diff --git a/milabench/_version.py b/milabench/_version.py index ee44d46a5..6a9a689f2 100644 --- a/milabench/_version.py +++ b/milabench/_version.py @@ -1,11 +1,5 @@ """This file is generated, do not modify""" -<<<<<<< HEAD -__tag__ = "v0.1.0-45-gcbf9051" -__commit__ = "cbf90511d1e0cf7d31f20dc95d4a24fd3fb8b7bc" -__date__ = "2024-08-27 14:32:15 -0400" -======= -__tag__ = "v0.1.0-34-g93521fd7" -__commit__ = "93521fd70a02719076f64253ac4ae3b4a444c739" -__date__ = "2024-08-22 19:02:01 +0000" ->>>>>>> bdf770544759b3b83151040532af3bb1ba9d32a3 +__tag__ = "v0.1.0-51-g3d185d1" +__commit__ = "3d185d15af22876b0dece6f296e179754b316a26" +__date__ = "2024-08-28 11:52:25 -0400" diff --git a/milabench/sizer.py b/milabench/sizer.py index c8c7f524f..b3fa40478 100644 --- a/milabench/sizer.py +++ b/milabench/sizer.py @@ -273,15 +273,15 @@ def on_start(self, entry): is_template = False found = None for i, arg in enumerate(argv): + if arg.endswith(template): + found = i + break + # if arg.startswith(argstart): found = i is_template = True break - - if arg.endswith(template): - found = i - break if found: if is_template: diff --git a/milabench/system.py b/milabench/system.py index 63c0d159d..d29f4cd27 100644 --- a/milabench/system.py +++ b/milabench/system.py @@ -428,6 +428,12 @@ def resolve_node_address(node): def resolve_addresses(nodes): + if offline: + for n in nodes: + n["hostname"] = n["ip"] + + return nodes[0] + self = None for node in nodes: diff --git a/tests/test_command_reg/test_command_reg_one_node.txt b/tests/test_command_reg/test_command_reg_one_node.txt index b2a9bfd6c..f3ff218ae 100644 --- a/tests/test_command_reg/test_command_reg_one_node.txt +++ b/tests/test_command_reg/test_command_reg_one_node.txt @@ -16,7 +16,7 @@ export MILABENCH_DIR_RUNS=$BASE/runs export MILABENCH_DIR_EXTRA=$BASE/extra/llm export MILABENCH_DIR_CACHE=$BASE/cache export OMP_NUM_THREADS=0 -export MILABENCH_CONFIG='{"system": {"arch": "cuda", "sshkey": null, "nodes": [{"ip": "127.0.0.1", "main": true, "name": "0", "sshport": 22, "user": "username", "hostname": "cn-l023.server.mila.quebec", "local": true}], "self": {"ip": "127.0.0.1", "main": true, "name": "0", "sshport": 22, "user": "username", "hostname": "cn-l023.server.mila.quebec", "local": true}}, "dirs": {"base": "$BASE", "venv": "$BASE/venv/torch", "data": "$BASE/data", "runs": "$BASE/runs", "extra": "$BASE/extra/llm", "cache": "$BASE/cache"}, "group": "llm", "install_group": "torch", "install_variant": "cuda", "run_name": "dev", "enabled": true, "capabilities": {"nodes": 1}, "max_duration": 800, "voir": {"options": {"stop": 30, "interval": "1s"}}, "validation": {"usage": {"gpu_load_threshold": 0.5, "gpu_mem_threshold": 0.5}}, "config_base": "$SRC/milabench/config", "config_file": "$SRC/milabench/config/standard.yaml", "definition": "$SRC/milabench/benchmarks/llama", "tags": ["inference", "llm", "nlp"], "plan": {"method": "per_gpu"}, "weight": 1.0, "name": "llama", "tag": ["llama"]}' +export MILABENCH_CONFIG='{"system": {"arch": "cuda", "sshkey": null, "nodes": [{"ip": "127.0.0.1", "main": true, "name": "0", "sshport": 22, "user": "username", "hostname": "127.0.0.1"}], "self": {"ip": "127.0.0.1", "main": true, "name": "0", "sshport": 22, "user": "username", "hostname": "127.0.0.1"}}, "dirs": {"base": "$BASE", "venv": "$BASE/venv/torch", "data": "$BASE/data", "runs": "$BASE/runs", "extra": "$BASE/extra/llm", "cache": "$BASE/cache"}, "group": "llm", "install_group": "torch", "install_variant": "cuda", "run_name": "dev", "enabled": true, "capabilities": {"nodes": 1}, "max_duration": 800, "voir": {"options": {"stop": 30, "interval": "1s"}}, "validation": {"usage": {"gpu_load_threshold": 0.5, "gpu_mem_threshold": 0.5}}, "config_base": "$SRC/milabench/config", "config_file": "$SRC/milabench/config/standard.yaml", "definition": "$SRC/milabench/benchmarks/llama", "tags": ["inference", "llm", "nlp"], "plan": {"method": "per_gpu"}, "weight": 1.0, "name": "llama", "tag": ["llama"]}' echo "---" echo "llama" @@ -392,7 +392,7 @@ echo "---" echo "lightning-gpus" echo "==============" time ( - $BASE/venv/torch/bin/benchrun --nnodes=1 --rdzv-backend=c10d --rdzv-endpoint=cn-l023.server.mila.quebec:29400 --nproc-per-node=8 --no-python -- python $SRC/milabench/benchmarks/lightning/main.py --epochs 10 --num-workers 8 --loader pytorch --data $BASE/data/FakeImageNet --model resnet152 --batch-size 256 & + $BASE/venv/torch/bin/benchrun --nnodes=1 --rdzv-backend=c10d --rdzv-endpoint=127.0.0.1:29400 --nproc-per-node=8 --no-python -- python $SRC/milabench/benchmarks/lightning/main.py --epochs 10 --num-workers 8 --loader pytorch --data $BASE/data/FakeImageNet --model resnet152 --batch-size 256 & wait ) @@ -415,7 +415,7 @@ echo "---" echo "dinov2-giant-gpus" echo "=================" time ( - $BASE/venv/torch/bin/benchrun --nnodes=1 --rdzv-backend=c10d --rdzv-endpoint=cn-l023.server.mila.quebec:29400 --nproc-per-node=8 --no-python -- python $SRC/milabench/benchmarks/dinov2/main.py --output-dir $BASE/extra/dinov2-giant-gpus/output --no-resume --config-file $SRC/milabench/benchmarks/dinov2/src/dinov2/configs/train/vitg14.yaml train.dataset_path=ImageNet:split=TRAIN:root=$BASE/data/FakeImageNet:extra=$BASE/data/FakeImageNet train.batch_size_per_gpu=32 train.saveckp_freq=100 train.num_workers=10 & + $BASE/venv/torch/bin/benchrun --nnodes=1 --rdzv-backend=c10d --rdzv-endpoint=127.0.0.1:29400 --nproc-per-node=8 --no-python -- python $SRC/milabench/benchmarks/dinov2/main.py --output-dir $BASE/extra/dinov2-giant-gpus/output --no-resume --config-file $SRC/milabench/benchmarks/dinov2/src/dinov2/configs/train/vitg14.yaml train.dataset_path=ImageNet:split=TRAIN:root=$BASE/data/FakeImageNet:extra=$BASE/data/FakeImageNet train.batch_size_per_gpu=32 train.saveckp_freq=100 train.num_workers=10 & wait ) @@ -438,7 +438,7 @@ echo "---" echo "llm-lora-ddp-gpus" echo "=================" time ( - $BASE/venv/torch/bin/tune run --nnodes=1 --rdzv-backend=c10d --rdzv-endpoint=cn-l023.server.mila.quebec:29400 --nproc-per-node=8 -- $SRC/milabench/benchmarks/llm/recipes/lora_finetune_distributed.py --config $SRC/milabench/benchmarks/llm/configs/llama3_8B_lora_single_device.yaml epochs=1 output_dir=$BASE/extra/llm-lora-ddp-gpus/output tokenizer.path=$BASE/data/llama3_8B/original/tokenizer.model checkpointer.checkpoint_dir=$BASE/data/llama3_8B/original checkpointer.output_dir=$BASE/data/llama3_8B/ metric_logger.log_dir=$BASE/extra/llm-lora-ddp-gpus/metrics repo_id="meta-llama/Meta-Llama-3.1-8B" batch_size=8 gradient_accumulation_steps=8 & + $BASE/venv/torch/bin/tune run --nnodes=1 --rdzv-backend=c10d --rdzv-endpoint=127.0.0.1:29400 --nproc-per-node=8 -- $SRC/milabench/benchmarks/llm/recipes/lora_finetune_distributed.py --config $SRC/milabench/benchmarks/llm/configs/llama3_8B_lora_single_device.yaml epochs=1 output_dir=$BASE/extra/llm-lora-ddp-gpus/output tokenizer.path=$BASE/data/llama3_8B/original/tokenizer.model checkpointer.checkpoint_dir=$BASE/data/llama3_8B/original checkpointer.output_dir=$BASE/data/llama3_8B/ metric_logger.log_dir=$BASE/extra/llm-lora-ddp-gpus/metrics repo_id="meta-llama/Meta-Llama-3.1-8B" batch_size=8 gradient_accumulation_steps=8 & wait ) @@ -446,7 +446,7 @@ echo "---" echo "llm-lora-ddp-nodes" echo "==================" time ( - $BASE/venv/torch/bin/tune run --nnodes=1 --rdzv-backend=c10d --rdzv-endpoint=cn-l023.server.mila.quebec:29400 --nproc-per-node=8 -- $SRC/milabench/benchmarks/llm/recipes/lora_finetune_distributed.py --config $SRC/milabench/benchmarks/llm/configs/llama3_8B_lora_single_device.yaml epochs=1 output_dir=$BASE/extra/llm-lora-ddp-nodes/output tokenizer.path=$BASE/data/llama3_8B/original/tokenizer.model checkpointer.checkpoint_dir=$BASE/data/llama3_8B/original checkpointer.output_dir=$BASE/data/llama3_8B/ metric_logger.log_dir=$BASE/extra/llm-lora-ddp-nodes/metrics repo_id="meta-llama/Meta-Llama-3.1-8B" batch_size=8 gradient_accumulation_steps=8 & + $BASE/venv/torch/bin/tune run --nnodes=1 --rdzv-backend=c10d --rdzv-endpoint=127.0.0.1:29400 --nproc-per-node=8 -- $SRC/milabench/benchmarks/llm/recipes/lora_finetune_distributed.py --config $SRC/milabench/benchmarks/llm/configs/llama3_8B_lora_single_device.yaml epochs=1 output_dir=$BASE/extra/llm-lora-ddp-nodes/output tokenizer.path=$BASE/data/llama3_8B/original/tokenizer.model checkpointer.checkpoint_dir=$BASE/data/llama3_8B/original checkpointer.output_dir=$BASE/data/llama3_8B/ metric_logger.log_dir=$BASE/extra/llm-lora-ddp-nodes/metrics repo_id="meta-llama/Meta-Llama-3.1-8B" batch_size=8 gradient_accumulation_steps=8 & wait ) @@ -454,7 +454,7 @@ echo "---" echo "llm-lora-mp-gpus" echo "================" time ( - $BASE/venv/torch/bin/tune run --nnodes=1 --rdzv-backend=c10d --rdzv-endpoint=cn-l023.server.mila.quebec:29400 --nproc-per-node=8 -- $SRC/milabench/benchmarks/llm/recipes/lora_finetune_distributed.py --config $SRC/milabench/benchmarks/llm/configs/llama3_70B_lora.yaml epochs=1 output_dir=$BASE/extra/llm-lora-mp-gpus/output tokenizer.path=$BASE/data/llama3_70B/original/tokenizer.model checkpointer.checkpoint_dir=$BASE/data/llama3_70B checkpointer.output_dir=$BASE/data/llama3_70B/ metric_logger.log_dir=$BASE/extra/llm-lora-mp-gpus/metrics repo_id="meta-llama/Meta-Llama-3.1-70B" batch_size=8 gradient_accumulation_steps=1 & + $BASE/venv/torch/bin/tune run --nnodes=1 --rdzv-backend=c10d --rdzv-endpoint=127.0.0.1:29400 --nproc-per-node=8 -- $SRC/milabench/benchmarks/llm/recipes/lora_finetune_distributed.py --config $SRC/milabench/benchmarks/llm/configs/llama3_70B_lora.yaml epochs=1 output_dir=$BASE/extra/llm-lora-mp-gpus/output tokenizer.path=$BASE/data/llama3_70B/original/tokenizer.model checkpointer.checkpoint_dir=$BASE/data/llama3_70B checkpointer.output_dir=$BASE/data/llama3_70B/ metric_logger.log_dir=$BASE/extra/llm-lora-mp-gpus/metrics repo_id="meta-llama/Meta-Llama-3.1-70B" batch_size=8 gradient_accumulation_steps=1 & wait ) @@ -462,7 +462,7 @@ echo "---" echo "llm-full-mp-gpus" echo "================" time ( - $BASE/venv/torch/bin/tune run --nnodes=1 --rdzv-backend=c10d --rdzv-endpoint=cn-l023.server.mila.quebec:29400 --nproc-per-node=8 -- $SRC/milabench/benchmarks/llm/recipes/full_finetune_distributed.py --config $SRC/milabench/benchmarks/llm/configs/llama3_70B_full.yaml epochs=1 output_dir=$BASE/extra/llm-full-mp-gpus/output tokenizer.path=$BASE/data/llama3_70B/original/tokenizer.model checkpointer.checkpoint_dir=$BASE/data/llama3_70B checkpointer.output_dir=$BASE/data/llama3_70B/ metric_logger.log_dir=$BASE/extra/llm-full-mp-gpus/metrics repo_id="meta-llama/Meta-Llama-3.1-70B" safetensors=true batch_size=2 gradient_accumulation_steps=1 & + $BASE/venv/torch/bin/tune run --nnodes=1 --rdzv-backend=c10d --rdzv-endpoint=127.0.0.1:29400 --nproc-per-node=8 -- $SRC/milabench/benchmarks/llm/recipes/full_finetune_distributed.py --config $SRC/milabench/benchmarks/llm/configs/llama3_70B_full.yaml epochs=1 output_dir=$BASE/extra/llm-full-mp-gpus/output tokenizer.path=$BASE/data/llama3_70B/original/tokenizer.model checkpointer.checkpoint_dir=$BASE/data/llama3_70B checkpointer.output_dir=$BASE/data/llama3_70B/ metric_logger.log_dir=$BASE/extra/llm-full-mp-gpus/metrics repo_id="meta-llama/Meta-Llama-3.1-70B" safetensors=true batch_size=2 gradient_accumulation_steps=1 & wait ) @@ -470,7 +470,7 @@ echo "---" echo "llm-full-mp-nodes" echo "=================" time ( - $BASE/venv/torch/bin/tune run --nnodes=1 --rdzv-backend=c10d --rdzv-endpoint=cn-l023.server.mila.quebec:29400 --nproc-per-node=8 -- $SRC/milabench/benchmarks/llm/recipes/full_finetune_distributed.py --config $SRC/milabench/benchmarks/llm/configs/llama3_70B_full.yaml epochs=1 output_dir=$BASE/extra/llm-full-mp-nodes/output tokenizer.path=$BASE/data/llama3_70B/original/tokenizer.model checkpointer.checkpoint_dir=$BASE/data/llama3_70B checkpointer.output_dir=$BASE/data/llama3_70B/ metric_logger.log_dir=$BASE/extra/llm-full-mp-nodes/metrics repo_id="meta-llama/Meta-Llama-3.1-70B" safetensors=true batch_size=2 gradient_accumulation_steps=1 & + $BASE/venv/torch/bin/tune run --nnodes=1 --rdzv-backend=c10d --rdzv-endpoint=127.0.0.1:29400 --nproc-per-node=8 -- $SRC/milabench/benchmarks/llm/recipes/full_finetune_distributed.py --config $SRC/milabench/benchmarks/llm/configs/llama3_70B_full.yaml epochs=1 output_dir=$BASE/extra/llm-full-mp-nodes/output tokenizer.path=$BASE/data/llama3_70B/original/tokenizer.model checkpointer.checkpoint_dir=$BASE/data/llama3_70B checkpointer.output_dir=$BASE/data/llama3_70B/ metric_logger.log_dir=$BASE/extra/llm-full-mp-nodes/metrics repo_id="meta-llama/Meta-Llama-3.1-70B" safetensors=true batch_size=2 gradient_accumulation_steps=1 & wait ) diff --git a/tests/test_command_reg/test_command_reg_two_nodes.txt b/tests/test_command_reg/test_command_reg_two_nodes.txt index 5ae960617..bda22033e 100644 --- a/tests/test_command_reg/test_command_reg_two_nodes.txt +++ b/tests/test_command_reg/test_command_reg_two_nodes.txt @@ -16,7 +16,7 @@ export MILABENCH_DIR_RUNS=$BASE/runs export MILABENCH_DIR_EXTRA=$BASE/extra/llm export MILABENCH_DIR_CACHE=$BASE/cache export OMP_NUM_THREADS=0 -export MILABENCH_CONFIG='{"system": {"arch": "cuda", "sshkey": null, "nodes": [{"ip": "127.0.0.1", "main": true, "name": "0", "sshport": 22, "user": "username", "hostname": "cn-l023.server.mila.quebec", "local": true}, {"ip": "192.168.0.11", "main": false, "name": "1", "sshport": 22, "user": "username", "hostname": "192.168.0.11", "local": false}], "self": {"ip": "127.0.0.1", "main": true, "name": "0", "sshport": 22, "user": "username", "hostname": "cn-l023.server.mila.quebec", "local": true}}, "dirs": {"base": "$BASE", "venv": "$BASE/venv/torch", "data": "$BASE/data", "runs": "$BASE/runs", "extra": "$BASE/extra/llm", "cache": "$BASE/cache"}, "group": "llm", "install_group": "torch", "install_variant": "cuda", "run_name": "dev", "enabled": true, "capabilities": {"nodes": 1}, "max_duration": 800, "voir": {"options": {"stop": 30, "interval": "1s"}}, "validation": {"usage": {"gpu_load_threshold": 0.5, "gpu_mem_threshold": 0.5}}, "config_base": "$SRC/milabench/config", "config_file": "$SRC/milabench/config/standard.yaml", "definition": "$SRC/milabench/benchmarks/llama", "tags": ["inference", "llm", "nlp"], "plan": {"method": "per_gpu"}, "weight": 1.0, "name": "llama", "tag": ["llama"]}' +export MILABENCH_CONFIG='{"system": {"arch": "cuda", "sshkey": null, "nodes": [{"ip": "127.0.0.1", "main": true, "name": "0", "sshport": 22, "user": "username", "hostname": "127.0.0.1"}, {"ip": "192.168.0.11", "main": false, "name": "1", "sshport": 22, "user": "username", "hostname": "192.168.0.11"}], "self": {"ip": "127.0.0.1", "main": true, "name": "0", "sshport": 22, "user": "username", "hostname": "127.0.0.1"}}, "dirs": {"base": "$BASE", "venv": "$BASE/venv/torch", "data": "$BASE/data", "runs": "$BASE/runs", "extra": "$BASE/extra/llm", "cache": "$BASE/cache"}, "group": "llm", "install_group": "torch", "install_variant": "cuda", "run_name": "dev", "enabled": true, "capabilities": {"nodes": 1}, "max_duration": 800, "voir": {"options": {"stop": 30, "interval": "1s"}}, "validation": {"usage": {"gpu_load_threshold": 0.5, "gpu_mem_threshold": 0.5}}, "config_base": "$SRC/milabench/config", "config_file": "$SRC/milabench/config/standard.yaml", "definition": "$SRC/milabench/benchmarks/llama", "tags": ["inference", "llm", "nlp"], "plan": {"method": "per_gpu"}, "weight": 1.0, "name": "llama", "tag": ["llama"]}' echo "---" echo "llama" @@ -393,7 +393,7 @@ echo "---" echo "lightning-gpus" echo "==============" time ( - $BASE/venv/torch/bin/benchrun --nnodes=1 --rdzv-backend=c10d --rdzv-endpoint=cn-l023.server.mila.quebec:29400 --nproc-per-node=8 --no-python -- python $SRC/milabench/benchmarks/lightning/main.py --epochs 10 --num-workers 8 --loader pytorch --data $BASE/data/FakeImageNet --model resnet152 --batch-size 256 & + $BASE/venv/torch/bin/benchrun --nnodes=1 --rdzv-backend=c10d --rdzv-endpoint=127.0.0.1:29400 --nproc-per-node=8 --no-python -- python $SRC/milabench/benchmarks/lightning/main.py --epochs 10 --num-workers 8 --loader pytorch --data $BASE/data/FakeImageNet --model resnet152 --batch-size 256 & wait ) @@ -416,7 +416,7 @@ echo "---" echo "dinov2-giant-gpus" echo "=================" time ( - $BASE/venv/torch/bin/benchrun --nnodes=1 --rdzv-backend=c10d --rdzv-endpoint=cn-l023.server.mila.quebec:29400 --nproc-per-node=8 --no-python -- python $SRC/milabench/benchmarks/dinov2/main.py --output-dir $BASE/extra/dinov2-giant-gpus/output --no-resume --config-file $SRC/milabench/benchmarks/dinov2/src/dinov2/configs/train/vitg14.yaml train.dataset_path=ImageNet:split=TRAIN:root=$BASE/data/FakeImageNet:extra=$BASE/data/FakeImageNet train.batch_size_per_gpu=32 train.saveckp_freq=100 train.num_workers=10 & + $BASE/venv/torch/bin/benchrun --nnodes=1 --rdzv-backend=c10d --rdzv-endpoint=127.0.0.1:29400 --nproc-per-node=8 --no-python -- python $SRC/milabench/benchmarks/dinov2/main.py --output-dir $BASE/extra/dinov2-giant-gpus/output --no-resume --config-file $SRC/milabench/benchmarks/dinov2/src/dinov2/configs/train/vitg14.yaml train.dataset_path=ImageNet:split=TRAIN:root=$BASE/data/FakeImageNet:extra=$BASE/data/FakeImageNet train.batch_size_per_gpu=32 train.saveckp_freq=100 train.num_workers=10 & wait ) @@ -439,7 +439,7 @@ echo "---" echo "llm-lora-ddp-gpus" echo "=================" time ( - $BASE/venv/torch/bin/tune run --nnodes=1 --rdzv-backend=c10d --rdzv-endpoint=cn-l023.server.mila.quebec:29400 --nproc-per-node=8 -- $SRC/milabench/benchmarks/llm/recipes/lora_finetune_distributed.py --config $SRC/milabench/benchmarks/llm/configs/llama3_8B_lora_single_device.yaml epochs=1 output_dir=$BASE/extra/llm-lora-ddp-gpus/output tokenizer.path=$BASE/data/llama3_8B/original/tokenizer.model checkpointer.checkpoint_dir=$BASE/data/llama3_8B/original checkpointer.output_dir=$BASE/data/llama3_8B/ metric_logger.log_dir=$BASE/extra/llm-lora-ddp-gpus/metrics repo_id="meta-llama/Meta-Llama-3.1-8B" batch_size=8 gradient_accumulation_steps=8 & + $BASE/venv/torch/bin/tune run --nnodes=1 --rdzv-backend=c10d --rdzv-endpoint=127.0.0.1:29400 --nproc-per-node=8 -- $SRC/milabench/benchmarks/llm/recipes/lora_finetune_distributed.py --config $SRC/milabench/benchmarks/llm/configs/llama3_8B_lora_single_device.yaml epochs=1 output_dir=$BASE/extra/llm-lora-ddp-gpus/output tokenizer.path=$BASE/data/llama3_8B/original/tokenizer.model checkpointer.checkpoint_dir=$BASE/data/llama3_8B/original checkpointer.output_dir=$BASE/data/llama3_8B/ metric_logger.log_dir=$BASE/extra/llm-lora-ddp-gpus/metrics repo_id="meta-llama/Meta-Llama-3.1-8B" batch_size=8 gradient_accumulation_steps=8 & wait ) @@ -447,8 +447,8 @@ echo "---" echo "llm-lora-ddp-nodes" echo "==================" time ( - $BASE/venv/torch/bin/tune run --nnodes=2 --rdzv-backend=c10d --rdzv-endpoint=cn-l023.server.mila.quebec:29400 --nproc-per-node=8 -- $SRC/milabench/benchmarks/llm/recipes/lora_finetune_distributed.py --config $SRC/milabench/benchmarks/llm/configs/llama3_8B_lora_single_device.yaml epochs=1 output_dir=$BASE/extra/llm-lora-ddp-nodes/output tokenizer.path=$BASE/data/llama3_8B/original/tokenizer.model checkpointer.checkpoint_dir=$BASE/data/llama3_8B/original checkpointer.output_dir=$BASE/data/llama3_8B/ metric_logger.log_dir=$BASE/extra/llm-lora-ddp-nodes/metrics repo_id="meta-llama/Meta-Llama-3.1-8B" batch_size=8 gradient_accumulation_steps=8 & - ssh -oCheckHostIP=no -oStrictHostKeyChecking=no -oPasswordAuthentication=no -oPasswordAuthentication=no -p 22 username@192.168.0.11 $BASE/venv/torch/bin/tune run --nnodes=2 --rdzv-backend=c10d --rdzv-endpoint=cn-l023.server.mila.quebec:29400 --nproc-per-node=8 -- $SRC/milabench/benchmarks/llm/recipes/lora_finetune_distributed.py --config $SRC/milabench/benchmarks/llm/configs/llama3_8B_lora_single_device.yaml epochs=1 output_dir=$BASE/extra/llm-lora-ddp-nodes/output tokenizer.path=$BASE/data/llama3_8B/original/tokenizer.model checkpointer.checkpoint_dir=$BASE/data/llama3_8B/original checkpointer.output_dir=$BASE/data/llama3_8B/ metric_logger.log_dir=$BASE/extra/llm-lora-ddp-nodes/metrics repo_id="meta-llama/Meta-Llama-3.1-8B" batch_size=8 gradient_accumulation_steps=8 & + $BASE/venv/torch/bin/tune run --nnodes=2 --rdzv-backend=c10d --rdzv-endpoint=127.0.0.1:29400 --nproc-per-node=8 -- $SRC/milabench/benchmarks/llm/recipes/lora_finetune_distributed.py --config $SRC/milabench/benchmarks/llm/configs/llama3_8B_lora_single_device.yaml epochs=1 output_dir=$BASE/extra/llm-lora-ddp-nodes/output tokenizer.path=$BASE/data/llama3_8B/original/tokenizer.model checkpointer.checkpoint_dir=$BASE/data/llama3_8B/original checkpointer.output_dir=$BASE/data/llama3_8B/ metric_logger.log_dir=$BASE/extra/llm-lora-ddp-nodes/metrics repo_id="meta-llama/Meta-Llama-3.1-8B" batch_size=8 gradient_accumulation_steps=8 & + ssh -oCheckHostIP=no -oStrictHostKeyChecking=no -oPasswordAuthentication=no -oPasswordAuthentication=no -p 22 username@192.168.0.11 $BASE/venv/torch/bin/tune run --nnodes=2 --rdzv-backend=c10d --rdzv-endpoint=127.0.0.1:29400 --nproc-per-node=8 -- $SRC/milabench/benchmarks/llm/recipes/lora_finetune_distributed.py --config $SRC/milabench/benchmarks/llm/configs/llama3_8B_lora_single_device.yaml epochs=1 output_dir=$BASE/extra/llm-lora-ddp-nodes/output tokenizer.path=$BASE/data/llama3_8B/original/tokenizer.model checkpointer.checkpoint_dir=$BASE/data/llama3_8B/original checkpointer.output_dir=$BASE/data/llama3_8B/ metric_logger.log_dir=$BASE/extra/llm-lora-ddp-nodes/metrics repo_id="meta-llama/Meta-Llama-3.1-8B" batch_size=8 gradient_accumulation_steps=8 & wait ) @@ -456,7 +456,7 @@ echo "---" echo "llm-lora-mp-gpus" echo "================" time ( - $BASE/venv/torch/bin/tune run --nnodes=1 --rdzv-backend=c10d --rdzv-endpoint=cn-l023.server.mila.quebec:29400 --nproc-per-node=8 -- $SRC/milabench/benchmarks/llm/recipes/lora_finetune_distributed.py --config $SRC/milabench/benchmarks/llm/configs/llama3_70B_lora.yaml epochs=1 output_dir=$BASE/extra/llm-lora-mp-gpus/output tokenizer.path=$BASE/data/llama3_70B/original/tokenizer.model checkpointer.checkpoint_dir=$BASE/data/llama3_70B checkpointer.output_dir=$BASE/data/llama3_70B/ metric_logger.log_dir=$BASE/extra/llm-lora-mp-gpus/metrics repo_id="meta-llama/Meta-Llama-3.1-70B" batch_size=8 gradient_accumulation_steps=1 & + $BASE/venv/torch/bin/tune run --nnodes=1 --rdzv-backend=c10d --rdzv-endpoint=127.0.0.1:29400 --nproc-per-node=8 -- $SRC/milabench/benchmarks/llm/recipes/lora_finetune_distributed.py --config $SRC/milabench/benchmarks/llm/configs/llama3_70B_lora.yaml epochs=1 output_dir=$BASE/extra/llm-lora-mp-gpus/output tokenizer.path=$BASE/data/llama3_70B/original/tokenizer.model checkpointer.checkpoint_dir=$BASE/data/llama3_70B checkpointer.output_dir=$BASE/data/llama3_70B/ metric_logger.log_dir=$BASE/extra/llm-lora-mp-gpus/metrics repo_id="meta-llama/Meta-Llama-3.1-70B" batch_size=8 gradient_accumulation_steps=1 & wait ) @@ -464,7 +464,7 @@ echo "---" echo "llm-full-mp-gpus" echo "================" time ( - $BASE/venv/torch/bin/tune run --nnodes=1 --rdzv-backend=c10d --rdzv-endpoint=cn-l023.server.mila.quebec:29400 --nproc-per-node=8 -- $SRC/milabench/benchmarks/llm/recipes/full_finetune_distributed.py --config $SRC/milabench/benchmarks/llm/configs/llama3_70B_full.yaml epochs=1 output_dir=$BASE/extra/llm-full-mp-gpus/output tokenizer.path=$BASE/data/llama3_70B/original/tokenizer.model checkpointer.checkpoint_dir=$BASE/data/llama3_70B checkpointer.output_dir=$BASE/data/llama3_70B/ metric_logger.log_dir=$BASE/extra/llm-full-mp-gpus/metrics repo_id="meta-llama/Meta-Llama-3.1-70B" safetensors=true batch_size=2 gradient_accumulation_steps=1 & + $BASE/venv/torch/bin/tune run --nnodes=1 --rdzv-backend=c10d --rdzv-endpoint=127.0.0.1:29400 --nproc-per-node=8 -- $SRC/milabench/benchmarks/llm/recipes/full_finetune_distributed.py --config $SRC/milabench/benchmarks/llm/configs/llama3_70B_full.yaml epochs=1 output_dir=$BASE/extra/llm-full-mp-gpus/output tokenizer.path=$BASE/data/llama3_70B/original/tokenizer.model checkpointer.checkpoint_dir=$BASE/data/llama3_70B checkpointer.output_dir=$BASE/data/llama3_70B/ metric_logger.log_dir=$BASE/extra/llm-full-mp-gpus/metrics repo_id="meta-llama/Meta-Llama-3.1-70B" safetensors=true batch_size=2 gradient_accumulation_steps=1 & wait ) @@ -472,8 +472,8 @@ echo "---" echo "llm-full-mp-nodes" echo "=================" time ( - $BASE/venv/torch/bin/tune run --nnodes=2 --rdzv-backend=c10d --rdzv-endpoint=cn-l023.server.mila.quebec:29400 --nproc-per-node=8 -- $SRC/milabench/benchmarks/llm/recipes/full_finetune_distributed.py --config $SRC/milabench/benchmarks/llm/configs/llama3_70B_full.yaml epochs=1 output_dir=$BASE/extra/llm-full-mp-nodes/output tokenizer.path=$BASE/data/llama3_70B/original/tokenizer.model checkpointer.checkpoint_dir=$BASE/data/llama3_70B checkpointer.output_dir=$BASE/data/llama3_70B/ metric_logger.log_dir=$BASE/extra/llm-full-mp-nodes/metrics repo_id="meta-llama/Meta-Llama-3.1-70B" safetensors=true batch_size=2 gradient_accumulation_steps=1 & - ssh -oCheckHostIP=no -oStrictHostKeyChecking=no -oPasswordAuthentication=no -oPasswordAuthentication=no -p 22 username@192.168.0.11 $BASE/venv/torch/bin/tune run --nnodes=2 --rdzv-backend=c10d --rdzv-endpoint=cn-l023.server.mila.quebec:29400 --nproc-per-node=8 -- $SRC/milabench/benchmarks/llm/recipes/full_finetune_distributed.py --config $SRC/milabench/benchmarks/llm/configs/llama3_70B_full.yaml epochs=1 output_dir=$BASE/extra/llm-full-mp-nodes/output tokenizer.path=$BASE/data/llama3_70B/original/tokenizer.model checkpointer.checkpoint_dir=$BASE/data/llama3_70B checkpointer.output_dir=$BASE/data/llama3_70B/ metric_logger.log_dir=$BASE/extra/llm-full-mp-nodes/metrics repo_id="meta-llama/Meta-Llama-3.1-70B" safetensors=true batch_size=2 gradient_accumulation_steps=1 & + $BASE/venv/torch/bin/tune run --nnodes=2 --rdzv-backend=c10d --rdzv-endpoint=127.0.0.1:29400 --nproc-per-node=8 -- $SRC/milabench/benchmarks/llm/recipes/full_finetune_distributed.py --config $SRC/milabench/benchmarks/llm/configs/llama3_70B_full.yaml epochs=1 output_dir=$BASE/extra/llm-full-mp-nodes/output tokenizer.path=$BASE/data/llama3_70B/original/tokenizer.model checkpointer.checkpoint_dir=$BASE/data/llama3_70B checkpointer.output_dir=$BASE/data/llama3_70B/ metric_logger.log_dir=$BASE/extra/llm-full-mp-nodes/metrics repo_id="meta-llama/Meta-Llama-3.1-70B" safetensors=true batch_size=2 gradient_accumulation_steps=1 & + ssh -oCheckHostIP=no -oStrictHostKeyChecking=no -oPasswordAuthentication=no -oPasswordAuthentication=no -p 22 username@192.168.0.11 $BASE/venv/torch/bin/tune run --nnodes=2 --rdzv-backend=c10d --rdzv-endpoint=127.0.0.1:29400 --nproc-per-node=8 -- $SRC/milabench/benchmarks/llm/recipes/full_finetune_distributed.py --config $SRC/milabench/benchmarks/llm/configs/llama3_70B_full.yaml epochs=1 output_dir=$BASE/extra/llm-full-mp-nodes/output tokenizer.path=$BASE/data/llama3_70B/original/tokenizer.model checkpointer.checkpoint_dir=$BASE/data/llama3_70B checkpointer.output_dir=$BASE/data/llama3_70B/ metric_logger.log_dir=$BASE/extra/llm-full-mp-nodes/metrics repo_id="meta-llama/Meta-Llama-3.1-70B" safetensors=true batch_size=2 gradient_accumulation_steps=1 & wait )