1_3b-multinode [stderr] "init_std": 0.02, -opt-1_3b-multinode [stderr] "layer_norm_elementwise_affine": true, -opt-1_3b-multinode [stderr] "layerdrop": 0.0, -opt-1_3b-multinode [stderr] "max_position_embeddings": 2048, -opt-1_3b-multinode [stderr] "model_type": "opt", -opt-1_3b-multinode [stderr] "num_attention_heads": 32, -opt-1_3b-multinode [stderr] "num_hidden_layers": 24, -opt-1_3b-multinode [stderr] "pad_token_id": 1, -opt-1_3b-multinode [stderr] "prefix": "", -opt-1_3b-multinode [stderr] "torch_dtype": "float16", -opt-1_3b-multinode [stderr] "transformers_version": "4.37.2", -opt-1_3b-multinode [stderr] "use_cache": true, -opt-1_3b-multinode [stderr] "vocab_size": 50272, -opt-1_3b-multinode [stderr] "word_embed_proj_dim": 2048 -opt-1_3b-multinode [stderr] } -opt-1_3b-multinode [stderr] -opt-1_3b-multinode [stderr] loading file vocab.json from cache at /Tmp/slurm.4112514.0/base/cache/hub/models--facebook--opt-1.3b/snapshots/3f5c25d0bc631cb57ac65913f76e22c2dfb61d62/vocab.json -opt-1_3b-multinode [stderr] loading file merges.txt from cache at /Tmp/slurm.4112514.0/base/cache/hub/models--facebook--opt-1.3b/snapshots/3f5c25d0bc631cb57ac65913f76e22c2dfb61d62/merges.txt -opt-1_3b-multinode [stderr] loading file tokenizer.json from cache at None -opt-1_3b-multinode [stderr] loading file added_tokens.json from cache at None -opt-1_3b-multinode [stderr] loading file special_tokens_map.json from cache at /Tmp/slurm.4112514.0/base/cache/hub/models--facebook--opt-1.3b/snapshots/3f5c25d0bc631cb57ac65913f76e22c2dfb61d62/special_tokens_map.json -opt-1_3b-multinode [stderr] loading file tokenizer_config.json from cache at /Tmp/slurm.4112514.0/base/cache/hub/models--facebook--opt-1.3b/snapshots/3f5c25d0bc631cb57ac65913f76e22c2dfb61d62/tokenizer_config.json -opt-1_3b-multinode [stderr] loading configuration file config.json from cache at /Tmp/slurm.4112514.0/base/cache/hub/models--facebook--opt-1.3b/snapshots/3f5c25d0bc631cb57ac65913f76e22c2dfb61d62/config.json -opt-1_3b-multinode [stderr] Model config OPTConfig { -opt-1_3b-multinode [stderr] "_name_or_path": "facebook/opt-1.3b", -opt-1_3b-multinode [stderr] "_remove_final_layer_norm": false, -opt-1_3b-multinode [stderr] "activation_dropout": 0.0, -opt-1_3b-multinode [stderr] "activation_function": "relu", -opt-1_3b-multinode [stderr] "architectures": [ -opt-1_3b-multinode [stderr] "OPTForCausalLM" -opt-1_3b-multinode [stderr] ], -opt-1_3b-multinode [stderr] "attention_dropout": 0.0, -opt-1_3b-multinode [stderr] "bos_token_id": 2, -opt-1_3b-multinode [stderr] "do_layer_norm_before": true, -opt-1_3b-multinode [stderr] "dropout": 0.1, -opt-1_3b-multinode [stderr] "enable_bias": true, -opt-1_3b-multinode [stderr] "eos_token_id": 2, -opt-1_3b-multinode [stderr] "ffn_dim": 8192, -opt-1_3b-multinode [stderr] "hidden_size": 2048, -opt-1_3b-multinode [stderr] "init_std": 0.02, -opt-1_3b-multinode [stderr] "layer_norm_elementwise_affine": true, -opt-1_3b-multinode [stderr] "layerdrop": 0.0, -opt-1_3b-multinode [stderr] "max_position_embeddings": 2048, -opt-1_3b-multinode [stderr] "model_type": "opt", -opt-1_3b-multinode [stderr] "num_attention_heads": 32, -opt-1_3b-multinode [stderr] "num_hidden_layers": 24, -opt-1_3b-multinode [stderr] "pad_token_id": 1, -opt-1_3b-multinode [stderr] "prefix": "", -opt-1_3b-multinode [stderr] "torch_dtype": "float16", -opt-1_3b-multinode [stderr] "transformers_version": "4.37.2", -opt-1_3b-multinode [stderr] "use_cache": true, -opt-1_3b-multinode [stderr] "vocab_size": 50272, -opt-1_3b-multinode [stderr] "word_embed_proj_dim": 2048 -opt-1_3b-multinode [stderr] } -opt-1_3b-multinode [stderr] -opt-1_3b-multinode [stderr] loading configuration file config.json from cache at /Tmp/slurm.4112514.0/base/cache/hub/models--facebook--opt-1.3b/snapshots/3f5c25d0bc631cb57ac65913f76e22c2dfb61d62/config.json -opt-1_3b-multinode [stderr] Model config OPTConfig { -opt-1_3b-multinode [stderr] "_name_or_path": "facebook/opt-1.3b", -opt-1_3b-multinode [stderr] "_remove_final_layer_norm": false, -opt-1_3b-multinode [stderr] "activation_dropout": 0.0, -opt-1_3b-multinode [stderr] "activation_function": "relu", -opt-1_3b-multinode [stderr] "architectures": [ -opt-1_3b-multinode [stderr] "OPTForCausalLM" -opt-1_3b-multinode [stderr] ], -opt-1_3b-multinode [stderr] "attention_dropout": 0.0, -opt-1_3b-multinode [stderr] "bos_token_id": 2, -opt-1_3b-multinode [stderr] "do_layer_norm_before": true, -opt-1_3b-multinode [stderr] "dropout": 0.1, -opt-1_3b-multinode [stderr] "enable_bias": true, -opt-1_3b-multinode [stderr] "eos_token_id": 2, -opt-1_3b-multinode [stderr] "ffn_dim": 8192, -opt-1_3b-multinode [stderr] "hidden_size": 2048, -opt-1_3b-multinode [stderr] "init_std": 0.02, -opt-1_3b-multinode [stderr] "layer_norm_elementwise_affine": true, -opt-1_3b-multinode [stderr] "layerdrop": 0.0, -opt-1_3b-multinode [stderr] "max_position_embeddings": 2048, -opt-1_3b-multinode [stderr] "model_type": "opt", -opt-1_3b-multinode [stderr] "num_attention_heads": 32, -opt-1_3b-multinode [stderr] "num_hidden_layers": 24, -opt-1_3b-multinode [stderr] "pad_token_id": 1, -opt-1_3b-multinode [stderr] "prefix": "", -opt-1_3b-multinode [stderr] "torch_dtype": "float16", -opt-1_3b-multinode [stderr] "transformers_version": "4.37.2", -opt-1_3b-multinode [stderr] "use_cache": true, -opt-1_3b-multinode [stderr] "vocab_size": 50272, -opt-1_3b-multinode [stderr] "word_embed_proj_dim": 2048 -opt-1_3b-multinode [stderr] } -opt-1_3b-multinode [stderr] -opt-1_3b-multinode [stdout] [02/05/24 09:15:37] WARNING [0/1] __main__ - The tokenizer picked logging.py:61 -opt-1_3b-multinode [stdout] seems to have a very large -opt-1_3b-multinode [stdout] `model_max_length` -opt-1_3b-multinode [stdout] (1000000000000000019884624838656). -opt-1_3b-multinode [stdout] Picking 1024 instead. You can change -opt-1_3b-multinode [stdout] that default value by passing -opt-1_3b-multinode [stdout] --block_size xxx. -opt-1_3b-multinode [end] accelerate launch --mixed_precision=fp16 --num_machines=1 --dynamo_backend=no --num_processes=1 --num_cpu_threads_per_process=8 /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/main.py [at 2024-02-05 09:15:38.743545] -opt-6_7b-multinode [start] accelerate launch --mixed_precision=fp16 --num_machines=1 --dynamo_backend=no --num_processes=1 --num_cpu_threads_per_process=8 /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/main.py [at 2024-02-05 09:15:38.748106] -opt-6_7b-multinode [stderr] The following values were not passed to `accelerate launch` and had defaults used instead: -opt-6_7b-multinode [stderr] More than one GPU was found, enabling multi-GPU training. -opt-6_7b-multinode [stderr] If this was unintended please pass in `--num_processes=1`. -opt-6_7b-multinode [stderr] To avoid this warning pass in values for each of the problematic parameters or run `accelerate config`. -opt-6_7b-multinode [stderr] Detected kernel version 4.15.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher. -opt-6_7b-multinode [stdout] [02/05/24 09:15:43] INFO [0/1] __main__ - Distributed logging.py:61 -opt-6_7b-multinode [stdout] environment: MULTI_GPU Backend: nccl -opt-6_7b-multinode [stdout] Num processes: 1 -opt-6_7b-multinode [stdout] Process index: 0 -opt-6_7b-multinode [stdout] Local process index: 0 -opt-6_7b-multinode [stdout] Device: cuda:0 -opt-6_7b-multinode [stdout] -opt-6_7b-multinode [stdout] Mixed precision type: fp16 -opt-6_7b-multinode [stdout] -opt-6_7b-multinode [stderr] libibverbs: Warning: couldn't load driver 'libbnxt_re-rdmav34.so': libbnxt_re-rdmav34.so: cannot open shared object file: No such file or directory -opt-6_7b-multinode [stderr] libibverbs: Warning: couldn't load driver 'libcxgb4-rdmav34.so': libcxgb4-rdmav34.so: cannot open shared object file: No such file or directory -opt-6_7b-multinode [stderr] libibverbs: Warning: couldn't load driver 'libipathverbs-rdmav34.so': libipathverbs-rdmav34.so: cannot open shared object file: No such file or directory -opt-6_7b-multinode [stderr] libibverbs: Warning: couldn't load driver 'libhfi1verbs-rdmav34.so': libhfi1verbs-rdmav34.so: cannot open shared object file: No such file or directory -opt-6_7b-multinode [stderr] libibverbs: Warning: couldn't load driver 'libqedr-rdmav34.so': libqedr-rdmav34.so: cannot open shared object file: No such file or directory -opt-6_7b-multinode [stderr] libibverbs: Warning: couldn't load driver 'libmthca-rdmav34.so': libmthca-rdmav34.so: cannot open shared object file: No such file or directory -opt-6_7b-multinode [stderr] libibverbs: Warning: couldn't load driver 'libvmw_pvrdma-rdmav34.so': libvmw_pvrdma-rdmav34.so: cannot open shared object file: No such file or directory -opt-6_7b-multinode [stderr] libibverbs: Warning: couldn't load driver 'librxe-rdmav34.so': librxe-rdmav34.so: cannot open shared object file: No such file or directory -opt-6_7b-multinode [stderr] libibverbs: Warning: couldn't load driver 'libocrdma-rdmav34.so': libocrdma-rdmav34.so: cannot open shared object file: No such file or directory -opt-6_7b-multinode [stderr] libibverbs: Warning: couldn't load driver 'libi40iw-rdmav34.so': libi40iw-rdmav34.so: cannot open shared object file: No such file or directory -opt-6_7b-multinode [stderr] libibverbs: Warning: couldn't load driver 'libmlx4-rdmav34.so': libmlx4-rdmav34.so: cannot open shared object file: No such file or directory -opt-6_7b-multinode [stderr] libibverbs: Warning: couldn't load driver 'libhns-rdmav34.so': libhns-rdmav34.so: cannot open shared object file: No such file or directory -opt-6_7b-multinode [stderr] /Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/datasets/load.py:1429: FutureWarning: The repository for wikitext contains custom code which must be executed to correctly load the dataset. You can inspect the repository content at https://hf.co/datasets/wikitext -opt-6_7b-multinode [stderr] You can avoid this message in future by passing the argument `trust_remote_code=True`. -opt-6_7b-multinode [stderr] Passing `trust_remote_code=True` will be mandatory to load this dataset from the next major release of `datasets`. -opt-6_7b-multinode [stderr] warnings.warn( -opt-6_7b-multinode [stderr] config.json: 0%| | 0.00/651 [00:00", -opt-6_7b-multinode [stderr] "torch_dtype": "float16", -opt-6_7b-multinode [stderr] "transformers_version": "4.37.2", -opt-6_7b-multinode [stderr] "use_cache": true, -opt-6_7b-multinode [stderr] "vocab_size": 50272, -opt-6_7b-multinode [stderr] "word_embed_proj_dim": 4096 -opt-6_7b-multinode [stderr] } -opt-6_7b-multinode [stderr] -opt-6_7b-multinode [stderr] tokenizer_config.json: 0%| | 0.00/685 [00:00", -opt-6_7b-multinode [stderr] "torch_dtype": "float16", -opt-6_7b-multinode [stderr] "transformers_version": "4.37.2", -opt-6_7b-multinode [stderr] "use_cache": true, -opt-6_7b-multinode [stderr] "vocab_size": 50272, -opt-6_7b-multinode [stderr] "word_embed_proj_dim": 4096 -opt-6_7b-multinode [stderr] } -opt-6_7b-multinode [stderr] -opt-6_7b-multinode [stderr] vocab.json: 0%| | 0.00/899k [00:00", -opt-6_7b-multinode [stderr] "torch_dtype": "float16", -opt-6_7b-multinode [stderr] "transformers_version": "4.37.2", -opt-6_7b-multinode [stderr] "use_cache": true, -opt-6_7b-multinode [stderr] "vocab_size": 50272, -opt-6_7b-multinode [stderr] "word_embed_proj_dim": 4096 -opt-6_7b-multinode [stderr] } -opt-6_7b-multinode [stderr] -opt-6_7b-multinode [stderr] loading configuration file config.json from cache at /Tmp/slurm.4112514.0/base/cache/hub/models--facebook--opt-6.7b/snapshots/a45aa65bbeb77c1558bc99bedc6779195462dab0/config.json -opt-6_7b-multinode [stderr] Model config OPTConfig { -opt-6_7b-multinode [stderr] "_name_or_path": "facebook/opt-6.7b", -opt-6_7b-multinode [stderr] "_remove_final_layer_norm": false, -opt-6_7b-multinode [stderr] "activation_dropout": 0.0, -opt-6_7b-multinode [stderr] "activation_function": "relu", -opt-6_7b-multinode [stderr] "architectures": [ -opt-6_7b-multinode [stderr] "OPTForCausalLM" -opt-6_7b-multinode [stderr] ], -opt-6_7b-multinode [stderr] "attention_dropout": 0.0, -opt-6_7b-multinode [stderr] "bos_token_id": 2, -opt-6_7b-multinode [stderr] "do_layer_norm_before": true, -opt-6_7b-multinode [stderr] "dropout": 0.1, -opt-6_7b-multinode [stderr] "enable_bias": true, -opt-6_7b-multinode [stderr] "eos_token_id": 2, -opt-6_7b-multinode [stderr] "ffn_dim": 16384, -opt-6_7b-multinode [stderr] "hidden_size": 4096, -opt-6_7b-multinode [stderr] "init_std": 0.02, -opt-6_7b-multinode [stderr] "layer_norm_elementwise_affine": true, -opt-6_7b-multinode [stderr] "layerdrop": 0.0, -opt-6_7b-multinode [stderr] "max_position_embeddings": 2048, -opt-6_7b-multinode [stderr] "model_type": "opt", -opt-6_7b-multinode [stderr] "num_attention_heads": 32, -opt-6_7b-multinode [stderr] "num_hidden_layers": 32, -opt-6_7b-multinode [stderr] "pad_token_id": 1, -opt-6_7b-multinode [stderr] "prefix": "", -opt-6_7b-multinode [stderr] "torch_dtype": "float16", -opt-6_7b-multinode [stderr] "transformers_version": "4.37.2", -opt-6_7b-multinode [stderr] "use_cache": true, -opt-6_7b-multinode [stderr] "vocab_size": 50272, -opt-6_7b-multinode [stderr] "word_embed_proj_dim": 4096 -opt-6_7b-multinode [stderr] } -opt-6_7b-multinode [stderr] -opt-6_7b-multinode [stderr] Running tokenizer on dataset (num_proc=8): 0%| | 0/4358 [00:00 -resnet152-multi.0 [stderr] sys.exit(main()) -resnet152-multi.0 [stderr] File "/Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 347, in wrapper -resnet152-multi.0 [stderr] return f(*args, **kwargs) -resnet152-multi.0 [stderr] File "/Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/run.py", line 812, in main -resnet152-multi.0 [stderr] run(args) -resnet152-multi.0 [stderr] File "/Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/run.py", line 803, in run -resnet152-multi.0 [stderr] elastic_launch( -resnet152-multi.0 [stderr] File "/Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/launcher/api.py", line 135, in __call__ -resnet152-multi.0 [stderr] return launch_agent(self._config, self._entrypoint, list(args)) -resnet152-multi.0 [stderr] File "/Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/launcher/api.py", line 259, in launch_agent -resnet152-multi.0 [stderr] result = agent.run() -resnet152-multi.0 [stderr] File "/Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/elastic/metrics/api.py", line 123, in wrapper -resnet152-multi.0 [stderr] result = f(*args, **kwargs) -resnet152-multi.0 [stderr] File "/Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/elastic/agent/server/api.py", line 727, in run -resnet152-multi.0 [stderr] result = self._invoke_run(role) -resnet152-multi.0 [stderr] File "/Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/elastic/agent/server/api.py", line 868, in _invoke_run -resnet152-multi.0 [stderr] time.sleep(monitor_interval) -resnet152-multi.0 [stderr] File "/Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 62, in _terminate_process_handler -resnet152-multi.0 [stderr] raise SignalException(f"Process {os.getpid()} got signal: {sigval}", sigval=sigval) -resnet152-multi.0 [stderr] torch.distributed.elastic.multiprocessing.api.SignalException: Process 46850 got signal: 15 -resnet152-multi.0 [end] torchrun --nproc_per_node=2 -m voir --config /Tmp/slurm.4112514.0/base/extra/timm/voirconf-resnet152-multi.0-0efae956f1553a76c1e03985181900f5.json /Tmp/slurm.4112514.0/milabench/benchmarks/timm/pytorch-image-models/train.py --amp --model resnet152 --batch-size 256 --data-dir /Tmp/slurm.4112514.0/base/data --dataset FakeImageNet --output /Tmp/slurm.4112514.0/base/extra/timm/jenadogo.2024-02-05_09:17:41.183394/resnet152-multi.0 --checkpoint-hist 1 [at 2024-02-05 09:39:43.488466] -davit_large.D0 [config.dirs.base] /Tmp/slurm.4112514.0/base -davit_large.D0 [config.dirs.venv] /Tmp/slurm.4112514.0/base/venv/torch -davit_large.D0 [config.dirs.data] /Tmp/slurm.4112514.0/base/data -davit_large.D0 [config.dirs.runs] /Tmp/slurm.4112514.0/base/runs -davit_large.D0 [config.dirs.extra] /Tmp/slurm.4112514.0/base/extra/timm -davit_large.D0 [config.dirs.cache] /Tmp/slurm.4112514.0/base/cache -davit_large.D0 [config.arch] cuda -davit_large.D0 [config.group] timm -davit_large.D0 [config.install_group] torch -davit_large.D0 [config.install_variant] cuda -davit_large.D0 [config.run_name] jenadogo.2024-02-05_09:17:41.183394 -davit_large.D0 [config.enabled] True -davit_large.D0 [config.capabilities.nodes] 1 -davit_large.D0 [config.max_duration] 600 -davit_large.D0 [config.voir.options.stop] 60 -davit_large.D0 [config.voir.options.interval] 1s -davit_large.D0 [config.config_base] /Tmp/slurm.4112514.0/milabench/config -davit_large.D0 [config.config_file] /Tmp/slurm.4112514.0/milabench/config/standard.yaml -davit_large.D0 [config.definition] /Tmp/slurm.4112514.0/milabench/benchmarks/timm -davit_large.D0 [config.plan.method] per_gpu -davit_large.D0 [config.argv.--amp] True -davit_large.D0 [config.argv.--model] davit_large -davit_large.D0 [config.argv.--batch-size] 128 -davit_large.D0 [config.argv.--lr-base] 0.01 -davit_large.D0 [config.tags] ['classification', 'transformer', 'vision'] -davit_large.D0 [config.weight] 1.0 -davit_large.D0 [config.name] davit_large -davit_large.D0 [config.tag] ['davit_large', 'D0'] -davit_large.D0 [config.device] 0 -davit_large.D0 [config.devices] ['0'] -davit_large.D0 [config.env.CUDA_VISIBLE_DEVICES] 0 -davit_large.D1 [config.dirs.base] /Tmp/slurm.4112514.0/base -davit_large.D1 [config.dirs.venv] /Tmp/slurm.4112514.0/base/venv/torch -davit_large.D1 [config.dirs.data] /Tmp/slurm.4112514.0/base/data -davit_large.D1 [config.dirs.runs] /Tmp/slurm.4112514.0/base/runs -davit_large.D1 [config.dirs.extra] /Tmp/slurm.4112514.0/base/extra/timm -davit_large.D1 [config.dirs.cache] /Tmp/slurm.4112514.0/base/cache -davit_large.D1 [config.arch] cuda -davit_large.D1 [config.group] timm -davit_large.D1 [config.install_group] torch -davit_large.D1 [config.install_variant] cuda -davit_large.D1 [config.run_name] jenadogo.2024-02-05_09:17:41.183394 -davit_large.D1 [config.enabled] True -davit_large.D1 [config.capabilities.nodes] 1 -davit_large.D1 [config.max_duration] 600 -davit_large.D1 [config.voir.options.stop] 60 -davit_large.D1 [config.voir.options.interval] 1s -davit_large.D1 [config.config_base] /Tmp/slurm.4112514.0/milabench/config -davit_large.D1 [config.config_file] /Tmp/slurm.4112514.0/milabench/config/standard.yaml -davit_large.D1 [config.definition] /Tmp/slurm.4112514.0/milabench/benchmarks/timm -davit_large.D1 [config.plan.method] per_gpu -davit_large.D1 [config.argv.--amp] True -davit_large.D1 [config.argv.--model] davit_large -davit_large.D1 [config.argv.--batch-size] 128 -davit_large.D1 [config.argv.--lr-base] 0.01 -davit_large.D1 [config.tags] ['classification', 'transformer', 'vision'] -davit_large.D1 [config.weight] 1.0 -davit_large.D1 [config.name] davit_large -davit_large.D1 [config.tag] ['davit_large', 'D1'] -davit_large.D1 [config.device] 1 -davit_large.D1 [config.devices] ['1'] -davit_large.D1 [config.env.CUDA_VISIBLE_DEVICES] 1 -davit_large.D0 [start] voir --config /Tmp/slurm.4112514.0/base/extra/timm/voirconf-davit_large.D0-0efae956f1553a76c1e03985181900f5.json /Tmp/slurm.4112514.0/milabench/benchmarks/timm/pytorch-image-models/train.py --amp --model davit_large --batch-size 128 --lr-base 0.01 --data-dir /Tmp/slurm.4112514.0/base/data --dataset FakeImageNet --output /Tmp/slurm.4112514.0/base/extra/timm/jenadogo.2024-02-05_09:17:41.183394/davit_large.D0 --checkpoint-hist 1 [at 2024-02-05 09:39:43.497324] -davit_large.D1 [start] voir --config /Tmp/slurm.4112514.0/base/extra/timm/voirconf-davit_large.D1-0efae956f1553a76c1e03985181900f5.json /Tmp/slurm.4112514.0/milabench/benchmarks/timm/pytorch-image-models/train.py --amp --model davit_large --batch-size 128 --lr-base 0.01 --data-dir /Tmp/slurm.4112514.0/base/data --dataset FakeImageNet --output /Tmp/slurm.4112514.0/base/extra/timm/jenadogo.2024-02-05_09:17:41.183394/davit_large.D1 --checkpoint-hist 1 [at 2024-02-05 09:39:43.500118] -davit_large.D1 [stderr] Training with a single process on 1 device (cuda:0). -davit_large.D0 [stderr] Training with a single process on 1 device (cuda:0). -davit_large.D0 [stderr] Model davit_large created, param count:196811752 -davit_large.D0 [stderr] Data processing configuration for current model + dataset: -davit_large.D0 [stderr] input_size: (3, 224, 224) -davit_large.D0 [stderr] interpolation: bicubic -davit_large.D0 [stderr] mean: (0.485, 0.456, 0.406) -davit_large.D0 [stderr] std: (0.229, 0.224, 0.225) -davit_large.D0 [stderr] crop_pct: 0.95 -davit_large.D0 [stderr] crop_mode: center -davit_large.D1 [stderr] Model davit_large created, param count:196811752 -davit_large.D1 [stderr] Data processing configuration for current model + dataset: -davit_large.D1 [stderr] input_size: (3, 224, 224) -davit_large.D1 [stderr] interpolation: bicubic -davit_large.D1 [stderr] mean: (0.485, 0.456, 0.406) -davit_large.D1 [stderr] std: (0.229, 0.224, 0.225) -davit_large.D1 [stderr] crop_pct: 0.95 -davit_large.D1 [stderr] crop_mode: center -davit_large.D0 [stderr] Learning rate (0.005) calculated from base learning rate (0.01) and global batch size (128) with linear scaling. -davit_large.D1 [stderr] Learning rate (0.005) calculated from base learning rate (0.01) and global batch size (128) with linear scaling. -davit_large.D0 [stderr] Using native Torch AMP. Training in mixed precision. -davit_large.D1 [stderr] Using native Torch AMP. Training in mixed precision. -davit_large.D1 [stderr] Scheduled epochs: 300. LR stepped per epoch. -davit_large.D0 [stderr] Scheduled epochs: 300. LR stepped per epoch. -davit_large.D0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [1961.4375, 81920.0], - 'power': 79.569, - 'temperature': 34}}, - 'task': 'main'} -davit_large.D1 [data] {'gpudata': {'1': {'load': 0, - 'memory': [1961.4375, 81920.0], - 'power': 76.284, - 'temperature': 30}}, - 'task': 'main'} -davit_large.D0 [data] {'loss': 7.2242937088012695, 'task': 'train'} -davit_large.D1 [data] {'loss': 7.2242937088012695, 'task': 'train'} -davit_large.D1 [data] {'gpudata': {'1': {'load': 0.73, - 'memory': [20935.4375, 81920.0], - 'power': 231.089, - 'temperature': 36}}, - 'task': 'main'} -davit_large.D0 [stderr] Train: 0 [ 0/32 ( 0%)] Loss: 7.224 (7.22) Time: 5.376s, 23.81/s (5.376s, 23.81/s) LR: 1.000e-05 Data: 1.866 (1.866) -davit_large.D0 [data] {'gpudata': {'0': {'load': 0.36, - 'memory': [30009.4375, 81920.0], - 'power': 118.363, - 'temperature': 37}}, - 'task': 'main'} -davit_large.D1 [stderr] Train: 0 [ 0/32 ( 0%)] Loss: 7.224 (7.22) Time: 5.497s, 23.29/s (5.497s, 23.29/s) LR: 1.000e-05 Data: 2.012 (2.012) -davit_large.D0 [data] {'loss': 7.176398277282715, 'task': 'train'} -davit_large.D1 [data] {'loss': 7.176398277282715, 'task': 'train'} -davit_large.D1 [data] {'gpudata': {'1': {'load': 0.9, - 'memory': [32271.4375, 81920.0], - 'power': 170.884, - 'temperature': 44}}, - 'task': 'main'} -davit_large.D0 [data] {'loss': 7.255929470062256, 'task': 'train'} -davit_large.D0 [data] {'gpudata': {'0': {'load': 1.0, - 'memory': [32271.4375, 81920.0], - 'power': 341.58, - 'temperature': 46}}, - 'task': 'main'} -davit_large.D1 [data] {'loss': 7.255929470062256, 'task': 'train'} -davit_large.D0 [data] {'loss': 7.163320541381836, 'task': 'train'} -davit_large.D1 [data] {'loss': 7.163320541381836, 'task': 'train'} -davit_large.D0 [data] {'loss': 7.234607696533203, 'task': 'train'} -davit_large.D1 [data] {'loss': 7.234731197357178, 'task': 'train'} -davit_large.D1 [data] {'gpudata': {'1': {'load': 0.86, - 'memory': [32271.4375, 81920.0], - 'power': 423.171, - 'temperature': 49}}, - 'task': 'main'} -davit_large.D0 [data] {'gpudata': {'0': {'load': 0.91, - 'memory': [32271.4375, 81920.0], - 'power': 419.613, - 'temperature': 52}}, - 'task': 'main'} -davit_large.D0 [data] {'loss': 7.243466377258301, 'task': 'train'} -davit_large.D1 [data] {'loss': 7.243409156799316, 'task': 'train'} -davit_large.D0 [data] {'rate': 288.78704725928174, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'loss': 7.048627853393555, 'task': 'train'} -davit_large.D1 [data] {'rate': 286.9764195377152, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'loss': 7.048476696014404, 'task': 'train'} -davit_large.D0 [data] {'rate': 304.02838849876184, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'gpudata': {'0': {'load': 0.92, - 'memory': [32271.4375, 81920.0], - 'power': 423.645, - 'temperature': 52}}, - 'task': 'main'} -davit_large.D0 [data] {'loss': 7.246768951416016, 'task': 'train'} -davit_large.D1 [data] {'gpudata': {'1': {'load': 0.99, - 'memory': [32271.4375, 81920.0], - 'power': 342.624, - 'temperature': 48}}, - 'task': 'main'} -davit_large.D1 [data] {'rate': 312.4742435069156, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'loss': 7.246639728546143, 'task': 'train'} -davit_large.D0 [data] {'rate': 308.5310059684705, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'rate': 306.4042003924101, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'loss': 7.151220321655273, 'task': 'train'} -davit_large.D1 [data] {'loss': 7.15114688873291, 'task': 'train'} -davit_large.D0 [data] {'rate': 295.08292759315526, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'rate': 297.49118271577714, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'loss': 7.270956993103027, 'task': 'train'} -davit_large.D1 [data] {'loss': 7.271016597747803, 'task': 'train'} -davit_large.D1 [data] {'gpudata': {'1': {'load': 0.98, - 'memory': [32271.4375, 81920.0], - 'power': 417.846, - 'temperature': 53}}, - 'task': 'main'} -davit_large.D0 [data] {'gpudata': {'0': {'load': 0.98, - 'memory': [32271.4375, 81920.0], - 'power': 404.772, - 'temperature': 53}}, - 'task': 'main'} -davit_large.D0 [data] {'rate': 299.8240112694602, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'rate': 297.0281431589852, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'loss': 7.312952518463135, 'task': 'train'} -davit_large.D1 [data] {'loss': 7.312915802001953, 'task': 'train'} -davit_large.D0 [data] {'rate': 308.6805033077407, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'rate': 304.8616680812936, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'loss': 7.311437606811523, 'task': 'train'} -davit_large.D1 [data] {'loss': 7.311379432678223, 'task': 'train'} -davit_large.D0 [stderr] Train: 0 [ 31/32 (100%)] Loss: 7.311 (7.24) Time: 0.379s, 337.57/s (0.559s, 228.90/s) LR: 1.000e-05 Data: 0.000 (0.074) -davit_large.D1 [stderr] Train: 0 [ 31/32 (100%)] Loss: 7.311 (7.24) Time: 0.393s, 326.06/s (0.564s, 227.00/s) LR: 1.000e-05 Data: 0.000 (0.078) -davit_large.D0 [stderr] Test: [ 0/32] Time: 2.479 (2.479) Loss: 7.1175 (7.1175) Acc@1: 0.0000 ( 0.0000) Acc@5: 0.0000 ( 0.0000) -davit_large.D1 [stderr] Test: [ 0/32] Time: 2.470 (2.470) Loss: 7.1175 (7.1175) Acc@1: 0.0000 ( 0.0000) Acc@5: 0.0000 ( 0.0000) -davit_large.D1 [stderr] Test: [ 32/32] Time: 0.351 (0.308) Loss: 7.0510 (7.2336) Acc@1: 0.0000 ( 0.0969) Acc@5: 0.0000 ( 0.5329) -davit_large.D0 [stderr] Test: [ 32/32] Time: 0.421 (0.318) Loss: 7.0507 (7.2336) Acc@1: 0.0000 ( 0.0969) Acc@5: 0.0000 ( 0.5329) -davit_large.D1 [stderr] Current checkpoints: -davit_large.D1 [stderr] ('/Tmp/slurm.4112514.0/base/extra/timm/jenadogo.2024-02-05_09:17:41.183394/davit_large.D1/20240205-093949-davit_large-224/checkpoint-0.pth.tar', 0.09689922480620156) -davit_large.D1 [stderr] -davit_large.D0 [stderr] Current checkpoints: -davit_large.D0 [stderr] ('/Tmp/slurm.4112514.0/base/extra/timm/jenadogo.2024-02-05_09:17:41.183394/davit_large.D0/20240205-093949-davit_large-224/checkpoint-0.pth.tar', 0.09689922480620156) -davit_large.D0 [stderr] -davit_large.D1 [data] {'rate': 333.9182691539913, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'gpudata': {'1': {'load': 0, - 'memory': [32271.4375, 81920.0], - 'power': 90.667, - 'temperature': 42}}, - 'task': 'main'} -davit_large.D1 [data] {'gpudata': {'1': {'load': 0.74, - 'memory': [32515.4375, 81920.0], - 'power': 417.558, - 'temperature': 48}}, - 'task': 'main'} -davit_large.D1 [data] {'gpudata': {'1': {'load': 0.25, - 'memory': [32515.4375, 81920.0], - 'power': 366.435, - 'temperature': 47}}, - 'task': 'main'} -davit_large.D1 [data] {'gpudata': {'1': {'load': 0.99, - 'memory': [32515.4375, 81920.0], - 'power': 416.254, - 'temperature': 50}}, - 'task': 'main'} -davit_large.D1 [data] {'gpudata': {'1': {'load': 0.03, - 'memory': [4563.4375, 81920.0], - 'power': 77.447, - 'temperature': 36}}, - 'task': 'main'} -davit_large.D0 [data] {'rate': 337.7676077671192, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [32271.4375, 81920.0], - 'power': 94.681, - 'temperature': 42}}, - 'task': 'main'} -davit_large.D0 [data] {'gpudata': {'0': {'load': 0.9, - 'memory': [32515.4375, 81920.0], - 'power': 362.419, - 'temperature': 50}}, - 'task': 'main'} -davit_large.D0 [data] {'gpudata': {'0': {'load': 0.81, - 'memory': [32515.4375, 81920.0], - 'power': 288.631, - 'temperature': 49}}, - 'task': 'main'} -davit_large.D0 [data] {'gpudata': {'0': {'load': 0.97, - 'memory': [32515.4375, 81920.0], - 'power': 371.216, - 'temperature': 51}}, - 'task': 'main'} -davit_large.D0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4409.4375, 81920.0], - 'power': 81.264, - 'temperature': 37}}, - 'task': 'main'} -davit_large.D1 [data] {'loss': 7.413604736328125, 'task': 'train'} -davit_large.D0 [data] {'loss': 7.413701057434082, 'task': 'train'} -davit_large.D1 [stderr] Train: 1 [ 0/32 ( 0%)] Loss: 7.414 (7.41) Time: 1.803s, 71.00/s (1.803s, 71.00/s) LR: 1.008e-03 Data: 1.146 (1.146) -davit_large.D0 [stderr] Train: 1 [ 0/32 ( 0%)] Loss: 7.414 (7.41) Time: 1.834s, 69.79/s (1.834s, 69.79/s) LR: 1.008e-03 Data: 1.280 (1.280) -davit_large.D0 [data] {'rate': 212.44601572468315, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'rate': 228.27529681210123, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'loss': 7.087103366851807, 'task': 'train'} -davit_large.D0 [data] {'loss': 7.08716344833374, 'task': 'train'} -davit_large.D1 [data] {'rate': 306.16411380530565, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'rate': 297.6658545964903, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'gpudata': {'0': {'load': 0.99, - 'memory': [32375.4375, 81920.0], - 'power': 323.198, - 'temperature': 51}}, - 'task': 'main'} -davit_large.D1 [data] {'loss': 7.022727012634277, 'task': 'train'} -davit_large.D1 [data] {'gpudata': {'1': {'load': 0.91, - 'memory': [32371.4375, 81920.0], - 'power': 334.543, - 'temperature': 48}}, - 'task': 'main'} -davit_large.D0 [data] {'loss': 7.022820472717285, 'task': 'train'} -davit_large.D0 [data] {'rate': 283.8694126984249, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'rate': 303.3547075190617, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'loss': 7.015778064727783, 'task': 'train'} -davit_large.D0 [data] {'loss': 7.015728950500488, 'task': 'train'} -davit_large.D1 [data] {'rate': 302.93055934266414, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'rate': 313.88746869568195, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'rate': 295.8596461531807, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'loss': 7.004846572875977, 'task': 'train'} -davit_large.D1 [data] {'rate': 319.69120440466014, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'loss': 7.004810333251953, 'task': 'train'} -davit_large.D1 [data] {'gpudata': {'1': {'load': 1.0, - 'memory': [32371.4375, 81920.0], - 'power': 399.157, - 'temperature': 51}}, - 'task': 'main'} -davit_large.D0 [data] {'gpudata': {'0': {'load': 0.92, - 'memory': [32375.4375, 81920.0], - 'power': 157.92, - 'temperature': 50}}, - 'task': 'main'} -davit_large.D1 [data] {'rate': 311.28935534193664, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'rate': 311.1180411574508, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'loss': 7.067630767822266, 'task': 'train'} -davit_large.D0 [data] {'loss': 7.067703723907471, 'task': 'train'} -davit_large.D0 [data] {'rate': 323.68101623255995, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'rate': 318.13933901069385, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'loss': 6.943202018737793, 'task': 'train'} -davit_large.D0 [data] {'loss': 6.943198204040527, 'task': 'train'} -davit_large.D1 [data] {'rate': 300.19495140925494, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'rate': 304.6041345669072, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'gpudata': {'1': {'load': 0.94, - 'memory': [32371.4375, 81920.0], - 'power': 419.772, - 'temperature': 54}}, - 'task': 'main'} -davit_large.D0 [data] {'gpudata': {'0': {'load': 0.88, - 'memory': [32375.4375, 81920.0], - 'power': 422.548, - 'temperature': 55}}, - 'task': 'main'} -davit_large.D1 [data] {'loss': 7.032207489013672, 'task': 'train'} -davit_large.D0 [data] {'loss': 7.032177448272705, 'task': 'train'} -davit_large.D1 [data] {'rate': 315.29579488545045, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'rate': 322.88559574244806, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'loss': 6.9783735275268555, 'task': 'train'} -davit_large.D0 [data] {'loss': 6.978496551513672, 'task': 'train'} -davit_large.D0 [data] {'rate': 328.48915846169183, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'rate': 319.23942510529645, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'loss': 6.981528282165527, 'task': 'train'} -davit_large.D0 [data] {'loss': 6.981618404388428, 'task': 'train'} -davit_large.D1 [data] {'rate': 334.4550166357468, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'rate': 298.9120828526006, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'gpudata': {'1': {'load': 0.99, - 'memory': [32371.4375, 81920.0], - 'power': 388.144, - 'temperature': 54}}, - 'task': 'main'} -davit_large.D0 [data] {'gpudata': {'0': {'load': 0.98, - 'memory': [32375.4375, 81920.0], - 'power': 405.646, - 'temperature': 55}}, - 'task': 'main'} -davit_large.D1 [data] {'loss': 7.016845703125, 'task': 'train'} -davit_large.D0 [data] {'loss': 7.016538619995117, 'task': 'train'} -davit_large.D1 [data] {'rate': 297.4780360578148, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'rate': 297.57593019891596, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [stderr] Train: 1 [ 31/32 (100%)] Loss: 6.997 (7.05) Time: 0.379s, 338.10/s (0.455s, 281.38/s) LR: 1.008e-03 Data: 0.000 (0.056) -davit_large.D0 [stderr] Train: 1 [ 31/32 (100%)] Loss: 6.997 (7.05) Time: 0.378s, 338.78/s (0.452s, 283.25/s) LR: 1.008e-03 Data: 0.000 (0.055) -davit_large.D1 [stderr] Test: [ 0/32] Time: 1.287 (1.287) Loss: 6.8691 (6.8691) Acc@1: 0.0000 ( 0.0000) Acc@5: 0.7812 ( 0.7812) -davit_large.D0 [stderr] Test: [ 0/32] Time: 1.335 (1.335) Loss: 6.8691 (6.8691) Acc@1: 0.0000 ( 0.0000) Acc@5: 0.7812 ( 0.7812) -davit_large.D1 [stderr] Test: [ 32/32] Time: 0.038 (0.264) Loss: 6.7069 (6.8682) Acc@1: 0.0000 ( 0.2907) Acc@5: 3.1250 ( 1.2839) -davit_large.D0 [stderr] Test: [ 32/32] Time: 0.039 (0.266) Loss: 6.7074 (6.8681) Acc@1: 0.0000 ( 0.2665) Acc@5: 3.1250 ( 1.2597) -davit_large.D1 [stderr] Current checkpoints: -davit_large.D1 [stderr] ('/Tmp/slurm.4112514.0/base/extra/timm/jenadogo.2024-02-05_09:17:41.183394/davit_large.D1/20240205-093949-davit_large-224/checkpoint-1.pth.tar', 0.29069767441860467) -davit_large.D1 [stderr] -davit_large.D0 [stderr] Current checkpoints: -davit_large.D0 [stderr] ('/Tmp/slurm.4112514.0/base/extra/timm/jenadogo.2024-02-05_09:17:41.183394/davit_large.D0/20240205-093949-davit_large-224/checkpoint-1.pth.tar', 0.26647286821705424) -davit_large.D0 [stderr] -davit_large.D1 [data] {'rate': 336.4123305432285, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'gpudata': {'1': {'load': 0.91, - 'memory': [32615.4375, 81920.0], - 'power': 413.067, - 'temperature': 51}}, - 'task': 'main'} -davit_large.D1 [data] {'gpudata': {'1': {'load': 0.87, - 'memory': [32615.4375, 81920.0], - 'power': 392.284, - 'temperature': 49}}, - 'task': 'main'} -davit_large.D1 [data] {'gpudata': {'1': {'load': 0.74, - 'memory': [32615.4375, 81920.0], - 'power': 165.734, - 'temperature': 49}}, - 'task': 'main'} -davit_large.D1 [data] {'gpudata': {'1': {'load': 0, - 'memory': [32615.4375, 81920.0], - 'power': 89.891, - 'temperature': 39}}, - 'task': 'main'} -davit_large.D1 [data] {'loss': 6.885984420776367, 'task': 'train'} -davit_large.D0 [data] {'rate': 338.1973068162126, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'gpudata': {'0': {'load': 0.74, - 'memory': [32619.4375, 81920.0], - 'power': 203.332, - 'temperature': 48}}, - 'task': 'main'} -davit_large.D0 [data] {'gpudata': {'0': {'load': 0.95, - 'memory': [32619.4375, 81920.0], - 'power': 192.618, - 'temperature': 52}}, - 'task': 'main'} -davit_large.D0 [data] {'gpudata': {'0': {'load': 0.22, - 'memory': [32619.4375, 81920.0], - 'power': 395.417, - 'temperature': 47}}, - 'task': 'main'} -davit_large.D0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [32619.4375, 81920.0], - 'power': 81.702, - 'temperature': 39}}, - 'task': 'main'} -davit_large.D0 [data] {'loss': 6.885586738586426, 'task': 'train'} -davit_large.D1 [stderr] Train: 2 [ 0/32 ( 0%)] Loss: 6.886 (6.89) Time: 1.479s, 86.55/s (1.479s, 86.55/s) LR: 2.006e-03 Data: 1.037 (1.037) -davit_large.D0 [stderr] Train: 2 [ 0/32 ( 0%)] Loss: 6.886 (6.89) Time: 1.513s, 84.61/s (1.513s, 84.61/s) LR: 2.006e-03 Data: 1.098 (1.098) -davit_large.D1 [data] {'rate': 224.71920291003224, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'rate': 271.7689463221978, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'loss': 6.914768218994141, 'task': 'train'} -davit_large.D0 [data] {'loss': 6.914725303649902, 'task': 'train'} -davit_large.D0 [data] {'rate': 274.4915030163426, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'rate': 319.6579776846699, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'gpudata': {'1': {'load': 0.85, - 'memory': [32859.4375, 81920.0], - 'power': 410.894, - 'temperature': 51}}, - 'task': 'main'} -davit_large.D1 [data] {'loss': 6.931402683258057, 'task': 'train'} -davit_large.D0 [data] {'gpudata': {'0': {'load': 0.93, - 'memory': [32863.4375, 81920.0], - 'power': 364.093, - 'temperature': 50}}, - 'task': 'main'} -davit_large.D0 [data] {'loss': 6.931621074676514, 'task': 'train'} -davit_large.D1 [data] {'rate': 261.58824346328043, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'rate': 305.4261508876928, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'loss': 6.940763473510742, 'task': 'train'} -davit_large.D1 [data] {'rate': 293.5569523803991, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'rate': 286.0233288135093, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'loss': 6.940611839294434, 'task': 'train'} -davit_large.D1 [data] {'rate': 263.3048609650464, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'gpudata': {'1': {'load': 1.0, - 'memory': [32859.4375, 81920.0], - 'power': 200.91, - 'temperature': 49}}, - 'task': 'main'} -davit_large.D0 [data] {'rate': 318.00799526757726, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'loss': 6.992800235748291, 'task': 'train'} -davit_large.D0 [data] {'loss': 6.990785121917725, 'task': 'train'} -davit_large.D0 [data] {'gpudata': {'0': {'load': 1.0, - 'memory': [32863.4375, 81920.0], - 'power': 278.364, - 'temperature': 51}}, - 'task': 'main'} -davit_large.D0 [data] {'rate': 288.2986884686784, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'rate': 307.5418999889887, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'loss': 6.91496467590332, 'task': 'train'} -davit_large.D0 [data] {'loss': 6.910470485687256, 'task': 'train'} -davit_large.D1 [data] {'rate': 305.5882860637634, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'rate': 309.7705591180716, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'loss': 7.016427040100098, 'task': 'train'} -davit_large.D0 [data] {'loss': 7.012662887573242, 'task': 'train'} -davit_large.D0 [data] {'rate': 312.18177960652673, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'gpudata': {'1': {'load': 0.73, - 'memory': [32859.4375, 81920.0], - 'power': 411.043, - 'temperature': 53}}, - 'task': 'main'} -davit_large.D1 [data] {'rate': 322.38750704149095, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'gpudata': {'0': {'load': 0.97, - 'memory': [32863.4375, 81920.0], - 'power': 237.555, - 'temperature': 54}}, - 'task': 'main'} -davit_large.D1 [data] {'loss': 6.8935089111328125, 'task': 'train'} -davit_large.D0 [data] {'loss': 6.896431922912598, 'task': 'train'} -davit_large.D1 [data] {'rate': 324.6031932854355, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'rate': 306.7059088037887, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'loss': 6.973326683044434, 'task': 'train'} -davit_large.D0 [data] {'loss': 6.972984790802002, 'task': 'train'} -davit_large.D0 [data] {'rate': 310.2550176182594, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'rate': 295.2129804879984, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'gpudata': {'1': {'load': 0.99, - 'memory': [32859.4375, 81920.0], - 'power': 411.236, - 'temperature': 56}}, - 'task': 'main'} -davit_large.D1 [data] {'loss': 7.10201358795166, 'task': 'train'} -davit_large.D0 [data] {'gpudata': {'0': {'load': 0.97, - 'memory': [32863.4375, 81920.0], - 'power': 437.908, - 'temperature': 56}}, - 'task': 'main'} -davit_large.D0 [data] {'rate': 317.9082384991119, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'loss': 7.091109275817871, 'task': 'train'} -davit_large.D1 [data] {'rate': 325.26164845332585, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'rate': 336.73818342898613, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'loss': 7.032718658447266, 'task': 'train'} -davit_large.D0 [data] {'rate': 298.2528469391523, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'loss': 7.031865119934082, 'task': 'train'} -davit_large.D1 [stderr] Train: 2 [ 31/32 (100%)] Loss: 6.950 (6.96) Time: 0.379s, 338.07/s (0.449s, 285.27/s) LR: 2.006e-03 Data: 0.000 (0.051) -davit_large.D0 [stderr] Train: 2 [ 31/32 (100%)] Loss: 6.946 (6.95) Time: 0.378s, 338.50/s (0.450s, 284.74/s) LR: 2.006e-03 Data: 0.000 (0.057) -davit_large.D1 [stderr] Test: [ 0/32] Time: 1.142 (1.142) Loss: 6.7523 (6.7523) Acc@1: 0.7812 ( 0.7812) Acc@5: 3.1250 ( 3.1250) -davit_large.D0 [stderr] Test: [ 0/32] Time: 1.256 (1.256) Loss: 6.7532 (6.7532) Acc@1: 0.7812 ( 0.7812) Acc@5: 2.3438 ( 2.3438) -davit_large.D1 [stderr] Test: [ 32/32] Time: 0.039 (0.269) Loss: 6.5073 (6.8241) Acc@1: 3.1250 ( 0.2180) Acc@5: 6.2500 ( 1.0417) -davit_large.D0 [stderr] Test: [ 32/32] Time: 0.039 (0.263) Loss: 6.4883 (6.8224) Acc@1: 3.1250 ( 0.2422) Acc@5: 6.2500 ( 1.0659) -davit_large.D1 [data] {'rate': 337.5969881200306, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'gpudata': {'1': {'load': 0.03, - 'memory': [33029.4375, 81920.0], - 'power': 159.187, - 'temperature': 44}}, - 'task': 'main'} -davit_large.D1 [data] {'gpudata': {'1': {'load': 0, - 'memory': [33103.4375, 81920.0], - 'power': 91.932, - 'temperature': 43}}, - 'task': 'main'} -davit_large.D1 [data] {'gpudata': {'1': {'load': 0.67, - 'memory': [33103.4375, 81920.0], - 'power': 92.675, - 'temperature': 44}}, - 'task': 'main'} -davit_large.D1 [data] {'gpudata': {'1': {'load': 0.19, - 'memory': [33103.4375, 81920.0], - 'power': 90.965, - 'temperature': 40}}, - 'task': 'main'} -davit_large.D0 [data] {'rate': 338.1462913124364, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [32863.4375, 81920.0], - 'power': 95.596, - 'temperature': 43}}, - 'task': 'main'} -davit_large.D0 [data] {'gpudata': {'0': {'load': 0.68, - 'memory': [33107.4375, 81920.0], - 'power': 99.905, - 'temperature': 46}}, - 'task': 'main'} -davit_large.D0 [data] {'gpudata': {'0': {'load': 0.7, - 'memory': [33107.4375, 81920.0], - 'power': 100.434, - 'temperature': 46}}, - 'task': 'main'} -davit_large.D0 [data] {'gpudata': {'0': {'load': 0.18, - 'memory': [33107.4375, 81920.0], - 'power': 94.44, - 'temperature': 41}}, - 'task': 'main'} -davit_large.D1 [data] {'loss': 6.881956100463867, 'task': 'train'} -davit_large.D0 [data] {'loss': 6.858100414276123, 'task': 'train'} -davit_large.D1 [stderr] Train: 3 [ 0/32 ( 0%)] Loss: 6.882 (6.88) Time: 1.705s, 75.07/s (1.705s, 75.07/s) LR: 3.004e-03 Data: 1.294 (1.294) -davit_large.D0 [stderr] Train: 3 [ 0/32 ( 0%)] Loss: 6.858 (6.86) Time: 1.582s, 80.89/s (1.582s, 80.89/s) LR: 3.004e-03 Data: 1.141 (1.141) -davit_large.D1 [data] {'loss': 6.857661724090576, 'task': 'train'} -davit_large.D1 [data] {'rate': 299.17023009769053, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'loss': 6.857681751251221, 'task': 'train'} -davit_large.D0 [data] {'rate': 280.65322763753477, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'gpudata': {'1': {'load': 0.89, - 'memory': [33347.4375, 81920.0], - 'power': 416.782, - 'temperature': 51}}, - 'task': 'main'} -davit_large.D0 [data] {'gpudata': {'0': {'load': 0.95, - 'memory': [33351.4375, 81920.0], - 'power': 159.884, - 'temperature': 50}}, - 'task': 'main'} -davit_large.D1 [data] {'rate': 289.96669059745153, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'rate': 295.90188066554794, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'loss': 6.904120445251465, 'task': 'train'} -davit_large.D0 [data] {'loss': 6.915355205535889, 'task': 'train'} -davit_large.D1 [data] {'rate': 319.1619042446598, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'rate': 306.85568925982454, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'loss': 6.893326759338379, 'task': 'train'} -davit_large.D0 [data] {'loss': 6.899193286895752, 'task': 'train'} -davit_large.D1 [data] {'rate': 301.36676349007865, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'rate': 294.70874972077354, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'gpudata': {'1': {'load': 0.99, - 'memory': [33347.4375, 81920.0], - 'power': 359.776, - 'temperature': 51}}, - 'task': 'main'} -davit_large.D0 [data] {'gpudata': {'0': {'load': 0.95, - 'memory': [33351.4375, 81920.0], - 'power': 326.143, - 'temperature': 50}}, - 'task': 'main'} -davit_large.D1 [data] {'loss': 6.914932727813721, 'task': 'train'} -davit_large.D0 [data] {'loss': 6.908669471740723, 'task': 'train'} -davit_large.D1 [data] {'rate': 304.44539511395107, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'rate': 324.74525918413434, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'loss': 6.965327262878418, 'task': 'train'} -davit_large.D0 [data] {'loss': 6.973827362060547, 'task': 'train'} -davit_large.D0 [data] {'rate': 317.26203065830646, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'rate': 300.89809170970915, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'loss': 6.89867639541626, 'task': 'train'} -davit_large.D0 [data] {'loss': 6.901933670043945, 'task': 'train'} -davit_large.D1 [data] {'gpudata': {'1': {'load': 0.99, - 'memory': [33347.4375, 81920.0], - 'power': 415.571, - 'temperature': 54}}, - 'task': 'main'} -davit_large.D1 [data] {'rate': 289.44016496859285, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'gpudata': {'0': {'load': 0.89, - 'memory': [33351.4375, 81920.0], - 'power': 408.017, - 'temperature': 56}}, - 'task': 'main'} -davit_large.D0 [data] {'rate': 311.95252839002785, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'rate': 323.415699661796, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'loss': 7.001712799072266, 'task': 'train'} -davit_large.D0 [data] {'loss': 6.998551368713379, 'task': 'train'} -davit_large.D1 [data] {'rate': 298.09570501720907, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'rate': 283.40182644395765, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'loss': 7.035810947418213, 'task': 'train'} -davit_large.D1 [data] {'rate': 335.314651138995, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'loss': 7.04182767868042, 'task': 'train'} -davit_large.D1 [data] {'gpudata': {'1': {'load': 0.97, - 'memory': [33347.4375, 81920.0], - 'power': 388.228, - 'temperature': 55}}, - 'task': 'main'} -davit_large.D0 [data] {'gpudata': {'0': {'load': 0.97, - 'memory': [33351.4375, 81920.0], - 'power': 383.403, - 'temperature': 57}}, - 'task': 'main'} -davit_large.D1 [data] {'rate': 333.5018442593364, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'rate': 326.3957369779189, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'loss': 6.9796528816223145, 'task': 'train'} -davit_large.D0 [data] {'loss': 6.9736433029174805, 'task': 'train'} -davit_large.D0 [data] {'rate': 334.9088027762014, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'rate': 296.978432152498, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'loss': 7.0153937339782715, 'task': 'train'} -davit_large.D0 [data] {'loss': 7.011266708374023, 'task': 'train'} -davit_large.D1 [stderr] Train: 3 [ 31/32 (100%)] Loss: 6.994 (6.96) Time: 0.379s, 338.10/s (0.449s, 284.89/s) LR: 3.004e-03 Data: 0.000 (0.058) -davit_large.D0 [stderr] Train: 3 [ 31/32 (100%)] Loss: 7.002 (6.96) Time: 0.380s, 337.28/s (0.449s, 285.33/s) LR: 3.004e-03 Data: 0.000 (0.054) -davit_large.D0 [data] {'rate': 298.453005685323, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [stderr] Test: [ 0/32] Time: 1.119 (1.119) Loss: 6.8200 (6.8200) Acc@1: 0.0000 ( 0.0000) Acc@5: 0.0000 ( 0.0000) -davit_large.D0 [stderr] Test: [ 0/32] Time: 1.146 (1.146) Loss: 6.8263 (6.8263) Acc@1: 0.0000 ( 0.0000) Acc@5: 0.0000 ( 0.0000) -davit_large.D1 [stderr] Test: [ 32/32] Time: 0.039 (0.256) Loss: 6.3792 (6.8162) Acc@1: 0.0000 ( 0.1938) Acc@5: 12.5000 ( 1.1143) -davit_large.D0 [stderr] Test: [ 32/32] Time: 0.039 (0.266) Loss: 6.3632 (6.8162) Acc@1: 0.0000 ( 0.1211) Acc@5: 6.2500 ( 1.0659) -davit_large.D1 [data] {'rate': 337.47319049039396, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'gpudata': {'1': {'load': 0, - 'memory': [33347.4375, 81920.0], - 'power': 92.648, - 'temperature': 45}}, - 'task': 'main'} -davit_large.D1 [data] {'gpudata': {'1': {'load': 0.97, - 'memory': [33591.4375, 81920.0], - 'power': 96.468, - 'temperature': 47}}, - 'task': 'main'} -davit_large.D1 [data] {'gpudata': {'1': {'load': 0.98, - 'memory': [33591.4375, 81920.0], - 'power': 96.758, - 'temperature': 48}}, - 'task': 'main'} -davit_large.D1 [data] {'gpudata': {'1': {'load': 0.21, - 'memory': [33591.4375, 81920.0], - 'power': 90.86, - 'temperature': 41}}, - 'task': 'main'} -davit_large.D1 [data] {'loss': 6.858846664428711, 'task': 'train'} -davit_large.D1 [stderr] Train: 4 [ 0/32 ( 0%)] Loss: 6.859 (6.86) Time: 1.421s, 90.06/s (1.421s, 90.06/s) LR: 4.002e-03 Data: 0.996 (0.996) -davit_large.D0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [33351.4375, 81920.0], - 'power': 97.6, - 'temperature': 45}}, - 'task': 'main'} -davit_large.D0 [data] {'rate': 337.2135299931729, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'gpudata': {'0': {'load': 0.98, - 'memory': [33595.4375, 81920.0], - 'power': 427.012, - 'temperature': 51}}, - 'task': 'main'} -davit_large.D0 [data] {'gpudata': {'0': {'load': 0.55, - 'memory': [33595.4375, 81920.0], - 'power': 407.893, - 'temperature': 49}}, - 'task': 'main'} -davit_large.D0 [data] {'gpudata': {'0': {'load': 0.17, - 'memory': [33595.4375, 81920.0], - 'power': 95.689, - 'temperature': 43}}, - 'task': 'main'} -davit_large.D0 [data] {'loss': 6.866186141967773, 'task': 'train'} -davit_large.D1 [data] {'rate': 263.83208987070776, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [stderr] Train: 4 [ 0/32 ( 0%)] Loss: 6.866 (6.87) Time: 1.608s, 79.58/s (1.608s, 79.58/s) LR: 4.002e-03 Data: 1.204 (1.204) -davit_large.D1 [data] {'loss': 6.8308563232421875, 'task': 'train'} -davit_large.D0 [data] {'rate': 291.7185605212812, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'gpudata': {'0': {'load': 0.98, - 'memory': [33839.4375, 81920.0], - 'power': 425.657, - 'temperature': 52}}, - 'task': 'main'} -davit_large.D1 [data] {'rate': 293.0593273598984, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'gpudata': {'1': {'load': 0.82, - 'memory': [33835.4375, 81920.0], - 'power': 431.574, - 'temperature': 52}}, - 'task': 'main'} -davit_large.D0 [data] {'loss': 6.832171440124512, 'task': 'train'} -davit_large.D1 [data] {'loss': 6.876811981201172, 'task': 'train'} -davit_large.D0 [data] {'rate': 267.9523758529123, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'rate': 274.88485213134186, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'loss': 6.88115119934082, 'task': 'train'} -davit_large.D1 [data] {'loss': 6.919188022613525, 'task': 'train'} -davit_large.D1 [data] {'rate': 311.84089604622943, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'rate': 304.5413399713321, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'loss': 6.921402931213379, 'task': 'train'} -davit_large.D0 [data] {'gpudata': {'0': {'load': 0.83, - 'memory': [33839.4375, 81920.0], - 'power': 342.53, - 'temperature': 55}}, - 'task': 'main'} -davit_large.D0 [data] {'rate': 274.5614038427539, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'gpudata': {'1': {'load': 0.79, - 'memory': [33835.4375, 81920.0], - 'power': 317.026, - 'temperature': 53}}, - 'task': 'main'} -davit_large.D1 [data] {'rate': 274.30134015545053, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'loss': 6.9168548583984375, 'task': 'train'} -davit_large.D0 [data] {'loss': 6.914167404174805, 'task': 'train'} -davit_large.D0 [data] {'rate': 296.9344058141142, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'rate': 309.2449677005309, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'loss': 6.999188423156738, 'task': 'train'} -davit_large.D0 [data] {'loss': 6.992395877838135, 'task': 'train'} -davit_large.D0 [data] {'rate': 299.42240599151097, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'rate': 303.7313789054362, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'loss': 7.041447162628174, 'task': 'train'} -davit_large.D1 [data] {'gpudata': {'1': {'load': 0.89, - 'memory': [33835.4375, 81920.0], - 'power': 408.291, - 'temperature': 54}}, - 'task': 'main'} -davit_large.D0 [data] {'gpudata': {'0': {'load': 0.98, - 'memory': [33839.4375, 81920.0], - 'power': 423.996, - 'temperature': 56}}, - 'task': 'main'} -davit_large.D0 [data] {'rate': 319.6778897610952, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'loss': 7.0399322509765625, 'task': 'train'} -davit_large.D1 [data] {'rate': 313.78400963207736, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'loss': 7.070823669433594, 'task': 'train'} -davit_large.D1 [data] {'rate': 288.7313794299665, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'rate': 320.73919800747194, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'loss': 7.071550369262695, 'task': 'train'} -davit_large.D1 [data] {'loss': 7.013205528259277, 'task': 'train'} -davit_large.D0 [data] {'rate': 306.7086010487081, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'rate': 298.1076047735179, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'loss': 7.012872695922852, 'task': 'train'} -davit_large.D1 [data] {'gpudata': {'1': {'load': 0.99, - 'memory': [33835.4375, 81920.0], - 'power': 427.363, - 'temperature': 56}}, - 'task': 'main'} -davit_large.D0 [data] {'gpudata': {'0': {'load': 0.99, - 'memory': [33839.4375, 81920.0], - 'power': 426.364, - 'temperature': 58}}, - 'task': 'main'} -davit_large.D1 [data] {'loss': 7.038879871368408, 'task': 'train'} -davit_large.D0 [data] {'rate': 304.1831865928029, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'rate': 309.2083886309725, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'loss': 7.043169975280762, 'task': 'train'} -davit_large.D1 [data] {'loss': 7.011752128601074, 'task': 'train'} -davit_large.D1 [data] {'rate': 330.0397849552897, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'rate': 310.11447168273537, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'loss': 7.011505126953125, 'task': 'train'} -davit_large.D1 [stderr] Train: 4 [ 31/32 (100%)] Loss: 7.093 (6.97) Time: 0.379s, 337.86/s (0.446s, 286.76/s) LR: 4.002e-03 Data: 0.000 (0.050) -davit_large.D0 [stderr] Train: 4 [ 31/32 (100%)] Loss: 7.085 (6.97) Time: 0.400s, 319.80/s (0.450s, 284.20/s) LR: 4.002e-03 Data: 0.000 (0.054) -davit_large.D0 [data] {'rate': 313.4033773286519, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [stderr] Test: [ 0/32] Time: 0.937 (0.937) Loss: 6.8398 (6.8398) Acc@1: 0.0000 ( 0.0000) Acc@5: 1.5625 ( 1.5625) -davit_large.D0 [stderr] Test: [ 0/32] Time: 1.244 (1.244) Loss: 6.8488 (6.8488) Acc@1: 0.7812 ( 0.7812) Acc@5: 1.5625 ( 1.5625) -davit_large.D1 [stderr] Test: [ 32/32] Time: 0.039 (0.253) Loss: 6.7426 (6.8291) Acc@1: 0.0000 ( 0.3391) Acc@5: 6.2500 ( 1.0174) -davit_large.D0 [stderr] Test: [ 32/32] Time: 0.039 (0.254) Loss: 6.7296 (6.8274) Acc@1: 3.1250 ( 0.3149) Acc@5: 6.2500 ( 1.1628) -davit_large.D1 [stderr] Current checkpoints: -davit_large.D1 [stderr] ('/Tmp/slurm.4112514.0/base/extra/timm/jenadogo.2024-02-05_09:17:41.183394/davit_large.D1/20240205-093949-davit_large-224/checkpoint-4.pth.tar', 0.3391472868217054) -davit_large.D1 [stderr] -davit_large.D0 [stderr] Current checkpoints: -davit_large.D0 [stderr] ('/Tmp/slurm.4112514.0/base/extra/timm/jenadogo.2024-02-05_09:17:41.183394/davit_large.D0/20240205-093949-davit_large-224/checkpoint-4.pth.tar', 0.31492248062015504) -davit_large.D0 [stderr] -davit_large.D1 [data] {'rate': 337.3973485371045, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [data] {'gpudata': {'1': {'load': 0, - 'memory': [33835.4375, 81920.0], - 'power': 92.783, - 'temperature': 45}}, - 'task': 'main'} -davit_large.D1 [data] {'gpudata': {'1': {'load': 0, - 'memory': [34079.4375, 81920.0], - 'power': 92.89, - 'temperature': 45}}, - 'task': 'main'} -davit_large.D1 [data] {'gpudata': {'1': {'load': 0.09, - 'memory': [34079.4375, 81920.0], - 'power': 350.324, - 'temperature': 49}}, - 'task': 'main'} -davit_large.D1 [data] {'gpudata': {'1': {'load': 0.18, - 'memory': [34079.4375, 81920.0], - 'power': 90.007, - 'temperature': 41}}, - 'task': 'main'} -davit_large.D1 [data] {'loss': 6.8232526779174805, 'task': 'train'} -davit_large.D1 [stderr] Train: 5 [ 0/32 ( 0%)] Loss: 6.823 (6.82) Time: 1.406s, 91.07/s (1.406s, 91.07/s) LR: 4.997e-03 Data: 0.985 (0.985) -davit_large.D1 [data] {'rate': 275.40297576616047, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'gpudata': {'0': {'load': 0.4, - 'memory': [33839.4375, 81920.0], - 'power': 101.075, - 'temperature': 50}}, - 'task': 'main'} -davit_large.D0 [data] {'rate': 319.7488884079777, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'gpudata': {'0': {'load': 0.01, - 'memory': [34083.4375, 81920.0], - 'power': 335.114, - 'temperature': 49}}, - 'task': 'main'} -davit_large.D0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [34083.4375, 81920.0], - 'power': 98.533, - 'temperature': 47}}, - 'task': 'main'} -davit_large.D0 [data] {'gpudata': {'0': {'load': 0.16, - 'memory': [34083.4375, 81920.0], - 'power': 96.774, - 'temperature': 45}}, - 'task': 'main'} -davit_large.D0 [data] {'loss': 6.82390832901001, 'task': 'train'} -davit_large.D0 [stderr] Train: 5 [ 0/32 ( 0%)] Loss: 6.824 (6.82) Time: 1.547s, 82.75/s (1.547s, 82.75/s) LR: 4.997e-03 Data: 1.124 (1.124) -davit_large.D1 [data] {'loss': 6.877004623413086, 'task': 'train'} -davit_large.D1 [data] {'rate': 295.8152373802478, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'rate': 252.59276507778412, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'gpudata': {'0': {'load': 0.99, - 'memory': [34327.4375, 81920.0], - 'power': 420.779, - 'temperature': 54}}, - 'task': 'main'} -davit_large.D1 [data] {'gpudata': {'1': {'load': 0.92, - 'memory': [34323.4375, 81920.0], - 'power': 364.835, - 'temperature': 51}}, - 'task': 'main'} -davit_large.D0 [data] {'loss': 6.877440929412842, 'task': 'train'} -davit_large.D1 [data] {'loss': 6.948058128356934, 'task': 'train'} -davit_large.D1 [data] {'rate': 296.18572235013085, 'task': 'train', 'units': 'items/s'} -davit_large.D0 [data] {'rate': 317.6747731444736, 'task': 'train', 'units': 'items/s'} -davit_large.D1 [stderr] Traceback (most recent call last): -davit_large.D1 [stderr] File "/Tmp/slurm.4112514.0/env/lib/python3.9/multiprocessing/resource_sharer.py", line 138, in _serve -davit_large.D1 [stderr] with self._listener.accept() as conn: -davit_large.D1 [stderr] File "/Tmp/slurm.4112514.0/env/lib/python3.9/multiprocessing/connection.py", line 465, in accept -davit_large.D1 [stderr] deliver_challenge(c, self._authkey) -davit_large.D1 [stderr] File "/Tmp/slurm.4112514.0/env/lib/python3.9/multiprocessing/connection.py", line 740, in deliver_challenge -davit_large.D1 [stderr] response = connection.recv_bytes(256) # reject large message -davit_large.D1 [stderr] File "/Tmp/slurm.4112514.0/env/lib/python3.9/multiprocessing/connection.py", line 216, in recv_bytes -davit_large.D1 [stderr] buf = self._recv_bytes(maxlength) -davit_large.D1 [stderr] File "/Tmp/slurm.4112514.0/env/lib/python3.9/multiprocessing/connection.py", line 414, in _recv_bytes -davit_large.D1 [stderr] buf = self._recv(4) -davit_large.D1 [stderr] File "/Tmp/slurm.4112514.0/env/lib/python3.9/multiprocessing/connection.py", line 379, in _recv -davit_large.D1 [stderr] chunk = read(handle, remaining) -davit_large.D1 [stderr] ConnectionResetError: [Errno 104] Connection reset by peer -davit_large.D1 [end] voir --config /Tmp/slurm.4112514.0/base/extra/timm/voirconf-davit_large.D1-0efae956f1553a76c1e03985181900f5.json /Tmp/slurm.4112514.0/milabench/benchmarks/timm/pytorch-image-models/train.py --amp --model davit_large --batch-size 128 --lr-base 0.01 --data-dir /Tmp/slurm.4112514.0/base/data --dataset FakeImageNet --output /Tmp/slurm.4112514.0/base/extra/timm/jenadogo.2024-02-05_09:17:41.183394/davit_large.D1 --checkpoint-hist 1 [at 2024-02-05 09:42:01.427072] -davit_large.D0 [end] voir --config /Tmp/slurm.4112514.0/base/extra/timm/voirconf-davit_large.D0-0efae956f1553a76c1e03985181900f5.json /Tmp/slurm.4112514.0/milabench/benchmarks/timm/pytorch-image-models/train.py --amp --model davit_large --batch-size 128 --lr-base 0.01 --data-dir /Tmp/slurm.4112514.0/base/data --dataset FakeImageNet --output /Tmp/slurm.4112514.0/base/extra/timm/jenadogo.2024-02-05_09:17:41.183394/davit_large.D0 --checkpoint-hist 1 [at 2024-02-05 09:42:01.692152] -davit_large-multi.0 [config.dirs.base] /Tmp/slurm.4112514.0/base -davit_large-multi.0 [config.dirs.venv] /Tmp/slurm.4112514.0/base/venv/torch -davit_large-multi.0 [config.dirs.data] /Tmp/slurm.4112514.0/base/data -davit_large-multi.0 [config.dirs.runs] /Tmp/slurm.4112514.0/base/runs -davit_large-multi.0 [config.dirs.extra] /Tmp/slurm.4112514.0/base/extra/timm -davit_large-multi.0 [config.dirs.cache] /Tmp/slurm.4112514.0/base/cache -davit_large-multi.0 [config.arch] cuda -davit_large-multi.0 [config.group] timm -davit_large-multi.0 [config.install_group] torch -davit_large-multi.0 [config.install_variant] cuda -davit_large-multi.0 [config.run_name] jenadogo.2024-02-05_09:17:41.183394 -davit_large-multi.0 [config.enabled] True -davit_large-multi.0 [config.capabilities.nodes] 1 -davit_large-multi.0 [config.max_duration] 600 -davit_large-multi.0 [config.voir.options.stop] 60 -davit_large-multi.0 [config.voir.options.interval] 1s -davit_large-multi.0 [config.config_base] /Tmp/slurm.4112514.0/milabench/config -davit_large-multi.0 [config.config_file] /Tmp/slurm.4112514.0/milabench/config/standard.yaml -davit_large-multi.0 [config.definition] /Tmp/slurm.4112514.0/milabench/benchmarks/timm -davit_large-multi.0 [config.plan.method] njobs -davit_large-multi.0 [config.plan.n] 1 -davit_large-multi.0 [config.argv.--amp] True -davit_large-multi.0 [config.argv.--model] davit_large -davit_large-multi.0 [config.argv.--batch-size] 128 -davit_large-multi.0 [config.argv.--lr-base] 0.01 -davit_large-multi.0 [config.tags] ['classification', 'multigpu', 'transformer', 'vision'] -davit_large-multi.0 [config.weight] 5.0 -davit_large-multi.0 [config.name] davit_large-multi -davit_large-multi.0 [config.tag] ['davit_large-multi', '0'] -davit_large-multi.0 [config.job-number] 0 -davit_large-multi.0 [config.devices] ['0', '1'] -davit_large-multi.0 [start] torchrun --nproc_per_node=2 -m voir --config /Tmp/slurm.4112514.0/base/extra/timm/voirconf-davit_large-multi.0-0efae956f1553a76c1e03985181900f5.json /Tmp/slurm.4112514.0/milabench/benchmarks/timm/pytorch-image-models/train.py --amp --model davit_large --batch-size 128 --lr-base 0.01 --data-dir /Tmp/slurm.4112514.0/base/data --dataset FakeImageNet --output /Tmp/slurm.4112514.0/base/extra/timm/jenadogo.2024-02-05_09:17:41.183394/davit_large-multi.0 --checkpoint-hist 1 [at 2024-02-05 09:42:01.698946] -davit_large-multi.0 [stderr] Training in distributed mode with multiple processes, 1 device per process.Process 1, total 2, device cuda:1. -davit_large-multi.0 [stderr] Training in distributed mode with multiple processes, 1 device per process.Process 0, total 2, device cuda:0. -davit_large-multi.0 [stderr] Model davit_large created, param count:196811752 -davit_large-multi.0 [stderr] Data processing configuration for current model + dataset: -davit_large-multi.0 [stderr] input_size: (3, 224, 224) -davit_large-multi.0 [stderr] interpolation: bicubic -davit_large-multi.0 [stderr] mean: (0.485, 0.456, 0.406) -davit_large-multi.0 [stderr] std: (0.229, 0.224, 0.225) -davit_large-multi.0 [stderr] crop_pct: 0.95 -davit_large-multi.0 [stderr] crop_mode: center -davit_large-multi.0 [stderr] Learning rate (0.01) calculated from base learning rate (0.01) and global batch size (256) with linear scaling. -davit_large-multi.0 [stderr] Using native Torch AMP. Training in mixed precision. -davit_large-multi.0 [stderr] Using native Torch DistributedDataParallel. -davit_large-multi.0 [stderr] libibverbs: Warning: couldn't load driver 'libbnxt_re-rdmav34.so': libbnxt_re-rdmav34.so: cannot open shared object file: No such file or directory -davit_large-multi.0 [stderr] libibverbs: Warning: couldn't load driver 'libbnxt_re-rdmav34.so': libbnxt_re-rdmav34.so: cannot open shared object file: No such file or directory -davit_large-multi.0 [stderr] libibverbs: Warning: couldn't load driver 'libcxgb4-rdmav34.so': libcxgb4-rdmav34.so: cannot open shared object file: No such file or directory -davit_large-multi.0 [stderr] libibverbs: Warning: couldn't load driver 'libcxgb4-rdmav34.so': libcxgb4-rdmav34.so: cannot open shared object file: No such file or directory -davit_large-multi.0 [stderr] libibverbs: Warning: couldn't load driver 'libipathverbs-rdmav34.so': libipathverbs-rdmav34.so: cannot open shared object file: No such file or directory -davit_large-multi.0 [stderr] libibverbs: Warning: couldn't load driver 'libipathverbs-rdmav34.so': libipathverbs-rdmav34.so: cannot open shared object file: No such file or directory -davit_large-multi.0 [stderr] libibverbs: Warning: couldn't load driver 'libhfi1verbs-rdmav34.so': libhfi1verbs-rdmav34.so: cannot open shared object file: No such file or directory -davit_large-multi.0 [stderr] libibverbs: Warning: couldn't load driver 'libhfi1verbs-rdmav34.so': libhfi1verbs-rdmav34.so: cannot open shared object file: No such file or directory -davit_large-multi.0 [stderr] libibverbs: Warning: couldn't load driver 'libqedr-rdmav34.so': libqedr-rdmav34.so: cannot open shared object file: No such file or directory -davit_large-multi.0 [stderr] libibverbs: Warning: couldn't load driver 'libqedr-rdmav34.so': libqedr-rdmav34.so: cannot open shared object file: No such file or directory -davit_large-multi.0 [stderr] libibverbs: Warning: couldn't load driver 'libmthca-rdmav34.so': libmthca-rdmav34.so: cannot open shared object file: No such file or directory -davit_large-multi.0 [stderr] libibverbs: Warning: couldn't load driver 'libmthca-rdmav34.so': libmthca-rdmav34.so: cannot open shared object file: No such file or directory -davit_large-multi.0 [stderr] libibverbs: Warning: couldn't load driver 'libvmw_pvrdma-rdmav34.so': libvmw_pvrdma-rdmav34.so: cannot open shared object file: No such file or directory -davit_large-multi.0 [stderr] libibverbs: Warning: couldn't load driver 'libvmw_pvrdma-rdmav34.so': libvmw_pvrdma-rdmav34.so: cannot open shared object file: No such file or directory -davit_large-multi.0 [stderr] libibverbs: Warning: couldn't load driver 'librxe-rdmav34.so': librxe-rdmav34.so: cannot open shared object file: No such file or directory -davit_large-multi.0 [stderr] libibverbs: Warning: couldn't load driver 'librxe-rdmav34.so': librxe-rdmav34.so: cannot open shared object file: No such file or directory -davit_large-multi.0 [stderr] libibverbs: Warning: couldn't load driver 'libocrdma-rdmav34.so': libocrdma-rdmav34.so: cannot open shared object file: No such file or directory -davit_large-multi.0 [stderr] libibverbs: Warning: couldn't load driver 'libocrdma-rdmav34.so': libocrdma-rdmav34.so: cannot open shared object file: No such file or directory -davit_large-multi.0 [stderr] libibverbs: Warning: couldn't load driver 'libi40iw-rdmav34.so': libi40iw-rdmav34.so: cannot open shared object file: No such file or directory -davit_large-multi.0 [stderr] libibverbs: Warning: couldn't load driver 'libi40iw-rdmav34.so': libi40iw-rdmav34.so: cannot open shared object file: No such file or directory -davit_large-multi.0 [stderr] libibverbs: Warning: couldn't load driver 'libmlx4-rdmav34.so': libmlx4-rdmav34.so: cannot open shared object file: No such file or directory -davit_large-multi.0 [stderr] libibverbs: Warning: couldn't load driver 'libmlx4-rdmav34.so': libmlx4-rdmav34.so: cannot open shared object file: No such file or directory -davit_large-multi.0 [stderr] libibverbs: Warning: couldn't load driver 'libhns-rdmav34.so': libhns-rdmav34.so: cannot open shared object file: No such file or directory -davit_large-multi.0 [stderr] libibverbs: Warning: couldn't load driver 'libhns-rdmav34.so': libhns-rdmav34.so: cannot open shared object file: No such file or directory -davit_large-multi.0 [stderr] Scheduled epochs: 300. LR stepped per epoch. -davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.24, - 'memory': [3839.4375, 81920.0], - 'power': 81.714, - 'temperature': 39}, - '1': {'load': 0.04, - 'memory': [3839.4375, 81920.0], - 'power': 77.09, - 'temperature': 35}}, - 'task': 'main'} -davit_large-multi.0 [data] {'loss': 7.155410289764404, 'task': 'train'} -davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.36, - 'memory': [5739.4375, 81920.0], - 'power': 152.73, - 'temperature': 42}, - '1': {'load': 0.42, - 'memory': [12173.4375, 81920.0], - 'power': 100.006, - 'temperature': 38}}, - 'task': 'main'} -davit_large-multi.0 [stderr] /Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torch/autograd/__init__.py:266: UserWarning: Grad strides do not match bucket view strides. This may indicate grad was not created according to the gradient layout contract, or that the param's strides changed since DDP was constructed. This is not an error, but may impair performance. -davit_large-multi.0 [stderr] grad.sizes() = [1536, 1, 3, 3], strides() = [9, 1, 3, 1] -davit_large-multi.0 [stderr] bucket_view.sizes() = [1536, 1, 3, 3], strides() = [9, 9, 3, 1] (Triggered internally at ../torch/csrc/distributed/c10d/reducer.cpp:322.) -davit_large-multi.0 [stderr] Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass -davit_large-multi.0 [stderr] /Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torch/autograd/__init__.py:266: UserWarning: Grad strides do not match bucket view strides. This may indicate grad was not created according to the gradient layout contract, or that the param's strides changed since DDP was constructed. This is not an error, but may impair performance. -davit_large-multi.0 [stderr] grad.sizes() = [1536, 1, 3, 3], strides() = [9, 1, 3, 1] -davit_large-multi.0 [stderr] bucket_view.sizes() = [1536, 1, 3, 3], strides() = [9, 9, 3, 1] (Triggered internally at ../torch/csrc/distributed/c10d/reducer.cpp:322.) -davit_large-multi.0 [stderr] Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass -davit_large-multi.0 [stderr] Train: 0 [ 0/16 ( 0%)] Loss: 7.172 (7.17) Time: 5.691s, 44.98/s (5.691s, 44.98/s) LR: 1.000e-05 Data: 2.294 (2.294) -davit_large-multi.0 [data] {'loss': 7.168210029602051, 'task': 'train'} -davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.98, - 'memory': [33387.4375, 81920.0], - 'power': 385.433, - 'temperature': 52}, - '1': {'load': 0.97, - 'memory': [33387.4375, 81920.0], - 'power': 329.465, - 'temperature': 47}}, - 'task': 'main'} -davit_large-multi.0 [data] {'loss': 7.251778602600098, 'task': 'train'} -davit_large-multi.0 [data] {'loss': 7.134215354919434, 'task': 'train'} -davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.97, - 'memory': [33387.4375, 81920.0], - 'power': 430.204, - 'temperature': 57}, - '1': {'load': 0.97, - 'memory': [33387.4375, 81920.0], - 'power': 426.098, - 'temperature': 53}}, - 'task': 'main'} -davit_large-multi.0 [data] {'loss': 7.230167388916016, 'task': 'train'} -davit_large-multi.0 [data] {'loss': 7.21876335144043, 'task': 'train'} -davit_large-multi.0 [stderr] Train: 0 [ 15/16 (100%)] Loss: 7.249 (7.21) Time: 0.383s, 668.03/s (0.736s, 347.89/s) LR: 1.000e-05 Data: 0.000 (0.156) -davit_large-multi.0 [stderr] Distributing BatchNorm running means and vars -davit_large-multi.0 [data] {'rate': 664.9768703900544, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [stderr] Test: [ 0/16] Time: 2.390 (2.390) Loss: 7.2354 (7.2354) Acc@1: 0.0000 ( 0.0000) Acc@5: 0.0000 ( 0.0000) -davit_large-multi.0 [stderr] Test: [ 16/16] Time: 0.341 (0.368) Loss: 7.0592 (7.2404) Acc@1: 0.0000 ( 0.0969) Acc@5: 0.0000 ( 0.5329) -davit_large-multi.0 [stderr] Current checkpoints: -davit_large-multi.0 [stderr] ('/Tmp/slurm.4112514.0/base/extra/timm/jenadogo.2024-02-05_09:17:41.183394/davit_large-multi.0/20240205-094208-davit_large-224/checkpoint-0.pth.tar', 0.09689922480620156) -davit_large-multi.0 [stderr] -davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [33387.4375, 81920.0], - 'power': 96.774, - 'temperature': 45}, - '1': {'load': 0, - 'memory': [33387.4375, 81920.0], - 'power': 91.181, - 'temperature': 41}}, - 'task': 'main'} -davit_large-multi.0 [data] {'rate': 665.201826417631, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.91, - 'memory': [33633.4375, 81920.0], - 'power': 423.784, - 'temperature': 54}, - '1': {'load': 0.88, - 'memory': [33633.4375, 81920.0], - 'power': 413.163, - 'temperature': 50}}, - 'task': 'main'} -davit_large-multi.0 [data] {'gpudata': {'0': {'load': 1.0, - 'memory': [5747.4375, 81920.0], - 'power': 96.244, - 'temperature': 44}, - '1': {'load': 1.0, - 'memory': [5747.4375, 81920.0], - 'power': 90.544, - 'temperature': 40}}, - 'task': 'main'} -davit_large-multi.0 [data] {'loss': 7.150577545166016, 'task': 'train'} -davit_large-multi.0 [stderr] Train: 1 [ 0/16 ( 0%)] Loss: 7.231 (7.23) Time: 1.289s, 198.55/s (1.289s, 198.55/s) LR: 2.008e-03 Data: 0.800 (0.800) -davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.92, - 'memory': [33425.4375, 81920.0], - 'power': 419.198, - 'temperature': 52}, - '1': {'load': 0.87, - 'memory': [33425.4375, 81920.0], - 'power': 394.842, - 'temperature': 44}}, - 'task': 'main'} -davit_large-multi.0 [data] {'loss': 7.119694709777832, 'task': 'train'} -davit_large-multi.0 [data] {'rate': 563.1647468254566, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'rate': 603.0105603731911, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'loss': 7.041730880737305, 'task': 'train'} -davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.97, - 'memory': [33425.4375, 81920.0], - 'power': 426.395, - 'temperature': 58}, - '1': {'load': 0.98, - 'memory': [33425.4375, 81920.0], - 'power': 412.63, - 'temperature': 53}}, - 'task': 'main'} -davit_large-multi.0 [data] {'rate': 598.8048860279963, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'loss': 7.061616897583008, 'task': 'train'} -davit_large-multi.0 [data] {'rate': 612.2635328518979, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'loss': 7.003392219543457, 'task': 'train'} -davit_large-multi.0 [data] {'rate': 645.6109971057083, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'loss': 6.952099800109863, 'task': 'train'} -davit_large-multi.0 [stderr] Train: 1 [ 15/16 (100%)] Loss: 6.963 (7.10) Time: 0.386s, 663.16/s (0.463s, 552.68/s) LR: 2.008e-03 Data: 0.000 (0.065) -davit_large-multi.0 [stderr] Distributing BatchNorm running means and vars -davit_large-multi.0 [stderr] Test: [ 0/16] Time: 1.221 (1.221) Loss: 6.8904 (6.8904) Acc@1: 0.0000 ( 0.0000) Acc@5: 0.0000 ( 0.0000) -davit_large-multi.0 [stderr] Test: [ 16/16] Time: 0.022 (0.299) Loss: 6.6527 (6.8794) Acc@1: 0.0000 ( 0.2665) Acc@5: 0.0000 ( 1.0901) -davit_large-multi.0 [stderr] Current checkpoints: -davit_large-multi.0 [stderr] ('/Tmp/slurm.4112514.0/base/extra/timm/jenadogo.2024-02-05_09:17:41.183394/davit_large-multi.0/20240205-094208-davit_large-224/checkpoint-1.pth.tar', 0.26647286821705424) -davit_large-multi.0 [stderr] -davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.99, - 'memory': [33425.4375, 81920.0], - 'power': 109.093, - 'temperature': 53}, - '1': {'load': 1.0, - 'memory': [33425.4375, 81920.0], - 'power': 130.548, - 'temperature': 50}}, - 'task': 'main'} -davit_large-multi.0 [data] {'rate': 665.0536632926653, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [33669.4375, 81920.0], - 'power': 98.647, - 'temperature': 50}, - '1': {'load': 0, - 'memory': [33669.4375, 81920.0], - 'power': 91.075, - 'temperature': 42}}, - 'task': 'main'} -davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.18, - 'memory': [33669.4375, 81920.0], - 'power': 96.662, - 'temperature': 45}, - '1': {'load': 0, - 'memory': [33765.4375, 81920.0], - 'power': 92.541, - 'temperature': 40}}, - 'task': 'main'} -davit_large-multi.0 [data] {'loss': 6.908686637878418, 'task': 'train'} -davit_large-multi.0 [stderr] Train: 2 [ 0/16 ( 0%)] Loss: 6.912 (6.91) Time: 1.374s, 186.30/s (1.374s, 186.30/s) LR: 4.006e-03 Data: 0.962 (0.962) -davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.97, - 'memory': [33913.4375, 81920.0], - 'power': 406.518, - 'temperature': 55}, - '1': {'load': 1.0, - 'memory': [33913.4375, 81920.0], - 'power': 418.71, - 'temperature': 47}}, - 'task': 'main'} -davit_large-multi.0 [data] {'loss': 6.8762969970703125, 'task': 'train'} -davit_large-multi.0 [data] {'rate': 623.3513240155006, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'rate': 560.6838440076098, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'loss': 6.921794414520264, 'task': 'train'} -davit_large-multi.0 [data] {'rate': 605.2457166394175, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'gpudata': {'0': {'load': 1.0, - 'memory': [33913.4375, 81920.0], - 'power': 364.683, - 'temperature': 57}, - '1': {'load': 1.0, - 'memory': [33913.4375, 81920.0], - 'power': 272.324, - 'temperature': 51}}, - 'task': 'main'} -davit_large-multi.0 [data] {'loss': 7.046853542327881, 'task': 'train'} -davit_large-multi.0 [data] {'rate': 622.0923707360357, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'loss': 6.945345878601074, 'task': 'train'} -davit_large-multi.0 [data] {'rate': 622.8740242030598, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'loss': 6.963676452636719, 'task': 'train'} -davit_large-multi.0 [stderr] Train: 2 [ 15/16 (100%)] Loss: 6.991 (6.95) Time: 0.386s, 662.59/s (0.465s, 550.70/s) LR: 4.006e-03 Data: 0.000 (0.072) -davit_large-multi.0 [stderr] Distributing BatchNorm running means and vars -davit_large-multi.0 [stderr] Test: [ 0/16] Time: 1.108 (1.108) Loss: 6.8474 (6.8474) Acc@1: 0.0000 ( 0.0000) Acc@5: 0.0000 ( 0.0000) -davit_large-multi.0 [stderr] Test: [ 16/16] Time: 0.022 (0.286) Loss: 6.3217 (6.8105) Acc@1: 0.0000 ( 0.3149) Acc@5: 0.0000 ( 1.1628) -davit_large-multi.0 [stderr] Current checkpoints: -davit_large-multi.0 [stderr] ('/Tmp/slurm.4112514.0/base/extra/timm/jenadogo.2024-02-05_09:17:41.183394/davit_large-multi.0/20240205-094208-davit_large-224/checkpoint-2.pth.tar', 0.31492248062015504) -davit_large-multi.0 [stderr] -davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.23, - 'memory': [33913.4375, 81920.0], - 'power': 101.377, - 'temperature': 51}, - '1': {'load': 0, - 'memory': [33913.4375, 81920.0], - 'power': 93.792, - 'temperature': 46}}, - 'task': 'main'} -davit_large-multi.0 [data] {'rate': 665.2086099462696, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'gpudata': {'0': {'load': 1.0, - 'memory': [34157.4375, 81920.0], - 'power': 99.369, - 'temperature': 48}, - '1': {'load': 0.7, - 'memory': [34157.4375, 81920.0], - 'power': 408.657, - 'temperature': 45}}, - 'task': 'main'} -davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.13, - 'memory': [34157.4375, 81920.0], - 'power': 96.724, - 'temperature': 45}, - '1': {'load': 1.0, - 'memory': [34327.4375, 81920.0], - 'power': 380.732, - 'temperature': 48}}, - 'task': 'main'} -davit_large-multi.0 [data] {'loss': 6.775097846984863, 'task': 'train'} -davit_large-multi.0 [stderr] Train: 3 [ 0/16 ( 0%)] Loss: 6.783 (6.78) Time: 1.106s, 231.46/s (1.106s, 231.46/s) LR: 6.004e-03 Data: 0.702 (0.702) -davit_large-multi.0 [data] {'rate': 534.3652806378642, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'loss': 6.857703685760498, 'task': 'train'} -davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.66, - 'memory': [34401.4375, 81920.0], - 'power': 417.119, - 'temperature': 54}, - '1': {'load': 1.0, - 'memory': [34401.4375, 81920.0], - 'power': 394.308, - 'temperature': 50}}, - 'task': 'main'} -davit_large-multi.0 [data] {'rate': 595.8755172595188, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'loss': 6.924503326416016, 'task': 'train'} -davit_large-multi.0 [data] {'rate': 606.5269607733695, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'loss': 7.01729154586792, 'task': 'train'} -davit_large-multi.0 [data] {'gpudata': {'0': {'load': 1.0, - 'memory': [34401.4375, 81920.0], - 'power': 433.37, - 'temperature': 60}, - '1': {'load': 0.97, - 'memory': [34401.4375, 81920.0], - 'power': 425.25, - 'temperature': 55}}, - 'task': 'main'} -davit_large-multi.0 [data] {'rate': 642.0740017575171, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'loss': 6.934739589691162, 'task': 'train'} -davit_large-multi.0 [data] {'rate': 615.6782904758486, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'loss': 7.023443222045898, 'task': 'train'} -davit_large-multi.0 [stderr] Train: 3 [ 15/16 (100%)] Loss: 7.020 (6.90) Time: 0.386s, 662.85/s (0.450s, 568.28/s) LR: 6.004e-03 Data: 0.000 (0.061) -davit_large-multi.0 [stderr] Distributing BatchNorm running means and vars -davit_large-multi.0 [stderr] Test: [ 0/16] Time: 1.374 (1.374) Loss: 6.7900 (6.7900) Acc@1: 0.0000 ( 0.0000) Acc@5: 0.0000 ( 0.0000) -davit_large-multi.0 [stderr] Test: [ 16/16] Time: 0.022 (0.289) Loss: 6.3929 (6.8046) Acc@1: 0.0000 ( 0.2665) Acc@5: 0.0000 ( 1.2355) -davit_large-multi.0 [data] {'rate': 665.7943304512658, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [34401.4375, 81920.0], - 'power': 98.418, - 'temperature': 48}, - '1': {'load': 0, - 'memory': [34401.4375, 81920.0], - 'power': 90.544, - 'temperature': 42}}, - 'task': 'main'} -davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.99, - 'memory': [34645.4375, 81920.0], - 'power': 429.394, - 'temperature': 56}, - '1': {'load': 0.76, - 'memory': [34645.4375, 81920.0], - 'power': 403.589, - 'temperature': 51}}, - 'task': 'main'} -davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.16, - 'memory': [34645.4375, 81920.0], - 'power': 90.575, - 'temperature': 45}, - '1': {'load': 1.0, - 'memory': [34815.4375, 81920.0], - 'power': 91.613, - 'temperature': 40}}, - 'task': 'main'} -davit_large-multi.0 [data] {'loss': 6.897610664367676, 'task': 'train'} -davit_large-multi.0 [stderr] Train: 4 [ 0/16 ( 0%)] Loss: 6.847 (6.85) Time: 1.340s, 191.03/s (1.340s, 191.03/s) LR: 8.002e-03 Data: 0.917 (0.917) -davit_large-multi.0 [data] {'rate': 569.5734681002303, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'loss': 6.811570644378662, 'task': 'train'} -davit_large-multi.0 [data] {'rate': 564.2721885575003, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.97, - 'memory': [34889.4375, 81920.0], - 'power': 369.584, - 'temperature': 57}, - '1': {'load': 0.97, - 'memory': [34889.4375, 81920.0], - 'power': 420.595, - 'temperature': 52}}, - 'task': 'main'} -davit_large-multi.0 [data] {'loss': 6.933971405029297, 'task': 'train'} -davit_large-multi.0 [data] {'rate': 566.0147994843084, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'loss': 6.995574951171875, 'task': 'train'} -davit_large-multi.0 [data] {'rate': 629.8239858215599, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'loss': 7.05184268951416, 'task': 'train'} -davit_large-multi.0 [data] {'gpudata': {'0': {'load': 1.0, - 'memory': [34889.4375, 81920.0], - 'power': 424.752, - 'temperature': 60}, - '1': {'load': 0.99, - 'memory': [34889.4375, 81920.0], - 'power': 348.568, - 'temperature': 54}}, - 'task': 'main'} -davit_large-multi.0 [data] {'rate': 620.8329463265804, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'loss': 7.034548759460449, 'task': 'train'} -davit_large-multi.0 [data] {'rate': 654.2521876751332, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [stderr] Train: 4 [ 15/16 (100%)] Loss: 7.029 (6.94) Time: 0.386s, 664.00/s (0.464s, 551.27/s) LR: 8.002e-03 Data: 0.000 (0.069) -davit_large-multi.0 [stderr] Distributing BatchNorm running means and vars -davit_large-multi.0 [stderr] Test: [ 0/16] Time: 1.163 (1.163) Loss: 6.8026 (6.8026) Acc@1: 0.0000 ( 0.0000) Acc@5: 1.1719 ( 1.1719) -davit_large-multi.0 [stderr] Test: [ 16/16] Time: 0.022 (0.292) Loss: 6.4709 (6.8062) Acc@1: 0.0000 ( 0.2665) Acc@5: 0.0000 ( 1.3566) -davit_large-multi.0 [data] {'rate': 663.6863089771649, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.82, - 'memory': [35133.4375, 81920.0], - 'power': 127.435, - 'temperature': 53}, - '1': {'load': 0.91, - 'memory': [35133.4375, 81920.0], - 'power': 410.598, - 'temperature': 48}}, - 'task': 'main'} -davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.92, - 'memory': [35133.4375, 81920.0], - 'power': 375.207, - 'temperature': 56}, - '1': {'load': 0.97, - 'memory': [35133.4375, 81920.0], - 'power': 410.462, - 'temperature': 49}}, - 'task': 'main'} -davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.12, - 'memory': [35133.4375, 81920.0], - 'power': 84.035, - 'temperature': 44}, - '1': {'load': 1.0, - 'memory': [35303.4375, 81920.0], - 'power': 90.32, - 'temperature': 39}}, - 'task': 'main'} -davit_large-multi.0 [data] {'loss': 6.79413366317749, 'task': 'train'} -davit_large-multi.0 [stderr] Train: 5 [ 0/16 ( 0%)] Loss: 6.817 (6.82) Time: 1.050s, 243.90/s (1.050s, 243.90/s) LR: 9.993e-03 Data: 0.646 (0.646) -davit_large-multi.0 [data] {'rate': 572.4908051156007, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'loss': 6.869453430175781, 'task': 'train'} -davit_large-multi.0 [data] {'rate': 576.3963942848092, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.99, - 'memory': [35377.4375, 81920.0], - 'power': 429.918, - 'temperature': 59}, - '1': {'load': 1.0, - 'memory': [35377.4375, 81920.0], - 'power': 382.582, - 'temperature': 52}}, - 'task': 'main'} -davit_large-multi.0 [data] {'loss': 6.885754585266113, 'task': 'train'} -davit_large-multi.0 [data] {'rate': 614.1476555720517, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'loss': 6.9908952713012695, 'task': 'train'} -davit_large-multi.0 [data] {'rate': 632.7135484514141, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'loss': 7.012163162231445, 'task': 'train'} -davit_large-multi.0 [data] {'rate': 592.857615042428, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.98, - 'memory': [35377.4375, 81920.0], - 'power': 373.19, - 'temperature': 59}, - '1': {'load': 0.97, - 'memory': [35377.4375, 81920.0], - 'power': 419.532, - 'temperature': 54}}, - 'task': 'main'} -davit_large-multi.0 [data] {'loss': 6.953549385070801, 'task': 'train'} -davit_large-multi.0 [stderr] Train: 5 [ 15/16 (100%)] Loss: 7.022 (6.92) Time: 0.387s, 661.67/s (0.447s, 572.71/s) LR: 9.993e-03 Data: 0.000 (0.056) -davit_large-multi.0 [data] {'rate': 617.8981239502672, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [stderr] Distributing BatchNorm running means and vars -davit_large-multi.0 [stderr] Test: [ 0/16] Time: 1.251 (1.251) Loss: 6.8382 (6.8382) Acc@1: 0.0000 ( 0.0000) Acc@5: 0.0000 ( 0.0000) -davit_large-multi.0 [stderr] Test: [ 16/16] Time: 0.022 (0.282) Loss: 6.4380 (6.8108) Acc@1: 0.0000 ( 0.2665) Acc@5: 0.0000 ( 1.2112) -davit_large-multi.0 [data] {'rate': 661.4089529354488, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [35621.4375, 81920.0], - 'power': 99.475, - 'temperature': 48}, - '1': {'load': 0, - 'memory': [35621.4375, 81920.0], - 'power': 91.789, - 'temperature': 42}}, - 'task': 'main'} -davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.75, - 'memory': [35621.4375, 81920.0], - 'power': 100.785, - 'temperature': 50}, - '1': {'load': 0.38, - 'memory': [35621.4375, 81920.0], - 'power': 92.572, - 'temperature': 45}}, - 'task': 'main'} -davit_large-multi.0 [data] {'loss': 6.839111328125, 'task': 'train'} -davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [35791.4375, 81920.0], - 'power': 293.613, - 'temperature': 46}, - '1': {'load': 1.0, - 'memory': [35791.4375, 81920.0], - 'power': 90.029, - 'temperature': 38}}, - 'task': 'main'} -davit_large-multi.0 [stderr] Train: 6 [ 0/16 ( 0%)] Loss: 6.862 (6.86) Time: 1.330s, 192.54/s (1.330s, 192.54/s) LR: 9.990e-03 Data: 0.918 (0.918) -davit_large-multi.0 [data] {'rate': 545.3975196505342, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'loss': 6.839109420776367, 'task': 'train'} -davit_large-multi.0 [data] {'rate': 586.8428875574634, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'loss': 6.879892349243164, 'task': 'train'} -davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.98, - 'memory': [35865.4375, 81920.0], - 'power': 367.848, - 'temperature': 55}, - '1': {'load': 1.0, - 'memory': [35865.4375, 81920.0], - 'power': 336.148, - 'temperature': 52}}, - 'task': 'main'} -davit_large-multi.0 [data] {'rate': 630.480335642807, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'loss': 7.020977020263672, 'task': 'train'} -davit_large-multi.0 [data] {'rate': 616.8596265960731, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'loss': 7.063673973083496, 'task': 'train'} -davit_large-multi.0 [data] {'rate': 622.4261064661621, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.97, - 'memory': [35865.4375, 81920.0], - 'power': 414.552, - 'temperature': 59}, - '1': {'load': 1.0, - 'memory': [35865.4375, 81920.0], - 'power': 425.453, - 'temperature': 56}}, - 'task': 'main'} -davit_large-multi.0 [data] {'loss': 7.032804489135742, 'task': 'train'} -davit_large-multi.0 [stderr] Train: 6 [ 15/16 (100%)] Loss: 7.042 (6.95) Time: 0.386s, 663.01/s (0.468s, 547.44/s) LR: 9.990e-03 Data: 0.000 (0.074) -davit_large-multi.0 [stderr] Distributing BatchNorm running means and vars -davit_large-multi.0 [stderr] Test: [ 0/16] Time: 1.266 (1.266) Loss: 6.8384 (6.8384) Acc@1: 0.0000 ( 0.0000) Acc@5: 3.1250 ( 3.1250) -davit_large-multi.0 [stderr] Test: [ 16/16] Time: 0.022 (0.289) Loss: 6.4454 (6.8036) Acc@1: 0.0000 ( 0.2665) Acc@5: 0.0000 ( 1.0659) -davit_large-multi.0 [data] {'rate': 666.0050236290647, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.94, - 'memory': [36109.4375, 81920.0], - 'power': 101.018, - 'temperature': 49}, - '1': {'load': 0.8, - 'memory': [36109.4375, 81920.0], - 'power': 278.749, - 'temperature': 51}}, - 'task': 'main'} -davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.26, - 'memory': [36109.4375, 81920.0], - 'power': 97.352, - 'temperature': 46}, - '1': {'load': 0, - 'memory': [36109.4375, 81920.0], - 'power': 91.471, - 'temperature': 42}}, - 'task': 'main'} -davit_large-multi.0 [data] {'loss': 6.813262462615967, 'task': 'train'} -davit_large-multi.0 [stderr] Train: 7 [ 0/16 ( 0%)] Loss: 6.842 (6.84) Time: 1.117s, 229.29/s (1.117s, 229.29/s) LR: 9.987e-03 Data: 0.694 (0.694) -davit_large-multi.0 [data] {'gpudata': {'0': {'load': 1.0, - 'memory': [36353.4375, 81920.0], - 'power': 266.798, - 'temperature': 52}, - '1': {'load': 1.0, - 'memory': [36353.4375, 81920.0], - 'power': 336.329, - 'temperature': 45}}, - 'task': 'main'} -davit_large-multi.0 [data] {'rate': 590.1847494743777, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'loss': 6.831705093383789, 'task': 'train'} -davit_large-multi.0 [data] {'rate': 590.3685437784663, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'loss': 6.866009712219238, 'task': 'train'} -davit_large-multi.0 [data] {'rate': 583.2721112799343, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'loss': 7.002652168273926, 'task': 'train'} -davit_large-multi.0 [data] {'gpudata': {'0': {'load': 1.0, - 'memory': [36353.4375, 81920.0], - 'power': 419.649, - 'temperature': 57}, - '1': {'load': 0.97, - 'memory': [36353.4375, 81920.0], - 'power': 387.001, - 'temperature': 54}}, - 'task': 'main'} -davit_large-multi.0 [data] {'rate': 613.7647480846026, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'loss': 6.942004203796387, 'task': 'train'} -davit_large-multi.0 [data] {'rate': 647.4609433412367, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'loss': 7.039649963378906, 'task': 'train'} -davit_large-multi.0 [stderr] Train: 7 [ 15/16 (100%)] Loss: 7.028 (6.93) Time: 0.385s, 664.41/s (0.451s, 567.75/s) LR: 9.987e-03 Data: 0.000 (0.058) -davit_large-multi.0 [data] {'rate': 619.8604168611666, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [stderr] Distributing BatchNorm running means and vars -davit_large-multi.0 [stderr] Test: [ 0/16] Time: 1.442 (1.442) Loss: 6.7585 (6.7585) Acc@1: 0.0000 ( 0.0000) Acc@5: 0.0000 ( 0.0000) -davit_large-multi.0 [stderr] Test: [ 16/16] Time: 0.022 (0.290) Loss: 6.3311 (6.8023) Acc@1: 0.0000 ( 0.2180) Acc@5: 0.0000 ( 1.1143) -davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.03, - 'memory': [36353.4375, 81920.0], - 'power': 99.475, - 'temperature': 48}, - '1': {'load': 0, - 'memory': [36353.4375, 81920.0], - 'power': 92.572, - 'temperature': 45}}, - 'task': 'main'} -davit_large-multi.0 [data] {'rate': 663.952995675905, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [36597.4375, 81920.0], - 'power': 96.999, - 'temperature': 45}, - '1': {'load': 1.0, - 'memory': [36597.4375, 81920.0], - 'power': 91.613, - 'temperature': 44}}, - 'task': 'main'} -davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.16, - 'memory': [36597.4375, 81920.0], - 'power': 95.596, - 'temperature': 43}, - '1': {'load': 1.0, - 'memory': [36767.4375, 81920.0], - 'power': 106.591, - 'temperature': 44}}, - 'task': 'main'} -davit_large-multi.0 [data] {'loss': 6.789029121398926, 'task': 'train'} -davit_large-multi.0 [stderr] Train: 8 [ 0/16 ( 0%)] Loss: 6.830 (6.83) Time: 1.280s, 200.03/s (1.280s, 200.03/s) LR: 9.982e-03 Data: 0.871 (0.871) -davit_large-multi.0 [data] {'rate': 637.8630821312903, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.87, - 'memory': [36841.4375, 81920.0], - 'power': 428.742, - 'temperature': 54}, - '1': {'load': 0.91, - 'memory': [36841.4375, 81920.0], - 'power': 396.126, - 'temperature': 50}}, - 'task': 'main'} -davit_large-multi.0 [data] {'loss': 6.900580883026123, 'task': 'train'} -davit_large-multi.0 [data] {'rate': 574.6250225213447, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'loss': 6.973140716552734, 'task': 'train'} -davit_large-multi.0 [data] {'rate': 607.4896189634794, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'loss': 7.021726608276367, 'task': 'train'} -davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.97, - 'memory': [36841.4375, 81920.0], - 'power': 429.268, - 'temperature': 57}, - '1': {'load': 0.97, - 'memory': [36841.4375, 81920.0], - 'power': 418.956, - 'temperature': 55}}, - 'task': 'main'} -davit_large-multi.0 [data] {'rate': 606.6911785228061, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'loss': 6.9875640869140625, 'task': 'train'} -davit_large-multi.0 [data] {'rate': 659.8806352229581, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'rate': 641.0683829309347, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'loss': 6.943531513214111, 'task': 'train'} -davit_large-multi.0 [stderr] Train: 8 [ 15/16 (100%)] Loss: 7.013 (6.92) Time: 0.386s, 663.54/s (0.465s, 550.15/s) LR: 9.982e-03 Data: 0.000 (0.073) -davit_large-multi.0 [stderr] Distributing BatchNorm running means and vars -davit_large-multi.0 [stderr] Test: [ 0/16] Time: 1.198 (1.198) Loss: 6.8322 (6.8322) Acc@1: 0.0000 ( 0.0000) Acc@5: 0.0000 ( 0.0000) -davit_large-multi.0 [stderr] Test: [ 16/16] Time: 0.022 (0.286) Loss: 6.4452 (6.7996) Acc@1: 0.0000 ( 0.2665) Acc@5: 0.0000 ( 1.1628) -davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [36841.4375, 81920.0], - 'power': 97.289, - 'temperature': 46}, - '1': {'load': 0, - 'memory': [36841.4375, 81920.0], - 'power': 91.932, - 'temperature': 44}}, - 'task': 'main'} -davit_large-multi.0 [data] {'rate': 665.5724049687465, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.87, - 'memory': [37085.4375, 81920.0], - 'power': 100.434, - 'temperature': 47}, - '1': {'load': 0.92, - 'memory': [37085.4375, 81920.0], - 'power': 414.754, - 'temperature': 50}}, - 'task': 'main'} -davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.17, - 'memory': [37085.4375, 81920.0], - 'power': 95.178, - 'temperature': 42}, - '1': {'load': 1.0, - 'memory': [37255.4375, 81920.0], - 'power': 91.181, - 'temperature': 41}}, - 'task': 'main'} -davit_large-multi.0 [data] {'loss': 6.868271827697754, 'task': 'train'} -davit_large-multi.0 [stderr] Train: 9 [ 0/16 ( 0%)] Loss: 6.854 (6.85) Time: 1.321s, 193.82/s (1.321s, 193.82/s) LR: 9.978e-03 Data: 0.901 (0.901) -davit_large-multi.0 [data] {'rate': 604.8611252087858, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'loss': 6.86773681640625, 'task': 'train'} -davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.88, - 'memory': [37329.4375, 81920.0], - 'power': 403.353, - 'temperature': 54}, - '1': {'load': 0.9, - 'memory': [37329.4375, 81920.0], - 'power': 409.88, - 'temperature': 50}}, - 'task': 'main'} -davit_large-multi.0 [data] {'rate': 603.3849509203146, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'loss': 6.960288047790527, 'task': 'train'} -davit_large-multi.0 [data] {'rate': 659.7110759522617, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'loss': 6.982820510864258, 'task': 'train'} -davit_large-multi.0 [data] {'rate': 606.1655164161647, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.97, - 'memory': [37329.4375, 81920.0], - 'power': 421.559, - 'temperature': 58}, - '1': {'load': 1.0, - 'memory': [37329.4375, 81920.0], - 'power': 437.265, - 'temperature': 55}}, - 'task': 'main'} -davit_large-multi.0 [data] {'loss': 7.0309295654296875, 'task': 'train'} -davit_large-multi.0 [data] {'rate': 655.3847394981004, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'rate': 641.6715889791386, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'loss': 6.982546806335449, 'task': 'train'} -davit_large-multi.0 [stderr] Train: 9 [ 15/16 (100%)] Loss: 7.022 (6.94) Time: 0.386s, 663.22/s (0.462s, 553.88/s) LR: 9.978e-03 Data: 0.000 (0.073) -davit_large-multi.0 [stderr] Distributing BatchNorm running means and vars -davit_large-multi.0 [stderr] Test: [ 0/16] Time: 1.237 (1.237) Loss: 6.7809 (6.7809) Acc@1: 0.0000 ( 0.0000) Acc@5: 1.5625 ( 1.5625) -davit_large-multi.0 [stderr] Test: [ 16/16] Time: 0.022 (0.286) Loss: 6.5430 (6.7976) Acc@1: 0.0000 ( 0.2907) Acc@5: 0.0000 ( 1.0901) -davit_large-multi.0 [data] {'rate': 665.4183954754274, 'task': 'train', 'units': 'items/s'} -davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [37499.4375, 81920.0], - 'power': 216.796, - 'temperature': 50}, - '1': {'load': 0, - 'memory': [37329.4375, 81920.0], - 'power': 90.86, - 'temperature': 42}}, - 'task': 'main'} -davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.68, - 'memory': [37573.4375, 81920.0], - 'power': 99.369, - 'temperature': 47}, - '1': {'load': 0.3, - 'memory': [37573.4375, 81920.0], - 'power': 92.01, - 'temperature': 44}}, - 'task': 'main'} -davit_large-multi.0 [data] {'gpudata': {'0': {'load': 0.05, - 'memory': [37573.4375, 81920.0], - 'power': 82.966, - 'temperature': 42}, - '1': {'load': 1.0, - 'memory': [37743.4375, 81920.0], - 'power': 91.102, - 'temperature': 40}}, - 'task': 'main'} -davit_large-multi.0 [stderr] [2024-02-05 09:44:40,969] torch.distributed.elastic.agent.server.api: [WARNING] Received Signals.SIGTERM death signal, shutting down workers -davit_large-multi.0 [stderr] [2024-02-05 09:44:40,969] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 53900 closing signal SIGTERM -davit_large-multi.0 [stderr] [2024-02-05 09:44:40,969] torch.distributed.elastic.multiprocessing.api: [WARNING] Sending process 53901 closing signal SIGTERM -davit_large-multi.0 [stderr] Traceback (most recent call last): -davit_large-multi.0 [stderr] File "/Tmp/slurm.4112514.0/base/venv/torch/bin/torchrun", line 8, in -davit_large-multi.0 [stderr] sys.exit(main()) -davit_large-multi.0 [stderr] File "/Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 347, in wrapper -davit_large-multi.0 [stderr] return f(*args, **kwargs) -davit_large-multi.0 [stderr] File "/Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/run.py", line 812, in main -davit_large-multi.0 [stderr] run(args) -davit_large-multi.0 [stderr] File "/Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/run.py", line 803, in run -davit_large-multi.0 [stderr] elastic_launch( -davit_large-multi.0 [stderr] File "/Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/launcher/api.py", line 135, in __call__ -davit_large-multi.0 [stderr] return launch_agent(self._config, self._entrypoint, list(args)) -davit_large-multi.0 [stderr] File "/Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/launcher/api.py", line 259, in launch_agent -davit_large-multi.0 [stderr] result = agent.run() -davit_large-multi.0 [stderr] File "/Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/elastic/metrics/api.py", line 123, in wrapper -davit_large-multi.0 [stderr] result = f(*args, **kwargs) -davit_large-multi.0 [stderr] File "/Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/elastic/agent/server/api.py", line 727, in run -davit_large-multi.0 [stderr] result = self._invoke_run(role) -davit_large-multi.0 [stderr] File "/Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/elastic/agent/server/api.py", line 868, in _invoke_run -davit_large-multi.0 [stderr] time.sleep(monitor_interval) -davit_large-multi.0 [stderr] File "/Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 62, in _terminate_process_handler -davit_large-multi.0 [stderr] raise SignalException(f"Process {os.getpid()} got signal: {sigval}", sigval=sigval) -davit_large-multi.0 [stderr] torch.distributed.elastic.multiprocessing.api.SignalException: Process 53892 got signal: 15 -davit_large-multi.0 [end] torchrun --nproc_per_node=2 -m voir --config /Tmp/slurm.4112514.0/base/extra/timm/voirconf-davit_large-multi.0-0efae956f1553a76c1e03985181900f5.json /Tmp/slurm.4112514.0/milabench/benchmarks/timm/pytorch-image-models/train.py --amp --model davit_large --batch-size 128 --lr-base 0.01 --data-dir /Tmp/slurm.4112514.0/base/data --dataset FakeImageNet --output /Tmp/slurm.4112514.0/base/extra/timm/jenadogo.2024-02-05_09:17:41.183394/davit_large-multi.0 --checkpoint-hist 1 [at 2024-02-05 09:44:41.264798] -focalnet.D0 [config.dirs.base] /Tmp/slurm.4112514.0/base -focalnet.D0 [config.dirs.venv] /Tmp/slurm.4112514.0/base/venv/torch -focalnet.D0 [config.dirs.data] /Tmp/slurm.4112514.0/base/data -focalnet.D0 [config.dirs.runs] /Tmp/slurm.4112514.0/base/runs -focalnet.D0 [config.dirs.extra] /Tmp/slurm.4112514.0/base/extra/timm -focalnet.D0 [config.dirs.cache] /Tmp/slurm.4112514.0/base/cache -focalnet.D0 [config.arch] cuda -focalnet.D0 [config.group] timm -focalnet.D0 [config.install_group] torch -focalnet.D0 [config.install_variant] cuda -focalnet.D0 [config.run_name] jenadogo.2024-02-05_09:17:41.183394 -focalnet.D0 [config.enabled] True -focalnet.D0 [config.capabilities.nodes] 1 -focalnet.D0 [config.max_duration] 600 -focalnet.D0 [config.voir.options.stop] 60 -focalnet.D0 [config.voir.options.interval] 1s -focalnet.D0 [config.config_base] /Tmp/slurm.4112514.0/milabench/config -focalnet.D0 [config.config_file] /Tmp/slurm.4112514.0/milabench/config/standard.yaml -focalnet.D0 [config.definition] /Tmp/slurm.4112514.0/milabench/benchmarks/timm -focalnet.D0 [config.plan.method] per_gpu -focalnet.D0 [config.argv.--amp] True -focalnet.D0 [config.argv.--model] focalnet_base_lrf -focalnet.D0 [config.tags] ['classification', 'convnet', 'vision'] -focalnet.D0 [config.weight] 2.0 -focalnet.D0 [config.name] focalnet -focalnet.D0 [config.tag] ['focalnet', 'D0'] -focalnet.D0 [config.device] 0 -focalnet.D0 [config.devices] ['0'] -focalnet.D0 [config.env.CUDA_VISIBLE_DEVICES] 0 -focalnet.D1 [config.dirs.base] /Tmp/slurm.4112514.0/base -focalnet.D1 [config.dirs.venv] /Tmp/slurm.4112514.0/base/venv/torch -focalnet.D1 [config.dirs.data] /Tmp/slurm.4112514.0/base/data -focalnet.D1 [config.dirs.runs] /Tmp/slurm.4112514.0/base/runs -focalnet.D1 [config.dirs.extra] /Tmp/slurm.4112514.0/base/extra/timm -focalnet.D1 [config.dirs.cache] /Tmp/slurm.4112514.0/base/cache -focalnet.D1 [config.arch] cuda -focalnet.D1 [config.group] timm -focalnet.D1 [config.install_group] torch -focalnet.D1 [config.install_variant] cuda -focalnet.D1 [config.run_name] jenadogo.2024-02-05_09:17:41.183394 -focalnet.D1 [config.enabled] True -focalnet.D1 [config.capabilities.nodes] 1 -focalnet.D1 [config.max_duration] 600 -focalnet.D1 [config.voir.options.stop] 60 -focalnet.D1 [config.voir.options.interval] 1s -focalnet.D1 [config.config_base] /Tmp/slurm.4112514.0/milabench/config -focalnet.D1 [config.config_file] /Tmp/slurm.4112514.0/milabench/config/standard.yaml -focalnet.D1 [config.definition] /Tmp/slurm.4112514.0/milabench/benchmarks/timm -focalnet.D1 [config.plan.method] per_gpu -focalnet.D1 [config.argv.--amp] True -focalnet.D1 [config.argv.--model] focalnet_base_lrf -focalnet.D1 [config.tags] ['classification', 'convnet', 'vision'] -focalnet.D1 [config.weight] 2.0 -focalnet.D1 [config.name] focalnet -focalnet.D1 [config.tag] ['focalnet', 'D1'] -focalnet.D1 [config.device] 1 -focalnet.D1 [config.devices] ['1'] -focalnet.D1 [config.env.CUDA_VISIBLE_DEVICES] 1 -focalnet.D0 [start] voir --config /Tmp/slurm.4112514.0/base/extra/timm/voirconf-focalnet.D0-0efae956f1553a76c1e03985181900f5.json /Tmp/slurm.4112514.0/milabench/benchmarks/timm/pytorch-image-models/train.py --amp --model focalnet_base_lrf --data-dir /Tmp/slurm.4112514.0/base/data --dataset FakeImageNet --output /Tmp/slurm.4112514.0/base/extra/timm/jenadogo.2024-02-05_09:17:41.183394/focalnet.D0 --checkpoint-hist 1 [at 2024-02-05 09:44:41.274277] -focalnet.D1 [start] voir --config /Tmp/slurm.4112514.0/base/extra/timm/voirconf-focalnet.D1-0efae956f1553a76c1e03985181900f5.json /Tmp/slurm.4112514.0/milabench/benchmarks/timm/pytorch-image-models/train.py --amp --model focalnet_base_lrf --data-dir /Tmp/slurm.4112514.0/base/data --dataset FakeImageNet --output /Tmp/slurm.4112514.0/base/extra/timm/jenadogo.2024-02-05_09:17:41.183394/focalnet.D1 --checkpoint-hist 1 [at 2024-02-05 09:44:41.277942] -focalnet.D1 [stderr] Training with a single process on 1 device (cuda:0). -focalnet.D0 [stderr] Training with a single process on 1 device (cuda:0). -focalnet.D1 [stderr] Model focalnet_base_lrf created, param count:88749768 -focalnet.D1 [stderr] Data processing configuration for current model + dataset: -focalnet.D1 [stderr] input_size: (3, 224, 224) -focalnet.D1 [stderr] interpolation: bicubic -focalnet.D1 [stderr] mean: (0.485, 0.456, 0.406) -focalnet.D1 [stderr] std: (0.229, 0.224, 0.225) -focalnet.D1 [stderr] crop_pct: 0.9 -focalnet.D1 [stderr] crop_mode: center -focalnet.D0 [stderr] Model focalnet_base_lrf created, param count:88749768 -focalnet.D0 [stderr] Data processing configuration for current model + dataset: -focalnet.D0 [stderr] input_size: (3, 224, 224) -focalnet.D0 [stderr] interpolation: bicubic -focalnet.D0 [stderr] mean: (0.485, 0.456, 0.406) -focalnet.D0 [stderr] std: (0.229, 0.224, 0.225) -focalnet.D0 [stderr] crop_pct: 0.9 -focalnet.D0 [stderr] crop_mode: center -focalnet.D1 [stderr] Learning rate (0.05) calculated from base learning rate (0.1) and global batch size (128) with linear scaling. -focalnet.D1 [stderr] Using native Torch AMP. Training in mixed precision. -focalnet.D0 [stderr] Learning rate (0.05) calculated from base learning rate (0.1) and global batch size (128) with linear scaling. -focalnet.D0 [stderr] Using native Torch AMP. Training in mixed precision. -focalnet.D1 [stderr] Scheduled epochs: 300. LR stepped per epoch. -focalnet.D0 [stderr] Scheduled epochs: 300. LR stepped per epoch. -focalnet.D0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [1509.4375, 81920.0], - 'power': 81.418, - 'temperature': 38}}, - 'task': 'main'} -focalnet.D1 [data] {'gpudata': {'1': {'load': 0, - 'memory': [1509.4375, 81920.0], - 'power': 77.09, - 'temperature': 34}}, - 'task': 'main'} -focalnet.D1 [data] {'loss': 7.004467010498047, 'task': 'train'} -focalnet.D1 [data] {'gpudata': {'1': {'load': 0.99, - 'memory': [10275.4375, 81920.0], - 'power': 171.841, - 'temperature': 42}}, - 'task': 'main'} -focalnet.D0 [data] {'loss': 7.004467010498047, 'task': 'train'} -focalnet.D0 [data] {'gpudata': {'0': {'load': 0.99, - 'memory': [10211.4375, 81920.0], - 'power': 338.088, - 'temperature': 46}}, - 'task': 'main'} -focalnet.D1 [stderr] Train: 0 [ 0/32 ( 0%)] Loss: 7.004 (7.00) Time: 13.759s, 9.30/s (13.759s, 9.30/s) LR: 1.000e-05 Data: 2.187 (2.187) -focalnet.D1 [data] {'gpudata': {'1': {'load': 0.99, - 'memory': [21577.4375, 81920.0], - 'power': 146.399, - 'temperature': 39}}, - 'task': 'main'} -focalnet.D1 [data] {'gpudata': {'1': {'load': 1.0, - 'memory': [14103.4375, 81920.0], - 'power': 177.174, - 'temperature': 42}}, - 'task': 'main'} -focalnet.D1 [data] {'gpudata': {'1': {'load': 0.99, - 'memory': [13253.4375, 81920.0], - 'power': 298.558, - 'temperature': 43}}, - 'task': 'main'} -focalnet.D1 [data] {'loss': 7.006728649139404, 'task': 'train'} -focalnet.D0 [stderr] Train: 0 [ 0/32 ( 0%)] Loss: 7.004 (7.00) Time: 14.001s, 9.14/s (14.001s, 9.14/s) LR: 1.000e-05 Data: 2.148 (2.148) -focalnet.D0 [data] {'gpudata': {'0': {'load': 0.99, - 'memory': [21589.4375, 81920.0], - 'power': 228.134, - 'temperature': 44}}, - 'task': 'main'} -focalnet.D0 [data] {'gpudata': {'0': {'load': 1.0, - 'memory': [9787.4375, 81920.0], - 'power': 235.929, - 'temperature': 47}}, - 'task': 'main'} -focalnet.D0 [data] {'gpudata': {'0': {'load': 0.99, - 'memory': [9169.4375, 81920.0], - 'power': 209.823, - 'temperature': 46}}, - 'task': 'main'} -focalnet.D0 [data] {'loss': 7.006728649139404, 'task': 'train'} -focalnet.D1 [data] {'loss': 7.036325454711914, 'task': 'train'} -focalnet.D0 [data] {'loss': 6.935497760772705, 'task': 'train'} -focalnet.D1 [data] {'loss': 7.024367332458496, 'task': 'train'} -focalnet.D0 [data] {'loss': 7.024367332458496, 'task': 'train'} -focalnet.D0 [data] {'gpudata': {'0': {'load': 0.76, - 'memory': [23571.4375, 81920.0], - 'power': 309.749, - 'temperature': 52}}, - 'task': 'main'} -focalnet.D1 [data] {'gpudata': {'1': {'load': 0.93, - 'memory': [23641.4375, 81920.0], - 'power': 360.663, - 'temperature': 49}}, - 'task': 'main'} -focalnet.D0 [data] {'loss': 6.9885382652282715, 'task': 'train'} -focalnet.D1 [data] {'loss': 6.970383644104004, 'task': 'train'} -focalnet.D0 [data] {'loss': 7.009471893310547, 'task': 'train'} -focalnet.D1 [data] {'loss': 6.9413628578186035, 'task': 'train'} -focalnet.D0 [data] {'loss': 7.056240081787109, 'task': 'train'} -focalnet.D1 [data] {'gpudata': {'1': {'load': 0.76, - 'memory': [23641.4375, 81920.0], - 'power': 366.156, - 'temperature': 49}}, - 'task': 'main'} -focalnet.D1 [data] {'rate': 377.5036384149665, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [data] {'gpudata': {'0': {'load': 0.8, - 'memory': [23571.4375, 81920.0], - 'power': 359.495, - 'temperature': 52}}, - 'task': 'main'} -focalnet.D1 [data] {'loss': 6.990042686462402, 'task': 'train'} -focalnet.D0 [data] {'rate': 374.6683694641556, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [data] {'loss': 6.997433662414551, 'task': 'train'} -focalnet.D1 [data] {'rate': 370.522238387252, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'loss': 6.946528434753418, 'task': 'train'} -focalnet.D0 [data] {'rate': 381.08341353526527, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [data] {'loss': 6.977944850921631, 'task': 'train'} -focalnet.D1 [data] {'rate': 386.57694374862564, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [data] {'rate': 398.29990911480644, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'loss': 6.990629196166992, 'task': 'train'} -focalnet.D1 [data] {'gpudata': {'1': {'load': 0.97, - 'memory': [23643.4375, 81920.0], - 'power': 364.093, - 'temperature': 51}}, - 'task': 'main'} -focalnet.D0 [data] {'gpudata': {'0': {'load': 0.98, - 'memory': [23571.4375, 81920.0], - 'power': 363.767, - 'temperature': 55}}, - 'task': 'main'} -focalnet.D0 [data] {'loss': 6.979873180389404, 'task': 'train'} -focalnet.D1 [data] {'rate': 392.6866319812837, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [data] {'rate': 401.12049060520735, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'loss': 6.979123115539551, 'task': 'train'} -focalnet.D1 [stderr] Train: 0 [ 31/32 (100%)] Loss: 7.005 (7.00) Time: 0.307s, 417.61/s (0.754s, 169.75/s) LR: 1.000e-05 Data: 0.000 (0.084) -focalnet.D1 [data] {'rate': 405.71756163605994, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [data] {'loss': 7.005303382873535, 'task': 'train'} -focalnet.D0 [stderr] Train: 0 [ 31/32 (100%)] Loss: 7.005 (7.00) Time: 0.553s, 231.27/s (0.772s, 165.82/s) LR: 1.000e-05 Data: 0.000 (0.084) -focalnet.D0 [data] {'rate': 360.72387361528064, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [stderr] Test: [ 0/32] Time: 2.193 (2.193) Loss: 6.9615 (6.9615) Acc@1: 0.0000 ( 0.0000) Acc@5: 0.0000 ( 0.0000) -focalnet.D0 [stderr] Test: [ 0/32] Time: 2.078 (2.078) Loss: 6.9615 (6.9615) Acc@1: 0.0000 ( 0.0000) Acc@5: 0.0000 ( 0.0000) -focalnet.D1 [stderr] Test: [ 32/32] Time: 1.027 (0.321) Loss: 6.8639 (6.9459) Acc@1: 0.0000 ( 0.1453) Acc@5: 3.1250 ( 0.6541) -focalnet.D0 [stderr] Test: [ 32/32] Time: 1.053 (0.311) Loss: 6.8639 (6.9459) Acc@1: 0.0000 ( 0.1453) Acc@5: 3.1250 ( 0.6541) -focalnet.D1 [stderr] Current checkpoints: -focalnet.D1 [stderr] ('/Tmp/slurm.4112514.0/base/extra/timm/jenadogo.2024-02-05_09:17:41.183394/focalnet.D1/20240205-094446-focalnet_base_lrf-224/checkpoint-0.pth.tar', 0.14534883720930233) -focalnet.D1 [stderr] -focalnet.D0 [stderr] Current checkpoints: -focalnet.D0 [stderr] ('/Tmp/slurm.4112514.0/base/extra/timm/jenadogo.2024-02-05_09:17:41.183394/focalnet.D0/20240205-094446-focalnet_base_lrf-224/checkpoint-0.pth.tar', 0.14534883720930233) -focalnet.D0 [stderr] -focalnet.D1 [data] {'rate': 417.38812312443554, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'gpudata': {'1': {'load': 0, - 'memory': [23643.4375, 81920.0], - 'power': 89.393, - 'temperature': 39}}, - 'task': 'main'} -focalnet.D1 [data] {'gpudata': {'1': {'load': 0, - 'memory': [23887.4375, 81920.0], - 'power': 90.007, - 'temperature': 40}}, - 'task': 'main'} -focalnet.D1 [data] {'gpudata': {'1': {'load': 0.64, - 'memory': [23887.4375, 81920.0], - 'power': 326.236, - 'temperature': 43}}, - 'task': 'main'} -focalnet.D1 [data] {'gpudata': {'1': {'load': 0.65, - 'memory': [7287.4375, 81920.0], - 'power': 88.957, - 'temperature': 39}}, - 'task': 'main'} -focalnet.D1 [data] {'loss': 7.020679950714111, 'task': 'train'} -focalnet.D0 [data] {'rate': 231.2379865768878, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [23571.4375, 81920.0], - 'power': 95.689, - 'temperature': 43}}, - 'task': 'main'} -focalnet.D0 [data] {'gpudata': {'0': {'load': 0.64, - 'memory': [23815.4375, 81920.0], - 'power': 303.289, - 'temperature': 50}}, - 'task': 'main'} -focalnet.D0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [23815.4375, 81920.0], - 'power': 306.979, - 'temperature': 48}}, - 'task': 'main'} -focalnet.D0 [data] {'gpudata': {'0': {'load': 0.87, - 'memory': [4385.4375, 81920.0], - 'power': 113.508, - 'temperature': 45}}, - 'task': 'main'} -focalnet.D1 [stderr] Train: 1 [ 0/32 ( 0%)] Loss: 7.021 (7.02) Time: 1.451s, 88.23/s (1.451s, 88.23/s) LR: 1.001e-02 Data: 1.020 (1.020) -focalnet.D0 [data] {'loss': 7.020679950714111, 'task': 'train'} -focalnet.D0 [stderr] Train: 1 [ 0/32 ( 0%)] Loss: 7.021 (7.02) Time: 1.661s, 77.07/s (1.661s, 77.07/s) LR: 1.001e-02 Data: 1.100 (1.100) -focalnet.D1 [data] {'rate': 315.62343914346116, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [data] {'rate': 202.100719508245, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'loss': 7.003786087036133, 'task': 'train'} -focalnet.D1 [data] {'gpudata': {'1': {'load': 0.77, - 'memory': [23721.4375, 81920.0], - 'power': 291.003, - 'temperature': 45}}, - 'task': 'main'} -focalnet.D0 [data] {'gpudata': {'0': {'load': 0.92, - 'memory': [23655.4375, 81920.0], - 'power': 110.983, - 'temperature': 48}}, - 'task': 'main'} -focalnet.D0 [data] {'loss': 7.003786087036133, 'task': 'train'} -focalnet.D1 [data] {'rate': 379.9619486908587, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [data] {'rate': 335.93811495019315, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'loss': 7.062005996704102, 'task': 'train'} -focalnet.D1 [data] {'rate': 370.3643540929286, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [data] {'loss': 6.96353006362915, 'task': 'train'} -focalnet.D0 [data] {'rate': 367.04243119852714, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'loss': 7.019172668457031, 'task': 'train'} -focalnet.D1 [data] {'rate': 362.4965981251868, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [data] {'loss': 7.047094821929932, 'task': 'train'} -focalnet.D1 [data] {'gpudata': {'1': {'load': 0.93, - 'memory': [23723.4375, 81920.0], - 'power': 334.007, - 'temperature': 49}}, - 'task': 'main'} -focalnet.D0 [data] {'gpudata': {'0': {'load': 0.89, - 'memory': [23657.4375, 81920.0], - 'power': 137.88, - 'temperature': 53}}, - 'task': 'main'} -focalnet.D0 [data] {'rate': 362.3580731304099, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'loss': 7.077932357788086, 'task': 'train'} -focalnet.D1 [data] {'rate': 348.4229803371138, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [data] {'loss': 7.034217834472656, 'task': 'train'} -focalnet.D0 [data] {'rate': 362.5166701379054, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'loss': 6.999080181121826, 'task': 'train'} -focalnet.D1 [data] {'rate': 378.77964641340213, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [data] {'loss': 7.056346893310547, 'task': 'train'} -focalnet.D0 [data] {'rate': 357.2617852450118, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'loss': 7.077407360076904, 'task': 'train'} -focalnet.D1 [data] {'rate': 366.9251789920027, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [data] {'gpudata': {'0': {'load': 0.84, - 'memory': [23657.4375, 81920.0], - 'power': 364.547, - 'temperature': 53}}, - 'task': 'main'} -focalnet.D0 [data] {'loss': 7.087892055511475, 'task': 'train'} -focalnet.D1 [data] {'gpudata': {'1': {'load': 0.74, - 'memory': [23723.4375, 81920.0], - 'power': 145.933, - 'temperature': 47}}, - 'task': 'main'} -focalnet.D0 [data] {'rate': 367.1403156946068, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'loss': 6.993818283081055, 'task': 'train'} -focalnet.D1 [data] {'rate': 356.7102938249908, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [data] {'loss': 7.04456901550293, 'task': 'train'} -focalnet.D0 [data] {'rate': 354.3274788234613, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'loss': 7.098369598388672, 'task': 'train'} -focalnet.D1 [data] {'rate': 379.2761549350046, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [data] {'loss': 7.043420791625977, 'task': 'train'} -focalnet.D0 [data] {'rate': 391.760778375228, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'loss': 7.144115447998047, 'task': 'train'} -focalnet.D1 [data] {'gpudata': {'1': {'load': 0.99, - 'memory': [23723.4375, 81920.0], - 'power': 316.696, - 'temperature': 51}}, - 'task': 'main'} -focalnet.D0 [data] {'gpudata': {'0': {'load': 0.97, - 'memory': [23657.4375, 81920.0], - 'power': 365.046, - 'temperature': 55}}, - 'task': 'main'} -focalnet.D1 [data] {'rate': 397.3043545165627, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [data] {'rate': 400.17129290508296, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [data] {'loss': 6.981839179992676, 'task': 'train'} -focalnet.D1 [stderr] Train: 1 [ 31/32 (100%)] Loss: 7.108 (7.05) Time: 0.306s, 418.56/s (0.387s, 330.55/s) LR: 1.001e-02 Data: 0.000 (0.056) -focalnet.D0 [stderr] Train: 1 [ 31/32 (100%)] Loss: 7.108 (7.05) Time: 0.323s, 396.46/s (0.391s, 326.95/s) LR: 1.001e-02 Data: 0.000 (0.058) -focalnet.D1 [stderr] Test: [ 0/32] Time: 1.040 (1.040) Loss: 6.8923 (6.8923) Acc@1: 0.0000 ( 0.0000) Acc@5: 0.0000 ( 0.0000) -focalnet.D0 [stderr] Test: [ 0/32] Time: 1.135 (1.135) Loss: 6.8922 (6.8922) Acc@1: 0.0000 ( 0.0000) Acc@5: 0.0000 ( 0.0000) -focalnet.D1 [stderr] Test: [ 32/32] Time: 0.039 (0.243) Loss: 6.9393 (6.9699) Acc@1: 0.0000 ( 0.2665) Acc@5: 0.0000 ( 0.9932) -focalnet.D0 [stderr] Test: [ 32/32] Time: 0.029 (0.253) Loss: 6.9392 (6.9700) Acc@1: 0.0000 ( 0.2665) Acc@5: 0.0000 ( 0.9932) -focalnet.D1 [stderr] Current checkpoints: -focalnet.D1 [stderr] ('/Tmp/slurm.4112514.0/base/extra/timm/jenadogo.2024-02-05_09:17:41.183394/focalnet.D1/20240205-094446-focalnet_base_lrf-224/checkpoint-1.pth.tar', 0.26647286821705424) -focalnet.D1 [stderr] -focalnet.D1 [data] {'rate': 418.06433293931025, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'gpudata': {'1': {'load': 0.78, - 'memory': [23967.4375, 81920.0], - 'power': 337.601, - 'temperature': 47}}, - 'task': 'main'} -focalnet.D1 [data] {'gpudata': {'1': {'load': 0.34, - 'memory': [23967.4375, 81920.0], - 'power': 275.2, - 'temperature': 44}}, - 'task': 'main'} -focalnet.D1 [data] {'gpudata': {'1': {'load': 0.85, - 'memory': [23967.4375, 81920.0], - 'power': 90.681, - 'temperature': 41}}, - 'task': 'main'} -focalnet.D1 [data] {'loss': 6.9958415031433105, 'task': 'train'} -focalnet.D0 [stderr] Current checkpoints: -focalnet.D0 [stderr] ('/Tmp/slurm.4112514.0/base/extra/timm/jenadogo.2024-02-05_09:17:41.183394/focalnet.D0/20240205-094446-focalnet_base_lrf-224/checkpoint-1.pth.tar', 0.26647286821705424) -focalnet.D0 [stderr] -focalnet.D1 [stderr] Train: 2 [ 0/32 ( 0%)] Loss: 6.996 (7.00) Time: 1.192s, 107.40/s (1.192s, 107.40/s) LR: 2.001e-02 Data: 0.876 (0.876) -focalnet.D1 [data] {'rate': 346.83417655473176, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'loss': 7.1502604484558105, 'task': 'train'} -focalnet.D0 [data] {'rate': 410.4666880430734, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [data] {'gpudata': {'0': {'load': 0.14, - 'memory': [23901.4375, 81920.0], - 'power': 96.887, - 'temperature': 45}}, - 'task': 'main'} -focalnet.D0 [data] {'gpudata': {'0': {'load': 0.26, - 'memory': [23901.4375, 81920.0], - 'power': 96.468, - 'temperature': 44}}, - 'task': 'main'} -focalnet.D0 [data] {'gpudata': {'0': {'load': 0.57, - 'memory': [23901.4375, 81920.0], - 'power': 96.724, - 'temperature': 45}}, - 'task': 'main'} -focalnet.D0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [23901.4375, 81920.0], - 'power': 82.244, - 'temperature': 40}}, - 'task': 'main'} -focalnet.D0 [data] {'loss': 6.995856761932373, 'task': 'train'} -focalnet.D1 [data] {'gpudata': {'1': {'load': 0.73, - 'memory': [24211.4375, 81920.0], - 'power': 224.08, - 'temperature': 48}}, - 'task': 'main'} -focalnet.D0 [stderr] Train: 2 [ 0/32 ( 0%)] Loss: 6.996 (7.00) Time: 1.513s, 84.58/s (1.513s, 84.58/s) LR: 2.001e-02 Data: 1.163 (1.163) -focalnet.D1 [data] {'rate': 363.44954437539195, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'loss': 7.019004821777344, 'task': 'train'} -focalnet.D0 [data] {'rate': 374.08747497851624, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [data] {'loss': 7.150268077850342, 'task': 'train'} -focalnet.D1 [data] {'rate': 344.45744385574426, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'loss': 7.025628089904785, 'task': 'train'} -focalnet.D0 [data] {'rate': 346.55505720261465, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [data] {'loss': 7.018989086151123, 'task': 'train'} -focalnet.D1 [data] {'rate': 364.41392045119136, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'loss': 7.010931491851807, 'task': 'train'} -focalnet.D0 [data] {'gpudata': {'0': {'load': 0.77, - 'memory': [24145.4375, 81920.0], - 'power': 352.055, - 'temperature': 49}}, - 'task': 'main'} -focalnet.D0 [data] {'rate': 372.1957969021981, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'gpudata': {'1': {'load': 0.82, - 'memory': [24211.4375, 81920.0], - 'power': 340.654, - 'temperature': 49}}, - 'task': 'main'} -focalnet.D0 [data] {'loss': 7.025630950927734, 'task': 'train'} -focalnet.D1 [data] {'rate': 346.1042942730779, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'loss': 7.141164302825928, 'task': 'train'} -focalnet.D0 [data] {'rate': 364.0071538705124, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [data] {'loss': 7.010924339294434, 'task': 'train'} -focalnet.D1 [data] {'rate': 376.6864543167475, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'loss': 7.2925591468811035, 'task': 'train'} -focalnet.D0 [data] {'rate': 380.4107956125856, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [data] {'loss': 7.141152381896973, 'task': 'train'} -focalnet.D0 [data] {'gpudata': {'0': {'load': 0.97, - 'memory': [24145.4375, 81920.0], - 'power': 147.967, - 'temperature': 50}}, - 'task': 'main'} -focalnet.D1 [data] {'rate': 372.6043664248162, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'loss': 7.083065032958984, 'task': 'train'} -focalnet.D0 [data] {'rate': 371.64457969218705, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'gpudata': {'1': {'load': 0.87, - 'memory': [24211.4375, 81920.0], - 'power': 363.907, - 'temperature': 50}}, - 'task': 'main'} -focalnet.D0 [data] {'loss': 7.292555809020996, 'task': 'train'} -focalnet.D1 [data] {'rate': 394.0787002934719, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [data] {'rate': 391.0418595167924, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'loss': 7.183151721954346, 'task': 'train'} -focalnet.D0 [data] {'loss': 7.197795867919922, 'task': 'train'} -focalnet.D0 [data] {'rate': 381.7465121640444, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'rate': 381.75979003147916, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'loss': 7.230227470397949, 'task': 'train'} -focalnet.D0 [data] {'gpudata': {'0': {'load': 0.98, - 'memory': [24145.4375, 81920.0], - 'power': 329.272, - 'temperature': 53}}, - 'task': 'main'} -focalnet.D0 [data] {'rate': 394.8530578971939, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'gpudata': {'1': {'load': 0.97, - 'memory': [24211.4375, 81920.0], - 'power': 353.118, - 'temperature': 52}}, - 'task': 'main'} -focalnet.D1 [data] {'rate': 386.5877386856878, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [data] {'loss': 7.275201797485352, 'task': 'train'} -focalnet.D1 [stderr] Train: 2 [ 31/32 (100%)] Loss: 7.261 (7.13) Time: 0.306s, 417.65/s (0.375s, 341.68/s) LR: 2.001e-02 Data: 0.000 (0.049) -focalnet.D1 [stderr] Test: [ 0/32] Time: 0.950 (0.950) Loss: 6.9301 (6.9301) Acc@1: 0.0000 ( 0.0000) Acc@5: 6.2500 ( 6.2500) -focalnet.D0 [data] {'rate': 408.5081638900445, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [data] {'loss': 7.122132301330566, 'task': 'train'} -focalnet.D0 [stderr] Train: 2 [ 31/32 (100%)] Loss: 7.261 (7.13) Time: 0.308s, 415.52/s (0.389s, 329.34/s) LR: 2.001e-02 Data: 0.000 (0.064) -focalnet.D0 [stderr] Test: [ 0/32] Time: 1.379 (1.379) Loss: 6.9301 (6.9301) Acc@1: 0.0000 ( 0.0000) Acc@5: 6.2500 ( 6.2500) -focalnet.D1 [stderr] Test: [ 32/32] Time: 0.029 (0.246) Loss: 6.7456 (7.1150) Acc@1: 0.0000 ( 0.1696) Acc@5: 0.0000 ( 0.8479) -focalnet.D0 [stderr] Test: [ 32/32] Time: 0.029 (0.233) Loss: 6.7456 (7.1150) Acc@1: 0.0000 ( 0.1696) Acc@5: 0.0000 ( 0.8479) -focalnet.D1 [data] {'rate': 417.87477501564985, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'gpudata': {'1': {'load': 0, - 'memory': [24455.4375, 81920.0], - 'power': 222.482, - 'temperature': 45}}, - 'task': 'main'} -focalnet.D1 [data] {'gpudata': {'1': {'load': 0, - 'memory': [24455.4375, 81920.0], - 'power': 89.496, - 'temperature': 39}}, - 'task': 'main'} -focalnet.D1 [data] {'gpudata': {'1': {'load': 0.24, - 'memory': [24455.4375, 81920.0], - 'power': 89.268, - 'temperature': 40}}, - 'task': 'main'} -focalnet.D1 [data] {'loss': 7.0892863273620605, 'task': 'train'} -focalnet.D1 [stderr] Train: 3 [ 0/32 ( 0%)] Loss: 7.089 (7.09) Time: 1.249s, 102.49/s (1.249s, 102.49/s) LR: 3.000e-02 Data: 0.927 (0.927) -focalnet.D1 [data] {'rate': 334.1599013449281, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'loss': 7.171996593475342, 'task': 'train'} -focalnet.D1 [data] {'gpudata': {'1': {'load': 0.84, - 'memory': [24699.4375, 81920.0], - 'power': 359.495, - 'temperature': 48}}, - 'task': 'main'} -focalnet.D0 [data] {'rate': 397.105073404697, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [24145.4375, 81920.0], - 'power': 96.244, - 'temperature': 44}}, - 'task': 'main'} -focalnet.D0 [data] {'gpudata': {'0': {'load': 0.84, - 'memory': [24389.4375, 81920.0], - 'power': 359.805, - 'temperature': 47}}, - 'task': 'main'} -focalnet.D0 [data] {'gpudata': {'0': {'load': 0.53, - 'memory': [24389.4375, 81920.0], - 'power': 162.406, - 'temperature': 47}}, - 'task': 'main'} -focalnet.D0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [24389.4375, 81920.0], - 'power': 94.531, - 'temperature': 41}}, - 'task': 'main'} -focalnet.D0 [data] {'loss': 7.089305400848389, 'task': 'train'} -focalnet.D1 [data] {'rate': 373.0916968167913, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [stderr] Train: 3 [ 0/32 ( 0%)] Loss: 7.089 (7.09) Time: 1.690s, 75.72/s (1.690s, 75.72/s) LR: 3.000e-02 Data: 1.337 (1.337) -focalnet.D1 [data] {'loss': 7.192546844482422, 'task': 'train'} -focalnet.D0 [data] {'loss': 7.172007083892822, 'task': 'train'} -focalnet.D0 [data] {'rate': 382.8357238250604, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'rate': 345.1481354090593, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'loss': 7.318939208984375, 'task': 'train'} -focalnet.D0 [data] {'loss': 7.1925554275512695, 'task': 'train'} -focalnet.D0 [data] {'rate': 368.86344649851264, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'rate': 376.75181536660364, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'loss': 7.21081018447876, 'task': 'train'} -focalnet.D0 [data] {'gpudata': {'0': {'load': 0.98, - 'memory': [24633.4375, 81920.0], - 'power': 360.307, - 'temperature': 53}}, - 'task': 'main'} -focalnet.D1 [data] {'gpudata': {'1': {'load': 0.84, - 'memory': [24699.4375, 81920.0], - 'power': 354.757, - 'temperature': 49}}, - 'task': 'main'} -focalnet.D0 [data] {'loss': 7.318955898284912, 'task': 'train'} -focalnet.D0 [data] {'rate': 383.6918463348368, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'rate': 359.8902587758572, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'loss': 7.230084419250488, 'task': 'train'} -focalnet.D0 [data] {'loss': 7.210818290710449, 'task': 'train'} -focalnet.D0 [data] {'rate': 362.2798861943022, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'rate': 359.906978217468, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'loss': 7.394801139831543, 'task': 'train'} -focalnet.D0 [data] {'loss': 7.2300519943237305, 'task': 'train'} -focalnet.D0 [data] {'gpudata': {'0': {'load': 0.9, - 'memory': [24633.4375, 81920.0], - 'power': 152.73, - 'temperature': 52}}, - 'task': 'main'} -focalnet.D0 [data] {'rate': 374.32314114652013, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'rate': 373.240063388954, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'loss': 7.30866813659668, 'task': 'train'} -focalnet.D1 [data] {'gpudata': {'1': {'load': 0.92, - 'memory': [24701.4375, 81920.0], - 'power': 187.295, - 'temperature': 50}}, - 'task': 'main'} -focalnet.D0 [data] {'rate': 385.31704834979394, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'rate': 387.3037290822438, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [data] {'loss': 7.3948073387146, 'task': 'train'} -focalnet.D1 [data] {'loss': 7.4334330558776855, 'task': 'train'} -focalnet.D1 [data] {'rate': 390.61462906716037, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'loss': 7.347421169281006, 'task': 'train'} -focalnet.D0 [data] {'rate': 386.30469545487875, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [data] {'loss': 7.269433975219727, 'task': 'train'} -focalnet.D0 [data] {'gpudata': {'0': {'load': 0.98, - 'memory': [24633.4375, 81920.0], - 'power': 292.963, - 'temperature': 53}}, - 'task': 'main'} -focalnet.D0 [data] {'rate': 391.949862622798, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'gpudata': {'1': {'load': 0.99, - 'memory': [24701.4375, 81920.0], - 'power': 288.103, - 'temperature': 51}}, - 'task': 'main'} -focalnet.D1 [data] {'rate': 386.7610052096193, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'loss': 7.239360809326172, 'task': 'train'} -focalnet.D0 [data] {'loss': 7.293488025665283, 'task': 'train'} -focalnet.D1 [stderr] Train: 3 [ 31/32 (100%)] Loss: 7.239 (7.23) Time: 0.307s, 416.88/s (0.377s, 339.55/s) LR: 3.000e-02 Data: 0.001 (0.051) -focalnet.D0 [data] {'rate': 390.25286040788416, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [stderr] Test: [ 0/32] Time: 0.909 (0.909) Loss: 7.1712 (7.1712) Acc@1: 0.0000 ( 0.0000) Acc@5: 0.7812 ( 0.7812) -focalnet.D0 [data] {'loss': 7.199603080749512, 'task': 'train'} -focalnet.D0 [stderr] Train: 3 [ 31/32 (100%)] Loss: 7.239 (7.23) Time: 0.316s, 405.30/s (0.392s, 326.65/s) LR: 3.000e-02 Data: 0.000 (0.069) -focalnet.D0 [data] {'rate': 393.69922105701767, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [stderr] Test: [ 0/32] Time: 1.238 (1.238) Loss: 7.1711 (7.1711) Acc@1: 0.0000 ( 0.0000) Acc@5: 0.7812 ( 0.7812) -focalnet.D1 [stderr] Test: [ 32/32] Time: 0.049 (0.226) Loss: 6.2443 (7.1748) Acc@1: 0.0000 ( 0.2180) Acc@5: 25.0000 ( 1.0174) -focalnet.D1 [data] {'rate': 417.71883541646497, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'gpudata': {'1': {'load': 0, - 'memory': [24945.4375, 81920.0], - 'power': 340.749, - 'temperature': 47}}, - 'task': 'main'} -focalnet.D1 [data] {'gpudata': {'1': {'load': 0.79, - 'memory': [24945.4375, 81920.0], - 'power': 291.19, - 'temperature': 47}}, - 'task': 'main'} -focalnet.D1 [data] {'gpudata': {'1': {'load': 0.12, - 'memory': [24945.4375, 81920.0], - 'power': 89.199, - 'temperature': 39}}, - 'task': 'main'} -focalnet.D0 [stderr] Test: [ 32/32] Time: 0.039 (0.231) Loss: 6.2440 (7.1748) Acc@1: 0.0000 ( 0.2180) Acc@5: 25.0000 ( 1.0174) -focalnet.D1 [data] {'loss': 7.215429306030273, 'task': 'train'} -focalnet.D1 [stderr] Train: 4 [ 0/32 ( 0%)] Loss: 7.215 (7.22) Time: 1.363s, 93.91/s (1.363s, 93.91/s) LR: 4.000e-02 Data: 1.036 (1.036) -focalnet.D1 [data] {'loss': 7.113177299499512, 'task': 'train'} -focalnet.D1 [data] {'rate': 392.1785839596839, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'gpudata': {'1': {'load': 0.89, - 'memory': [25189.4375, 81920.0], - 'power': 342.214, - 'temperature': 48}}, - 'task': 'main'} -focalnet.D1 [data] {'loss': 7.28206729888916, 'task': 'train'} -focalnet.D0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [24633.4375, 81920.0], - 'power': 98.647, - 'temperature': 47}}, - 'task': 'main'} -focalnet.D0 [data] {'rate': 405.2786467214058, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [data] {'gpudata': {'0': {'load': 0.79, - 'memory': [24877.4375, 81920.0], - 'power': 270.126, - 'temperature': 52}}, - 'task': 'main'} -focalnet.D0 [data] {'gpudata': {'0': {'load': 0.8, - 'memory': [24877.4375, 81920.0], - 'power': 302.512, - 'temperature': 52}}, - 'task': 'main'} -focalnet.D0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [24877.4375, 81920.0], - 'power': 95.067, - 'temperature': 42}}, - 'task': 'main'} -focalnet.D0 [data] {'loss': 7.215425491333008, 'task': 'train'} -focalnet.D1 [data] {'rate': 357.99593995872215, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [stderr] Train: 4 [ 0/32 ( 0%)] Loss: 7.215 (7.22) Time: 1.360s, 94.09/s (1.360s, 94.09/s) LR: 4.000e-02 Data: 1.007 (1.007) -focalnet.D1 [data] {'loss': 7.228561878204346, 'task': 'train'} -focalnet.D0 [data] {'rate': 355.052571316657, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [data] {'loss': 7.113143444061279, 'task': 'train'} -focalnet.D1 [data] {'rate': 351.24494425664983, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'loss': 7.187459945678711, 'task': 'train'} -focalnet.D0 [data] {'rate': 344.14947329357074, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [data] {'loss': 7.281986713409424, 'task': 'train'} -focalnet.D1 [data] {'rate': 361.30861815154486, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [data] {'gpudata': {'0': {'load': 0.74, - 'memory': [25121.4375, 81920.0], - 'power': 180.537, - 'temperature': 52}}, - 'task': 'main'} -focalnet.D1 [data] {'gpudata': {'1': {'load': 0.99, - 'memory': [25189.4375, 81920.0], - 'power': 214.382, - 'temperature': 47}}, - 'task': 'main'} -focalnet.D1 [data] {'loss': 7.373691558837891, 'task': 'train'} -focalnet.D0 [data] {'rate': 365.44320759979354, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [data] {'loss': 7.228658199310303, 'task': 'train'} -focalnet.D1 [data] {'rate': 358.97944734502687, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'loss': 7.27872896194458, 'task': 'train'} -focalnet.D0 [data] {'rate': 362.9207135452953, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [data] {'loss': 7.187405586242676, 'task': 'train'} -focalnet.D1 [data] {'rate': 376.591053806096, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'loss': 7.458530426025391, 'task': 'train'} -focalnet.D0 [data] {'rate': 371.0216249722227, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [data] {'loss': 7.373756408691406, 'task': 'train'} -focalnet.D1 [data] {'rate': 349.81122924381066, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [data] {'gpudata': {'0': {'load': 0.82, - 'memory': [25121.4375, 81920.0], - 'power': 363.882, - 'temperature': 54}}, - 'task': 'main'} -focalnet.D1 [data] {'gpudata': {'1': {'load': 0.72, - 'memory': [25189.4375, 81920.0], - 'power': 341.661, - 'temperature': 49}}, - 'task': 'main'} -focalnet.D1 [data] {'loss': 7.464056015014648, 'task': 'train'} -focalnet.D0 [data] {'rate': 372.6179025098007, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [data] {'loss': 7.278803825378418, 'task': 'train'} -focalnet.D1 [data] {'rate': 380.6044658036676, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [data] {'rate': 415.1497551386742, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'loss': 7.423433303833008, 'task': 'train'} -focalnet.D1 [data] {'rate': 386.6128691436118, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [data] {'loss': 7.388588905334473, 'task': 'train'} -focalnet.D0 [data] {'rate': 394.6336036138548, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [data] {'gpudata': {'0': {'load': 0.98, - 'memory': [25121.4375, 81920.0], - 'power': 364.519, - 'temperature': 56}}, - 'task': 'main'} -focalnet.D1 [stderr] Train: 4 [ 31/32 (100%)] Loss: 7.404 (7.33) Time: 0.306s, 417.75/s (0.381s, 336.29/s) LR: 4.000e-02 Data: 0.000 (0.053) -focalnet.D1 [data] {'rate': 391.78734430216616, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'gpudata': {'1': {'load': 0.98, - 'memory': [25189.4375, 81920.0], - 'power': 304.931, - 'temperature': 52}}, - 'task': 'main'} -focalnet.D0 [data] {'loss': 7.517882347106934, 'task': 'train'} -focalnet.D0 [data] {'rate': 398.50470160101816, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [stderr] Test: [ 0/32] Time: 0.973 (0.973) Loss: 6.9691 (6.9691) Acc@1: 0.0000 ( 0.0000) Acc@5: 4.6875 ( 4.6875) -focalnet.D0 [data] {'loss': 7.410562515258789, 'task': 'train'} -focalnet.D0 [data] {'rate': 385.5248665044852, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [stderr] Train: 4 [ 31/32 (100%)] Loss: 7.404 (7.33) Time: 0.317s, 404.26/s (0.376s, 340.54/s) LR: 4.000e-02 Data: 0.001 (0.052) -focalnet.D0 [stderr] Test: [ 0/32] Time: 1.050 (1.050) Loss: 6.9695 (6.9695) Acc@1: 0.0000 ( 0.0000) Acc@5: 4.6875 ( 4.6875) -focalnet.D1 [stderr] Test: [ 32/32] Time: 0.051 (0.231) Loss: 6.8196 (7.2575) Acc@1: 0.0000 ( 0.1211) Acc@5: 3.1250 ( 0.7025) -focalnet.D1 [data] {'rate': 347.191257177318, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'gpudata': {'1': {'load': 0.53, - 'memory': [25433.4375, 81920.0], - 'power': 99.354, - 'temperature': 44}}, - 'task': 'main'} -focalnet.D1 [data] {'gpudata': {'1': {'load': 0.11, - 'memory': [25433.4375, 81920.0], - 'power': 90.65, - 'temperature': 42}}, - 'task': 'main'} -focalnet.D1 [data] {'gpudata': {'1': {'load': 0, - 'memory': [25433.4375, 81920.0], - 'power': 89.096, - 'temperature': 38}}, - 'task': 'main'} -focalnet.D1 [data] {'loss': 7.211061000823975, 'task': 'train'} -focalnet.D0 [stderr] Test: [ 32/32] Time: 0.034 (0.225) Loss: 6.8202 (7.2576) Acc@1: 0.0000 ( 0.1211) Acc@5: 3.1250 ( 0.7025) -focalnet.D1 [stderr] Train: 5 [ 0/32 ( 0%)] Loss: 7.211 (7.21) Time: 1.047s, 122.22/s (1.047s, 122.22/s) LR: 4.997e-02 Data: 0.719 (0.719) -focalnet.D1 [data] {'rate': 351.4632029572619, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'loss': 7.3649702072143555, 'task': 'train'} -focalnet.D1 [data] {'rate': 405.6032086952962, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'loss': 7.474612712860107, 'task': 'train'} -focalnet.D1 [data] {'gpudata': {'1': {'load': 0.93, - 'memory': [25677.4375, 81920.0], - 'power': 148.119, - 'temperature': 49}}, - 'task': 'main'} -focalnet.D1 [data] {'rate': 359.0032109808133, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [data] {'rate': 399.19964712248196, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [25121.4375, 81920.0], - 'power': 98.129, - 'temperature': 46}}, - 'task': 'main'} -focalnet.D0 [data] {'gpudata': {'0': {'load': 0.83, - 'memory': [25365.4375, 81920.0], - 'power': 98.725, - 'temperature': 46}}, - 'task': 'main'} -focalnet.D0 [data] {'gpudata': {'0': {'load': 0.28, - 'memory': [25365.4375, 81920.0], - 'power': 306.064, - 'temperature': 51}}, - 'task': 'main'} -focalnet.D0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [25365.4375, 81920.0], - 'power': 82.773, - 'temperature': 41}}, - 'task': 'main'} -focalnet.D0 [data] {'loss': 7.211301326751709, 'task': 'train'} -focalnet.D1 [data] {'loss': 7.582969665527344, 'task': 'train'} -focalnet.D0 [stderr] Train: 5 [ 0/32 ( 0%)] Loss: 7.211 (7.21) Time: 1.520s, 84.19/s (1.520s, 84.19/s) LR: 4.997e-02 Data: 1.174 (1.174) -focalnet.D0 [data] {'rate': 355.55540246920174, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'rate': 383.01676532207705, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [data] {'loss': 7.365008354187012, 'task': 'train'} -focalnet.D1 [data] {'loss': 7.687699317932129, 'task': 'train'} -focalnet.D0 [data] {'rate': 356.66717386162975, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'rate': 339.7901033353911, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [data] {'loss': 7.474736213684082, 'task': 'train'} -focalnet.D0 [data] {'gpudata': {'0': {'load': 0.77, - 'memory': [25609.4375, 81920.0], - 'power': 370.689, - 'temperature': 53}}, - 'task': 'main'} -focalnet.D1 [data] {'loss': 7.523072242736816, 'task': 'train'} -focalnet.D1 [data] {'gpudata': {'1': {'load': 0.76, - 'memory': [25677.4375, 81920.0], - 'power': 366.93, - 'temperature': 50}}, - 'task': 'main'} -focalnet.D0 [data] {'rate': 392.41729205191984, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'rate': 329.94204266432956, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [data] {'loss': 7.583381652832031, 'task': 'train'} -focalnet.D1 [data] {'loss': 7.385464668273926, 'task': 'train'} -focalnet.D0 [data] {'rate': 354.6084941134556, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'rate': 360.17828341039245, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [data] {'loss': 7.70918083190918, 'task': 'train'} -focalnet.D1 [data] {'loss': 7.446259021759033, 'task': 'train'} -focalnet.D0 [data] {'rate': 384.24663600400527, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'rate': 386.82900312464454, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [data] {'gpudata': {'0': {'load': 0.65, - 'memory': [25609.4375, 81920.0], - 'power': 364.122, - 'temperature': 53}}, - 'task': 'main'} -focalnet.D0 [data] {'loss': 7.491670608520508, 'task': 'train'} -focalnet.D1 [data] {'gpudata': {'1': {'load': 0.99, - 'memory': [25677.4375, 81920.0], - 'power': 304.997, - 'temperature': 49}}, - 'task': 'main'} -focalnet.D1 [data] {'loss': 7.398087501525879, 'task': 'train'} -focalnet.D0 [data] {'rate': 376.582842411833, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'rate': 398.97395960318363, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [data] {'loss': 7.544958591461182, 'task': 'train'} -focalnet.D0 [data] {'rate': 393.2997914570873, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'loss': 7.640642166137695, 'task': 'train'} -focalnet.D1 [data] {'rate': 401.11896690188894, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [data] {'rate': 393.09845317212324, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [data] {'loss': 7.219976425170898, 'task': 'train'} -focalnet.D1 [stderr] Train: 5 [ 31/32 (100%)] Loss: 7.476 (7.45) Time: 0.307s, 416.88/s (0.369s, 346.72/s) LR: 4.997e-02 Data: 0.000 (0.044) -focalnet.D0 [data] {'gpudata': {'0': {'load': 0.99, - 'memory': [25609.4375, 81920.0], - 'power': 282.912, - 'temperature': 54}}, - 'task': 'main'} -focalnet.D1 [stderr] Test: [ 0/32] Time: 0.788 (0.788) Loss: 7.4392 (7.4392) Acc@1: 0.0000 ( 0.0000) Acc@5: 0.0000 ( 0.0000) -focalnet.D0 [data] {'rate': 411.4301370304474, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [data] {'loss': 7.497481346130371, 'task': 'train'} -focalnet.D0 [data] {'rate': 377.4812793725869, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [data] {'loss': 7.480964660644531, 'task': 'train'} -focalnet.D0 [stderr] Train: 5 [ 31/32 (100%)] Loss: 7.514 (7.44) Time: 0.320s, 399.70/s (0.380s, 337.21/s) LR: 4.997e-02 Data: 0.000 (0.057) -focalnet.D0 [stderr] Test: [ 0/32] Time: 1.234 (1.234) Loss: 7.4338 (7.4338) Acc@1: 0.0000 ( 0.0000) Acc@5: 0.0000 ( 0.0000) -focalnet.D1 [stderr] Test: [ 32/32] Time: 0.049 (0.205) Loss: 6.9521 (7.2929) Acc@1: 0.0000 ( 0.1211) Acc@5: 0.0000 ( 0.7994) -focalnet.D1 [data] {'rate': 401.34674660080793, 'task': 'train', 'units': 'items/s'} -focalnet.D1 [data] {'gpudata': {'1': {'load': 0, - 'memory': [25677.4375, 81920.0], - 'power': 91.181, - 'temperature': 43}}, - 'task': 'main'} -focalnet.D1 [data] {'gpudata': {'1': {'load': 0.53, - 'memory': [25921.4375, 81920.0], - 'power': 95.731, - 'temperature': 44}}, - 'task': 'main'} -focalnet.D1 [data] {'gpudata': {'1': {'load': 0.81, - 'memory': [25921.4375, 81920.0], - 'power': 238.387, - 'temperature': 47}}, - 'task': 'main'} -focalnet.D1 [end] voir --config /Tmp/slurm.4112514.0/base/extra/timm/voirconf-focalnet.D1-0efae956f1553a76c1e03985181900f5.json /Tmp/slurm.4112514.0/milabench/benchmarks/timm/pytorch-image-models/train.py --amp --model focalnet_base_lrf --data-dir /Tmp/slurm.4112514.0/base/data --dataset FakeImageNet --output /Tmp/slurm.4112514.0/base/extra/timm/jenadogo.2024-02-05_09:17:41.183394/focalnet.D1 --checkpoint-hist 1 [at 2024-02-05 09:47:06.876703] -focalnet.D0 [stderr] Test: [ 32/32] Time: 0.029 (0.221) Loss: 6.6553 (7.3056) Acc@1: 0.0000 ( 0.1938) Acc@5: 0.0000 ( 0.6541) -focalnet.D0 [data] {'rate': 400.05627635395626, 'task': 'train', 'units': 'items/s'} -focalnet.D0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [25609.4375, 81920.0], - 'power': 98.304, - 'temperature': 46}}, - 'task': 'main'} -focalnet.D0 [data] {'gpudata': {'0': {'load': 0.57, - 'memory': [25853.4375, 81920.0], - 'power': 371.364, - 'temperature': 50}}, - 'task': 'main'} -focalnet.D0 [data] {'gpudata': {'0': {'load': 0.85, - 'memory': [25853.4375, 81920.0], - 'power': 361.574, - 'temperature': 50}}, - 'task': 'main'} -focalnet.D0 [end] voir --config /Tmp/slurm.4112514.0/base/extra/timm/voirconf-focalnet.D0-0efae956f1553a76c1e03985181900f5.json /Tmp/slurm.4112514.0/milabench/benchmarks/timm/pytorch-image-models/train.py --amp --model focalnet_base_lrf --data-dir /Tmp/slurm.4112514.0/base/data --dataset FakeImageNet --output /Tmp/slurm.4112514.0/base/extra/timm/jenadogo.2024-02-05_09:17:41.183394/focalnet.D0 --checkpoint-hist 1 [at 2024-02-05 09:47:08.883093] -opt-1_3b.0 [config.dirs.base] /Tmp/slurm.4112514.0/base -opt-1_3b.0 [config.dirs.venv] /Tmp/slurm.4112514.0/base/venv/torch -opt-1_3b.0 [config.dirs.data] /Tmp/slurm.4112514.0/base/data -opt-1_3b.0 [config.dirs.runs] /Tmp/slurm.4112514.0/base/runs -opt-1_3b.0 [config.dirs.extra] /Tmp/slurm.4112514.0/base/extra/opt -opt-1_3b.0 [config.dirs.cache] /Tmp/slurm.4112514.0/base/cache -opt-1_3b.0 [config.arch] cuda -opt-1_3b.0 [config.group] opt -opt-1_3b.0 [config.install_group] torch -opt-1_3b.0 [config.install_variant] cuda -opt-1_3b.0 [config.run_name] jenadogo.2024-02-05_09:17:41.183394 -opt-1_3b.0 [config.enabled] True -opt-1_3b.0 [config.capabilities.nodes] 1 -opt-1_3b.0 [config.max_duration] 600 -opt-1_3b.0 [config.voir.options.stop] 60 -opt-1_3b.0 [config.voir.options.interval] 1s -opt-1_3b.0 [config.config_base] /Tmp/slurm.4112514.0/milabench/config -opt-1_3b.0 [config.config_file] /Tmp/slurm.4112514.0/milabench/config/standard.yaml -opt-1_3b.0 [config.tags] ['huggingface', 'language-modeling', 'llm', 'multigpu', 'nlp', 'transformer'] -opt-1_3b.0 [config.definition] /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt -opt-1_3b.0 [config.plan.method] njobs -opt-1_3b.0 [config.plan.n] 1 -opt-1_3b.0 [config.manager_addr] override-me -opt-1_3b.0 [config.manager_port] 10000 -opt-1_3b.0 [config.cpus_per_gpu] 8 -opt-1_3b.0 [config.gradient_accumulation_steps] 1 -opt-1_3b.0 [config.max_train_steps] 100 -opt-1_3b.0 [config.dataset_name] wikitext -opt-1_3b.0 [config.dataset_config_name] wikitext-103-v1 -opt-1_3b.0 [config.validation_split_percentage] 5 -opt-1_3b.0 [config.use_deepspeed] False -opt-1_3b.0 [config.num_machines] 1 -opt-1_3b.0 [config.model_name] facebook/opt-1.3b -opt-1_3b.0 [config.per_gpu_batch_size] 1 -opt-1_3b.0 [config.weight] 5.0 -opt-1_3b.0 [config.name] opt-1_3b -opt-1_3b.0 [config.tag] ['opt-1_3b', '0'] -opt-1_3b.0 [config.job-number] 0 -opt-1_3b.0 [config.devices] ['0', '1'] -opt-1_3b.0 [start] accelerate launch --mixed_precision=fp16 --dynamo_backend=no --machine_rank=0 --num_machines=1 --multi_gpu --gradient_accumulation_steps=1 --num_cpu_threads_per_process=8 --main_process_ip=override-me --main_process_port=10000 --num_processes=2 /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/main.py [at 2024-02-05 09:47:08.889070] -opt-1_3b.0 [stderr] Detected kernel version 4.15.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher. -opt-1_3b.0 [stdout] [02/05/24 09:47:13] INFO [1/2] __main__ - Distributed logging.py:61 -opt-1_3b.0 [stdout] environment: MULTI_GPU Backend: nccl -opt-1_3b.0 [stdout] Num processes: 2 -opt-1_3b.0 [stdout] Process index: 1 -opt-1_3b.0 [stdout] Local process index: 1 -opt-1_3b.0 [stdout] Device: cuda:1 -opt-1_3b.0 [stdout] -opt-1_3b.0 [stdout] Mixed precision type: fp16 -opt-1_3b.0 [stdout] -opt-1_3b.0 [data] {'gpudata': {'0': {'load': 0, 'memory': [697.5625, 81920.0], 'temperature': 38}, - '1': {'load': 0, - 'memory': [711.6875, 81920.0], - 'temperature': 33}}, - 'task': 'main'} -opt-1_3b.0 [stdout] [02/05/24 09:47:13] INFO [0/2] __main__ - Distributed logging.py:61 -opt-1_3b.0 [stdout] environment: MULTI_GPU Backend: nccl -opt-1_3b.0 [stdout] Num processes: 2 -opt-1_3b.0 [stdout] Process index: 0 -opt-1_3b.0 [stdout] Local process index: 0 -opt-1_3b.0 [stdout] Device: cuda:0 -opt-1_3b.0 [stdout] -opt-1_3b.0 [stdout] Mixed precision type: fp16 -opt-1_3b.0 [stdout] -opt-1_3b.0 [stderr] libibverbs: Warning: couldn't load driver 'libbnxt_re-rdmav34.so': libbnxt_re-rdmav34.so: cannot open shared object file: No such file or directory -opt-1_3b.0 [stderr] libibverbs: Warning: couldn't load driver 'libbnxt_re-rdmav34.so': libbnxt_re-rdmav34.so: cannot open shared object file: No such file or directory -opt-1_3b.0 [stderr] libibverbs: Warning: couldn't load driver 'libcxgb4-rdmav34.so': libcxgb4-rdmav34.so: cannot open shared object file: No such file or directory -opt-1_3b.0 [stderr] libibverbs: Warning: couldn't load driver 'libcxgb4-rdmav34.so': libcxgb4-rdmav34.so: cannot open shared object file: No such file or directory -opt-1_3b.0 [stderr] libibverbs: Warning: couldn't load driver 'libipathverbs-rdmav34.so': libipathverbs-rdmav34.so: cannot open shared object file: No such file or directory -opt-1_3b.0 [stderr] libibverbs: Warning: couldn't load driver 'libipathverbs-rdmav34.so': libipathverbs-rdmav34.so: cannot open shared object file: No such file or directory -opt-1_3b.0 [stderr] libibverbs: Warning: couldn't load driver 'libhfi1verbs-rdmav34.so': libhfi1verbs-rdmav34.so: cannot open shared object file: No such file or directory -opt-1_3b.0 [stderr] libibverbs: Warning: couldn't load driver 'libhfi1verbs-rdmav34.so': libhfi1verbs-rdmav34.so: cannot open shared object file: No such file or directory -opt-1_3b.0 [stderr] libibverbs: Warning: couldn't load driver 'libqedr-rdmav34.so': libqedr-rdmav34.so: cannot open shared object file: No such file or directory -opt-1_3b.0 [stderr] libibverbs: Warning: couldn't load driver 'libqedr-rdmav34.so': libqedr-rdmav34.so: cannot open shared object file: No such file or directory -opt-1_3b.0 [stderr] libibverbs: Warning: couldn't load driver 'libmthca-rdmav34.so': libmthca-rdmav34.so: cannot open shared object file: No such file or directory -opt-1_3b.0 [stderr] libibverbs: Warning: couldn't load driver 'libmthca-rdmav34.so': libmthca-rdmav34.so: cannot open shared object file: No such file or directory -opt-1_3b.0 [stderr] libibverbs: Warning: couldn't load driver 'libvmw_pvrdma-rdmav34.so': libvmw_pvrdma-rdmav34.so: cannot open shared object file: No such file or directory -opt-1_3b.0 [stderr] libibverbs: Warning: couldn't load driver 'libvmw_pvrdma-rdmav34.so': libvmw_pvrdma-rdmav34.so: cannot open shared object file: No such file or directory -opt-1_3b.0 [stderr] libibverbs: Warning: couldn't load driver 'librxe-rdmav34.so': librxe-rdmav34.so: cannot open shared object file: No such file or directory -opt-1_3b.0 [stderr] libibverbs: Warning: couldn't load driver 'librxe-rdmav34.so': librxe-rdmav34.so: cannot open shared object file: No such file or directory -opt-1_3b.0 [stderr] libibverbs: Warning: couldn't load driver 'libocrdma-rdmav34.so': libocrdma-rdmav34.so: cannot open shared object file: No such file or directory -opt-1_3b.0 [stderr] libibverbs: Warning: couldn't load driver 'libocrdma-rdmav34.so': libocrdma-rdmav34.so: cannot open shared object file: No such file or directory -opt-1_3b.0 [stderr] libibverbs: Warning: couldn't load driver 'libi40iw-rdmav34.so': libi40iw-rdmav34.so: cannot open shared object file: No such file or directory -opt-1_3b.0 [stderr] libibverbs: Warning: couldn't load driver 'libi40iw-rdmav34.so': libi40iw-rdmav34.so: cannot open shared object file: No such file or directory -opt-1_3b.0 [stderr] libibverbs: Warning: couldn't load driver 'libmlx4-rdmav34.so': libmlx4-rdmav34.so: cannot open shared object file: No such file or directory -opt-1_3b.0 [stderr] libibverbs: Warning: couldn't load driver 'libmlx4-rdmav34.so': libmlx4-rdmav34.so: cannot open shared object file: No such file or directory -opt-1_3b.0 [stderr] libibverbs: Warning: couldn't load driver 'libhns-rdmav34.so': libhns-rdmav34.so: cannot open shared object file: No such file or directory -opt-1_3b.0 [stderr] libibverbs: Warning: couldn't load driver 'libhns-rdmav34.so': libhns-rdmav34.so: cannot open shared object file: No such file or directory -opt-1_3b.0 [stderr] /Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/datasets/load.py:1429: FutureWarning: The repository for wikitext contains custom code which must be executed to correctly load the dataset. You can inspect the repository content at https://hf.co/datasets/wikitext -opt-1_3b.0 [stderr] You can avoid this message in future by passing the argument `trust_remote_code=True`. -opt-1_3b.0 [stderr] Passing `trust_remote_code=True` will be mandatory to load this dataset from the next major release of `datasets`. -opt-1_3b.0 [stderr] warnings.warn( -opt-1_3b.0 [stderr] /Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/datasets/load.py:1429: FutureWarning: The repository for wikitext contains custom code which must be executed to correctly load the dataset. You can inspect the repository content at https://hf.co/datasets/wikitext -opt-1_3b.0 [stderr] You can avoid this message in future by passing the argument `trust_remote_code=True`. -opt-1_3b.0 [stderr] Passing `trust_remote_code=True` will be mandatory to load this dataset from the next major release of `datasets`. -opt-1_3b.0 [stderr] warnings.warn( -opt-1_3b.0 [stderr] loading configuration file config.json from cache at /Tmp/slurm.4112514.0/base/cache/hub/models--facebook--opt-1.3b/snapshots/3f5c25d0bc631cb57ac65913f76e22c2dfb61d62/config.json -opt-1_3b.0 [stderr] Model config OPTConfig { -opt-1_3b.0 [stderr] "_name_or_path": "facebook/opt-1.3b", -opt-1_3b.0 [stderr] "_remove_final_layer_norm": false, -opt-1_3b.0 [stderr] "activation_dropout": 0.0, -opt-1_3b.0 [stderr] "activation_function": "relu", -opt-1_3b.0 [stderr] "architectures": [ -opt-1_3b.0 [stderr] "OPTForCausalLM" -opt-1_3b.0 [stderr] ], -opt-1_3b.0 [stderr] "attention_dropout": 0.0, -opt-1_3b.0 [stderr] "bos_token_id": 2, -opt-1_3b.0 [stderr] "do_layer_norm_before": true, -opt-1_3b.0 [stderr] "dropout": 0.1, -opt-1_3b.0 [stderr] "enable_bias": true, -opt-1_3b.0 [stderr] "eos_token_id": 2, -opt-1_3b.0 [stderr] "ffn_dim": 8192, -opt-1_3b.0 [stderr] "hidden_size": 2048, -opt-1_3b.0 [stderr] "init_std": 0.02, -opt-1_3b.0 [stderr] "layer_norm_elementwise_affine": true, -opt-1_3b.0 [stderr] "layerdrop": 0.0, -opt-1_3b.0 [stderr] "max_position_embeddings": 2048, -opt-1_3b.0 [stderr] "model_type": "opt", -opt-1_3b.0 [stderr] "num_attention_heads": 32, -opt-1_3b.0 [stderr] "num_hidden_layers": 24, -opt-1_3b.0 [stderr] "pad_token_id": 1, -opt-1_3b.0 [stderr] "prefix": "", -opt-1_3b.0 [stderr] "torch_dtype": "float16", -opt-1_3b.0 [stderr] "transformers_version": "4.37.2", -opt-1_3b.0 [stderr] "use_cache": true, -opt-1_3b.0 [stderr] "vocab_size": 50272, -opt-1_3b.0 [stderr] "word_embed_proj_dim": 2048 -opt-1_3b.0 [stderr] } -opt-1_3b.0 [stderr] -opt-1_3b.0 [stderr] loading configuration file config.json from cache at /Tmp/slurm.4112514.0/base/cache/hub/models--facebook--opt-1.3b/snapshots/3f5c25d0bc631cb57ac65913f76e22c2dfb61d62/config.json -opt-1_3b.0 [stderr] Model config OPTConfig { -opt-1_3b.0 [stderr] "_name_or_path": "facebook/opt-1.3b", -opt-1_3b.0 [stderr] "_remove_final_layer_norm": false, -opt-1_3b.0 [stderr] "activation_dropout": 0.0, -opt-1_3b.0 [stderr] "activation_function": "relu", -opt-1_3b.0 [stderr] "architectures": [ -opt-1_3b.0 [stderr] "OPTForCausalLM" -opt-1_3b.0 [stderr] ], -opt-1_3b.0 [stderr] "attention_dropout": 0.0, -opt-1_3b.0 [stderr] "bos_token_id": 2, -opt-1_3b.0 [stderr] "do_layer_norm_before": true, -opt-1_3b.0 [stderr] "dropout": 0.1, -opt-1_3b.0 [stderr] "enable_bias": true, -opt-1_3b.0 [stderr] "eos_token_id": 2, -opt-1_3b.0 [stderr] "ffn_dim": 8192, -opt-1_3b.0 [stderr] "hidden_size": 2048, -opt-1_3b.0 [stderr] "init_std": 0.02, -opt-1_3b.0 [stderr] "layer_norm_elementwise_affine": true, -opt-1_3b.0 [stderr] "layerdrop": 0.0, -opt-1_3b.0 [stderr] "max_position_embeddings": 2048, -opt-1_3b.0 [stderr] "model_type": "opt", -opt-1_3b.0 [stderr] "num_attention_heads": 32, -opt-1_3b.0 [stderr] "num_hidden_layers": 24, -opt-1_3b.0 [stderr] "pad_token_id": 1, -opt-1_3b.0 [stderr] "prefix": "", -opt-1_3b.0 [stderr] "torch_dtype": "float16", -opt-1_3b.0 [stderr] "transformers_version": "4.37.2", -opt-1_3b.0 [stderr] "use_cache": true, -opt-1_3b.0 [stderr] "vocab_size": 50272, -opt-1_3b.0 [stderr] "word_embed_proj_dim": 2048 -opt-1_3b.0 [stderr] } -opt-1_3b.0 [stderr] -opt-1_3b.0 [stderr] loading file vocab.json from cache at /Tmp/slurm.4112514.0/base/cache/hub/models--facebook--opt-1.3b/snapshots/3f5c25d0bc631cb57ac65913f76e22c2dfb61d62/vocab.json -opt-1_3b.0 [stderr] loading file merges.txt from cache at /Tmp/slurm.4112514.0/base/cache/hub/models--facebook--opt-1.3b/snapshots/3f5c25d0bc631cb57ac65913f76e22c2dfb61d62/merges.txt -opt-1_3b.0 [stderr] loading file tokenizer.json from cache at None -opt-1_3b.0 [stderr] loading file added_tokens.json from cache at None -opt-1_3b.0 [stderr] loading file special_tokens_map.json from cache at /Tmp/slurm.4112514.0/base/cache/hub/models--facebook--opt-1.3b/snapshots/3f5c25d0bc631cb57ac65913f76e22c2dfb61d62/special_tokens_map.json -opt-1_3b.0 [stderr] loading file tokenizer_config.json from cache at /Tmp/slurm.4112514.0/base/cache/hub/models--facebook--opt-1.3b/snapshots/3f5c25d0bc631cb57ac65913f76e22c2dfb61d62/tokenizer_config.json -opt-1_3b.0 [stderr] loading configuration file config.json from cache at /Tmp/slurm.4112514.0/base/cache/hub/models--facebook--opt-1.3b/snapshots/3f5c25d0bc631cb57ac65913f76e22c2dfb61d62/config.json -opt-1_3b.0 [stderr] Model config OPTConfig { -opt-1_3b.0 [stderr] "_name_or_path": "facebook/opt-1.3b", -opt-1_3b.0 [stderr] "_remove_final_layer_norm": false, -opt-1_3b.0 [stderr] "activation_dropout": 0.0, -opt-1_3b.0 [stderr] "activation_function": "relu", -opt-1_3b.0 [stderr] "architectures": [ -opt-1_3b.0 [stderr] "OPTForCausalLM" -opt-1_3b.0 [stderr] ], -opt-1_3b.0 [stderr] "attention_dropout": 0.0, -opt-1_3b.0 [stderr] "bos_token_id": 2, -opt-1_3b.0 [stderr] "do_layer_norm_before": true, -opt-1_3b.0 [stderr] "dropout": 0.1, -opt-1_3b.0 [stderr] "enable_bias": true, -opt-1_3b.0 [stderr] "eos_token_id": 2, -opt-1_3b.0 [stderr] "ffn_dim": 8192, -opt-1_3b.0 [stderr] "hidden_size": 2048, -opt-1_3b.0 [stderr] "init_std": 0.02, -opt-1_3b.0 [stderr] "layer_norm_elementwise_affine": true, -opt-1_3b.0 [stderr] "layerdrop": 0.0, -opt-1_3b.0 [stderr] "max_position_embeddings": 2048, -opt-1_3b.0 [stderr] "model_type": "opt", -opt-1_3b.0 [stderr] "num_attention_heads": 32, -opt-1_3b.0 [stderr] "num_hidden_layers": 24, -opt-1_3b.0 [stderr] "pad_token_id": 1, -opt-1_3b.0 [stderr] "prefix": "", -opt-1_3b.0 [stderr] "torch_dtype": "float16", -opt-1_3b.0 [stderr] "transformers_version": "4.37.2", -opt-1_3b.0 [stderr] "use_cache": true, -opt-1_3b.0 [stderr] "vocab_size": 50272, -opt-1_3b.0 [stderr] "word_embed_proj_dim": 2048 -opt-1_3b.0 [stderr] } -opt-1_3b.0 [stderr] -opt-1_3b.0 [stderr] loading configuration file config.json from cache at /Tmp/slurm.4112514.0/base/cache/hub/models--facebook--opt-1.3b/snapshots/3f5c25d0bc631cb57ac65913f76e22c2dfb61d62/config.json -opt-1_3b.0 [stderr] Model config OPTConfig { -opt-1_3b.0 [stderr] "_name_or_path": "facebook/opt-1.3b", -opt-1_3b.0 [stderr] "_remove_final_layer_norm": false, -opt-1_3b.0 [stderr] "activation_dropout": 0.0, -opt-1_3b.0 [stderr] "activation_function": "relu", -opt-1_3b.0 [stderr] "architectures": [ -opt-1_3b.0 [stderr] "OPTForCausalLM" -opt-1_3b.0 [stderr] ], -opt-1_3b.0 [stderr] "attention_dropout": 0.0, -opt-1_3b.0 [stderr] "bos_token_id": 2, -opt-1_3b.0 [stderr] "do_layer_norm_before": true, -opt-1_3b.0 [stderr] "dropout": 0.1, -opt-1_3b.0 [stderr] "enable_bias": true, -opt-1_3b.0 [stderr] "eos_token_id": 2, -opt-1_3b.0 [stderr] "ffn_dim": 8192, -opt-1_3b.0 [stderr] "hidden_size": 2048, -opt-1_3b.0 [stderr] "init_std": 0.02, -opt-1_3b.0 [stderr] "layer_norm_elementwise_affine": true, -opt-1_3b.0 [stderr] "layerdrop": 0.0, -opt-1_3b.0 [stderr] "max_position_embeddings": 2048, -opt-1_3b.0 [stderr] "model_type": "opt", -opt-1_3b.0 [stderr] "num_attention_heads": 32, -opt-1_3b.0 [stderr] "num_hidden_layers": 24, -opt-1_3b.0 [stderr] "pad_token_id": 1, -opt-1_3b.0 [stderr] "prefix": "", -opt-1_3b.0 [stderr] "torch_dtype": "float16", -opt-1_3b.0 [stderr] "transformers_version": "4.37.2", -opt-1_3b.0 [stderr] "use_cache": true, -opt-1_3b.0 [stderr] "vocab_size": 50272, -opt-1_3b.0 [stderr] "word_embed_proj_dim": 2048 -opt-1_3b.0 [stderr] } -opt-1_3b.0 [stderr] -opt-1_3b.0 [stdout] [02/05/24 09:47:14] WARNING [0/2] __main__ - The tokenizer picked logging.py:61 -opt-1_3b.0 [stdout] seems to have a very large -opt-1_3b.0 [stdout] `model_max_length` -opt-1_3b.0 [stdout] (1000000000000000019884624838656). -opt-1_3b.0 [stdout] Picking 1024 instead. You can change -opt-1_3b.0 [stdout] that default value by passing -opt-1_3b.0 [stdout] --block_size xxx. -opt-1_3b.0 [stderr] Generate config GenerationConfig { -opt-1_3b.0 [stderr] "bos_token_id": 2, -opt-1_3b.0 [stderr] "eos_token_id": 2, -opt-1_3b.0 [stderr] "pad_token_id": 1 -opt-1_3b.0 [stderr] } -opt-1_3b.0 [stderr] -opt-1_3b.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [1509.4375, 81920.0], - 'temperature': 38}, - '1': {'load': 0, - 'memory': [1509.4375, 81920.0], - 'temperature': 33}}, - 'task': 'main'} -opt-1_3b.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [1509.4375, 81920.0], - 'temperature': 38}, - '1': {'load': 0, - 'memory': [1509.4375, 81920.0], - 'temperature': 32}}, - 'task': 'main'} -opt-1_3b.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [1509.4375, 81920.0], - 'temperature': 37}, - '1': {'load': 0, - 'memory': [1509.4375, 81920.0], - 'temperature': 32}}, - 'task': 'main'} -opt-1_3b.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [1509.4375, 81920.0], - 'temperature': 37}, - '1': {'load': 0, - 'memory': [1509.4375, 81920.0], - 'temperature': 31}}, - 'task': 'main'} -opt-1_3b.0 [stderr] You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 50265. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc -opt-1_3b.0 [data] {'gpudata': {'0': {'load': 0.29, - 'memory': [2545.4375, 81920.0], - 'temperature': 36}, - '1': {'load': 0, - 'memory': [1509.4375, 81920.0], - 'temperature': 31}}, - 'task': 'main'} -opt-1_3b.0 [stdout] [02/05/24 09:47:29] INFO [0/2] __main__ - ***** Running logging.py:61 -opt-1_3b.0 [stdout] training ***** -opt-1_3b.0 [stdout] INFO [0/2] __main__ - Num examples = logging.py:61 -opt-1_3b.0 [stdout] 115910 -opt-1_3b.0 [stdout] INFO [0/2] __main__ - Num Epochs = 1 logging.py:61 -opt-1_3b.0 [stdout] INFO [0/2] __main__ - Instantaneous logging.py:61 -opt-1_3b.0 [stdout] batch size per device = 1 -opt-1_3b.0 [stdout] INFO [0/2] __main__ - Total train batch logging.py:61 -opt-1_3b.0 [stdout] size (w. parallel, distributed & -opt-1_3b.0 [stdout] accumulation) = 2 -opt-1_3b.0 [stdout] INFO [0/2] __main__ - Gradient logging.py:61 -opt-1_3b.0 [stdout] Accumulation steps = 1 -opt-1_3b.0 [stdout] INFO [0/2] __main__ - Total optimization logging.py:61 -opt-1_3b.0 [stdout] steps = 100 -opt-1_3b.0 [data] {'loss': 11.195878028869629, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 12.08406925201416, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 12.094964981079102, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 11.944356918334961, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 9.969600677490234, 'task': 'train'} -opt-1_3b.0 [data] {'rate': 3.916599472688741, 'task': 'train', 'units': 'items/s'} -opt-1_3b.0 [data] {'loss': 10.278947830200195, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 10.161888122558594, 'task': 'train'} -opt-1_3b.0 [data] {'gpudata': {'0': {'load': 0.99, - 'memory': [41307.4375, 81920.0], - 'temperature': 46}, - '1': {'load': 0.98, - 'memory': [41307.4375, 81920.0], - 'temperature': 40}}, - 'task': 'main'} -opt-1_3b.0 [data] {'loss': 9.691802978515625, 'task': 'train'} -opt-1_3b.0 [data] {'rate': 7.452592226695901, 'task': 'train', 'units': 'items/s'} -opt-1_3b.0 [data] {'loss': 9.84829044342041, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 9.518179893493652, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 9.536498069763184, 'task': 'train'} -opt-1_3b.0 [data] {'rate': 7.432593179781645, 'task': 'train', 'units': 'items/s'} -opt-1_3b.0 [data] {'loss': 9.402581214904785, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 9.356261253356934, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 9.344156265258789, 'task': 'train'} -opt-1_3b.0 [data] {'rate': 7.448937010962144, 'task': 'train', 'units': 'items/s'} -opt-1_3b.0 [data] {'loss': 9.218290328979492, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 9.028590202331543, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 8.881168365478516, 'task': 'train'} -opt-1_3b.0 [data] {'rate': 7.4501895717339615, 'task': 'train', 'units': 'items/s'} -opt-1_3b.0 [data] {'loss': 8.740152359008789, 'task': 'train'} -opt-1_3b.0 [data] {'gpudata': {'0': {'load': 0.99, - 'memory': [41307.4375, 81920.0], - 'temperature': 48}, - '1': {'load': 0.99, - 'memory': [41307.4375, 81920.0], - 'temperature': 42}}, - 'task': 'main'} -opt-1_3b.0 [data] {'loss': 8.990778923034668, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 8.575270652770996, 'task': 'train'} -opt-1_3b.0 [data] {'rate': 7.4307080008964395, 'task': 'train', 'units': 'items/s'} -opt-1_3b.0 [data] {'loss': 8.785866737365723, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 8.55030632019043, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 8.39486312866211, 'task': 'train'} -opt-1_3b.0 [data] {'rate': 7.430115650916164, 'task': 'train', 'units': 'items/s'} -opt-1_3b.0 [data] {'loss': 8.380533218383789, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 8.442427635192871, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 8.301115036010742, 'task': 'train'} -opt-1_3b.0 [data] {'rate': 7.446968607460988, 'task': 'train', 'units': 'items/s'} -opt-1_3b.0 [data] {'loss': 8.287036895751953, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 8.037515640258789, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 8.210185050964355, 'task': 'train'} -opt-1_3b.0 [data] {'rate': 7.462795925829384, 'task': 'train', 'units': 'items/s'} -opt-1_3b.0 [data] {'loss': 8.13209056854248, 'task': 'train'} -opt-1_3b.0 [data] {'gpudata': {'0': {'load': 0.98, - 'memory': [41307.4375, 81920.0], - 'temperature': 50}, - '1': {'load': 0.99, - 'memory': [41307.4375, 81920.0], - 'temperature': 45}}, - 'task': 'main'} -opt-1_3b.0 [data] {'loss': 8.165427207946777, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 8.249624252319336, 'task': 'train'} -opt-1_3b.0 [data] {'rate': 7.45093954559195, 'task': 'train', 'units': 'items/s'} -opt-1_3b.0 [data] {'loss': 8.073044776916504, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 8.111602783203125, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 8.119954109191895, 'task': 'train'} -opt-1_3b.0 [data] {'rate': 7.4458162628581475, 'task': 'train', 'units': 'items/s'} -opt-1_3b.0 [data] {'loss': 8.19534683227539, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 7.794744491577148, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 8.021860122680664, 'task': 'train'} -opt-1_3b.0 [data] {'rate': 7.435946727684838, 'task': 'train', 'units': 'items/s'} -opt-1_3b.0 [data] {'loss': 8.353038787841797, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 7.849271297454834, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 7.903420448303223, 'task': 'train'} -opt-1_3b.0 [data] {'gpudata': {'0': {'load': 0.98, - 'memory': [41307.4375, 81920.0], - 'temperature': 51}, - '1': {'load': 0.99, - 'memory': [41307.4375, 81920.0], - 'temperature': 46}}, - 'task': 'main'} -opt-1_3b.0 [data] {'rate': 7.449056074326506, 'task': 'train', 'units': 'items/s'} -opt-1_3b.0 [data] {'loss': 7.843648910522461, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 7.870221138000488, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 8.084782600402832, 'task': 'train'} -opt-1_3b.0 [data] {'rate': 7.451025581658375, 'task': 'train', 'units': 'items/s'} -opt-1_3b.0 [data] {'loss': 7.9906086921691895, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 7.874730587005615, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 8.088814735412598, 'task': 'train'} -opt-1_3b.0 [data] {'rate': 7.437304819623558, 'task': 'train', 'units': 'items/s'} -opt-1_3b.0 [data] {'loss': 8.2008056640625, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 8.207475662231445, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 7.88267707824707, 'task': 'train'} -opt-1_3b.0 [data] {'rate': 7.437436699629899, 'task': 'train', 'units': 'items/s'} -opt-1_3b.0 [data] {'loss': 8.002808570861816, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 7.65382719039917, 'task': 'train'} -opt-1_3b.0 [data] {'gpudata': {'0': {'load': 0.99, - 'memory': [41307.4375, 81920.0], - 'temperature': 50}, - '1': {'load': 0.98, - 'memory': [41307.4375, 81920.0], - 'temperature': 45}}, - 'task': 'main'} -opt-1_3b.0 [data] {'loss': 7.899359703063965, 'task': 'train'} -opt-1_3b.0 [data] {'rate': 7.441716545086632, 'task': 'train', 'units': 'items/s'} -opt-1_3b.0 [data] {'loss': 7.944027423858643, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 8.027850151062012, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 7.670206546783447, 'task': 'train'} -opt-1_3b.0 [data] {'rate': 7.440777020534275, 'task': 'train', 'units': 'items/s'} -opt-1_3b.0 [data] {'loss': 7.487945079803467, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 7.927110195159912, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 8.036956787109375, 'task': 'train'} -opt-1_3b.0 [data] {'rate': 7.447409368898222, 'task': 'train', 'units': 'items/s'} -opt-1_3b.0 [data] {'loss': 7.702938079833984, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 7.825314521789551, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 8.329445838928223, 'task': 'train'} -opt-1_3b.0 [data] {'rate': 7.435990671114228, 'task': 'train', 'units': 'items/s'} -opt-1_3b.0 [data] {'loss': 8.052446365356445, 'task': 'train'} -opt-1_3b.0 [data] {'gpudata': {'0': {'load': 0.99, - 'memory': [41307.4375, 81920.0], - 'temperature': 50}, - '1': {'load': 0.99, - 'memory': [41307.4375, 81920.0], - 'temperature': 46}}, - 'task': 'main'} -opt-1_3b.0 [data] {'loss': 7.7013397216796875, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 7.929051876068115, 'task': 'train'} -opt-1_3b.0 [data] {'rate': 7.445670868039458, 'task': 'train', 'units': 'items/s'} -opt-1_3b.0 [data] {'loss': 7.912907600402832, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 7.954098701477051, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 8.227679252624512, 'task': 'train'} -opt-1_3b.0 [data] {'rate': 7.441137840310398, 'task': 'train', 'units': 'items/s'} -opt-1_3b.0 [data] {'loss': 8.123826026916504, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 7.775002956390381, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 7.617221832275391, 'task': 'train'} -opt-1_3b.0 [data] {'rate': 7.443664558905218, 'task': 'train', 'units': 'items/s'} -opt-1_3b.0 [data] {'loss': 7.9398674964904785, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 7.922633171081543, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 7.667035102844238, 'task': 'train'} -opt-1_3b.0 [data] {'rate': 7.482762260520051, 'task': 'train', 'units': 'items/s'} -opt-1_3b.0 [data] {'loss': 7.607123851776123, 'task': 'train'} -opt-1_3b.0 [data] {'gpudata': {'0': {'load': 0.99, - 'memory': [41307.4375, 81920.0], - 'temperature': 53}, - '1': {'load': 0.99, - 'memory': [41307.4375, 81920.0], - 'temperature': 48}}, - 'task': 'main'} -opt-1_3b.0 [data] {'loss': 7.806539535522461, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 8.054414749145508, 'task': 'train'} -opt-1_3b.0 [data] {'rate': 7.432380253699751, 'task': 'train', 'units': 'items/s'} -opt-1_3b.0 [data] {'loss': 7.841533184051514, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 7.729464530944824, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 8.287406921386719, 'task': 'train'} -opt-1_3b.0 [data] {'rate': 7.453960821854837, 'task': 'train', 'units': 'items/s'} -opt-1_3b.0 [data] {'loss': 7.893307209014893, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 7.758818626403809, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 7.729844570159912, 'task': 'train'} -opt-1_3b.0 [data] {'rate': 7.462811417238307, 'task': 'train', 'units': 'items/s'} -opt-1_3b.0 [data] {'loss': 7.654940128326416, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 7.963740348815918, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 7.853725433349609, 'task': 'train'} -opt-1_3b.0 [data] {'gpudata': {'0': {'load': 0.98, - 'memory': [41307.4375, 81920.0], - 'temperature': 53}, - '1': {'load': 1.0, - 'memory': [41307.4375, 81920.0], - 'temperature': 48}}, - 'task': 'main'} -opt-1_3b.0 [data] {'rate': 7.439199944898809, 'task': 'train', 'units': 'items/s'} -opt-1_3b.0 [data] {'loss': 7.7367424964904785, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 8.032720565795898, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 8.021537780761719, 'task': 'train'} -opt-1_3b.0 [data] {'rate': 7.43490981349372, 'task': 'train', 'units': 'items/s'} -opt-1_3b.0 [data] {'loss': 7.791340351104736, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 8.016383171081543, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 7.95905876159668, 'task': 'train'} -opt-1_3b.0 [data] {'rate': 7.433159578640932, 'task': 'train', 'units': 'items/s'} -opt-1_3b.0 [data] {'loss': 7.935147762298584, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 7.755134105682373, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 7.665759563446045, 'task': 'train'} -opt-1_3b.0 [data] {'rate': 7.340255571950962, 'task': 'train', 'units': 'items/s'} -opt-1_3b.0 [data] {'loss': 7.89297342300415, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 7.874948501586914, 'task': 'train'} -opt-1_3b.0 [data] {'gpudata': {'0': {'load': 0.98, - 'memory': [41307.4375, 81920.0], - 'temperature': 53}, - '1': {'load': 0.98, - 'memory': [41307.4375, 81920.0], - 'temperature': 48}}, - 'task': 'main'} -opt-1_3b.0 [data] {'loss': 7.938521385192871, 'task': 'train'} -opt-1_3b.0 [data] {'rate': 7.448180826971091, 'task': 'train', 'units': 'items/s'} -opt-1_3b.0 [data] {'loss': 8.242273330688477, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 7.613307952880859, 'task': 'train'} -opt-1_3b.0 [data] {'loss': 8.197229385375977, 'task': 'train'} -opt-1_3b.0 [data] {'rate': 7.459995251134081, 'task': 'train', 'units': 'items/s'} -opt-1_3b.0 [data] {'loss': 7.614323616027832, 'task': 'train'} -opt-1_3b.0 [end] accelerate launch --mixed_precision=fp16 --dynamo_backend=no --machine_rank=0 --num_machines=1 --multi_gpu --gradient_accumulation_steps=1 --num_cpu_threads_per_process=8 --main_process_ip=override-me --main_process_port=10000 --num_processes=2 /Tmp/slurm.4112514.0/milabench/benchmarks/accelerate_opt/main.py [at 2024-02-05 09:48:00.972620] -opt-1_3b-multinode [message] Skip opt-1_3b-multinode because the following capability is not satisfied: nodes >= 2 -opt-6_7b-multinode [message] Skip opt-6_7b-multinode because the following capability is not satisfied: nodes >= 2 -stargan.D0 [config.dirs.base] /Tmp/slurm.4112514.0/base -stargan.D0 [config.dirs.venv] /Tmp/slurm.4112514.0/base/venv/torch -stargan.D0 [config.dirs.data] /Tmp/slurm.4112514.0/base/data -stargan.D0 [config.dirs.runs] /Tmp/slurm.4112514.0/base/runs -stargan.D0 [config.dirs.extra] /Tmp/slurm.4112514.0/base/extra/stargan -stargan.D0 [config.dirs.cache] /Tmp/slurm.4112514.0/base/cache -stargan.D0 [config.arch] cuda -stargan.D0 [config.group] stargan -stargan.D0 [config.install_group] torch -stargan.D0 [config.install_variant] cuda -stargan.D0 [config.run_name] jenadogo.2024-02-05_09:17:41.183394 -stargan.D0 [config.enabled] True -stargan.D0 [config.capabilities.nodes] 1 -stargan.D0 [config.max_duration] 600 -stargan.D0 [config.voir.options.stop] 60 -stargan.D0 [config.voir.options.interval] 1s -stargan.D0 [config.config_base] /Tmp/slurm.4112514.0/milabench/config -stargan.D0 [config.config_file] /Tmp/slurm.4112514.0/milabench/config/standard.yaml -stargan.D0 [config.tags] ['gan', 'resnet', 'vision'] -stargan.D0 [config.definition] /Tmp/slurm.4112514.0/milabench/benchmarks/stargan -stargan.D0 [config.plan.method] per_gpu -stargan.D0 [config.argv.--image_size] 512 -stargan.D0 [config.argv.--c_dim] 5 -stargan.D0 [config.argv.--batch_size] 16 -stargan.D0 [config.weight] 1.0 -stargan.D0 [config.name] stargan -stargan.D0 [config.tag] ['stargan', 'D0'] -stargan.D0 [config.device] 0 -stargan.D0 [config.devices] ['0'] -stargan.D0 [config.env.CUDA_VISIBLE_DEVICES] 0 -stargan.D1 [config.dirs.base] /Tmp/slurm.4112514.0/base -stargan.D1 [config.dirs.venv] /Tmp/slurm.4112514.0/base/venv/torch -stargan.D1 [config.dirs.data] /Tmp/slurm.4112514.0/base/data -stargan.D1 [config.dirs.runs] /Tmp/slurm.4112514.0/base/runs -stargan.D1 [config.dirs.extra] /Tmp/slurm.4112514.0/base/extra/stargan -stargan.D1 [config.dirs.cache] /Tmp/slurm.4112514.0/base/cache -stargan.D1 [config.arch] cuda -stargan.D1 [config.group] stargan -stargan.D1 [config.install_group] torch -stargan.D1 [config.install_variant] cuda -stargan.D1 [config.run_name] jenadogo.2024-02-05_09:17:41.183394 -stargan.D1 [config.enabled] True -stargan.D1 [config.capabilities.nodes] 1 -stargan.D1 [config.max_duration] 600 -stargan.D1 [config.voir.options.stop] 60 -stargan.D1 [config.voir.options.interval] 1s -stargan.D1 [config.config_base] /Tmp/slurm.4112514.0/milabench/config -stargan.D1 [config.config_file] /Tmp/slurm.4112514.0/milabench/config/standard.yaml -stargan.D1 [config.tags] ['gan', 'resnet', 'vision'] -stargan.D1 [config.definition] /Tmp/slurm.4112514.0/milabench/benchmarks/stargan -stargan.D1 [config.plan.method] per_gpu -stargan.D1 [config.argv.--image_size] 512 -stargan.D1 [config.argv.--c_dim] 5 -stargan.D1 [config.argv.--batch_size] 16 -stargan.D1 [config.weight] 1.0 -stargan.D1 [config.name] stargan -stargan.D1 [config.tag] ['stargan', 'D1'] -stargan.D1 [config.device] 1 -stargan.D1 [config.devices] ['1'] -stargan.D1 [config.env.CUDA_VISIBLE_DEVICES] 1 -stargan.D0 [start] voir --config /Tmp/slurm.4112514.0/base/extra/stargan/voirconf-stargan.D0-0efae956f1553a76c1e03985181900f5.json /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/stargan/main.py --image_size 512 --c_dim 5 --batch_size 16 [at 2024-02-05 09:48:00.981562] -stargan.D1 [start] voir --config /Tmp/slurm.4112514.0/base/extra/stargan/voirconf-stargan.D1-0efae956f1553a76c1e03985181900f5.json /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/stargan/main.py --image_size 512 --c_dim 5 --batch_size 16 [at 2024-02-05 09:48:00.984605] -stargan.D1 [stdout] Namespace(c_dim=5, c2_dim=8, celeba_crop_size=178, rafd_crop_size=256, image_size=512, g_conv_dim=64, d_conv_dim=64, g_repeat_num=6, d_repeat_num=6, lambda_cls=1, lambda_rec=10, lambda_gp=10, dataset='synth', batch_size=16, num_iters=200000, num_iters_decay=100000, g_lr=0.0001, d_lr=0.0001, n_critic=5, beta1=0.5, beta2=0.999, resume_iters=None, selected_attrs=['Black_Hair', 'Blond_Hair', 'Brown_Hair', 'Male', 'Young'], test_iters=200000, num_workers=1, mode='train', use_tensorboard=False, celeba_image_dir='data/celeba/images', attr_path='data/celeba/list_attr_celeba.txt', rafd_image_dir='data/RaFD/train', log_dir='/Tmp/slurm.4112514.0/base/extra/stargan/logs', model_save_dir='/Tmp/slurm.4112514.0/base/extra/stargan/models', sample_dir='/Tmp/slurm.4112514.0/base/extra/stargan/samples', result_dir='/Tmp/slurm.4112514.0/base/extra/stargan/results', log_step=10, sample_step=1000, model_save_step=10000, lr_update_step=1000) -stargan.D0 [stdout] Namespace(c_dim=5, c2_dim=8, celeba_crop_size=178, rafd_crop_size=256, image_size=512, g_conv_dim=64, d_conv_dim=64, g_repeat_num=6, d_repeat_num=6, lambda_cls=1, lambda_rec=10, lambda_gp=10, dataset='synth', batch_size=16, num_iters=200000, num_iters_decay=100000, g_lr=0.0001, d_lr=0.0001, n_critic=5, beta1=0.5, beta2=0.999, resume_iters=None, selected_attrs=['Black_Hair', 'Blond_Hair', 'Brown_Hair', 'Male', 'Young'], test_iters=200000, num_workers=1, mode='train', use_tensorboard=False, celeba_image_dir='data/celeba/images', attr_path='data/celeba/list_attr_celeba.txt', rafd_image_dir='data/RaFD/train', log_dir='/Tmp/slurm.4112514.0/base/extra/stargan/logs', model_save_dir='/Tmp/slurm.4112514.0/base/extra/stargan/models', sample_dir='/Tmp/slurm.4112514.0/base/extra/stargan/samples', result_dir='/Tmp/slurm.4112514.0/base/extra/stargan/results', log_step=10, sample_step=1000, model_save_step=10000, lr_update_step=1000) -stargan.D1 [stdout] Generator( -stargan.D1 [stdout] (main): Sequential( -stargan.D1 [stdout] (0): Conv2d(8, 64, kernel_size=(7, 7), stride=(1, 1), padding=(3, 3), bias=False) -stargan.D1 [stdout] (1): InstanceNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) -stargan.D1 [stdout] (2): ReLU(inplace=True) -stargan.D1 [stdout] (3): Conv2d(64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False) -stargan.D1 [stdout] (4): InstanceNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) -stargan.D1 [stdout] (5): ReLU(inplace=True) -stargan.D1 [stdout] (6): Conv2d(128, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False) -stargan.D1 [stdout] (7): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) -stargan.D1 [stdout] (8): ReLU(inplace=True) -stargan.D1 [stdout] (9): ResidualBlock( -stargan.D1 [stdout] (main): Sequential( -stargan.D1 [stdout] (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) -stargan.D1 [stdout] (1): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) -stargan.D1 [stdout] (2): ReLU(inplace=True) -stargan.D1 [stdout] (3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) -stargan.D1 [stdout] (4): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) -stargan.D1 [stdout] ) -stargan.D1 [stdout] ) -stargan.D1 [stdout] (10): ResidualBlock( -stargan.D1 [stdout] (main): Sequential( -stargan.D1 [stdout] (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) -stargan.D1 [stdout] (1): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) -stargan.D1 [stdout] (2): ReLU(inplace=True) -stargan.D1 [stdout] (3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) -stargan.D1 [stdout] (4): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) -stargan.D1 [stdout] ) -stargan.D1 [stdout] ) -stargan.D1 [stdout] (11): ResidualBlock( -stargan.D1 [stdout] (main): Sequential( -stargan.D1 [stdout] (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) -stargan.D1 [stdout] (1): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) -stargan.D1 [stdout] (2): ReLU(inplace=True) -stargan.D1 [stdout] (3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) -stargan.D1 [stdout] (4): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) -stargan.D1 [stdout] ) -stargan.D1 [stdout] ) -stargan.D1 [stdout] (12): ResidualBlock( -stargan.D1 [stdout] (main): Sequential( -stargan.D1 [stdout] (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) -stargan.D1 [stdout] (1): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) -stargan.D1 [stdout] (2): ReLU(inplace=True) -stargan.D1 [stdout] (3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) -stargan.D1 [stdout] (4): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) -stargan.D1 [stdout] ) -stargan.D1 [stdout] ) -stargan.D1 [stdout] (13): ResidualBlock( -stargan.D1 [stdout] (main): Sequential( -stargan.D1 [stdout] (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) -stargan.D1 [stdout] (1): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) -stargan.D1 [stdout] (2): ReLU(inplace=True) -stargan.D1 [stdout] (3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) -stargan.D1 [stdout] (4): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) -stargan.D1 [stdout] ) -stargan.D1 [stdout] ) -stargan.D1 [stdout] (14): ResidualBlock( -stargan.D1 [stdout] (main): Sequential( -stargan.D1 [stdout] (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) -stargan.D1 [stdout] (1): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) -stargan.D1 [stdout] (2): ReLU(inplace=True) -stargan.D1 [stdout] (3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) -stargan.D1 [stdout] (4): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) -stargan.D1 [stdout] ) -stargan.D1 [stdout] ) -stargan.D1 [stdout] (15): ConvTranspose2d(256, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False) -stargan.D1 [stdout] (16): InstanceNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) -stargan.D1 [stdout] (17): ReLU(inplace=True) -stargan.D1 [stdout] (18): ConvTranspose2d(128, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False) -stargan.D1 [stdout] (19): InstanceNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) -stargan.D1 [stdout] (20): ReLU(inplace=True) -stargan.D1 [stdout] (21): Conv2d(64, 3, kernel_size=(7, 7), stride=(1, 1), padding=(3, 3), bias=False) -stargan.D1 [stdout] (22): Tanh() -stargan.D1 [stdout] ) -stargan.D1 [stdout] ) -stargan.D1 [stdout] G -stargan.D1 [stdout] The number of parameters: 8430528 -stargan.D1 [stdout] Discriminator( -stargan.D1 [stdout] (main): Sequential( -stargan.D1 [stdout] (0): Conv2d(3, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) -stargan.D1 [stdout] (1): LeakyReLU(negative_slope=0.01) -stargan.D1 [stdout] (2): Conv2d(64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) -stargan.D1 [stdout] (3): LeakyReLU(negative_slope=0.01) -stargan.D1 [stdout] (4): Conv2d(128, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) -stargan.D1 [stdout] (5): LeakyReLU(negative_slope=0.01) -stargan.D1 [stdout] (6): Conv2d(256, 512, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) -stargan.D1 [stdout] (7): LeakyReLU(negative_slope=0.01) -stargan.D1 [stdout] (8): Conv2d(512, 1024, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) -stargan.D1 [stdout] (9): LeakyReLU(negative_slope=0.01) -stargan.D1 [stdout] (10): Conv2d(1024, 2048, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) -stargan.D1 [stdout] (11): LeakyReLU(negative_slope=0.01) -stargan.D1 [stdout] ) -stargan.D1 [stdout] (conv1): Conv2d(2048, 1, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) -stargan.D1 [stdout] (conv2): Conv2d(2048, 5, kernel_size=(8, 8), stride=(1, 1), bias=False) -stargan.D1 [stdout] ) -stargan.D1 [stdout] D -stargan.D1 [stdout] The number of parameters: 45376448 -stargan.D1 [stdout] Start training... -stargan.D0 [stdout] Generator( -stargan.D0 [stdout] (main): Sequential( -stargan.D0 [stdout] (0): Conv2d(8, 64, kernel_size=(7, 7), stride=(1, 1), padding=(3, 3), bias=False) -stargan.D0 [stdout] (1): InstanceNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) -stargan.D0 [stdout] (2): ReLU(inplace=True) -stargan.D0 [stdout] (3): Conv2d(64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False) -stargan.D0 [stdout] (4): InstanceNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) -stargan.D0 [stdout] (5): ReLU(inplace=True) -stargan.D0 [stdout] (6): Conv2d(128, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False) -stargan.D0 [stdout] (7): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) -stargan.D0 [stdout] (8): ReLU(inplace=True) -stargan.D0 [stdout] (9): ResidualBlock( -stargan.D0 [stdout] (main): Sequential( -stargan.D0 [stdout] (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) -stargan.D0 [stdout] (1): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) -stargan.D0 [stdout] (2): ReLU(inplace=True) -stargan.D0 [stdout] (3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) -stargan.D0 [stdout] (4): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) -stargan.D0 [stdout] ) -stargan.D0 [stdout] ) -stargan.D0 [stdout] (10): ResidualBlock( -stargan.D0 [stdout] (main): Sequential( -stargan.D0 [stdout] (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) -stargan.D0 [stdout] (1): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) -stargan.D0 [stdout] (2): ReLU(inplace=True) -stargan.D0 [stdout] (3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) -stargan.D0 [stdout] (4): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) -stargan.D0 [stdout] ) -stargan.D0 [stdout] ) -stargan.D0 [stdout] (11): ResidualBlock( -stargan.D0 [stdout] (main): Sequential( -stargan.D0 [stdout] (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) -stargan.D0 [stdout] (1): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) -stargan.D0 [stdout] (2): ReLU(inplace=True) -stargan.D0 [stdout] (3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) -stargan.D0 [stdout] (4): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) -stargan.D0 [stdout] ) -stargan.D0 [stdout] ) -stargan.D0 [stdout] (12): ResidualBlock( -stargan.D0 [stdout] (main): Sequential( -stargan.D0 [stdout] (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) -stargan.D0 [stdout] (1): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) -stargan.D0 [stdout] (2): ReLU(inplace=True) -stargan.D0 [stdout] (3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) -stargan.D0 [stdout] (4): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) -stargan.D0 [stdout] ) -stargan.D0 [stdout] ) -stargan.D0 [stdout] (13): ResidualBlock( -stargan.D0 [stdout] (main): Sequential( -stargan.D0 [stdout] (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) -stargan.D0 [stdout] (1): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) -stargan.D0 [stdout] (2): ReLU(inplace=True) -stargan.D0 [stdout] (3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) -stargan.D0 [stdout] (4): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) -stargan.D0 [stdout] ) -stargan.D0 [stdout] ) -stargan.D0 [stdout] (14): ResidualBlock( -stargan.D0 [stdout] (main): Sequential( -stargan.D0 [stdout] (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) -stargan.D0 [stdout] (1): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) -stargan.D0 [stdout] (2): ReLU(inplace=True) -stargan.D0 [stdout] (3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) -stargan.D0 [stdout] (4): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) -stargan.D0 [stdout] ) -stargan.D0 [stdout] ) -stargan.D0 [stdout] (15): ConvTranspose2d(256, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False) -stargan.D0 [stdout] (16): InstanceNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) -stargan.D0 [stdout] (17): ReLU(inplace=True) -stargan.D0 [stdout] (18): ConvTranspose2d(128, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False) -stargan.D0 [stdout] (19): InstanceNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) -stargan.D0 [stdout] (20): ReLU(inplace=True) -stargan.D0 [stdout] (21): Conv2d(64, 3, kernel_size=(7, 7), stride=(1, 1), padding=(3, 3), bias=False) -stargan.D0 [stdout] (22): Tanh() -stargan.D0 [stdout] ) -stargan.D0 [stdout] ) -stargan.D0 [stdout] G -stargan.D0 [stdout] The number of parameters: 8430528 -stargan.D0 [stdout] Discriminator( -stargan.D0 [stdout] (main): Sequential( -stargan.D0 [stdout] (0): Conv2d(3, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) -stargan.D0 [stdout] (1): LeakyReLU(negative_slope=0.01) -stargan.D0 [stdout] (2): Conv2d(64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) -stargan.D0 [stdout] (3): LeakyReLU(negative_slope=0.01) -stargan.D0 [stdout] (4): Conv2d(128, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) -stargan.D0 [stdout] (5): LeakyReLU(negative_slope=0.01) -stargan.D0 [stdout] (6): Conv2d(256, 512, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) -stargan.D0 [stdout] (7): LeakyReLU(negative_slope=0.01) -stargan.D0 [stdout] (8): Conv2d(512, 1024, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) -stargan.D0 [stdout] (9): LeakyReLU(negative_slope=0.01) -stargan.D0 [stdout] (10): Conv2d(1024, 2048, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) -stargan.D0 [stdout] (11): LeakyReLU(negative_slope=0.01) -stargan.D0 [stdout] ) -stargan.D0 [stdout] (conv1): Conv2d(2048, 1, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) -stargan.D0 [stdout] (conv2): Conv2d(2048, 5, kernel_size=(8, 8), stride=(1, 1), bias=False) -stargan.D0 [stdout] ) -stargan.D0 [stdout] D -stargan.D0 [stdout] The number of parameters: 45376448 -stargan.D0 [stdout] Start training... -stargan.D1 [stderr] /Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torch/nn/_reduction.py:42: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. -stargan.D1 [stderr] warnings.warn(warning.format(ret)) -stargan.D0 [stderr] /Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torch/nn/_reduction.py:42: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead. -stargan.D0 [stderr] warnings.warn(warning.format(ret)) -stargan.D0 [data] {'loss': 13.086599349975586, 'task': 'train'} -stargan.D0 [data] {'gpudata': {'0': {'load': 1.0, - 'memory': [18133.4375, 81920.0], - 'power': 101.666, - 'temperature': 47}}, - 'task': 'main'} -stargan.D0 [data] {'gpudata': {'0': {'load': 1.0, - 'memory': [36341.4375, 81920.0], - 'power': 179.178, - 'temperature': 46}}, - 'task': 'main'} -stargan.D1 [data] {'loss': 13.126571655273438, 'task': 'train'} -stargan.D1 [data] {'gpudata': {'1': {'load': 1.0, - 'memory': [53235.4375, 81920.0], - 'power': 90.248, - 'temperature': 42}}, - 'task': 'main'} -stargan.D1 [data] {'gpudata': {'1': {'load': 0, - 'memory': [19629.4375, 81920.0], - 'power': 87.681, - 'temperature': 35}}, - 'task': 'main'} -stargan.D0 [data] {'loss': 12.320722579956055, 'task': 'train'} -stargan.D1 [data] {'loss': 12.423778533935547, 'task': 'train'} -stargan.D1 [data] {'loss': 10.919904708862305, 'task': 'train'} -stargan.D0 [data] {'loss': 10.844955444335938, 'task': 'train'} -stargan.D1 [data] {'loss': 8.524900436401367, 'task': 'train'} -stargan.D0 [data] {'loss': 8.569493293762207, 'task': 'train'} -stargan.D1 [data] {'rate': 6.070166268203733, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'loss': 5.316471099853516, 'task': 'train'} -stargan.D1 [data] {'loss': 5.558107376098633, 'task': 'train'} -stargan.D0 [data] {'rate': 8.111013843537386, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'gpudata': {'0': {'load': 0.96, - 'memory': [35507.4375, 81920.0], - 'power': 303.111, - 'temperature': 54}}, - 'task': 'main'} -stargan.D0 [data] {'gpudata': {'0': {'load': 1.0, - 'memory': [61035.4375, 81920.0], - 'power': 341.428, - 'temperature': 49}}, - 'task': 'main'} -stargan.D1 [data] {'gpudata': {'1': {'load': 0.97, - 'memory': [35507.4375, 81920.0], - 'power': 288.775, - 'temperature': 48}}, - 'task': 'main'} -stargan.D1 [data] {'rate': 75.80683512518422, 'task': 'train', 'units': 'items/s'} -stargan.D1 [data] {'gpudata': {'1': {'load': 0.07, - 'memory': [61035.4375, 81920.0], - 'power': 99.905, - 'temperature': 40}}, - 'task': 'main'} -stargan.D0 [data] {'loss': 3.0125012397766113, 'task': 'train'} -stargan.D1 [data] {'loss': 3.0867488384246826, 'task': 'train'} -stargan.D0 [data] {'loss': 3.823237180709839, 'task': 'train'} -stargan.D0 [data] {'gpudata': {'0': {'load': 0.95, - 'memory': [31485.4375, 81920.0], - 'power': 431.721, - 'temperature': 55}}, - 'task': 'main'} -stargan.D1 [data] {'loss': 4.6895880699157715, 'task': 'train'} -stargan.D1 [data] {'rate': 4.539216274737172, 'task': 'train', 'units': 'items/s'} -stargan.D1 [data] {'gpudata': {'1': {'load': 0.94, - 'memory': [31485.4375, 81920.0], - 'power': 441.527, - 'temperature': 49}}, - 'task': 'main'} -stargan.D0 [data] {'loss': 2.8021841049194336, 'task': 'train'} -stargan.D1 [data] {'loss': 2.7982873916625977, 'task': 'train'} -stargan.D0 [data] {'loss': 2.5015196800231934, 'task': 'train'} -stargan.D0 [data] {'rate': 8.572943815519281, 'task': 'train', 'units': 'items/s'} -stargan.D1 [data] {'loss': 2.4365835189819336, 'task': 'train'} -stargan.D0 [data] {'loss': 2.26265025138855, 'task': 'train'} -stargan.D1 [data] {'loss': 2.298689842224121, 'task': 'train'} -stargan.D0 [stdout] Elapsed [0:00:16], Iteration [10/200000], D/loss_real: -2.9441, D/loss_fake: 1.2514, D/loss_cls: 3.3664, D/loss_gp: 0.0589, G/loss_fake: -0.7904, G/loss_rec: 0.5356, G/loss_cls: 3.6614 -stargan.D1 [stdout] Elapsed [0:00:16], Iteration [10/200000], D/loss_real: -3.3031, D/loss_fake: 1.3961, D/loss_cls: 3.7115, D/loss_gp: 0.0494, G/loss_fake: -0.7826, G/loss_rec: 0.5350, G/loss_cls: 3.4823 -stargan.D1 [data] {'rate': 49.18814712112089, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'loss': 3.3144726753234863, 'task': 'train'} -stargan.D0 [data] {'rate': 30.96766055047403, 'task': 'train', 'units': 'items/s'} -stargan.D1 [data] {'loss': 2.9326090812683105, 'task': 'train'} -stargan.D0 [data] {'loss': 2.775360584259033, 'task': 'train'} -stargan.D1 [data] {'loss': 2.7949299812316895, 'task': 'train'} -stargan.D0 [data] {'loss': 2.439539909362793, 'task': 'train'} -stargan.D1 [data] {'loss': 2.175811767578125, 'task': 'train'} -stargan.D0 [data] {'loss': 1.7700482606887817, 'task': 'train'} -stargan.D1 [data] {'loss': 1.9518747329711914, 'task': 'train'} -stargan.D0 [data] {'loss': 1.9974515438079834, 'task': 'train'} -stargan.D1 [data] {'loss': 2.4351184368133545, 'task': 'train'} -stargan.D0 [data] {'rate': 49.330248229886166, 'task': 'train', 'units': 'items/s'} -stargan.D1 [data] {'rate': 48.32095808630915, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'loss': 2.304419755935669, 'task': 'train'} -stargan.D0 [data] {'gpudata': {'0': {'load': 1.0, - 'memory': [36225.4375, 81920.0], - 'power': 430.856, - 'temperature': 58}}, - 'task': 'main'} -stargan.D1 [data] {'loss': 4.472228527069092, 'task': 'train'} -stargan.D1 [data] {'gpudata': {'1': {'load': 1.0, - 'memory': [36225.4375, 81920.0], - 'power': 316.952, - 'temperature': 51}}, - 'task': 'main'} -stargan.D0 [data] {'loss': 1.7860604524612427, 'task': 'train'} -stargan.D1 [data] {'loss': 3.427830219268799, 'task': 'train'} -stargan.D1 [data] {'rate': 31.283494449309458, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'loss': 1.1357308626174927, 'task': 'train'} -stargan.D1 [data] {'loss': 3.364100456237793, 'task': 'train'} -stargan.D0 [data] {'loss': 4.594911098480225, 'task': 'train'} -stargan.D1 [data] {'loss': 5.611645221710205, 'task': 'train'} -stargan.D0 [data] {'loss': 3.95440673828125, 'task': 'train'} -stargan.D1 [data] {'loss': 2.9991838932037354, 'task': 'train'} -stargan.D0 [stdout] Elapsed [0:00:19], Iteration [20/200000], D/loss_real: -1.4181, D/loss_fake: 0.2556, D/loss_cls: 3.3175, D/loss_gp: 0.1800, G/loss_fake: -0.9815, G/loss_rec: 0.5196, G/loss_cls: 3.4382 -stargan.D0 [data] {'rate': 49.47055832412142, 'task': 'train', 'units': 'items/s'} -stargan.D1 [stdout] Elapsed [0:00:19], Iteration [20/200000], D/loss_real: -3.0196, D/loss_fake: 1.1173, D/loss_cls: 4.4445, D/loss_gp: 0.0457, G/loss_fake: -2.6300, G/loss_rec: 0.5209, G/loss_cls: 3.3289 -stargan.D1 [data] {'rate': 57.187042166348476, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'loss': 2.2354042530059814, 'task': 'train'} -stargan.D1 [data] {'loss': 3.168743133544922, 'task': 'train'} -stargan.D0 [data] {'loss': 1.1194443702697754, 'task': 'train'} -stargan.D0 [data] {'rate': 31.24591902055902, 'task': 'train', 'units': 'items/s'} -stargan.D1 [data] {'loss': 5.686138153076172, 'task': 'train'} -stargan.D0 [data] {'loss': 1.4098445177078247, 'task': 'train'} -stargan.D1 [data] {'loss': 4.89923620223999, 'task': 'train'} -stargan.D0 [data] {'loss': 3.358997106552124, 'task': 'train'} -stargan.D1 [data] {'loss': 0.7502227425575256, 'task': 'train'} -stargan.D0 [data] {'loss': 0.35069146752357483, 'task': 'train'} -stargan.D1 [data] {'loss': 6.855472564697266, 'task': 'train'} -stargan.D0 [data] {'gpudata': {'0': {'load': 1.0, - 'memory': [36225.4375, 81920.0], - 'power': 433.526, - 'temperature': 58}}, - 'task': 'main'} -stargan.D0 [data] {'rate': 59.51554000779854, 'task': 'train', 'units': 'items/s'} -stargan.D1 [data] {'rate': 48.2559928303176, 'task': 'train', 'units': 'items/s'} -stargan.D1 [data] {'gpudata': {'1': {'load': 1.0, - 'memory': [36225.4375, 81920.0], - 'power': 359.296, - 'temperature': 53}}, - 'task': 'main'} -stargan.D0 [data] {'loss': 5.433831691741943, 'task': 'train'} -stargan.D1 [data] {'loss': 5.009852409362793, 'task': 'train'} -stargan.D0 [data] {'loss': 4.70731258392334, 'task': 'train'} -stargan.D1 [data] {'loss': 6.654544353485107, 'task': 'train'} -stargan.D0 [data] {'loss': 4.531362056732178, 'task': 'train'} -stargan.D1 [data] {'loss': 5.631687164306641, 'task': 'train'} -stargan.D1 [data] {'rate': 39.7733727802551, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'loss': 4.711325645446777, 'task': 'train'} -stargan.D1 [data] {'loss': 3.020941734313965, 'task': 'train'} -stargan.D0 [data] {'loss': 3.845850944519043, 'task': 'train'} -stargan.D1 [data] {'loss': 0.9652997255325317, 'task': 'train'} -stargan.D0 [stdout] Elapsed [0:00:22], Iteration [30/200000], D/loss_real: 0.5797, D/loss_fake: -1.1285, D/loss_cls: 3.4686, D/loss_gp: 0.0926, G/loss_fake: 0.6402, G/loss_rec: 0.5199, G/loss_cls: 3.2032 -stargan.D0 [data] {'rate': 49.45345102989279, 'task': 'train', 'units': 'items/s'} -stargan.D1 [stdout] Elapsed [0:00:23], Iteration [30/200000], D/loss_real: -5.2351, D/loss_fake: 2.2791, D/loss_cls: 3.6622, D/loss_gp: 0.0259, G/loss_fake: -2.6694, G/loss_rec: 0.5166, G/loss_cls: 3.3523 -stargan.D1 [data] {'rate': 53.73730261008293, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'loss': 2.554161787033081, 'task': 'train'} -stargan.D1 [data] {'loss': 2.1918654441833496, 'task': 'train'} -stargan.D0 [data] {'loss': 4.034933090209961, 'task': 'train'} -stargan.D0 [data] {'rate': 31.458797631187924, 'task': 'train', 'units': 'items/s'} -stargan.D1 [data] {'loss': 1.1304746866226196, 'task': 'train'} -stargan.D0 [data] {'loss': 2.0962419509887695, 'task': 'train'} -stargan.D1 [data] {'loss': 0.7519818544387817, 'task': 'train'} -stargan.D0 [data] {'loss': 3.493194103240967, 'task': 'train'} -stargan.D1 [data] {'loss': 0.44569265842437744, 'task': 'train'} -stargan.D0 [data] {'loss': 4.025451183319092, 'task': 'train'} -stargan.D1 [data] {'loss': 0.004062086343765259, 'task': 'train'} -stargan.D0 [data] {'gpudata': {'0': {'load': 1.0, - 'memory': [37249.4375, 81920.0], - 'power': 428.209, - 'temperature': 59}}, - 'task': 'main'} -stargan.D0 [data] {'rate': 59.49004678286125, 'task': 'train', 'units': 'items/s'} -stargan.D1 [data] {'rate': 49.69721172389678, 'task': 'train', 'units': 'items/s'} -stargan.D1 [data] {'gpudata': {'1': {'load': 0.96, - 'memory': [37249.4375, 81920.0], - 'power': 335.011, - 'temperature': 54}}, - 'task': 'main'} -stargan.D0 [data] {'loss': 4.53808069229126, 'task': 'train'} -stargan.D1 [data] {'loss': 0.5381399989128113, 'task': 'train'} -stargan.D0 [data] {'loss': 1.9568357467651367, 'task': 'train'} -stargan.D1 [data] {'loss': 0.42546024918556213, 'task': 'train'} -stargan.D1 [data] {'rate': 31.738985124566497, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'loss': 3.0084915161132812, 'task': 'train'} -stargan.D1 [data] {'loss': 0.28230521082878113, 'task': 'train'} -stargan.D0 [data] {'loss': 2.68540096282959, 'task': 'train'} -stargan.D1 [data] {'loss': 0.2297508418560028, 'task': 'train'} -stargan.D0 [data] {'loss': 1.8974976539611816, 'task': 'train'} -stargan.D1 [data] {'loss': 0.1786213368177414, 'task': 'train'} -stargan.D0 [stdout] Elapsed [0:00:25], Iteration [40/200000], D/loss_real: -3.9405, D/loss_fake: 2.0677, D/loss_cls: 3.3284, D/loss_gp: 0.0442, G/loss_fake: -3.0649, G/loss_rec: 0.5094, G/loss_cls: 3.2437 -stargan.D0 [data] {'rate': 49.39132901299682, 'task': 'train', 'units': 'items/s'} -stargan.D1 [stdout] Elapsed [0:00:26], Iteration [40/200000], D/loss_real: -6.0086, D/loss_fake: 2.6586, D/loss_cls: 3.3453, D/loss_gp: 0.0183, G/loss_fake: -2.7480, G/loss_rec: 0.5191, G/loss_cls: 3.3349 -stargan.D1 [data] {'rate': 58.45556602263356, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'loss': 1.5260272026062012, 'task': 'train'} -stargan.D1 [data] {'loss': 1.4123754501342773, 'task': 'train'} -stargan.D0 [data] {'loss': 1.1798679828643799, 'task': 'train'} -stargan.D0 [data] {'rate': 31.36853787546416, 'task': 'train', 'units': 'items/s'} -stargan.D1 [data] {'loss': 1.4125949144363403, 'task': 'train'} -stargan.D0 [data] {'loss': 1.0800530910491943, 'task': 'train'} -stargan.D1 [data] {'loss': 0.8548569083213806, 'task': 'train'} -stargan.D0 [data] {'loss': 0.8603284955024719, 'task': 'train'} -stargan.D1 [data] {'loss': 0.9377182126045227, 'task': 'train'} -stargan.D0 [data] {'loss': 0.7206588387489319, 'task': 'train'} -stargan.D1 [data] {'loss': 0.8383750319480896, 'task': 'train'} -stargan.D0 [data] {'gpudata': {'0': {'load': 0.95, - 'memory': [37249.4375, 81920.0], - 'power': 339.3, - 'temperature': 58}}, - 'task': 'main'} -stargan.D0 [data] {'rate': 59.09236571212803, 'task': 'train', 'units': 'items/s'} -stargan.D1 [data] {'gpudata': {'1': {'load': 0.94, - 'memory': [37249.4375, 81920.0], - 'power': 475.449, - 'temperature': 55}}, - 'task': 'main'} -stargan.D1 [data] {'rate': 49.391380334102536, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'loss': 1.1522326469421387, 'task': 'train'} -stargan.D1 [data] {'loss': 1.4708633422851562, 'task': 'train'} -stargan.D0 [data] {'loss': 1.061980962753296, 'task': 'train'} -stargan.D1 [data] {'loss': 1.2513329982757568, 'task': 'train'} -stargan.D1 [data] {'rate': 31.77375879512413, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'loss': 0.8583265542984009, 'task': 'train'} -stargan.D1 [data] {'loss': 1.0890026092529297, 'task': 'train'} -stargan.D0 [data] {'loss': 0.7775387763977051, 'task': 'train'} -stargan.D1 [data] {'loss': 0.9918217658996582, 'task': 'train'} -stargan.D0 [data] {'loss': 0.6566269993782043, 'task': 'train'} -stargan.D1 [data] {'loss': 1.0508769750595093, 'task': 'train'} -stargan.D0 [stdout] Elapsed [0:00:29], Iteration [50/200000], D/loss_real: -5.7523, D/loss_fake: 3.1407, D/loss_cls: 3.1712, D/loss_gp: 0.0097, G/loss_fake: -3.1466, G/loss_rec: 0.5205, G/loss_cls: 3.2357 -stargan.D0 [data] {'rate': 49.45335671993288, 'task': 'train', 'units': 'items/s'} -stargan.D1 [stdout] Elapsed [0:00:29], Iteration [50/200000], D/loss_real: -5.8821, D/loss_fake: 3.3373, D/loss_cls: 3.5701, D/loss_gp: 0.0026, G/loss_fake: -3.5141, G/loss_rec: 0.5239, G/loss_cls: 3.4201 -stargan.D1 [data] {'rate': 59.105728553809016, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'loss': 0.9836164116859436, 'task': 'train'} -stargan.D1 [data] {'loss': 1.4979536533355713, 'task': 'train'} -stargan.D0 [data] {'loss': 0.8919828534126282, 'task': 'train'} -stargan.D0 [data] {'rate': 31.118046567349563, 'task': 'train', 'units': 'items/s'} -stargan.D1 [data] {'loss': 1.4741599559783936, 'task': 'train'} -stargan.D0 [data] {'loss': 0.7860561013221741, 'task': 'train'} -stargan.D1 [data] {'loss': 0.9676339626312256, 'task': 'train'} -stargan.D0 [data] {'loss': 0.7149083614349365, 'task': 'train'} -stargan.D1 [data] {'loss': 0.8525210022926331, 'task': 'train'} -stargan.D1 [data] {'gpudata': {'1': {'load': 0.95, - 'memory': [37249.4375, 81920.0], - 'power': 457.131, - 'temperature': 56}}, - 'task': 'main'} -stargan.D0 [data] {'loss': 0.6592683792114258, 'task': 'train'} -stargan.D0 [data] {'gpudata': {'0': {'load': 0.95, - 'memory': [37249.4375, 81920.0], - 'power': 445.114, - 'temperature': 57}}, - 'task': 'main'} -stargan.D1 [data] {'loss': 0.7842587828636169, 'task': 'train'} -stargan.D0 [data] {'rate': 58.921000849354826, 'task': 'train', 'units': 'items/s'} -stargan.D1 [data] {'rate': 48.32964328351237, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'loss': 1.170042872428894, 'task': 'train'} -stargan.D1 [data] {'loss': 1.5052552223205566, 'task': 'train'} -stargan.D0 [data] {'loss': 1.2022496461868286, 'task': 'train'} -stargan.D1 [data] {'loss': 1.6901298761367798, 'task': 'train'} -stargan.D1 [data] {'rate': 31.494440098506974, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'loss': 1.0389693975448608, 'task': 'train'} -stargan.D1 [data] {'loss': 0.9543049335479736, 'task': 'train'} -stargan.D0 [data] {'loss': 0.9149699211120605, 'task': 'train'} -stargan.D1 [data] {'loss': 1.0347249507904053, 'task': 'train'} -stargan.D0 [data] {'loss': 0.9960232377052307, 'task': 'train'} -stargan.D1 [data] {'loss': 1.2393981218338013, 'task': 'train'} -stargan.D0 [stdout] Elapsed [0:00:32], Iteration [60/200000], D/loss_real: -6.5344, D/loss_fake: 3.7980, D/loss_cls: 3.1827, D/loss_gp: 0.0550, G/loss_fake: -2.9272, G/loss_rec: 0.5228, G/loss_cls: 3.2755 -stargan.D0 [data] {'rate': 49.259070703974494, 'task': 'train', 'units': 'items/s'} -stargan.D1 [stdout] Elapsed [0:00:32], Iteration [60/200000], D/loss_real: -5.7467, D/loss_fake: 3.3267, D/loss_cls: 3.6405, D/loss_gp: 0.0019, G/loss_fake: -3.3058, G/loss_rec: 0.5319, G/loss_cls: 3.3369 -stargan.D1 [data] {'rate': 59.308379044545724, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'loss': 1.5111725330352783, 'task': 'train'} -stargan.D1 [data] {'loss': 1.5788054466247559, 'task': 'train'} -stargan.D0 [data] {'loss': 1.3756446838378906, 'task': 'train'} -stargan.D0 [data] {'rate': 31.245749632133784, 'task': 'train', 'units': 'items/s'} -stargan.D1 [data] {'loss': 1.525927186012268, 'task': 'train'} -stargan.D0 [data] {'loss': 1.3048858642578125, 'task': 'train'} -stargan.D1 [data] {'loss': 1.404424786567688, 'task': 'train'} -stargan.D1 [data] {'gpudata': {'1': {'load': 0.94, - 'memory': [37249.4375, 81920.0], - 'power': 443.451, - 'temperature': 56}}, - 'task': 'main'} -stargan.D0 [data] {'loss': 1.260168433189392, 'task': 'train'} -stargan.D0 [data] {'gpudata': {'0': {'load': 0.95, - 'memory': [37249.4375, 81920.0], - 'power': 407.393, - 'temperature': 59}}, - 'task': 'main'} -stargan.D1 [data] {'loss': 1.2809407711029053, 'task': 'train'} -stargan.D0 [data] {'loss': 1.2427525520324707, 'task': 'train'} -stargan.D1 [data] {'loss': 1.1997722387313843, 'task': 'train'} -stargan.D0 [data] {'rate': 59.41545706781175, 'task': 'train', 'units': 'items/s'} -stargan.D1 [data] {'rate': 48.349679512849946, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'loss': 2.133110523223877, 'task': 'train'} -stargan.D1 [data] {'loss': 2.0829529762268066, 'task': 'train'} -stargan.D0 [data] {'loss': 2.447371006011963, 'task': 'train'} -stargan.D1 [data] {'loss': 2.077482223510742, 'task': 'train'} -stargan.D0 [data] {'loss': 2.1524879932403564, 'task': 'train'} -stargan.D1 [data] {'loss': 2.0973048210144043, 'task': 'train'} -stargan.D1 [data] {'rate': 39.69473518108951, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'loss': 2.0962350368499756, 'task': 'train'} -stargan.D1 [data] {'loss': 2.2769947052001953, 'task': 'train'} -stargan.D0 [data] {'loss': 1.7511037588119507, 'task': 'train'} -stargan.D1 [data] {'loss': 1.631940484046936, 'task': 'train'} -stargan.D0 [stdout] Elapsed [0:00:35], Iteration [70/200000], D/loss_real: -6.0488, D/loss_fake: 4.4382, D/loss_cls: 3.2730, D/loss_gp: 0.0089, G/loss_fake: -4.5084, G/loss_rec: 0.5348, G/loss_cls: 3.2803 -stargan.D0 [data] {'rate': 49.18214585462339, 'task': 'train', 'units': 'items/s'} -stargan.D1 [stdout] Elapsed [0:00:35], Iteration [70/200000], D/loss_real: -6.5973, D/loss_fake: 4.8111, D/loss_cls: 3.2614, D/loss_gp: 0.0157, G/loss_fake: -4.8725, G/loss_rec: 0.5365, G/loss_cls: 3.3287 -stargan.D1 [data] {'rate': 54.79065602412278, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'loss': 2.4997518062591553, 'task': 'train'} -stargan.D1 [data] {'loss': 2.5286381244659424, 'task': 'train'} -stargan.D0 [data] {'loss': 2.4853875637054443, 'task': 'train'} -stargan.D0 [data] {'gpudata': {'0': {'load': 0.95, - 'memory': [37249.4375, 81920.0], - 'power': 319.368, - 'temperature': 59}}, - 'task': 'main'} -stargan.D0 [data] {'rate': 30.80577118282395, 'task': 'train', 'units': 'items/s'} -stargan.D1 [data] {'loss': 2.629201889038086, 'task': 'train'} -stargan.D1 [data] {'gpudata': {'1': {'load': 0.95, - 'memory': [37249.4375, 81920.0], - 'power': 371.65, - 'temperature': 57}}, - 'task': 'main'} -stargan.D0 [data] {'loss': 1.923665165901184, 'task': 'train'} -stargan.D1 [data] {'loss': 2.0407872200012207, 'task': 'train'} -stargan.D0 [data] {'loss': 1.8418934345245361, 'task': 'train'} -stargan.D1 [data] {'loss': 2.051154613494873, 'task': 'train'} -stargan.D0 [data] {'loss': 1.8276960849761963, 'task': 'train'} -stargan.D1 [data] {'loss': 2.0659563541412354, 'task': 'train'} -stargan.D0 [data] {'rate': 58.76953698827997, 'task': 'train', 'units': 'items/s'} -stargan.D1 [data] {'rate': 49.27341860387492, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'loss': 2.236924409866333, 'task': 'train'} -stargan.D1 [data] {'loss': 2.6378462314605713, 'task': 'train'} -stargan.D0 [data] {'loss': 2.8516690731048584, 'task': 'train'} -stargan.D1 [data] {'loss': 2.6494815349578857, 'task': 'train'} -stargan.D1 [data] {'rate': 31.522440107484467, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'loss': 1.8801888227462769, 'task': 'train'} -stargan.D1 [data] {'loss': 2.2870073318481445, 'task': 'train'} -stargan.D0 [data] {'loss': 1.6853495836257935, 'task': 'train'} -stargan.D1 [data] {'loss': 2.0969746112823486, 'task': 'train'} -stargan.D0 [data] {'loss': 1.5299787521362305, 'task': 'train'} -stargan.D1 [data] {'loss': 1.9737675189971924, 'task': 'train'} -stargan.D0 [stdout] Elapsed [0:00:38], Iteration [80/200000], D/loss_real: -5.2612, D/loss_fake: 3.4792, D/loss_cls: 3.1756, D/loss_gp: 0.0136, G/loss_fake: -3.1057, G/loss_rec: 0.5712, G/loss_cls: 3.2117 -stargan.D0 [data] {'rate': 49.446915176997685, 'task': 'train', 'units': 'items/s'} -stargan.D1 [stdout] Elapsed [0:00:39], Iteration [80/200000], D/loss_real: -6.1910, D/loss_fake: 4.6648, D/loss_cls: 3.2099, D/loss_gp: 0.0290, G/loss_fake: -3.1216, G/loss_rec: 0.5615, G/loss_cls: 3.3123 -stargan.D1 [data] {'rate': 58.02852265093514, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'loss': 3.067190170288086, 'task': 'train'} -stargan.D0 [data] {'gpudata': {'0': {'load': 0.96, - 'memory': [37249.4375, 81920.0], - 'power': 442.414, - 'temperature': 61}}, - 'task': 'main'} -stargan.D1 [data] {'loss': 2.7785685062408447, 'task': 'train'} -stargan.D1 [data] {'gpudata': {'1': {'load': 1.0, - 'memory': [37249.4375, 81920.0], - 'power': 218.688, - 'temperature': 58}}, - 'task': 'main'} -stargan.D0 [data] {'loss': 4.43770170211792, 'task': 'train'} -stargan.D0 [data] {'rate': 31.30322924602014, 'task': 'train', 'units': 'items/s'} -stargan.D1 [data] {'loss': 2.6694083213806152, 'task': 'train'} -stargan.D0 [data] {'loss': 2.5714731216430664, 'task': 'train'} -stargan.D1 [data] {'loss': 2.9124083518981934, 'task': 'train'} -stargan.D0 [data] {'loss': 3.320981025695801, 'task': 'train'} -stargan.D1 [data] {'loss': 2.7157540321350098, 'task': 'train'} -stargan.D0 [data] {'loss': 4.1229047775268555, 'task': 'train'} -stargan.D1 [data] {'loss': 3.169157028198242, 'task': 'train'} -stargan.D0 [data] {'rate': 59.367222951769115, 'task': 'train', 'units': 'items/s'} -stargan.D1 [data] {'rate': 49.0809275149506, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'loss': 3.4645135402679443, 'task': 'train'} -stargan.D1 [data] {'loss': 3.221501111984253, 'task': 'train'} -stargan.D0 [data] {'loss': 4.0375471115112305, 'task': 'train'} -stargan.D1 [data] {'loss': 2.9697532653808594, 'task': 'train'} -stargan.D1 [data] {'rate': 31.48517770468959, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'loss': 3.961233377456665, 'task': 'train'} -stargan.D1 [data] {'loss': 2.776503086090088, 'task': 'train'} -stargan.D0 [data] {'loss': 2.915566921234131, 'task': 'train'} -stargan.D1 [data] {'loss': 2.5769779682159424, 'task': 'train'} -stargan.D0 [data] {'loss': 3.1274237632751465, 'task': 'train'} -stargan.D1 [data] {'loss': 2.37219500541687, 'task': 'train'} -stargan.D0 [stdout] Elapsed [0:00:41], Iteration [90/200000], D/loss_real: -6.6969, D/loss_fake: 5.7755, D/loss_cls: 3.2659, D/loss_gp: 0.0783, G/loss_fake: -3.5203, G/loss_rec: 0.5685, G/loss_cls: 3.3906 -stargan.D0 [data] {'rate': 49.2855529283344, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'gpudata': {'0': {'load': 1.0, - 'memory': [37249.4375, 81920.0], - 'power': 448.562, - 'temperature': 63}}, - 'task': 'main'} -stargan.D1 [stdout] Elapsed [0:00:42], Iteration [90/200000], D/loss_real: -5.4369, D/loss_fake: 4.5795, D/loss_cls: 3.1754, D/loss_gp: 0.0054, G/loss_fake: -3.7668, G/loss_rec: 0.5979, G/loss_cls: 3.3008 -stargan.D1 [data] {'gpudata': {'1': {'load': 1.0, - 'memory': [37249.4375, 81920.0], - 'power': 401.708, - 'temperature': 57}}, - 'task': 'main'} -stargan.D1 [data] {'rate': 59.337294101011096, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'loss': 3.3899824619293213, 'task': 'train'} -stargan.D1 [data] {'loss': 2.9476373195648193, 'task': 'train'} -stargan.D0 [data] {'loss': 2.9018616676330566, 'task': 'train'} -stargan.D0 [data] {'rate': 31.359074148423026, 'task': 'train', 'units': 'items/s'} -stargan.D1 [data] {'loss': 2.485952377319336, 'task': 'train'} -stargan.D0 [data] {'loss': 2.6068801879882812, 'task': 'train'} -stargan.D1 [data] {'loss': 2.529491662979126, 'task': 'train'} -stargan.D0 [data] {'loss': 2.148733615875244, 'task': 'train'} -stargan.D1 [data] {'loss': 5.798713684082031, 'task': 'train'} -stargan.D0 [data] {'loss': 1.6613131761550903, 'task': 'train'} -stargan.D1 [data] {'loss': 2.3753085136413574, 'task': 'train'} -stargan.D0 [data] {'rate': 59.72890141699278, 'task': 'train', 'units': 'items/s'} -stargan.D1 [data] {'rate': 49.70871151749535, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'loss': 2.4931132793426514, 'task': 'train'} -stargan.D1 [data] {'loss': 9.10033893585205, 'task': 'train'} -stargan.D0 [data] {'loss': 2.3023457527160645, 'task': 'train'} -stargan.D1 [data] {'loss': 7.552038192749023, 'task': 'train'} -stargan.D1 [data] {'rate': 31.65987686638858, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'loss': 1.5212444067001343, 'task': 'train'} -stargan.D1 [data] {'loss': 8.128246307373047, 'task': 'train'} -stargan.D0 [data] {'loss': 1.0948269367218018, 'task': 'train'} -stargan.D1 [data] {'loss': 4.439353942871094, 'task': 'train'} -stargan.D0 [data] {'loss': 0.7401851415634155, 'task': 'train'} -stargan.D1 [data] {'loss': 9.333183288574219, 'task': 'train'} -stargan.D0 [stdout] Elapsed [0:00:45], Iteration [100/200000], D/loss_real: -4.6808, D/loss_fake: 2.0253, D/loss_cls: 3.1560, D/loss_gp: 0.0240, G/loss_fake: -1.5565, G/loss_rec: 0.5726, G/loss_cls: 3.2989 -stargan.D0 [data] {'rate': 49.392076305176595, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'gpudata': {'0': {'load': 1.0, - 'memory': [37249.4375, 81920.0], - 'power': 453.126, - 'temperature': 62}}, - 'task': 'main'} -stargan.D1 [stdout] Elapsed [0:00:45], Iteration [100/200000], D/loss_real: -0.8434, D/loss_fake: 0.6758, D/loss_cls: 3.3759, D/loss_gp: 0.6125, G/loss_fake: -1.6794, G/loss_rec: 0.5712, G/loss_cls: 3.3597 -stargan.D1 [data] {'gpudata': {'1': {'load': 1.0, - 'memory': [37249.4375, 81920.0], - 'power': 361.891, - 'temperature': 57}}, - 'task': 'main'} -stargan.D1 [data] {'rate': 59.386353166735155, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'loss': 2.91646409034729, 'task': 'train'} -stargan.D1 [data] {'loss': 6.954597473144531, 'task': 'train'} -stargan.D0 [data] {'loss': 6.623352527618408, 'task': 'train'} -stargan.D0 [data] {'rate': 31.466676430251912, 'task': 'train', 'units': 'items/s'} -stargan.D1 [data] {'loss': 2.90112042427063, 'task': 'train'} -stargan.D0 [data] {'loss': 3.384063720703125, 'task': 'train'} -stargan.D1 [data] {'loss': 13.5943021774292, 'task': 'train'} -stargan.D0 [data] {'loss': 4.105134963989258, 'task': 'train'} -stargan.D1 [data] {'loss': 8.158888816833496, 'task': 'train'} -stargan.D0 [data] {'loss': 4.730385780334473, 'task': 'train'} -stargan.D1 [data] {'loss': 9.401894569396973, 'task': 'train'} -stargan.D0 [data] {'rate': 59.64028698950829, 'task': 'train', 'units': 'items/s'} -stargan.D1 [data] {'rate': 49.49026343249651, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'loss': 4.058284282684326, 'task': 'train'} -stargan.D1 [data] {'loss': 8.876028060913086, 'task': 'train'} -stargan.D0 [data] {'loss': 2.777726411819458, 'task': 'train'} -stargan.D1 [data] {'loss': 6.9729108810424805, 'task': 'train'} -stargan.D1 [data] {'rate': 31.591414650022948, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'loss': 2.456256628036499, 'task': 'train'} -stargan.D1 [data] {'loss': 3.7158071994781494, 'task': 'train'} -stargan.D0 [data] {'loss': 2.3443100452423096, 'task': 'train'} -stargan.D1 [data] {'loss': 7.917386054992676, 'task': 'train'} -stargan.D0 [data] {'loss': 2.275050163269043, 'task': 'train'} -stargan.D1 [data] {'loss': 8.137388229370117, 'task': 'train'} -stargan.D0 [stdout] Elapsed [0:00:48], Iteration [110/200000], D/loss_real: -1.7066, D/loss_fake: 0.5479, D/loss_cls: 3.1516, D/loss_gp: 0.0282, G/loss_fake: -1.5534, G/loss_rec: 0.5381, G/loss_cls: 3.2066 -stargan.D0 [data] {'rate': 49.61532014313851, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'gpudata': {'0': {'load': 0.99, - 'memory': [37249.4375, 81920.0], - 'power': 353.929, - 'temperature': 61}}, - 'task': 'main'} -stargan.D1 [stdout] Elapsed [0:00:48], Iteration [110/200000], D/loss_real: -2.2855, D/loss_fake: 1.2400, D/loss_cls: 5.9675, D/loss_gp: 0.3215, G/loss_fake: 0.6602, G/loss_rec: 0.5440, G/loss_cls: 3.9705 -stargan.D1 [data] {'gpudata': {'1': {'load': 0.94, - 'memory': [37249.4375, 81920.0], - 'power': 345.475, - 'temperature': 58}}, - 'task': 'main'} -stargan.D1 [data] {'rate': 59.14293117396511, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'loss': 3.4394419193267822, 'task': 'train'} -stargan.D1 [data] {'loss': 5.095452785491943, 'task': 'train'} -stargan.D0 [data] {'loss': 3.4526238441467285, 'task': 'train'} -stargan.D0 [data] {'rate': 30.66574243952172, 'task': 'train', 'units': 'items/s'} -stargan.D1 [data] {'loss': 6.249704360961914, 'task': 'train'} -stargan.D0 [data] {'loss': 3.372030258178711, 'task': 'train'} -stargan.D1 [data] {'loss': 7.855173110961914, 'task': 'train'} -stargan.D0 [data] {'loss': 3.7733371257781982, 'task': 'train'} -stargan.D1 [data] {'loss': 6.997179985046387, 'task': 'train'} -stargan.D0 [data] {'loss': 2.8129544258117676, 'task': 'train'} -stargan.D1 [data] {'loss': 4.948371887207031, 'task': 'train'} -stargan.D0 [data] {'rate': 59.629054583314804, 'task': 'train', 'units': 'items/s'} -stargan.D1 [data] {'rate': 48.56219387364226, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'loss': 5.036316394805908, 'task': 'train'} -stargan.D1 [data] {'loss': 5.383059501647949, 'task': 'train'} -stargan.D0 [data] {'loss': 4.945727348327637, 'task': 'train'} -stargan.D1 [data] {'loss': 4.6140875816345215, 'task': 'train'} -stargan.D1 [data] {'rate': 31.452196063244006, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'loss': 4.381791591644287, 'task': 'train'} -stargan.D1 [data] {'loss': 4.4699273109436035, 'task': 'train'} -stargan.D0 [data] {'loss': 3.521312952041626, 'task': 'train'} -stargan.D1 [data] {'loss': 4.141944408416748, 'task': 'train'} -stargan.D0 [data] {'loss': 3.2929673194885254, 'task': 'train'} -stargan.D0 [data] {'gpudata': {'0': {'load': 0.95, - 'memory': [37249.4375, 81920.0], - 'power': 433.839, - 'temperature': 61}}, - 'task': 'main'} -stargan.D1 [data] {'loss': 3.731205940246582, 'task': 'train'} -stargan.D1 [data] {'gpudata': {'1': {'load': 0.95, - 'memory': [37249.4375, 81920.0], - 'power': 256.398, - 'temperature': 57}}, - 'task': 'main'} -stargan.D0 [stdout] Elapsed [0:00:51], Iteration [120/200000], D/loss_real: -5.1362, D/loss_fake: 5.1578, D/loss_cls: 3.1566, D/loss_gp: 0.0115, G/loss_fake: -3.9916, G/loss_rec: 0.5590, G/loss_cls: 3.2055 -stargan.D0 [data] {'rate': 49.105528255316656, 'task': 'train', 'units': 'items/s'} -stargan.D1 [stdout] Elapsed [0:00:52], Iteration [120/200000], D/loss_real: -1.1582, D/loss_fake: 1.4803, D/loss_cls: 3.3211, D/loss_gp: 0.0088, G/loss_fake: -1.3027, G/loss_rec: 0.5429, G/loss_cls: 3.3317 -stargan.D1 [data] {'rate': 59.14441919766337, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'loss': 3.743408203125, 'task': 'train'} -stargan.D1 [data] {'loss': 3.8762078285217285, 'task': 'train'} -stargan.D0 [data] {'loss': 3.2628345489501953, 'task': 'train'} -stargan.D0 [data] {'rate': 31.276708690407578, 'task': 'train', 'units': 'items/s'} -stargan.D1 [data] {'loss': 3.286445140838623, 'task': 'train'} -stargan.D0 [data] {'loss': 2.6808578968048096, 'task': 'train'} -stargan.D1 [data] {'loss': 2.4740278720855713, 'task': 'train'} -stargan.D0 [data] {'loss': 1.960935115814209, 'task': 'train'} -stargan.D1 [data] {'loss': 2.146240234375, 'task': 'train'} -stargan.D0 [data] {'loss': 1.4182789325714111, 'task': 'train'} -stargan.D1 [data] {'loss': 1.4623568058013916, 'task': 'train'} -stargan.D0 [data] {'rate': 58.98515596768921, 'task': 'train', 'units': 'items/s'} -stargan.D1 [data] {'rate': 49.47912055702268, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'loss': 2.6358723640441895, 'task': 'train'} -stargan.D1 [data] {'loss': 1.5353127717971802, 'task': 'train'} -stargan.D0 [data] {'loss': 1.3485865592956543, 'task': 'train'} -stargan.D1 [data] {'loss': 1.082343339920044, 'task': 'train'} -stargan.D1 [data] {'rate': 31.65044454617051, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'loss': 2.2289342880249023, 'task': 'train'} -stargan.D1 [data] {'loss': 1.2025959491729736, 'task': 'train'} -stargan.D0 [data] {'loss': 0.24021558463573456, 'task': 'train'} -stargan.D0 [data] {'gpudata': {'0': {'load': 0.95, - 'memory': [37249.4375, 81920.0], - 'power': 414.437, - 'temperature': 62}}, - 'task': 'main'} -stargan.D1 [data] {'loss': 3.066537857055664, 'task': 'train'} -stargan.D1 [data] {'gpudata': {'1': {'load': 0.95, - 'memory': [37249.4375, 81920.0], - 'power': 216.875, - 'temperature': 57}}, - 'task': 'main'} -stargan.D0 [data] {'loss': 1.4500253200531006, 'task': 'train'} -stargan.D1 [data] {'loss': 2.132075786590576, 'task': 'train'} -stargan.D0 [stdout] Elapsed [0:00:54], Iteration [130/200000], D/loss_real: -4.2758, D/loss_fake: 0.0746, D/loss_cls: 3.5662, D/loss_gp: 0.2085, G/loss_fake: -0.3973, G/loss_rec: 0.5317, G/loss_cls: 3.3752 -stargan.D0 [data] {'rate': 49.55839299642971, 'task': 'train', 'units': 'items/s'} -stargan.D1 [stdout] Elapsed [0:00:55], Iteration [130/200000], D/loss_real: -1.6849, D/loss_fake: -0.5680, D/loss_cls: 3.9488, D/loss_gp: 0.0436, G/loss_fake: 4.6861, G/loss_rec: 0.5331, G/loss_cls: 15.5475 -stargan.D1 [data] {'rate': 59.389853661458034, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'loss': 1.5281116962432861, 'task': 'train'} -stargan.D1 [data] {'loss': 15.770112037658691, 'task': 'train'} -stargan.D0 [data] {'loss': 2.698395252227783, 'task': 'train'} -stargan.D0 [data] {'rate': 31.23820175218178, 'task': 'train', 'units': 'items/s'} -stargan.D1 [data] {'loss': 3.1142730712890625, 'task': 'train'} -stargan.D0 [data] {'loss': 4.0252861976623535, 'task': 'train'} -stargan.D1 [data] {'loss': 3.321274757385254, 'task': 'train'} -stargan.D0 [data] {'loss': 3.9706175327301025, 'task': 'train'} -stargan.D1 [data] {'loss': 3.0215723514556885, 'task': 'train'} -stargan.D0 [data] {'loss': 1.7442097663879395, 'task': 'train'} -stargan.D1 [data] {'loss': 1.546674370765686, 'task': 'train'} -stargan.D0 [data] {'rate': 59.31196130521255, 'task': 'train', 'units': 'items/s'} -stargan.D1 [data] {'rate': 49.70239445652892, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'loss': 5.667969703674316, 'task': 'train'} -stargan.D1 [data] {'loss': 2.000736713409424, 'task': 'train'} -stargan.D0 [data] {'loss': 2.842047929763794, 'task': 'train'} -stargan.D1 [data] {'loss': 2.160703659057617, 'task': 'train'} -stargan.D1 [data] {'rate': 31.58890012682657, 'task': 'train', 'units': 'items/s'} -stargan.D1 [data] {'gpudata': {'1': {'load': 0.94, - 'memory': [37249.4375, 81920.0], - 'power': 206.579, - 'temperature': 57}}, - 'task': 'main'} -stargan.D0 [data] {'loss': 4.03906774520874, 'task': 'train'} -stargan.D0 [data] {'gpudata': {'0': {'load': 0.95, - 'memory': [37249.4375, 81920.0], - 'power': 383.563, - 'temperature': 62}}, - 'task': 'main'} -stargan.D1 [data] {'loss': 3.493316650390625, 'task': 'train'} -stargan.D0 [data] {'loss': 10.422286033630371, 'task': 'train'} -stargan.D1 [data] {'loss': 1.687225580215454, 'task': 'train'} -stargan.D0 [data] {'loss': 8.622574806213379, 'task': 'train'} -stargan.D1 [data] {'loss': 0.4342287480831146, 'task': 'train'} -stargan.D0 [stdout] Elapsed [0:00:58], Iteration [140/200000], D/loss_real: 1.3497, D/loss_fake: -1.3719, D/loss_cls: 3.5691, D/loss_gp: 0.5076, G/loss_fake: 4.5077, G/loss_rec: 0.5169, G/loss_cls: 15.6602 -stargan.D0 [data] {'rate': 49.56574361571909, 'task': 'train', 'units': 'items/s'} -stargan.D1 [stdout] Elapsed [0:00:58], Iteration [140/200000], D/loss_real: -5.1039, D/loss_fake: 1.3547, D/loss_cls: 4.0685, D/loss_gp: 0.0115, G/loss_fake: -1.4762, G/loss_rec: 0.5330, G/loss_cls: 3.4679 -stargan.D1 [data] {'rate': 58.18488738173222, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'loss': 18.30327606201172, 'task': 'train'} -stargan.D1 [data] {'loss': 4.503701210021973, 'task': 'train'} -stargan.D0 [data] {'loss': 8.927497863769531, 'task': 'train'} -stargan.D0 [data] {'rate': 31.418211015410936, 'task': 'train', 'units': 'items/s'} -stargan.D1 [data] {'loss': 1.7170045375823975, 'task': 'train'} -stargan.D0 [data] {'loss': 9.636566162109375, 'task': 'train'} -stargan.D1 [data] {'loss': 2.104483127593994, 'task': 'train'} -stargan.D0 [data] {'loss': 4.094073295593262, 'task': 'train'} -stargan.D1 [data] {'loss': 0.7632861137390137, 'task': 'train'} -stargan.D0 [data] {'loss': 18.521974563598633, 'task': 'train'} -stargan.D1 [data] {'loss': 1.8718502521514893, 'task': 'train'} -stargan.D0 [data] {'rate': 59.60100102414263, 'task': 'train', 'units': 'items/s'} -stargan.D1 [data] {'rate': 49.66152646568214, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'loss': 8.858222961425781, 'task': 'train'} -stargan.D1 [data] {'loss': 3.6066956520080566, 'task': 'train'} -stargan.D1 [data] {'gpudata': {'1': {'load': 0.95, - 'memory': [37249.4375, 81920.0], - 'power': 184.123, - 'temperature': 58}}, - 'task': 'main'} -stargan.D0 [data] {'loss': 11.066619873046875, 'task': 'train'} -stargan.D0 [data] {'gpudata': {'0': {'load': 0.95, - 'memory': [37249.4375, 81920.0], - 'power': 369.196, - 'temperature': 62}}, - 'task': 'main'} -stargan.D1 [data] {'loss': 1.7119112014770508, 'task': 'train'} -stargan.D1 [data] {'rate': 31.653023450260136, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'loss': 11.126097679138184, 'task': 'train'} -stargan.D1 [data] {'loss': 1.3435289859771729, 'task': 'train'} -stargan.D0 [data] {'loss': 10.235696792602539, 'task': 'train'} -stargan.D1 [data] {'loss': 0.3240029811859131, 'task': 'train'} -stargan.D0 [data] {'loss': 8.154548645019531, 'task': 'train'} -stargan.D1 [data] {'loss': -0.04024927318096161, 'task': 'train'} -stargan.D0 [stdout] Elapsed [0:01:01], Iteration [150/200000], D/loss_real: -1.2535, D/loss_fake: 0.6175, D/loss_cls: 3.4699, D/loss_gp: 0.5321, G/loss_fake: -1.2647, G/loss_rec: 0.5174, G/loss_cls: 3.2621 -stargan.D0 [data] {'rate': 49.581598799087075, 'task': 'train', 'units': 'items/s'} -stargan.D1 [stdout] Elapsed [0:01:01], Iteration [150/200000], D/loss_real: -4.1687, D/loss_fake: 0.6496, D/loss_cls: 3.2830, D/loss_gp: 0.0196, G/loss_fake: 0.1872, G/loss_rec: 0.5304, G/loss_cls: 6.0083 -stargan.D1 [data] {'rate': 59.518864380067626, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'loss': 4.43005895614624, 'task': 'train'} -stargan.D1 [data] {'loss': 1.0258541107177734, 'task': 'train'} -stargan.D0 [data] {'loss': 1.8267446756362915, 'task': 'train'} -stargan.D0 [data] {'rate': 30.531249426465713, 'task': 'train', 'units': 'items/s'} -stargan.D1 [data] {'loss': 2.104243278503418, 'task': 'train'} -stargan.D0 [data] {'loss': 12.161108016967773, 'task': 'train'} -stargan.D1 [data] {'loss': 2.302819013595581, 'task': 'train'} -stargan.D0 [data] {'loss': 4.781451225280762, 'task': 'train'} -stargan.D1 [data] {'loss': 1.0321542024612427, 'task': 'train'} -stargan.D0 [data] {'loss': 5.923039436340332, 'task': 'train'} -stargan.D1 [data] {'loss': 0.46669667959213257, 'task': 'train'} -stargan.D0 [data] {'rate': 59.099343367511246, 'task': 'train', 'units': 'items/s'} -stargan.D1 [data] {'rate': 48.56102752254567, 'task': 'train', 'units': 'items/s'} -stargan.D1 [data] {'gpudata': {'1': {'load': 1.0, - 'memory': [37249.4375, 81920.0], - 'power': 440.785, - 'temperature': 60}}, - 'task': 'main'} -stargan.D0 [data] {'loss': 5.019904613494873, 'task': 'train'} -stargan.D0 [data] {'gpudata': {'0': {'load': 0.96, - 'memory': [37249.4375, 81920.0], - 'power': 191.33, - 'temperature': 61}}, - 'task': 'main'} -stargan.D1 [data] {'loss': 1.3737903833389282, 'task': 'train'} -stargan.D0 [data] {'loss': 3.3380775451660156, 'task': 'train'} -stargan.D1 [data] {'loss': 1.2577769756317139, 'task': 'train'} -stargan.D1 [data] {'rate': 31.673595176529552, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'loss': 3.6919498443603516, 'task': 'train'} -stargan.D1 [data] {'loss': 1.0547436475753784, 'task': 'train'} -stargan.D0 [data] {'loss': 4.253905296325684, 'task': 'train'} -stargan.D1 [data] {'loss': 0.5914134979248047, 'task': 'train'} -stargan.D0 [data] {'loss': 2.4230833053588867, 'task': 'train'} -stargan.D1 [data] {'loss': 0.6023615002632141, 'task': 'train'} -stargan.D0 [stdout] Elapsed [0:01:04], Iteration [160/200000], D/loss_real: -1.3471, D/loss_fake: -0.2718, D/loss_cls: 3.4030, D/loss_gp: 0.0639, G/loss_fake: 0.8706, G/loss_rec: 0.5198, G/loss_cls: 3.2820 -stargan.D0 [data] {'rate': 49.588115502976706, 'task': 'train', 'units': 'items/s'} -stargan.D1 [stdout] Elapsed [0:01:05], Iteration [160/200000], D/loss_real: -5.0238, D/loss_fake: 1.7855, D/loss_cls: 3.2694, D/loss_gp: 0.0571, G/loss_fake: -1.1051, G/loss_rec: 0.5213, G/loss_cls: 3.6561 -stargan.D1 [data] {'rate': 58.96057459674209, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'loss': 10.039185523986816, 'task': 'train'} -stargan.D1 [data] {'loss': 1.527198076248169, 'task': 'train'} -stargan.D0 [data] {'loss': 6.0921783447265625, 'task': 'train'} -stargan.D0 [data] {'rate': 31.464153447482754, 'task': 'train', 'units': 'items/s'} -stargan.D1 [data] {'loss': 1.5562794208526611, 'task': 'train'} -stargan.D0 [data] {'loss': 5.071992874145508, 'task': 'train'} -stargan.D1 [data] {'loss': 1.5965646505355835, 'task': 'train'} -stargan.D0 [data] {'loss': 2.7736778259277344, 'task': 'train'} -stargan.D1 [data] {'loss': 1.5951406955718994, 'task': 'train'} -stargan.D0 [data] {'loss': 2.8728411197662354, 'task': 'train'} -stargan.D1 [data] {'loss': 1.3130909204483032, 'task': 'train'} -stargan.D0 [data] {'gpudata': {'0': {'load': 1.0, - 'memory': [37249.4375, 81920.0], - 'power': 411.327, - 'temperature': 62}}, - 'task': 'main'} -stargan.D0 [data] {'rate': 59.583600529059176, 'task': 'train', 'units': 'items/s'} -stargan.D1 [data] {'rate': 49.43002668739498, 'task': 'train', 'units': 'items/s'} -stargan.D1 [data] {'gpudata': {'1': {'load': 1.0, - 'memory': [37249.4375, 81920.0], - 'power': 435.363, - 'temperature': 60}}, - 'task': 'main'} -stargan.D0 [data] {'loss': 2.718597650527954, 'task': 'train'} -stargan.D1 [data] {'loss': 2.1472766399383545, 'task': 'train'} -stargan.D0 [data] {'loss': 1.1434322595596313, 'task': 'train'} -stargan.D1 [data] {'loss': 2.1337950229644775, 'task': 'train'} -stargan.D1 [data] {'rate': 31.584784153414756, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'loss': 1.1257877349853516, 'task': 'train'} -stargan.D1 [data] {'loss': 2.006946086883545, 'task': 'train'} -stargan.D0 [data] {'loss': 1.2838565111160278, 'task': 'train'} -stargan.D1 [data] {'loss': 1.9438531398773193, 'task': 'train'} -stargan.D0 [data] {'loss': -0.10892480611801147, 'task': 'train'} -stargan.D1 [data] {'loss': 1.9006925821304321, 'task': 'train'} -stargan.D0 [stdout] Elapsed [0:01:07], Iteration [170/200000], D/loss_real: -3.7368, D/loss_fake: -0.3944, D/loss_cls: 3.1891, D/loss_gp: 0.0833, G/loss_fake: 0.9465, G/loss_rec: 0.5205, G/loss_cls: 5.4315 -stargan.D0 [data] {'rate': 49.76568369036204, 'task': 'train', 'units': 'items/s'} -stargan.D1 [stdout] Elapsed [0:01:08], Iteration [170/200000], D/loss_real: -3.7056, D/loss_fake: 2.3075, D/loss_cls: 3.2629, D/loss_gp: 0.0036, G/loss_fake: -2.3883, G/loss_rec: 0.5440, G/loss_cls: 3.3111 -stargan.D1 [data] {'rate': 59.67308391881362, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'loss': 2.0530691146850586, 'task': 'train'} -stargan.D1 [data] {'loss': 2.4702656269073486, 'task': 'train'} -stargan.D0 [data] {'loss': 3.778801679611206, 'task': 'train'} -stargan.D0 [data] {'rate': 31.407605079894314, 'task': 'train', 'units': 'items/s'} -stargan.D1 [data] {'loss': 2.454594135284424, 'task': 'train'} -stargan.D0 [data] {'loss': 1.776045560836792, 'task': 'train'} -stargan.D1 [data] {'loss': 2.297137975692749, 'task': 'train'} -stargan.D0 [data] {'loss': 1.2212872505187988, 'task': 'train'} -stargan.D1 [data] {'loss': 2.1954355239868164, 'task': 'train'} -stargan.D0 [data] {'loss': -0.08791941404342651, 'task': 'train'} -stargan.D1 [data] {'loss': 2.135706901550293, 'task': 'train'} -stargan.D0 [data] {'gpudata': {'0': {'load': 1.0, - 'memory': [37249.4375, 81920.0], - 'power': 372.754, - 'temperature': 62}}, - 'task': 'main'} -stargan.D0 [data] {'rate': 59.697505278565345, 'task': 'train', 'units': 'items/s'} -stargan.D1 [data] {'rate': 49.632316140045745, 'task': 'train', 'units': 'items/s'} -stargan.D1 [data] {'gpudata': {'1': {'load': 0.99, - 'memory': [37249.4375, 81920.0], - 'power': 478.634, - 'temperature': 59}}, - 'task': 'main'} -stargan.D0 [data] {'loss': 0.47604113817214966, 'task': 'train'} -stargan.D1 [data] {'loss': 2.5031216144561768, 'task': 'train'} -stargan.D0 [data] {'loss': -0.22139911353588104, 'task': 'train'} -stargan.D1 [data] {'loss': 2.465254068374634, 'task': 'train'} -stargan.D1 [data] {'rate': 31.579191702028957, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'loss': -0.4290718734264374, 'task': 'train'} -stargan.D1 [data] {'loss': 2.3812623023986816, 'task': 'train'} -stargan.D0 [data] {'loss': -0.778673529624939, 'task': 'train'} -stargan.D1 [data] {'loss': 2.2978627681732178, 'task': 'train'} -stargan.D0 [data] {'loss': -0.8954766392707825, 'task': 'train'} -stargan.D1 [data] {'loss': 2.2070529460906982, 'task': 'train'} -stargan.D0 [stdout] Elapsed [0:01:11], Iteration [180/200000], D/loss_real: -5.5528, D/loss_fake: 0.7168, D/loss_cls: 3.2029, D/loss_gp: 0.0738, G/loss_fake: -0.5895, G/loss_rec: 0.5188, G/loss_cls: 3.4747 -stargan.D0 [data] {'rate': 49.63427650319213, 'task': 'train', 'units': 'items/s'} -stargan.D1 [stdout] Elapsed [0:01:11], Iteration [180/200000], D/loss_real: -3.8466, D/loss_fake: 2.6622, D/loss_cls: 3.2503, D/loss_gp: 0.0141, G/loss_fake: -2.1656, G/loss_rec: 0.5203, G/loss_cls: 3.3044 -stargan.D1 [data] {'rate': 59.67564533786787, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'loss': -0.3081740438938141, 'task': 'train'} -stargan.D1 [data] {'loss': 2.5542283058166504, 'task': 'train'} -stargan.D0 [data] {'loss': -0.2823235094547272, 'task': 'train'} -stargan.D0 [data] {'rate': 30.352150429749646, 'task': 'train', 'units': 'items/s'} -stargan.D1 [data] {'loss': 2.4962158203125, 'task': 'train'} -stargan.D0 [data] {'loss': -0.2523912191390991, 'task': 'train'} -stargan.D1 [data] {'loss': 2.4540083408355713, 'task': 'train'} -stargan.D0 [data] {'loss': 0.4653049409389496, 'task': 'train'} -stargan.D1 [data] {'loss': 2.4197134971618652, 'task': 'train'} -stargan.D0 [data] {'loss': -0.043198347091674805, 'task': 'train'} -stargan.D1 [data] {'loss': 2.3649215698242188, 'task': 'train'} -stargan.D1 [data] {'gpudata': {'1': {'load': 0.95, - 'memory': [37249.4375, 81920.0], - 'power': 404.125, - 'temperature': 60}}, - 'task': 'main'} -stargan.D0 [data] {'gpudata': {'0': {'load': 0.95, - 'memory': [37249.4375, 81920.0], - 'power': 338.483, - 'temperature': 60}}, - 'task': 'main'} -stargan.D0 [data] {'rate': 58.99085755756849, 'task': 'train', 'units': 'items/s'} -stargan.D1 [data] {'rate': 48.526239573204066, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'loss': 0.01216808706521988, 'task': 'train'} -stargan.D1 [data] {'loss': 2.695486068725586, 'task': 'train'} -stargan.D0 [data] {'loss': -0.06336987018585205, 'task': 'train'} -stargan.D1 [data] {'loss': 2.5670456886291504, 'task': 'train'} -stargan.D0 [data] {'loss': -0.15630030632019043, 'task': 'train'} -stargan.D1 [data] {'loss': 2.4641611576080322, 'task': 'train'} -stargan.D1 [data] {'rate': 39.60854616370856, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'loss': -0.29230356216430664, 'task': 'train'} -stargan.D1 [data] {'loss': 2.365623950958252, 'task': 'train'} -stargan.D0 [data] {'loss': -0.4468396306037903, 'task': 'train'} -stargan.D1 [data] {'loss': 2.2756996154785156, 'task': 'train'} -stargan.D0 [stdout] Elapsed [0:01:14], Iteration [190/200000], D/loss_real: -5.0827, D/loss_fake: 1.1374, D/loss_cls: 3.1855, D/loss_gp: 0.0313, G/loss_fake: -1.0954, G/loss_rec: 0.5242, G/loss_cls: 3.2559 -stargan.D0 [data] {'rate': 49.48916617661824, 'task': 'train', 'units': 'items/s'} -stargan.D1 [stdout] Elapsed [0:01:14], Iteration [190/200000], D/loss_real: -4.0938, D/loss_fake: 3.0788, D/loss_cls: 3.2354, D/loss_gp: 0.0055, G/loss_fake: -2.6099, G/loss_rec: 0.5075, G/loss_cls: 3.2966 -stargan.D1 [data] {'rate': 52.20426607911461, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'loss': 0.3574408292770386, 'task': 'train'} -stargan.D1 [data] {'loss': 2.5148653984069824, 'task': 'train'} -stargan.D0 [data] {'loss': 0.3145390748977661, 'task': 'train'} -stargan.D0 [data] {'rate': 31.447301042365407, 'task': 'train', 'units': 'items/s'} -stargan.D1 [data] {'loss': 2.4128103256225586, 'task': 'train'} -stargan.D0 [data] {'loss': 0.10284045338630676, 'task': 'train'} -stargan.D1 [data] {'loss': 2.3410749435424805, 'task': 'train'} -stargan.D0 [data] {'loss': 0.09530594944953918, 'task': 'train'} -stargan.D1 [data] {'loss': 2.305192470550537, 'task': 'train'} -stargan.D1 [data] {'gpudata': {'1': {'load': 0.95, - 'memory': [37249.4375, 81920.0], - 'power': 372.907, - 'temperature': 59}}, - 'task': 'main'} -stargan.D0 [data] {'loss': 0.09159152209758759, 'task': 'train'} -stargan.D0 [data] {'gpudata': {'0': {'load': 0.95, - 'memory': [37249.4375, 81920.0], - 'power': 321.849, - 'temperature': 60}}, - 'task': 'main'} -stargan.D1 [data] {'loss': 2.3832812309265137, 'task': 'train'} -stargan.D0 [data] {'rate': 58.988396848387104, 'task': 'train', 'units': 'items/s'} -stargan.D1 [data] {'rate': 49.80786519498297, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'loss': 1.4705601930618286, 'task': 'train'} -stargan.D1 [data] {'loss': 2.9193878173828125, 'task': 'train'} -stargan.D0 [data] {'loss': 2.188790798187256, 'task': 'train'} -stargan.D1 [data] {'loss': 2.4689574241638184, 'task': 'train'} -stargan.D1 [data] {'rate': 31.63939005188365, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'loss': 0.7120053172111511, 'task': 'train'} -stargan.D1 [data] {'loss': 2.378248691558838, 'task': 'train'} -stargan.D0 [data] {'loss': 0.5668267011642456, 'task': 'train'} -stargan.D1 [data] {'loss': 2.3605432510375977, 'task': 'train'} -stargan.D0 [data] {'loss': 0.2552018165588379, 'task': 'train'} -stargan.D1 [data] {'loss': 2.295079231262207, 'task': 'train'} -stargan.D0 [stdout] Elapsed [0:01:17], Iteration [200/200000], D/loss_real: -3.4034, D/loss_fake: 0.2293, D/loss_cls: 3.2892, D/loss_gp: 0.0140, G/loss_fake: 0.6918, G/loss_rec: 0.5262, G/loss_cls: 3.2448 -stargan.D0 [data] {'rate': 49.2532622408791, 'task': 'train', 'units': 'items/s'} -stargan.D1 [stdout] Elapsed [0:01:17], Iteration [200/200000], D/loss_real: -4.2044, D/loss_fake: 3.2083, D/loss_cls: 3.2269, D/loss_gp: 0.0064, G/loss_fake: -2.9743, G/loss_rec: 0.5022, G/loss_cls: 3.2982 -stargan.D1 [data] {'rate': 58.36879699837295, 'task': 'train', 'units': 'items/s'} -stargan.D1 [data] {'gpudata': {'1': {'load': 1.0, - 'memory': [37249.4375, 81920.0], - 'power': 456.844, - 'temperature': 60}}, - 'task': 'main'} -stargan.D0 [data] {'loss': 0.9877324104309082, 'task': 'train'} -stargan.D0 [data] {'loss': 1.0904085636138916, 'task': 'train'} -stargan.D0 [data] {'rate': 31.261323071022503, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'loss': 0.8475162386894226, 'task': 'train'} -stargan.D1 [end] voir --config /Tmp/slurm.4112514.0/base/extra/stargan/voirconf-stargan.D1-0efae956f1553a76c1e03985181900f5.json /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/stargan/main.py --image_size 512 --c_dim 5 --batch_size 16 [at 2024-02-05 09:49:22.319947] -stargan.D0 [data] {'loss': 0.3615033030509949, 'task': 'train'} -stargan.D0 [data] {'gpudata': {'0': {'load': 0.95, - 'memory': [37249.4375, 81920.0], - 'power': 190.866, - 'temperature': 59}}, - 'task': 'main'} -stargan.D0 [data] {'loss': 0.24729645252227783, 'task': 'train'} -stargan.D0 [data] {'rate': 57.97210364015004, 'task': 'train', 'units': 'items/s'} -stargan.D0 [data] {'gpudata': {'0': {'load': 1.0, - 'memory': [37249.4375, 81920.0], - 'power': 434.012, - 'temperature': 62}}, - 'task': 'main'} -stargan.D0 [end] voir --config /Tmp/slurm.4112514.0/base/extra/stargan/voirconf-stargan.D0-0efae956f1553a76c1e03985181900f5.json /Tmp/slurm.4112514.0/milabench/benchmarks/stargan/stargan/main.py --image_size 512 --c_dim 5 --batch_size 16 [at 2024-02-05 09:49:23.847147] -super-slomo.D0 [config.dirs.base] /Tmp/slurm.4112514.0/base -super-slomo.D0 [config.dirs.venv] /Tmp/slurm.4112514.0/base/venv/torch -super-slomo.D0 [config.dirs.data] /Tmp/slurm.4112514.0/base/data -super-slomo.D0 [config.dirs.runs] /Tmp/slurm.4112514.0/base/runs -super-slomo.D0 [config.dirs.extra] /Tmp/slurm.4112514.0/base/extra/super-slomo -super-slomo.D0 [config.dirs.cache] /Tmp/slurm.4112514.0/base/cache -super-slomo.D0 [config.arch] cuda -super-slomo.D0 [config.group] super-slomo -super-slomo.D0 [config.install_group] torch -super-slomo.D0 [config.install_variant] cuda -super-slomo.D0 [config.run_name] jenadogo.2024-02-05_09:17:41.183394 -super-slomo.D0 [config.enabled] True -super-slomo.D0 [config.capabilities.nodes] 1 -super-slomo.D0 [config.max_duration] 600 -super-slomo.D0 [config.voir.options.stop] 60 -super-slomo.D0 [config.voir.options.interval] 1s -super-slomo.D0 [config.config_base] /Tmp/slurm.4112514.0/milabench/config -super-slomo.D0 [config.config_file] /Tmp/slurm.4112514.0/milabench/config/standard.yaml -super-slomo.D0 [config.tags] ['convnet', 'unet', 'video-interpolation', 'vision'] -super-slomo.D0 [config.definition] /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo -super-slomo.D0 [config.plan.method] per_gpu -super-slomo.D0 [config.argv.--train_batch_size] 32 -super-slomo.D0 [config.weight] 1.0 -super-slomo.D0 [config.name] super-slomo -super-slomo.D0 [config.tag] ['super-slomo', 'D0'] -super-slomo.D0 [config.device] 0 -super-slomo.D0 [config.devices] ['0'] -super-slomo.D0 [config.env.CUDA_VISIBLE_DEVICES] 0 -super-slomo.D1 [config.dirs.base] /Tmp/slurm.4112514.0/base -super-slomo.D1 [config.dirs.venv] /Tmp/slurm.4112514.0/base/venv/torch -super-slomo.D1 [config.dirs.data] /Tmp/slurm.4112514.0/base/data -super-slomo.D1 [config.dirs.runs] /Tmp/slurm.4112514.0/base/runs -super-slomo.D1 [config.dirs.extra] /Tmp/slurm.4112514.0/base/extra/super-slomo -super-slomo.D1 [config.dirs.cache] /Tmp/slurm.4112514.0/base/cache -super-slomo.D1 [config.arch] cuda -super-slomo.D1 [config.group] super-slomo -super-slomo.D1 [config.install_group] torch -super-slomo.D1 [config.install_variant] cuda -super-slomo.D1 [config.run_name] jenadogo.2024-02-05_09:17:41.183394 -super-slomo.D1 [config.enabled] True -super-slomo.D1 [config.capabilities.nodes] 1 -super-slomo.D1 [config.max_duration] 600 -super-slomo.D1 [config.voir.options.stop] 60 -super-slomo.D1 [config.voir.options.interval] 1s -super-slomo.D1 [config.config_base] /Tmp/slurm.4112514.0/milabench/config -super-slomo.D1 [config.config_file] /Tmp/slurm.4112514.0/milabench/config/standard.yaml -super-slomo.D1 [config.tags] ['convnet', 'unet', 'video-interpolation', 'vision'] -super-slomo.D1 [config.definition] /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo -super-slomo.D1 [config.plan.method] per_gpu -super-slomo.D1 [config.argv.--train_batch_size] 32 -super-slomo.D1 [config.weight] 1.0 -super-slomo.D1 [config.name] super-slomo -super-slomo.D1 [config.tag] ['super-slomo', 'D1'] -super-slomo.D1 [config.device] 1 -super-slomo.D1 [config.devices] ['1'] -super-slomo.D1 [config.env.CUDA_VISIBLE_DEVICES] 1 -super-slomo.D0 [start] voir --config /Tmp/slurm.4112514.0/base/extra/super-slomo/voirconf-super-slomo.D0-0efae956f1553a76c1e03985181900f5.json /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/slomo/train.py --train_batch_size 32 [at 2024-02-05 09:49:23.854468] -super-slomo.D1 [start] voir --config /Tmp/slurm.4112514.0/base/extra/super-slomo/voirconf-super-slomo.D1-0efae956f1553a76c1e03985181900f5.json /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/slomo/train.py --train_batch_size 32 [at 2024-02-05 09:49:23.857624] -super-slomo.D1 [stderr] /Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torchvision/models/_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead. -super-slomo.D1 [stderr] warnings.warn( -super-slomo.D1 [stderr] /Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torchvision/models/_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing `weights=VGG16_Weights.IMAGENET1K_V1`. You can also use `weights=VGG16_Weights.DEFAULT` to get the most up-to-date weights. -super-slomo.D1 [stderr] warnings.warn(msg) -super-slomo.D0 [stderr] /Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torchvision/models/_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead. -super-slomo.D0 [stderr] warnings.warn( -super-slomo.D0 [stderr] /Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torchvision/models/_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing `weights=VGG16_Weights.IMAGENET1K_V1`. You can also use `weights=VGG16_Weights.DEFAULT` to get the most up-to-date weights. -super-slomo.D0 [stderr] warnings.warn(msg) -super-slomo.D1 [stdout] Epoch: 0 -super-slomo.D1 [stderr] /Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torch/optim/lr_scheduler.py:143: UserWarning: Detected call of `lr_scheduler.step()` before `optimizer.step()`. In PyTorch 1.1.0 and later, you should call them in the opposite order: `optimizer.step()` before `lr_scheduler.step()`. Failure to do this will result in PyTorch skipping the first value of the learning rate schedule. See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate -super-slomo.D1 [stderr] warnings.warn("Detected call of `lr_scheduler.step()` before `optimizer.step()`. " -super-slomo.D1 [data] {'gpudata': {'1': {'load': 0, - 'memory': [1279.4375, 81920.0], - 'power': 78.541, - 'temperature': 39}}, - 'task': 'main'} -super-slomo.D1 [stderr] /Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torch/nn/functional.py:4316: UserWarning: Default grid_sample and affine_grid behavior has changed to align_corners=False since 1.3.0. Please specify align_corners=True if the old behavior is desired. See the documentation of grid_sample for details. -super-slomo.D1 [stderr] warnings.warn( -super-slomo.D1 [data] {'loss': 328.1830749511719, 'task': 'train'} -super-slomo.D0 [stdout] Epoch: 0 -super-slomo.D0 [stderr] /Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torch/optim/lr_scheduler.py:143: UserWarning: Detected call of `lr_scheduler.step()` before `optimizer.step()`. In PyTorch 1.1.0 and later, you should call them in the opposite order: `optimizer.step()` before `lr_scheduler.step()`. Failure to do this will result in PyTorch skipping the first value of the learning rate schedule. See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate -super-slomo.D0 [stderr] warnings.warn("Detected call of `lr_scheduler.step()` before `optimizer.step()`. " -super-slomo.D0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [1279.4375, 81920.0], - 'power': 83.84, - 'temperature': 44}}, - 'task': 'main'} -super-slomo.D1 [data] {'loss': 328.1575622558594, 'task': 'train'} -super-slomo.D0 [stderr] /Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torch/nn/functional.py:4316: UserWarning: Default grid_sample and affine_grid behavior has changed to align_corners=False since 1.3.0. Please specify align_corners=True if the old behavior is desired. See the documentation of grid_sample for details. -super-slomo.D0 [stderr] warnings.warn( -super-slomo.D0 [data] {'loss': 328.1808776855469, 'task': 'train'} -super-slomo.D0 [data] {'gpudata': {'0': {'load': 0.63, - 'memory': [25463.4375, 81920.0], - 'power': 225.187, - 'temperature': 46}}, - 'task': 'main'} -super-slomo.D1 [data] {'gpudata': {'1': {'load': 0.32, - 'memory': [33623.4375, 81920.0], - 'power': 307.355, - 'temperature': 48}}, - 'task': 'main'} -super-slomo.D1 [data] {'loss': 328.1372985839844, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.1506652832031, 'task': 'train'} -super-slomo.D1 [data] {'loss': 328.12249755859375, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.1282043457031, 'task': 'train'} -super-slomo.D1 [data] {'loss': 328.1156005859375, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.1103820800781, 'task': 'train'} -super-slomo.D1 [data] {'loss': 328.1140441894531, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.09625244140625, 'task': 'train'} -super-slomo.D0 [data] {'gpudata': {'0': {'load': 1.0, - 'memory': [33623.4375, 81920.0], - 'power': 163.864, - 'temperature': 57}}, - 'task': 'main'} -super-slomo.D1 [data] {'loss': 328.1138000488281, 'task': 'train'} -super-slomo.D1 [data] {'gpudata': {'1': {'load': 1.0, - 'memory': [33623.4375, 81920.0], - 'power': 267.289, - 'temperature': 52}}, - 'task': 'main'} -super-slomo.D0 [data] {'loss': 328.08685302734375, 'task': 'train'} -super-slomo.D1 [data] {'loss': 328.11358642578125, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.08148193359375, 'task': 'train'} -super-slomo.D1 [data] {'loss': 328.1134338378906, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0789794921875, 'task': 'train'} -super-slomo.D1 [data] {'loss': 328.1131286621094, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0780334472656, 'task': 'train'} -super-slomo.D1 [data] {'loss': 328.11273193359375, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0777587890625, 'task': 'train'} -super-slomo.D1 [data] {'rate': 42.223251422772165, 'task': 'train', 'units': 'items/s'} -super-slomo.D0 [data] {'gpudata': {'0': {'load': 1.0, - 'memory': [33623.4375, 81920.0], - 'power': 442.35, - 'temperature': 56}}, - 'task': 'main'} -super-slomo.D1 [data] {'loss': 328.11224365234375, 'task': 'train'} -super-slomo.D1 [data] {'gpudata': {'1': {'load': 1.0, - 'memory': [33623.4375, 81920.0], - 'power': 404.413, - 'temperature': 51}}, - 'task': 'main'} -super-slomo.D0 [data] {'loss': 328.0776672363281, 'task': 'train'} -super-slomo.D0 [data] {'rate': 38.79726076499047, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.1116943359375, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0775451660156, 'task': 'train'} -super-slomo.D1 [data] {'rate': 43.00943182458634, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.1109924316406, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.077392578125, 'task': 'train'} -super-slomo.D0 [data] {'rate': 43.4802238008101, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.1100158691406, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0771484375, 'task': 'train'} -super-slomo.D1 [data] {'rate': 42.19576861214756, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.1089172363281, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0767822265625, 'task': 'train'} -super-slomo.D1 [data] {'gpudata': {'1': {'load': 0.99, - 'memory': [33623.4375, 81920.0], - 'power': 295.207, - 'temperature': 53}}, - 'task': 'main'} -super-slomo.D0 [data] {'gpudata': {'0': {'load': 0.9, - 'memory': [33623.4375, 81920.0], - 'power': 407.288, - 'temperature': 57}}, - 'task': 'main'} -super-slomo.D0 [data] {'rate': 42.81730439466763, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.10870361328125, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0762939453125, 'task': 'train'} -super-slomo.D1 [data] {'rate': 41.96262631077533, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.1079406738281, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.075439453125, 'task': 'train'} -super-slomo.D0 [data] {'rate': 42.923366857522396, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.1075134277344, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0742492675781, 'task': 'train'} -super-slomo.D1 [data] {'rate': 42.67097532572921, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.107177734375, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0732727050781, 'task': 'train'} -super-slomo.D0 [data] {'rate': 42.908459152243736, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.1068115234375, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.07171630859375, 'task': 'train'} -super-slomo.D1 [data] {'gpudata': {'1': {'load': 1.0, - 'memory': [33623.4375, 81920.0], - 'power': 366.435, - 'temperature': 56}}, - 'task': 'main'} -super-slomo.D1 [data] {'rate': 42.174428610396426, 'task': 'train', 'units': 'items/s'} -super-slomo.D0 [data] {'gpudata': {'0': {'load': 0.9, - 'memory': [33623.4375, 81920.0], - 'power': 369.723, - 'temperature': 58}}, - 'task': 'main'} -super-slomo.D1 [data] {'loss': 328.1065368652344, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0705261230469, 'task': 'train'} -super-slomo.D0 [data] {'rate': 42.99635575720326, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.106201171875, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0693359375, 'task': 'train'} -super-slomo.D1 [data] {'rate': 42.12282491183487, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.1058349609375, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0682373046875, 'task': 'train'} -super-slomo.D0 [data] {'rate': 42.77231474031326, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.10546875, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0671691894531, 'task': 'train'} -super-slomo.D1 [data] {'rate': 42.645000930803775, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.1051940917969, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.06671142578125, 'task': 'train'} -super-slomo.D0 [data] {'gpudata': {'0': {'load': 1.0, - 'memory': [33623.4375, 81920.0], - 'power': 293.145, - 'temperature': 57}}, - 'task': 'main'} -super-slomo.D1 [data] {'gpudata': {'1': {'load': 0.88, - 'memory': [33623.4375, 81920.0], - 'power': 425.918, - 'temperature': 56}}, - 'task': 'main'} -super-slomo.D0 [data] {'rate': 42.73260307320863, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.1050109863281, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0676574707031, 'task': 'train'} -super-slomo.D1 [data] {'rate': 42.90648494130909, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.1045837402344, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.06634521484375, 'task': 'train'} -super-slomo.D0 [data] {'rate': 42.8775920325925, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.1043395996094, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.06573486328125, 'task': 'train'} -super-slomo.D1 [data] {'rate': 42.88650960519841, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.1040954589844, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0654602050781, 'task': 'train'} -super-slomo.D0 [data] {'rate': 42.97861565938056, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.1038513183594, 'task': 'train'} -super-slomo.D1 [data] {'gpudata': {'1': {'load': 0.89, - 'memory': [33623.4375, 81920.0], - 'power': 288.775, - 'temperature': 54}}, - 'task': 'main'} -super-slomo.D0 [data] {'loss': 328.0655517578125, 'task': 'train'} -super-slomo.D0 [data] {'gpudata': {'0': {'load': 1.0, - 'memory': [33623.4375, 81920.0], - 'power': 399.771, - 'temperature': 55}}, - 'task': 'main'} -super-slomo.D1 [data] {'rate': 41.79188462146644, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.1035461425781, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.06488037109375, 'task': 'train'} -super-slomo.D0 [data] {'rate': 43.03043807253124, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.1033630371094, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0646057128906, 'task': 'train'} -super-slomo.D1 [data] {'rate': 42.311999587881125, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.10302734375, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0643310546875, 'task': 'train'} -super-slomo.D0 [data] {'rate': 42.947213296283294, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.1028137207031, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0648498535156, 'task': 'train'} -super-slomo.D1 [data] {'rate': 42.236329128286826, 'task': 'train', 'units': 'items/s'} -super-slomo.D0 [data] {'gpudata': {'0': {'load': 1.0, - 'memory': [33623.4375, 81920.0], - 'power': 255.879, - 'temperature': 57}}, - 'task': 'main'} -super-slomo.D1 [data] {'loss': 328.1025695800781, 'task': 'train'} -super-slomo.D1 [data] {'gpudata': {'1': {'load': 1.0, - 'memory': [33623.4375, 81920.0], - 'power': 410.598, - 'temperature': 55}}, - 'task': 'main'} -super-slomo.D0 [data] {'loss': 328.0643310546875, 'task': 'train'} -super-slomo.D0 [data] {'rate': 42.16959426109774, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.1023864746094, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.06439208984375, 'task': 'train'} -super-slomo.D1 [data] {'rate': 41.50958305411328, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.10211181640625, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.06414794921875, 'task': 'train'} -super-slomo.D0 [data] {'rate': 42.17600549911848, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.1018371582031, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0637512207031, 'task': 'train'} -super-slomo.D1 [data] {'rate': 41.597193206509935, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.1014709472656, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0636901855469, 'task': 'train'} -super-slomo.D1 [data] {'gpudata': {'1': {'load': 1.0, - 'memory': [33623.4375, 81920.0], - 'power': 379.03, - 'temperature': 57}}, - 'task': 'main'} -super-slomo.D0 [data] {'gpudata': {'0': {'load': 1.0, - 'memory': [33623.4375, 81920.0], - 'power': 445.921, - 'temperature': 59}}, - 'task': 'main'} -super-slomo.D0 [data] {'rate': 42.5152107632783, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.1010437011719, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0632629394531, 'task': 'train'} -super-slomo.D1 [data] {'rate': 40.74037809950712, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.10064697265625, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.06298828125, 'task': 'train'} -super-slomo.D0 [data] {'rate': 42.983245404287985, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.1002502441406, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0628356933594, 'task': 'train'} -super-slomo.D1 [data] {'rate': 41.686302787906655, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.09954833984375, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0625915527344, 'task': 'train'} -super-slomo.D0 [data] {'rate': 42.96517192478301, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.1037292480469, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.06231689453125, 'task': 'train'} -super-slomo.D1 [data] {'gpudata': {'1': {'load': 0.88, - 'memory': [33623.4375, 81920.0], - 'power': 383.69, - 'temperature': 56}}, - 'task': 'main'} -super-slomo.D1 [data] {'rate': 42.92308882732098, 'task': 'train', 'units': 'items/s'} -super-slomo.D0 [data] {'gpudata': {'0': {'load': 0.87, - 'memory': [33623.4375, 81920.0], - 'power': 399.138, - 'temperature': 59}}, - 'task': 'main'} -super-slomo.D1 [data] {'loss': 328.0997619628906, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0622863769531, 'task': 'train'} -super-slomo.D0 [data] {'rate': 43.14095789762292, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.1002502441406, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0620422363281, 'task': 'train'} -super-slomo.D1 [data] {'rate': 42.9191141780514, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.1004638671875, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0616455078125, 'task': 'train'} -super-slomo.D0 [data] {'rate': 42.871474733729194, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.1006164550781, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0614318847656, 'task': 'train'} -super-slomo.D1 [data] {'rate': 42.35843739239985, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.1006164550781, 'task': 'train'} -super-slomo.D1 [data] {'gpudata': {'1': {'load': 0.87, - 'memory': [33623.4375, 81920.0], - 'power': 276.07, - 'temperature': 55}}, - 'task': 'main'} -super-slomo.D0 [data] {'loss': 328.0611572265625, 'task': 'train'} -super-slomo.D0 [data] {'gpudata': {'0': {'load': 0.88, - 'memory': [33623.4375, 81920.0], - 'power': 324.414, - 'temperature': 57}}, - 'task': 'main'} -super-slomo.D0 [data] {'rate': 42.66998570883504, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.1005859375, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0608215332031, 'task': 'train'} -super-slomo.D1 [data] {'rate': 42.38928702596212, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.10052490234375, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0605773925781, 'task': 'train'} -super-slomo.D0 [data] {'rate': 42.98155633949571, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.1004333496094, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.060302734375, 'task': 'train'} -super-slomo.D1 [data] {'rate': 42.905077137174494, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.10028076171875, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.06011962890625, 'task': 'train'} -super-slomo.D0 [data] {'rate': 42.511847163373254, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.1001281738281, 'task': 'train'} -super-slomo.D1 [data] {'gpudata': {'1': {'load': 1.0, - 'memory': [33623.4375, 81920.0], - 'power': 303.693, - 'temperature': 55}}, - 'task': 'main'} -super-slomo.D0 [data] {'loss': 328.0599060058594, 'task': 'train'} -super-slomo.D0 [data] {'gpudata': {'0': {'load': 1.0, - 'memory': [33623.4375, 81920.0], - 'power': 308.786, - 'temperature': 57}}, - 'task': 'main'} -super-slomo.D1 [data] {'rate': 42.4743053514844, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.09991455078125, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0594787597656, 'task': 'train'} -super-slomo.D0 [data] {'rate': 42.86994258757482, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.09967041015625, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.05889892578125, 'task': 'train'} -super-slomo.D1 [data] {'rate': 42.472249463395805, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.0992736816406, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0585021972656, 'task': 'train'} -super-slomo.D0 [data] {'rate': 42.49725354692752, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.0985107421875, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0582580566406, 'task': 'train'} -super-slomo.D1 [data] {'rate': 42.969217020103905, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'gpudata': {'1': {'load': 1.0, - 'memory': [33623.4375, 81920.0], - 'power': 416.345, - 'temperature': 57}}, - 'task': 'main'} -super-slomo.D1 [data] {'loss': 328.098876953125, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.05804443359375, 'task': 'train'} -super-slomo.D0 [data] {'gpudata': {'0': {'load': 1.0, - 'memory': [33623.4375, 81920.0], - 'power': 417.001, - 'temperature': 59}}, - 'task': 'main'} -super-slomo.D0 [data] {'rate': 43.405046110604715, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.09783935546875, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0578308105469, 'task': 'train'} -super-slomo.D1 [data] {'rate': 42.97217003289474, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.09771728515625, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0574035644531, 'task': 'train'} -super-slomo.D0 [data] {'rate': 43.12103275886802, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.09765625, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0569152832031, 'task': 'train'} -super-slomo.D1 [data] {'rate': 42.89614471174207, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.09722900390625, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0567932128906, 'task': 'train'} -super-slomo.D1 [data] {'gpudata': {'1': {'load': 1.0, - 'memory': [33623.4375, 81920.0], - 'power': 185.48, - 'temperature': 55}}, - 'task': 'main'} -super-slomo.D0 [data] {'gpudata': {'0': {'load': 1.0, - 'memory': [33623.4375, 81920.0], - 'power': 411.236, - 'temperature': 59}}, - 'task': 'main'} -super-slomo.D0 [data] {'rate': 43.387751102702914, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.09661865234375, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.05706787109375, 'task': 'train'} -super-slomo.D1 [data] {'rate': 42.85993201505348, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.0962219238281, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0559387207031, 'task': 'train'} -super-slomo.D0 [data] {'rate': 42.26819143557929, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.0956726074219, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0567932128906, 'task': 'train'} -super-slomo.D1 [data] {'rate': 42.72829128840763, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.0948486328125, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.05535888671875, 'task': 'train'} -super-slomo.D0 [data] {'rate': 43.164368089315126, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.09417724609375, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0556640625, 'task': 'train'} -super-slomo.D1 [data] {'gpudata': {'1': {'load': 1.0, - 'memory': [33623.4375, 81920.0], - 'power': 418.793, - 'temperature': 57}}, - 'task': 'main'} -super-slomo.D1 [data] {'rate': 42.720005897710415, 'task': 'train', 'units': 'items/s'} -super-slomo.D0 [data] {'gpudata': {'0': {'load': 1.0, - 'memory': [33623.4375, 81920.0], - 'power': 376.441, - 'temperature': 60}}, - 'task': 'main'} -super-slomo.D1 [data] {'loss': 328.09375, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0544128417969, 'task': 'train'} -super-slomo.D0 [data] {'rate': 41.81135303002456, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.0930480957031, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0548400878906, 'task': 'train'} -super-slomo.D1 [data] {'rate': 42.72014987349979, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.0914001464844, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.05328369140625, 'task': 'train'} -super-slomo.D0 [data] {'rate': 42.804093660991015, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.0916748046875, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.05352783203125, 'task': 'train'} -super-slomo.D1 [data] {'rate': 42.93893869832614, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.0895690917969, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0526428222656, 'task': 'train'} -super-slomo.D1 [data] {'gpudata': {'1': {'load': 0.88, - 'memory': [33623.4375, 81920.0], - 'power': 297.28, - 'temperature': 57}}, - 'task': 'main'} -super-slomo.D0 [data] {'gpudata': {'0': {'load': 0.89, - 'memory': [33623.4375, 81920.0], - 'power': 443.534, - 'temperature': 60}}, - 'task': 'main'} -super-slomo.D0 [data] {'rate': 42.36072864511957, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.0887756347656, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0525207519531, 'task': 'train'} -super-slomo.D1 [data] {'rate': 42.9028110608252, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.0867614746094, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0517578125, 'task': 'train'} -super-slomo.D0 [data] {'rate': 42.7445884556233, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.0846862792969, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.051513671875, 'task': 'train'} -super-slomo.D1 [data] {'rate': 42.9378598133529, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.0829162597656, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0505065917969, 'task': 'train'} -super-slomo.D0 [data] {'rate': 42.942775832436475, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.08135986328125, 'task': 'train'} -super-slomo.D1 [data] {'gpudata': {'1': {'load': 0.75, - 'memory': [33623.4375, 81920.0], - 'power': 317.851, - 'temperature': 56}}, - 'task': 'main'} -super-slomo.D0 [data] {'loss': 328.05035400390625, 'task': 'train'} -super-slomo.D0 [data] {'gpudata': {'0': {'load': 0.91, - 'memory': [33623.4375, 81920.0], - 'power': 388.218, - 'temperature': 58}}, - 'task': 'main'} -super-slomo.D1 [data] {'rate': 42.16716666692011, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.07977294921875, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.04974365234375, 'task': 'train'} -super-slomo.D0 [data] {'rate': 42.44379503463226, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.0782165527344, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0492248535156, 'task': 'train'} -super-slomo.D1 [data] {'rate': 41.32730294455212, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.07427978515625, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0486145019531, 'task': 'train'} -super-slomo.D0 [data] {'rate': 43.51366606548073, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.0722961425781, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.04791259765625, 'task': 'train'} -super-slomo.D1 [data] {'rate': 42.226784983223894, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.0682067871094, 'task': 'train'} -super-slomo.D1 [data] {'gpudata': {'1': {'load': 1.0, - 'memory': [33623.4375, 81920.0], - 'power': 419.158, - 'temperature': 57}}, - 'task': 'main'} -super-slomo.D0 [data] {'loss': 328.0473937988281, 'task': 'train'} -super-slomo.D0 [data] {'gpudata': {'0': {'load': 1.0, - 'memory': [33623.4375, 81920.0], - 'power': 161.977, - 'temperature': 58}}, - 'task': 'main'} -super-slomo.D0 [data] {'rate': 42.54857963636719, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.0652160644531, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0467224121094, 'task': 'train'} -super-slomo.D1 [data] {'rate': 42.844742785241884, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.0614318847656, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.046142578125, 'task': 'train'} -super-slomo.D0 [data] {'rate': 43.53290833270459, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.0570983886719, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0453186035156, 'task': 'train'} -super-slomo.D1 [data] {'rate': 42.75678942742178, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.0522766113281, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0447692871094, 'task': 'train'} -super-slomo.D1 [data] {'gpudata': {'1': {'load': 1.0, - 'memory': [33623.4375, 81920.0], - 'power': 353.354, - 'temperature': 55}}, - 'task': 'main'} -super-slomo.D0 [data] {'rate': 42.95616046019493, 'task': 'train', 'units': 'items/s'} -super-slomo.D0 [data] {'gpudata': {'0': {'load': 1.0, - 'memory': [33623.4375, 81920.0], - 'power': 415.698, - 'temperature': 60}}, - 'task': 'main'} -super-slomo.D1 [data] {'loss': 328.0467224121094, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0439147949219, 'task': 'train'} -super-slomo.D1 [data] {'rate': 42.76593481199916, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.04095458984375, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.043212890625, 'task': 'train'} -super-slomo.D0 [data] {'rate': 42.99340204778447, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.0346374511719, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.04248046875, 'task': 'train'} -super-slomo.D1 [data] {'rate': 42.82768683451572, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.0284729003906, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0415344238281, 'task': 'train'} -super-slomo.D0 [data] {'rate': 43.043351084142294, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.02099609375, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0408630371094, 'task': 'train'} -super-slomo.D1 [data] {'gpudata': {'1': {'load': 1.0, - 'memory': [33623.4375, 81920.0], - 'power': 391.734, - 'temperature': 58}}, - 'task': 'main'} -super-slomo.D1 [data] {'rate': 42.91939684829752, 'task': 'train', 'units': 'items/s'} -super-slomo.D0 [data] {'gpudata': {'0': {'load': 1.0, - 'memory': [33623.4375, 81920.0], - 'power': 399.549, - 'temperature': 58}}, - 'task': 'main'} -super-slomo.D1 [data] {'loss': 328.01324462890625, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0400085449219, 'task': 'train'} -super-slomo.D0 [data] {'rate': 43.518287642417846, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 328.005126953125, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0389404296875, 'task': 'train'} -super-slomo.D1 [data] {'rate': 43.05641511596151, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 327.9964904785156, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.03814697265625, 'task': 'train'} -super-slomo.D0 [data] {'rate': 43.287178969446785, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 327.9867858886719, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0372314453125, 'task': 'train'} -super-slomo.D1 [data] {'rate': 42.98713738069286, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 327.9784240722656, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0361022949219, 'task': 'train'} -super-slomo.D1 [data] {'gpudata': {'1': {'load': 1.0, - 'memory': [33623.4375, 81920.0], - 'power': 433.772, - 'temperature': 58}}, - 'task': 'main'} -super-slomo.D0 [data] {'gpudata': {'0': {'load': 1.0, - 'memory': [33623.4375, 81920.0], - 'power': 381.362, - 'temperature': 61}}, - 'task': 'main'} -super-slomo.D0 [data] {'rate': 43.53866396289749, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 327.9691162109375, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0350341796875, 'task': 'train'} -super-slomo.D1 [data] {'rate': 42.91796543135994, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 327.95867919921875, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0339660644531, 'task': 'train'} -super-slomo.D0 [data] {'rate': 43.37799943116125, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 327.94573974609375, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.03277587890625, 'task': 'train'} -super-slomo.D1 [data] {'rate': 42.86951340067263, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 327.93817138671875, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.031494140625, 'task': 'train'} -super-slomo.D0 [data] {'rate': 43.340955427253995, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 327.92431640625, 'task': 'train'} -super-slomo.D1 [data] {'gpudata': {'1': {'load': 0.88, - 'memory': [33623.4375, 81920.0], - 'power': 307.178, - 'temperature': 56}}, - 'task': 'main'} -super-slomo.D0 [data] {'loss': 328.03021240234375, 'task': 'train'} -super-slomo.D1 [data] {'rate': 42.9652786184259, 'task': 'train', 'units': 'items/s'} -super-slomo.D0 [data] {'gpudata': {'0': {'load': 0.87, - 'memory': [33623.4375, 81920.0], - 'power': 439.994, - 'temperature': 60}}, - 'task': 'main'} -super-slomo.D1 [data] {'loss': 327.9130859375, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0287780761719, 'task': 'train'} -super-slomo.D0 [data] {'rate': 42.89125781684294, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 327.89923095703125, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0271911621094, 'task': 'train'} -super-slomo.D1 [data] {'rate': 42.806390692612894, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 327.8857421875, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.02557373046875, 'task': 'train'} -super-slomo.D0 [data] {'rate': 42.60793166127688, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 327.8737487792969, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0238342285156, 'task': 'train'} -super-slomo.D1 [data] {'rate': 42.80056234802858, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 327.8575439453125, 'task': 'train'} -super-slomo.D1 [data] {'gpudata': {'1': {'load': 0.88, - 'memory': [33623.4375, 81920.0], - 'power': 311.92, - 'temperature': 55}}, - 'task': 'main'} -super-slomo.D0 [data] {'loss': 328.0219421386719, 'task': 'train'} -super-slomo.D0 [data] {'gpudata': {'0': {'load': 0.89, - 'memory': [33623.4375, 81920.0], - 'power': 328.073, - 'temperature': 59}}, - 'task': 'main'} -super-slomo.D0 [data] {'rate': 43.06844869291004, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 327.8467102050781, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.01995849609375, 'task': 'train'} -super-slomo.D1 [data] {'rate': 42.8794871090212, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 327.8307189941406, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.017578125, 'task': 'train'} -super-slomo.D0 [data] {'rate': 42.510999859042165, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 327.814697265625, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0150146484375, 'task': 'train'} -super-slomo.D1 [data] {'rate': 43.0790384068286, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 327.802001953125, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0122985839844, 'task': 'train'} -super-slomo.D0 [data] {'rate': 41.24031574446626, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 327.7815856933594, 'task': 'train'} -super-slomo.D1 [data] {'gpudata': {'1': {'load': 1.0, - 'memory': [33623.4375, 81920.0], - 'power': 435.075, - 'temperature': 57}}, - 'task': 'main'} -super-slomo.D0 [data] {'loss': 328.0094299316406, 'task': 'train'} -super-slomo.D0 [data] {'gpudata': {'0': {'load': 1.0, - 'memory': [33623.4375, 81920.0], - 'power': 230.817, - 'temperature': 58}}, - 'task': 'main'} -super-slomo.D1 [data] {'rate': 42.502253894524024, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 327.7676696777344, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0064697265625, 'task': 'train'} -super-slomo.D0 [data] {'rate': 42.84492523460464, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 327.749267578125, 'task': 'train'} -super-slomo.D0 [data] {'loss': 328.0031433105469, 'task': 'train'} -super-slomo.D1 [data] {'rate': 42.8229542053422, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 327.73223876953125, 'task': 'train'} -super-slomo.D0 [data] {'loss': 327.99951171875, 'task': 'train'} -super-slomo.D0 [data] {'rate': 42.44515944302966, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 327.7157897949219, 'task': 'train'} -super-slomo.D0 [data] {'loss': 327.9956970214844, 'task': 'train'} -super-slomo.D1 [data] {'gpudata': {'1': {'load': 1.0, - 'memory': [33623.4375, 81920.0], - 'power': 232.981, - 'temperature': 55}}, - 'task': 'main'} -super-slomo.D1 [data] {'rate': 42.90461175343307, 'task': 'train', 'units': 'items/s'} -super-slomo.D0 [data] {'gpudata': {'0': {'load': 1.0, - 'memory': [33623.4375, 81920.0], - 'power': 363.17, - 'temperature': 60}}, - 'task': 'main'} -super-slomo.D1 [data] {'loss': 327.6958312988281, 'task': 'train'} -super-slomo.D0 [data] {'loss': 327.99163818359375, 'task': 'train'} -super-slomo.D0 [data] {'rate': 43.274375881872615, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 327.68048095703125, 'task': 'train'} -super-slomo.D0 [data] {'loss': 327.9873962402344, 'task': 'train'} -super-slomo.D1 [data] {'rate': 42.33385334937904, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 327.661376953125, 'task': 'train'} -super-slomo.D0 [data] {'loss': 327.9829406738281, 'task': 'train'} -super-slomo.D0 [data] {'rate': 42.076573606046885, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 327.63995361328125, 'task': 'train'} -super-slomo.D0 [data] {'loss': 327.978271484375, 'task': 'train'} -super-slomo.D1 [data] {'rate': 41.21628576652275, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 327.6248474121094, 'task': 'train'} -super-slomo.D0 [data] {'loss': 327.9732971191406, 'task': 'train'} -super-slomo.D1 [data] {'gpudata': {'1': {'load': 1.0, - 'memory': [33623.4375, 81920.0], - 'power': 380.174, - 'temperature': 58}}, - 'task': 'main'} -super-slomo.D0 [data] {'gpudata': {'0': {'load': 1.0, - 'memory': [33623.4375, 81920.0], - 'power': 440.537, - 'temperature': 61}}, - 'task': 'main'} -super-slomo.D0 [data] {'rate': 42.72927214341595, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 327.6032409667969, 'task': 'train'} -super-slomo.D0 [data] {'loss': 327.9681396484375, 'task': 'train'} -super-slomo.D1 [data] {'rate': 42.04657885843091, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 327.5832824707031, 'task': 'train'} -super-slomo.D0 [data] {'loss': 327.9626159667969, 'task': 'train'} -super-slomo.D0 [data] {'rate': 42.56282506409955, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 327.5660400390625, 'task': 'train'} -super-slomo.D0 [data] {'loss': 327.9566955566406, 'task': 'train'} -super-slomo.D1 [data] {'rate': 42.89340112783721, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 327.5426940917969, 'task': 'train'} -super-slomo.D0 [data] {'loss': 327.95037841796875, 'task': 'train'} -super-slomo.D0 [data] {'rate': 42.98973469485746, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 327.5249938964844, 'task': 'train'} -super-slomo.D1 [data] {'gpudata': {'1': {'load': 0.94, - 'memory': [33623.4375, 81920.0], - 'power': 424.638, - 'temperature': 58}}, - 'task': 'main'} -super-slomo.D0 [data] {'loss': 327.9438171386719, 'task': 'train'} -super-slomo.D1 [data] {'rate': 42.974995960837205, 'task': 'train', 'units': 'items/s'} -super-slomo.D0 [data] {'gpudata': {'0': {'load': 0.87, - 'memory': [33623.4375, 81920.0], - 'power': 395.504, - 'temperature': 61}}, - 'task': 'main'} -super-slomo.D1 [data] {'loss': 327.5033264160156, 'task': 'train'} -super-slomo.D0 [data] {'loss': 327.9368896484375, 'task': 'train'} -super-slomo.D0 [data] {'rate': 43.061292697180875, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 327.48394775390625, 'task': 'train'} -super-slomo.D0 [data] {'loss': 327.9297180175781, 'task': 'train'} -super-slomo.D1 [data] {'rate': 43.0610227570057, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 327.46380615234375, 'task': 'train'} -super-slomo.D0 [data] {'loss': 327.92254638671875, 'task': 'train'} -super-slomo.D0 [data] {'rate': 43.06247358399002, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'loss': 327.4425354003906, 'task': 'train'} -super-slomo.D0 [data] {'loss': 327.9158020019531, 'task': 'train'} -super-slomo.D1 [data] {'rate': 42.884222501481, 'task': 'train', 'units': 'items/s'} -super-slomo.D1 [data] {'gpudata': {'1': {'load': 1.0, - 'memory': [33623.4375, 81920.0], - 'power': 408.898, - 'temperature': 57}}, - 'task': 'main'} -super-slomo.D0 [data] {'loss': 327.9084167480469, 'task': 'train'} -super-slomo.D0 [data] {'gpudata': {'0': {'load': 0.88, - 'memory': [33623.4375, 81920.0], - 'power': 388.886, - 'temperature': 61}}, - 'task': 'main'} -super-slomo.D1 [end] voir --config /Tmp/slurm.4112514.0/base/extra/super-slomo/voirconf-super-slomo.D1-0efae956f1553a76c1e03985181900f5.json /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/slomo/train.py --train_batch_size 32 [at 2024-02-05 09:50:53.430652] -super-slomo.D0 [data] {'rate': 43.13205309442783, 'task': 'train', 'units': 'items/s'} -super-slomo.D0 [data] {'gpudata': {'0': {'load': 0.99, - 'memory': [33623.4375, 81920.0], - 'power': 353.53, - 'temperature': 61}}, - 'task': 'main'} -super-slomo.D0 [end] voir --config /Tmp/slurm.4112514.0/base/extra/super-slomo/voirconf-super-slomo.D0-0efae956f1553a76c1e03985181900f5.json /Tmp/slurm.4112514.0/milabench/benchmarks/super-slomo/slomo/train.py --train_batch_size 32 [at 2024-02-05 09:50:54.064611] -dlrm.0 [config.dirs.base] /Tmp/slurm.4112514.0/base -dlrm.0 [config.dirs.venv] /Tmp/slurm.4112514.0/base/venv/torch -dlrm.0 [config.dirs.data] /Tmp/slurm.4112514.0/base/data -dlrm.0 [config.dirs.runs] /Tmp/slurm.4112514.0/base/runs -dlrm.0 [config.dirs.extra] /Tmp/slurm.4112514.0/base/extra/dlrm -dlrm.0 [config.dirs.cache] /Tmp/slurm.4112514.0/base/cache -dlrm.0 [config.arch] cuda -dlrm.0 [config.group] dlrm -dlrm.0 [config.install_group] torch -dlrm.0 [config.install_variant] cuda -dlrm.0 [config.run_name] jenadogo.2024-02-05_09:17:41.183394 -dlrm.0 [config.enabled] True -dlrm.0 [config.capabilities.nodes] 1 -dlrm.0 [config.max_duration] 600 -dlrm.0 [config.voir.options.stop] 60 -dlrm.0 [config.voir.options.interval] 1s -dlrm.0 [config.config_base] /Tmp/slurm.4112514.0/milabench/config -dlrm.0 [config.config_file] /Tmp/slurm.4112514.0/milabench/config/standard.yaml -dlrm.0 [config.tags] ['nlp', 'rl'] -dlrm.0 [config.definition] /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm -dlrm.0 [config.plan.method] njobs -dlrm.0 [config.plan.n] 1 -dlrm.0 [config.argv.--num-batches] 1000 -dlrm.0 [config.argv.--data-generation] random -dlrm.0 [config.argv.--arch-mlp-bot] 512-512-64 -dlrm.0 [config.argv.--arch-mlp-top] 1024-1024-1024-1 -dlrm.0 [config.argv.--arch-sparse-feature-size] 64 -dlrm.0 [config.argv.--arch-embedding-size] 1000000-1000000-1000000-1000000-1000000-1000000-1000000-1000000 -dlrm.0 [config.argv.--num-indices-per-lookup] 100 -dlrm.0 [config.argv.--arch-interaction-op] dot -dlrm.0 [config.argv.--numpy-rand-seed] 727 -dlrm.0 [config.argv.--print-freq] 999999 -dlrm.0 [config.argv.--enable-profiling] True -dlrm.0 [config.argv.--mini-batch-size] 16384 -dlrm.0 [config.argv.--test-mini-batch-size] 16384 -dlrm.0 [config.argv.--test-num-workers] 0 -dlrm.0 [config.argv.--use-gpu] True -dlrm.0 [config.weight] 1.0 -dlrm.0 [config.name] dlrm -dlrm.0 [config.tag] ['dlrm', '0'] -dlrm.0 [config.job-number] 0 -dlrm.0 [config.devices] ['0', '1'] -dlrm.0 [start] voir --config /Tmp/slurm.4112514.0/base/extra/dlrm/voirconf-dlrm.0-0efae956f1553a76c1e03985181900f5.json /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/dlrm/dlrm_s_pytorch.py --num-batches 1000 --data-generation random --arch-mlp-bot 512-512-64 --arch-mlp-top 1024-1024-1024-1 --arch-sparse-feature-size 64 --arch-embedding-size 1000000-1000000-1000000-1000000-1000000-1000000-1000000-1000000 --num-indices-per-lookup 100 --arch-interaction-op dot --numpy-rand-seed 727 --print-freq 999999 --enable-profiling --mini-batch-size 16384 --test-mini-batch-size 16384 --test-num-workers 0 --use-gpu [at 2024-02-05 09:50:54.071733] -dlrm.0 [stdout] Unable to import mlperf_logging, No module named 'mlperf_logging' -dlrm.0 [stderr] /Tmp/slurm.4112514.0/base/venv/torch/lib/python3.9/site-packages/torch/distributed/distributed_c10d.py:359: UserWarning: torch.distributed.reduce_op is deprecated, please use torch.distributed.ReduceOp instead -dlrm.0 [stderr] warnings.warn( -dlrm.0 [stdout] world size: 1, current rank: 0, local rank: 0 -dlrm.0 [stdout] Using 2 GPU(s)... -dlrm.0 [stdout] time/loss/accuracy (if enabled): -dlrm.0 [stderr] STAGE:2024-02-05 09:51:03 63869:63869 ActivityProfilerController.cpp:314] Completed Stage: Warm Up -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [1137.4375, 81920.0], - 'power': 83.742, - 'temperature': 43}, - '1': {'load': 0, - 'memory': [697.5625, 81920.0], - 'power': 62.574, - 'temperature': 37}}, - 'task': 'main'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [1137.4375, 81920.0], - 'power': 83.262, - 'temperature': 42}, - '1': {'load': 0, - 'memory': [697.5625, 81920.0], - 'power': 62.186, - 'temperature': 35}}, - 'task': 'main'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [1137.4375, 81920.0], - 'power': 82.676, - 'temperature': 41}, - '1': {'load': 0, - 'memory': [697.5625, 81920.0], - 'power': 61.895, - 'temperature': 34}}, - 'task': 'main'} -dlrm.0 [stderr] libibverbs: Warning: couldn't load driver 'libbnxt_re-rdmav34.so': libbnxt_re-rdmav34.so: cannot open shared object file: No such file or directory -dlrm.0 [stderr] libibverbs: Warning: couldn't load driver 'libcxgb4-rdmav34.so': libcxgb4-rdmav34.so: cannot open shared object file: No such file or directory -dlrm.0 [stderr] libibverbs: Warning: couldn't load driver 'libipathverbs-rdmav34.so': libipathverbs-rdmav34.so: cannot open shared object file: No such file or directory -dlrm.0 [stderr] libibverbs: Warning: couldn't load driver 'libhfi1verbs-rdmav34.so': libhfi1verbs-rdmav34.so: cannot open shared object file: No such file or directory -dlrm.0 [stderr] libibverbs: Warning: couldn't load driver 'libqedr-rdmav34.so': libqedr-rdmav34.so: cannot open shared object file: No such file or directory -dlrm.0 [stderr] libibverbs: Warning: couldn't load driver 'libmthca-rdmav34.so': libmthca-rdmav34.so: cannot open shared object file: No such file or directory -dlrm.0 [stderr] libibverbs: Warning: couldn't load driver 'libvmw_pvrdma-rdmav34.so': libvmw_pvrdma-rdmav34.so: cannot open shared object file: No such file or directory -dlrm.0 [stderr] libibverbs: Warning: couldn't load driver 'librxe-rdmav34.so': librxe-rdmav34.so: cannot open shared object file: No such file or directory -dlrm.0 [stderr] libibverbs: Warning: couldn't load driver 'libocrdma-rdmav34.so': libocrdma-rdmav34.so: cannot open shared object file: No such file or directory -dlrm.0 [stderr] libibverbs: Warning: couldn't load driver 'libi40iw-rdmav34.so': libi40iw-rdmav34.so: cannot open shared object file: No such file or directory -dlrm.0 [stderr] libibverbs: Warning: couldn't load driver 'libmlx4-rdmav34.so': libmlx4-rdmav34.so: cannot open shared object file: No such file or directory -dlrm.0 [stderr] libibverbs: Warning: couldn't load driver 'libhns-rdmav34.so': libhns-rdmav34.so: cannot open shared object file: No such file or directory -dlrm.0 [data] {'loss': 0.0887361615896225} -dlrm.0 [data] {'gpudata': {'0': {'load': 0.1, - 'memory': [3775.4375, 81920.0], - 'power': 83.599, - 'temperature': 40}, - '1': {'load': 0.1, - 'memory': [3757.4375, 81920.0], - 'power': 77.09, - 'temperature': 34}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08788755536079407} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [3775.4375, 81920.0], - 'power': 82.145, - 'temperature': 39}, - '1': {'load': 0, - 'memory': [3757.4375, 81920.0], - 'power': 76.818, - 'temperature': 33}}, - 'task': 'main'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [3783.4375, 81920.0], - 'power': 81.607, - 'temperature': 39}, - '1': {'load': 0, - 'memory': [3765.4375, 81920.0], - 'power': 76.818, - 'temperature': 33}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08937834203243256} -dlrm.0 [data] {'rate': 293449.8760154572, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [3783.4375, 81920.0], - 'power': 81.418, - 'temperature': 38}, - '1': {'load': 0, - 'memory': [4169.4375, 81920.0], - 'power': 76.552, - 'temperature': 32}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08813147246837616} -dlrm.0 [data] {'rate': 326727.8497004031, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [3985.4375, 81920.0], - 'power': 81.177, - 'temperature': 38}, - '1': {'load': 0, - 'memory': [4169.4375, 81920.0], - 'power': 76.31, - 'temperature': 32}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08771650493144989} -dlrm.0 [data] {'rate': 384422.10147401376, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [3985.4375, 81920.0], - 'power': 81.17, - 'temperature': 37}, - '1': {'load': 0, - 'memory': [4169.4375, 81920.0], - 'power': 76.284, - 'temperature': 31}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08742949366569519} -dlrm.0 [data] {'rate': 310436.71799419983, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4187.4375, 81920.0], - 'power': 80.794, - 'temperature': 37}, - '1': {'load': 0, - 'memory': [4169.4375, 81920.0], - 'power': 76.02, - 'temperature': 31}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08757737278938293} -dlrm.0 [data] {'rate': 309196.53419823316, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4187.4375, 81920.0], - 'power': 80.693, - 'temperature': 37}, - '1': {'load': 0, - 'memory': [4169.4375, 81920.0], - 'power': 76.02, - 'temperature': 31}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08654382824897766} -dlrm.0 [data] {'rate': 355172.85064279265, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4187.4375, 81920.0], - 'power': 80.632, - 'temperature': 36}, - '1': {'load': 0, - 'memory': [4371.4375, 81920.0], - 'power': 76.035, - 'temperature': 30}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.0858154371380806} -dlrm.0 [data] {'rate': 342938.42806770187, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4187.4375, 81920.0], - 'power': 80.632, - 'temperature': 36}, - '1': {'load': 0, - 'memory': [4371.4375, 81920.0], - 'power': 76.284, - 'temperature': 30}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08628800511360168} -dlrm.0 [data] {'rate': 381619.82522445556, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4187.4375, 81920.0], - 'power': 80.249, - 'temperature': 36}, - '1': {'load': 0, - 'memory': [4371.4375, 81920.0], - 'power': 76.575, - 'temperature': 30}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.0873076319694519} -dlrm.0 [data] {'rate': 370053.1004968139, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4187.4375, 81920.0], - 'power': 80.342, - 'temperature': 36}, - '1': {'load': 0, - 'memory': [4371.4375, 81920.0], - 'power': 76.284, - 'temperature': 30}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08590050786733627} -dlrm.0 [data] {'rate': 343951.99753523467, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4187.4375, 81920.0], - 'power': 80.007, - 'temperature': 35}, - '1': {'load': 0, - 'memory': [4371.4375, 81920.0], - 'power': 76.284, - 'temperature': 30}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08602668344974518} -dlrm.0 [data] {'rate': 363468.3111714683, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4187.4375, 81920.0], - 'power': 80.063, - 'temperature': 35}, - '1': {'load': 0, - 'memory': [4371.4375, 81920.0], - 'power': 76.31, - 'temperature': 30}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08581672608852386} -dlrm.0 [data] {'rate': 317686.49771887757, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4187.4375, 81920.0], - 'power': 79.81, - 'temperature': 35}, - '1': {'load': 0, - 'memory': [4371.4375, 81920.0], - 'power': 76.284, - 'temperature': 29}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08588778972625732} -dlrm.0 [data] {'rate': 381442.683091673, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4187.4375, 81920.0], - 'power': 79.81, - 'temperature': 35}, - '1': {'load': 0, - 'memory': [4371.4375, 81920.0], - 'power': 76.035, - 'temperature': 29}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08632193505764008} -dlrm.0 [data] {'rate': 341962.27319588076, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0.16, - 'memory': [4187.4375, 81920.0], - 'power': 79.718, - 'temperature': 34}, - '1': {'load': 0.11, - 'memory': [4371.4375, 81920.0], - 'power': 75.947, - 'temperature': 29}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08664406836032867} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4187.4375, 81920.0], - 'power': 124.866, - 'temperature': 35}, - '1': {'load': 0, - 'memory': [4371.4375, 81920.0], - 'power': 77.94, - 'temperature': 30}}, - 'task': 'main'} -dlrm.0 [data] {'rate': 333007.9337961365, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4187.4375, 81920.0], - 'power': 79.476, - 'temperature': 34}, - '1': {'load': 0, - 'memory': [4371.4375, 81920.0], - 'power': 76.035, - 'temperature': 29}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.0852133184671402} -dlrm.0 [data] {'rate': 371176.638780315, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4187.4375, 81920.0], - 'power': 79.476, - 'temperature': 34}, - '1': {'load': 0, - 'memory': [4371.4375, 81920.0], - 'power': 76.035, - 'temperature': 29}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08576951175928116} -dlrm.0 [data] {'rate': 330606.1020394426, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4389.4375, 81920.0], - 'power': 79.476, - 'temperature': 34}, - '1': {'load': 0, - 'memory': [4371.4375, 81920.0], - 'power': 75.744, - 'temperature': 29}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08471724390983582} -dlrm.0 [data] {'rate': 363481.0193867784, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4389.4375, 81920.0], - 'power': 79.272, - 'temperature': 33}, - '1': {'load': 0, - 'memory': [4371.4375, 81920.0], - 'power': 75.744, - 'temperature': 29}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08532554656267166} -dlrm.0 [data] {'rate': 364328.3173628749, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4389.4375, 81920.0], - 'power': 79.18, - 'temperature': 33}, - '1': {'load': 0, - 'memory': [4371.4375, 81920.0], - 'power': 75.744, - 'temperature': 29}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08427020162343979} -dlrm.0 [data] {'rate': 249108.82473485204, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4389.4375, 81920.0], - 'power': 79.272, - 'temperature': 33}, - '1': {'load': 0, - 'memory': [4371.4375, 81920.0], - 'power': 76.035, - 'temperature': 29}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08591149747371674} -dlrm.0 [data] {'rate': 345014.93741581915, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4389.4375, 81920.0], - 'power': 78.982, - 'temperature': 33}, - '1': {'load': 0, - 'memory': [4371.4375, 81920.0], - 'power': 75.744, - 'temperature': 28}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.0845126137137413} -dlrm.0 [data] {'rate': 332897.87457588996, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4389.4375, 81920.0], - 'power': 78.982, - 'temperature': 33}, - '1': {'load': 0, - 'memory': [4371.4375, 81920.0], - 'power': 75.744, - 'temperature': 28}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.0840827077627182} -dlrm.0 [data] {'rate': 379260.05816354847, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4389.4375, 81920.0], - 'power': 78.799, - 'temperature': 32}, - '1': {'load': 0, - 'memory': [4371.4375, 81920.0], - 'power': 75.859, - 'temperature': 28}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08428709208965302} -dlrm.0 [data] {'rate': 259102.35393792726, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4389.4375, 81920.0], - 'power': 79.81, - 'temperature': 32}, - '1': {'load': 0, - 'memory': [4371.4375, 81920.0], - 'power': 75.744, - 'temperature': 28}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08434845507144928} -dlrm.0 [data] {'rate': 332360.7292104753, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4389.4375, 81920.0], - 'power': 79.903, - 'temperature': 32}, - '1': {'load': 0, - 'memory': [4371.4375, 81920.0], - 'power': 75.744, - 'temperature': 28}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08465416729450226} -dlrm.0 [data] {'rate': 304511.24374870514, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4593.4375, 81920.0], - 'power': 79.81, - 'temperature': 32}, - '1': {'load': 0, - 'memory': [4371.4375, 81920.0], - 'power': 75.744, - 'temperature': 28}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08376754820346832} -dlrm.0 [data] {'rate': 332971.956603495, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4593.4375, 81920.0], - 'power': 79.81, - 'temperature': 32}, - '1': {'load': 0, - 'memory': [4371.4375, 81920.0], - 'power': 75.744, - 'temperature': 28}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.083040751516819} -dlrm.0 [data] {'rate': 262714.0390235857, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4593.4375, 81920.0], - 'power': 79.81, - 'temperature': 32}, - '1': {'load': 0, - 'memory': [4371.4375, 81920.0], - 'power': 75.744, - 'temperature': 28}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08479100465774536} -dlrm.0 [data] {'rate': 369855.1442823338, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0.16, - 'memory': [4593.4375, 81920.0], - 'power': 79.903, - 'temperature': 32}, - '1': {'load': 0.11, - 'memory': [4371.4375, 81920.0], - 'power': 75.744, - 'temperature': 28}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08379324525594711} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4593.4375, 81920.0], - 'power': 79.625, - 'temperature': 33}, - '1': {'load': 0, - 'memory': [4371.4375, 81920.0], - 'power': 77.47, - 'temperature': 29}}, - 'task': 'main'} -dlrm.0 [data] {'rate': 321639.73444305325, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4593.4375, 81920.0], - 'power': 79.569, - 'temperature': 32}, - '1': {'load': 0, - 'memory': [4371.4375, 81920.0], - 'power': 75.744, - 'temperature': 28}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08349813520908356} -dlrm.0 [data] {'rate': 377668.2269454109, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4593.4375, 81920.0], - 'power': 79.661, - 'temperature': 32}, - '1': {'load': 0, - 'memory': [4371.4375, 81920.0], - 'power': 75.744, - 'temperature': 28}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08437865972518921} -dlrm.0 [data] {'rate': 333196.59609904146, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4593.4375, 81920.0], - 'power': 79.625, - 'temperature': 32}, - '1': {'load': 0, - 'memory': [4371.4375, 81920.0], - 'power': 75.481, - 'temperature': 28}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08468881249427795} -dlrm.0 [data] {'rate': 361281.25982021185, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4593.4375, 81920.0], - 'power': 79.533, - 'temperature': 32}, - '1': {'load': 0, - 'memory': [4371.4375, 81920.0], - 'power': 75.481, - 'temperature': 28}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08403709530830383} -dlrm.0 [data] {'rate': 375068.81164332264, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4797.4375, 81920.0], - 'power': 79.569, - 'temperature': 32}, - '1': {'load': 0, - 'memory': [4371.4375, 81920.0], - 'power': 75.453, - 'temperature': 28}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08420669287443161} -dlrm.0 [data] {'rate': 344352.50128039275, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4797.4375, 81920.0], - 'power': 79.569, - 'temperature': 32}, - '1': {'load': 0, - 'memory': [4371.4375, 81920.0], - 'power': 75.453, - 'temperature': 28}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08320620656013489} -dlrm.0 [data] {'rate': 365460.8206884016, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4797.4375, 81920.0], - 'power': 79.625, - 'temperature': 32}, - '1': {'load': 0, - 'memory': [4371.4375, 81920.0], - 'power': 75.656, - 'temperature': 28}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08308559656143188} -dlrm.0 [data] {'rate': 336735.42853169725, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4797.4375, 81920.0], - 'power': 79.81, - 'temperature': 32}, - '1': {'load': 0, - 'memory': [4371.4375, 81920.0], - 'power': 75.453, - 'temperature': 28}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08385886251926422} -dlrm.0 [data] {'rate': 371467.1931597436, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4797.4375, 81920.0], - 'power': 79.753, - 'temperature': 32}, - '1': {'load': 0, - 'memory': [4371.4375, 81920.0], - 'power': 75.627, - 'temperature': 28}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08402976393699646} -dlrm.0 [data] {'rate': 361668.59461663454, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4797.4375, 81920.0], - 'power': 79.625, - 'temperature': 32}, - '1': {'load': 0, - 'memory': [4371.4375, 81920.0], - 'power': 75.569, - 'temperature': 28}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08415201306343079} -dlrm.0 [data] {'rate': 341185.0599926781, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4797.4375, 81920.0], - 'power': 79.625, - 'temperature': 32}, - '1': {'load': 0, - 'memory': [4575.4375, 81920.0], - 'power': 75.569, - 'temperature': 28}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08402085304260254} -dlrm.0 [data] {'rate': 318613.42796525516, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4797.4375, 81920.0], - 'power': 79.81, - 'temperature': 32}, - '1': {'load': 0, - 'memory': [4575.4375, 81920.0], - 'power': 75.453, - 'temperature': 28}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08228246122598648} -dlrm.0 [data] {'rate': 324023.29344600794, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4797.4375, 81920.0], - 'power': 79.81, - 'temperature': 32}, - '1': {'load': 0, - 'memory': [4575.4375, 81920.0], - 'power': 75.453, - 'temperature': 28}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08508101850748062} -dlrm.0 [data] {'rate': 379499.10796631494, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4797.4375, 81920.0], - 'power': 79.81, - 'temperature': 32}, - '1': {'load': 0, - 'memory': [4575.4375, 81920.0], - 'power': 75.54, - 'temperature': 28}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08269783854484558} -dlrm.0 [data] {'rate': 285912.61066396453, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0.1, - 'memory': [4797.4375, 81920.0], - 'power': 79.81, - 'temperature': 32}, - '1': {'load': 0.11, - 'memory': [4575.4375, 81920.0], - 'power': 75.453, - 'temperature': 28}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08433524519205093} -dlrm.0 [data] {'gpudata': {'0': {'load': 0.05, - 'memory': [4797.4375, 81920.0], - 'power': 123.797, - 'temperature': 33}, - '1': {'load': 0, - 'memory': [4575.4375, 81920.0], - 'power': 75.54, - 'temperature': 29}}, - 'task': 'main'} -dlrm.0 [data] {'rate': 322867.61302637606, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4797.4375, 81920.0], - 'power': 79.661, - 'temperature': 32}, - '1': {'load': 0, - 'memory': [4575.4375, 81920.0], - 'power': 75.453, - 'temperature': 28}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08258543908596039} -dlrm.0 [data] {'rate': 304964.3236972189, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4797.4375, 81920.0], - 'power': 79.569, - 'temperature': 32}, - '1': {'load': 0, - 'memory': [4575.4375, 81920.0], - 'power': 75.54, - 'temperature': 28}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08313082903623581} -dlrm.0 [data] {'rate': 340238.1704572883, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4797.4375, 81920.0], - 'power': 79.661, - 'temperature': 32}, - '1': {'load': 0, - 'memory': [4575.4375, 81920.0], - 'power': 75.453, - 'temperature': 28}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08317264169454575} -dlrm.0 [data] {'rate': 373204.2194946495, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4797.4375, 81920.0], - 'power': 79.661, - 'temperature': 32}, - '1': {'load': 0, - 'memory': [4575.4375, 81920.0], - 'power': 75.453, - 'temperature': 28}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08357995748519897} -dlrm.0 [data] {'rate': 380418.88521570637, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4797.4375, 81920.0], - 'power': 79.569, - 'temperature': 31}, - '1': {'load': 0, - 'memory': [4575.4375, 81920.0], - 'power': 75.453, - 'temperature': 28}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08405735343694687} -dlrm.0 [data] {'rate': 346675.795118837, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4797.4375, 81920.0], - 'power': 79.272, - 'temperature': 31}, - '1': {'load': 0, - 'memory': [4575.4375, 81920.0], - 'power': 75.453, - 'temperature': 28}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08272015303373337} -dlrm.0 [data] {'rate': 366836.2724679101, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4797.4375, 81920.0], - 'power': 79.272, - 'temperature': 31}, - '1': {'load': 0, - 'memory': [4575.4375, 81920.0], - 'power': 75.453, - 'temperature': 28}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08338481932878494} -dlrm.0 [data] {'rate': 330628.2851569674, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4797.4375, 81920.0], - 'power': 79.088, - 'temperature': 31}, - '1': {'load': 0, - 'memory': [4575.4375, 81920.0], - 'power': 75.481, - 'temperature': 28}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08422384411096573} -dlrm.0 [data] {'rate': 358234.1957804105, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4797.4375, 81920.0], - 'power': 79.292, - 'temperature': 31}, - '1': {'load': 0, - 'memory': [4575.4375, 81920.0], - 'power': 75.569, - 'temperature': 28}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08405454456806183} -dlrm.0 [data] {'rate': 349093.7157250441, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4797.4375, 81920.0], - 'power': 79.088, - 'temperature': 31}, - '1': {'load': 0, - 'memory': [4575.4375, 81920.0], - 'power': 75.191, - 'temperature': 28}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08417406678199768} -dlrm.0 [data] {'rate': 382326.38417482394, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4797.4375, 81920.0], - 'power': 79.088, - 'temperature': 31}, - '1': {'load': 0, - 'memory': [4575.4375, 81920.0], - 'power': 75.191, - 'temperature': 28}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08274278044700623} -dlrm.0 [data] {'rate': 345314.90774239064, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4797.4375, 81920.0], - 'power': 79.292, - 'temperature': 31}, - '1': {'load': 0, - 'memory': [4575.4375, 81920.0], - 'power': 75.279, - 'temperature': 28}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08461865782737732} -dlrm.0 [data] {'rate': 314213.5669186966, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4797.4375, 81920.0], - 'power': 79.384, - 'temperature': 31}, - '1': {'load': 0, - 'memory': [4575.4375, 81920.0], - 'power': 75.569, - 'temperature': 28}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08379694819450378} -dlrm.0 [data] {'rate': 352043.87209238816, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4797.4375, 81920.0], - 'power': 79.384, - 'temperature': 31}, - '1': {'load': 0, - 'memory': [4575.4375, 81920.0], - 'power': 75.569, - 'temperature': 28}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08401922881603241} -dlrm.0 [data] {'rate': 363726.5525800209, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0.07, - 'memory': [4797.4375, 81920.0], - 'power': 79.476, - 'temperature': 31}, - '1': {'load': 0.11, - 'memory': [4575.4375, 81920.0], - 'power': 75.366, - 'temperature': 28}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08402208983898163} -dlrm.0 [data] {'gpudata': {'0': {'load': 0.07, - 'memory': [4797.4375, 81920.0], - 'power': 104.04, - 'temperature': 32}, - '1': {'load': 0, - 'memory': [4575.4375, 81920.0], - 'power': 78.923, - 'temperature': 28}}, - 'task': 'main'} -dlrm.0 [data] {'rate': 265861.18171335914, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4797.4375, 81920.0], - 'power': 79.384, - 'temperature': 32}, - '1': {'load': 0, - 'memory': [4575.4375, 81920.0], - 'power': 75.279, - 'temperature': 27}}, - 'task': 'main'} -dlrm.0 [data] {'loss': 0.08343112468719482} -dlrm.0 [data] {'rate': 366965.3015538037, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4797.4375, 81920.0], - 'power': 79.625, - 'temperature': 32}, - '1': {'load': 0, - 'memory': [4575.4375, 81920.0], - 'power': 75.279, - 'temperature': 27}}, - 'task': 'main'} -dlrm.0 [stderr] STAGE:2024-02-05 09:54:31 63869:63869 ActivityProfilerController.cpp:320] Completed Stage: Collection -dlrm.0 [stderr] STAGE:2024-02-05 09:54:31 63869:63869 ActivityProfilerController.cpp:324] Completed Stage: Post Processing -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4797.4375, 81920.0], - 'power': 79.625, - 'temperature': 32}, - '1': {'load': 0, - 'memory': [4575.4375, 81920.0], - 'power': 75.279, - 'temperature': 27}}, - 'task': 'main'} -dlrm.0 [data] {'rate': 78023.74204752748, 'task': 'train', 'units': 'items/s'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4797.4375, 81920.0], - 'power': 79.569, - 'temperature': 32}, - '1': {'load': 0, - 'memory': [4575.4375, 81920.0], - 'power': 75.453, - 'temperature': 27}}, - 'task': 'main'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4797.4375, 81920.0], - 'power': 79.81, - 'temperature': 32}, - '1': {'load': 0, - 'memory': [4575.4375, 81920.0], - 'power': 75.453, - 'temperature': 27}}, - 'task': 'main'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4797.4375, 81920.0], - 'power': 79.81, - 'temperature': 32}, - '1': {'load': 0, - 'memory': [4575.4375, 81920.0], - 'power': 75.453, - 'temperature': 27}}, - 'task': 'main'} -dlrm.0 [data] {'gpudata': {'0': {'load': 0, - 'memory': [4797.4375, 81920.0], - 'power': 79.718, - 'temperature': 32}, - '1': {'load': 0, - 'memory': [4575.4375, 81920.0], - 'power': 75.366, - 'temperature': 27}}, - 'task': 'main'} -dlrm.0 [end] voir --config /Tmp/slurm.4112514.0/base/extra/dlrm/voirconf-dlrm.0-0efae956f1553a76c1e03985181900f5.json /Tmp/slurm.4112514.0/milabench/benchmarks/dlrm/dlrm/dlrm_s_pytorch.py --num-batches 1000 --data-generation random --arch-mlp-bot 512-512-64 --arch-mlp-top 1024-1024-1024-1 --arch-sparse-feature-size 64 --arch-embedding-size 1000000-1000000-1000000-1000000-1000000-1000000-1000000-1000000 --num-indices-per-lookup 100 --arch-interaction-op dot --numpy-rand-seed 727 --print-freq 999999 --enable-profiling --mini-batch-size 16384 --test-mini-batch-size 16384 --test-num-workers 0 --use-gpu [at 2024-02-05 09:54:50.463186] -[DONE] Reports directory: /Tmp/slurm.4112514.0/base/runs/jenadogo.2024-02-05_09:17:41.183394 -Source: /Tmp/slurm.4112514.0/base/runs/jenadogo.2024-02-05_09:17:41.183394 -================= -Benchmark results -================= - n fail perf perf_adj std% sem% peak_memory -bert-fp16 2 0 155.71 155.71 4.4% 0.6% 24423 -bert-fp32 2 0 29.73 29.73 0.3% 0.0% 31387 -bert-tf32 2 0 114.45 114.45 0.9% 0.1% 31389 -bert-tf32-fp16 2 0 155.22 155.22 4.0% 0.5% 24423 -convnext_large-fp16 2 0 317.87 317.87 23.5% 3.0% 27285 -convnext_large-fp32 2 0 45.33 45.33 5.3% 0.7% 49405 -convnext_large-tf32 2 0 147.55 147.55 13.1% 1.7% 49405 -convnext_large-tf32-fp16 2 0 322.09 322.09 23.9% 3.1% 27285 -davit_large 2 0 304.38 304.38 6.9% 0.6% 34083 -davit_large-multi 1 0 618.99 618.99 5.3% 0.7% 37573 -dlrm 1 0 340498.17 340498.17 9.5% 1.2% 4797 -focalnet 2 0 375.00 375.00 6.5% 0.6% 25921 -opt-1_3b 1 0 7.44 7.44 0.3% 0.0% 41307 -reformer 2 0 61.82 61.82 0.6% 0.1% 25227 -regnet_y_128gf 2 0 88.24 88.24 4.4% 0.4% 31377 -resnet152 2 0 653.16 653.16 8.5% 0.8% 34309 -resnet152-multi 1 0 1295.57 1295.57 9.7% 1.3% 41227 -resnet50 2 0 550.83 550.83 45.4% 4.1% 4553 -stargan 2 0 45.59 45.59 27.5% 2.5% 53235 -super-slomo 2 0 42.70 42.70 1.2% 0.1% 33623 -t5 2 0 48.35 48.35 4.2% 0.4% 34211 -whisper 2 0 562.24 562.24 2.9% 0.3% 9101 ----- -Done after 2711 - From 83ff7c5d762bdc34d6c0aeeb514dfc3ccb3b7eb4 Mon Sep 17 00:00:00 2001 From: "pierre.delaunay" Date: Fri, 9 Feb 2024 14:12:36 -0500 Subject: [PATCH 5/6] - --- benchmarks/torchvision/main.py | 27 ++++++++++++--------------- milabench/_version.py | 6 +++--- 2 files changed, 15 insertions(+), 18 deletions(-) diff --git a/benchmarks/torchvision/main.py b/benchmarks/torchvision/main.py index d7518d179..6c83d5326 100644 --- a/benchmarks/torchvision/main.py +++ b/benchmarks/torchvision/main.py @@ -11,7 +11,7 @@ import torchvision.transforms as transforms import voir from giving import give, given -from cantilever.core.timer import timeit +from cantilever.core.timer import timeit, timeiterator, show_timings normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) @@ -43,20 +43,20 @@ def scaling(enable): yield -def train_epoch(model, criterion, optimizer, loader, device, scaler=None, timer=None): +def train_epoch(model, criterion, optimizer, loader, device, scaler=None): model.train() s = time.time() p = time.time() - def toiterator(loader, timer): - with timer.timeit("loader"): + def toiterator(loader): + with timeit("loader"): return iter(loader) # this is what computes the batch size - for inp, target in timer.iterator(voir.iterate("train", toiterator(loader, timer), True)): + for inp, target in timeiterator(voir.iterate("train", toiterator(loader), True)): - with timer.timeit("batch"): + with timeit("batch"): inp = inp.to(device) target = target.to(device) optimizer.zero_grad() @@ -101,15 +101,12 @@ def main(): from voir.phase import StopProgram try: - with timeit("main") as main_timer: - _main(main_timer) - - main_timer.show() + _main() except StopProgram: - main_timer.show() + show_timings(True) raise -def _main(main_timer): +def _main(): parser = argparse.ArgumentParser(description="Torchvision models") parser.add_argument( "--batch-size", @@ -240,14 +237,14 @@ def _main(main_timer): else: scaler = None - with main_timer.timeit("train") as train_timer: + with timeit("train") as train_timer: with given() as gv: if not args.no_stdout: gv.where("loss").display() for epoch in voir.iterate("main", range(args.epochs)): - with train_timer.timeit("epoch") as epoch_timer: + with timeit("epoch") as epoch_timer: model.train() es = time.time() @@ -255,7 +252,7 @@ def _main(main_timer): print(f"Begin training epoch {epoch}/{args.epochs}") train_epoch( - model, criterion, optimizer, train_loader, device, scaler=scaler, timer=epoch_timer + model, criterion, optimizer, train_loader, device, scaler=scaler ) break diff --git a/milabench/_version.py b/milabench/_version.py index bc1e09c71..2823fcbe5 100644 --- a/milabench/_version.py +++ b/milabench/_version.py @@ -1,5 +1,5 @@ """This file is generated, do not modify""" -__tag__ = "v0.0.6-54-ge75f56f1" -__commit__ = "e75f56f1a743da6ca5c46baac352519028da53d9" -__date__ = "2024-02-08 15:45:29 -0500" +__tag__ = "v0.0.6-55-gc0a93608" +__commit__ = "c0a93608db6511fe696fd044ccde3891bd1b57ed" +__date__ = "2024-02-09 12:57:17 -0500" From 4d1c3320d8a88764868317340c56976c70471d71 Mon Sep 17 00:00:00 2001 From: "pierre.delaunay" Date: Fri, 9 Feb 2024 15:23:07 -0500 Subject: [PATCH 6/6] Add new dependency --- benchmarks/torchvision/requirements.in | 3 ++- milabench/_version.py | 6 +++--- 2 files changed, 5 insertions(+), 4 deletions(-) diff --git a/benchmarks/torchvision/requirements.in b/benchmarks/torchvision/requirements.in index 4e537c03c..d47670b7d 100644 --- a/benchmarks/torchvision/requirements.in +++ b/benchmarks/torchvision/requirements.in @@ -1,4 +1,5 @@ torch torchvision tqdm -voir \ No newline at end of file +voir +cantilever diff --git a/milabench/_version.py b/milabench/_version.py index 2823fcbe5..718ba4792 100644 --- a/milabench/_version.py +++ b/milabench/_version.py @@ -1,5 +1,5 @@ """This file is generated, do not modify""" -__tag__ = "v0.0.6-55-gc0a93608" -__commit__ = "c0a93608db6511fe696fd044ccde3891bd1b57ed" -__date__ = "2024-02-09 12:57:17 -0500" +__tag__ = "v0.0.6-56-g83ff7c5d" +__commit__ = "83ff7c5d762bdc34d6c0aeeb514dfc3ccb3b7eb4" +__date__ = "2024-02-09 14:12:36 -0500"