diff --git a/.gitignore b/.gitignore index d20faa42..08d78b4e 100644 --- a/.gitignore +++ b/.gitignore @@ -2,3 +2,4 @@ _build .idea **/__pycache__ +/docs/examples/**/*.diff diff --git a/docs/Minimal_examples.rst b/docs/Minimal_examples.rst index 67556a79..185a5057 100644 --- a/docs/Minimal_examples.rst +++ b/docs/Minimal_examples.rst @@ -1,6 +1,8 @@ -.. *************************** +.. **************** .. Minimal Examples -.. *************************** +.. **************** .. include:: examples/frameworks/README.rst +.. include:: examples/distributed/README.rst +.. include:: examples/data/README.rst diff --git a/docs/conf.py b/docs/conf.py index df42510e..2d135804 100644 --- a/docs/conf.py +++ b/docs/conf.py @@ -3,7 +3,8 @@ from __future__ import division, print_function, unicode_literals from datetime import datetime - +import subprocess +from pathlib import Path import sphinx_theme extensions = [ @@ -90,5 +91,18 @@ # Include CNAME file so GitHub Pages can set Custom Domain name html_extra_path = ['CNAME'] + +# Generate the diffs that are shown in the examples. +file_dir = Path(__file__).parent / "examples/generate_diffs.sh" +try: + proc = subprocess.run(str(file_dir), shell=True, capture_output=True, check=True) +except subprocess.CalledProcessError as err: + raise RuntimeError( + "Could not build the diff files for the examples:\n" + + str(err.output, encoding="utf-8") + + str(err.stderr, encoding="utf-8") + ) + + def setup(app): app.add_css_file('custom.css') diff --git a/docs/examples/data/README.rst b/docs/examples/data/README.rst new file mode 100644 index 00000000..146429b9 --- /dev/null +++ b/docs/examples/data/README.rst @@ -0,0 +1,7 @@ +***************************** +Data Handling during Training +***************************** + + +.. include:: examples/data/torchvision/README.rst +.. include:: examples/data/hf/README.rst diff --git a/docs/examples/data/hf/README.rst b/docs/examples/data/hf/README.rst new file mode 100644 index 00000000..b907baf3 --- /dev/null +++ b/docs/examples/data/hf/README.rst @@ -0,0 +1,49 @@ +Hugging Face Dataset +==================== + + +**Prerequisites** + +Make sure to read the following sections of the documentation before using this example: + +* :ref:`pytorch_setup` +* :ref:`001 - Single GPU Job` + +The full source code for this example is available on `the mila-docs GitHub repository. `_ + + +**job.sh** + +.. literalinclude:: examples/data/hf/job.sh.diff + :language: diff + + +**main.py** + +.. literalinclude:: examples/data/hf/main.py.diff + :language: diff + + +**prepare_data.py** + +.. literalinclude:: examples/data/hf/prepare_data.py + :language: python + + +**get_dataset_cache_dir.py** + +.. literalinclude:: examples/data/hf/get_dataset_cache_dir.py + :language: python + + +**cp_data.sh** + +.. literalinclude:: examples/data/hf/cp_data.sh + :language: bash + + +**Running this example** + +.. code-block:: bash + + $ sbatch job.sh diff --git a/docs/examples/data/hf/cp_data.sh b/docs/examples/data/hf/cp_data.sh new file mode 100644 index 00000000..53d75a94 --- /dev/null +++ b/docs/examples/data/hf/cp_data.sh @@ -0,0 +1,16 @@ +#!/bin/bash +set -o errexit + +_SRC=$1 +_DEST=$2 +_WORKERS=$3 + +# Copy the dataset +(cd "${_SRC}" && find -L * -type f) | while read f +do + mkdir --parents "${_DEST}/$(dirname "$f")" + # echo source first so it is matched to the cp's '-T' argument + readlink --canonicalize "${_SRC}/$f" + # echo output last so cp understands it's the output file + echo "${_DEST}/$f" +done | xargs -n2 -P${_WORKERS} cp --update -T diff --git a/docs/examples/data/hf/get_dataset_cache_dir.py b/docs/examples/data/hf/get_dataset_cache_dir.py new file mode 100644 index 00000000..bcc04ae2 --- /dev/null +++ b/docs/examples/data/hf/get_dataset_cache_dir.py @@ -0,0 +1,12 @@ +"""List to stdout the files of the dataset""" +import sys + +import datasets + + +# Redirect outputs to stderr to avoid noize in stdout +_stdout = sys.stdout +sys.stdout = sys.stderr + +builder = datasets.load_dataset_builder("the_pile", subsets=["all"], version="0.0.0") +print(builder.cache_dir, file=_stdout) diff --git a/docs/examples/data/hf/job.sh b/docs/examples/data/hf/job.sh new file mode 100644 index 00000000..9bc4ef1d --- /dev/null +++ b/docs/examples/data/hf/job.sh @@ -0,0 +1,71 @@ +#!/bin/bash +#SBATCH --gpus-per-task=rtx8000:1 +#SBATCH --cpus-per-task=4 +#SBATCH --ntasks-per-node=1 +#SBATCH --mem=32G +#SBATCH --time=02:00:00 +#SBATCH --tmp=1500G +set -o errexit + + +# Echo time and hostname into log +echo "Date: $(date)" +echo "Hostname: $(hostname)" + + +# Ensure only anaconda/3 module loaded. +module purge +# This example uses Conda to manage package dependencies. +# See https://docs.mila.quebec/Userguide.html#conda for more information. +module load anaconda/3 + + +# Creating the environment for the first time: +# conda create -y -n pytorch python=3.9 pytorch torchvision torchaudio \ +# pytorch-cuda=11.6 scipy -c pytorch -c nvidia +# Other conda packages: +# conda install -y -n pytorch -c conda-forge rich tqdm datasets + +# Activate pre-existing environment. +conda activate pytorch + + +# Prepare data for training +mkdir -p "$SLURM_TMPDIR/data" + +if [[ -z "${HF_DATASETS_CACHE}" ]] +then + # Store the huggingface datasets cache in $SCRATCH + export HF_DATASETS_CACHE=$SCRATCH/cache/huggingface/datasets +fi +if [[ -z "${_DATA_PREP_WORKERS}" ]] +then + _DATA_PREP_WORKERS=${SLURM_JOB_CPUS_PER_NODE} +fi +if [[ -z "${_DATA_PREP_WORKERS}" ]] +then + _DATA_PREP_WORKERS=16 +fi + +# Preprocess the dataset and cache the result such that the heavy work is done +# only once *ever* +# Required conda packages: +# conda install -y -c conda-forge zstandard +srun --ntasks=1 --ntasks-per-node=1 \ + time -p python3 prepare_data.py "/network/datasets/pile" ${_DATA_PREP_WORKERS} + +# Copy the preprocessed dataset to $SLURM_TMPDIR so it is close to the GPUs for +# faster training +# Get the current dataset cache +_DATASET_CACHE_DIR=$(python3 get_dataset_cache_dir.py) +# Get the local dataset cache +_LOCAL_DATASET_CACHE_DIR=$(HF_DATASETS_CACHE="$SLURM_TMPDIR/data" python3 get_dataset_cache_dir.py) +srun --ntasks=$SLURM_JOB_NUM_NODES --ntasks-per-node=1 \ + time -p bash cp_data.sh "${_DATASET_CACHE_DIR}" "${_LOCAL_DATASET_CACHE_DIR}" ${_DATA_PREP_WORKERS} + +# Use the local copy of the preprocessed dataset +export HF_DATASETS_CACHE="$SLURM_TMPDIR/data" + + +# Execute Python script +python main.py diff --git a/docs/examples/data/hf/main.py b/docs/examples/data/hf/main.py new file mode 100644 index 00000000..9edd35bf --- /dev/null +++ b/docs/examples/data/hf/main.py @@ -0,0 +1,144 @@ +"""Torchvision training example.""" +import logging +import os + +import datasets +import rich.logging +import torch +from torch import Tensor, nn +from torch.nn import functional as F +from torch.utils.data import DataLoader +from torchvision.models import resnet18 +from tqdm import tqdm + + +def main(): + training_epochs = 1 + learning_rate = 5e-4 + weight_decay = 1e-4 + batch_size = 256 + + # Check that the GPU is available + assert torch.cuda.is_available() and torch.cuda.device_count() > 0 + device = torch.device("cuda", 0) + + # Setup logging (optional, but much better than using print statements) + logging.basicConfig( + level=logging.INFO, + handlers=[rich.logging.RichHandler(markup=True)], # Very pretty, uses the `rich` package. + ) + + logger = logging.getLogger(__name__) + + # Create a model and move it to the GPU. + model = resnet18() + model.to(device=device) + + optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate, weight_decay=weight_decay) + + # Setup ImageNet + num_workers = get_num_workers() + dataset_path = "the_pile" + train_dataset, valid_dataset, test_dataset = make_datasets(dataset_path) + train_dataloader = DataLoader( + train_dataset, + batch_size=batch_size, + num_workers=num_workers, + shuffle=True, + ) + valid_dataloader = DataLoader( + valid_dataset, + batch_size=batch_size, + num_workers=num_workers, + shuffle=False, + ) + test_dataloader = DataLoader( # NOTE: Not used in this example. + test_dataset, + batch_size=batch_size, + num_workers=num_workers, + shuffle=False, + ) + + # Checkout the "checkpointing and preemption" example for more info! + logger.debug("Starting training from scratch.") + + for epoch in range(training_epochs): + logger.debug(f"Starting epoch {epoch}/{training_epochs}") + + # Set the model in training mode (this is important for e.g. BatchNorm and Dropout layers) + model.train() + + # NOTE: using a progress bar from tqdm because it's nicer than using `print`. + progress_bar = tqdm( + total=len(train_dataloader), + desc=f"Train epoch {epoch}", + ) + + # Training loop + for batch in train_dataloader: + # Move the batch to the GPU before we pass it to the model + batch = tuple(item.to(device) for item in batch) + + # [Training of the model goes here] + + # Advance the progress bar one step, and update the "postfix" () the progress bar. (nicer than just) + progress_bar.update(1) + progress_bar.close() + + val_loss, val_accuracy = validation_loop(model, valid_dataloader, device) + logger.info(f"Epoch {epoch}: Val loss: {val_loss:.3f} accuracy: {val_accuracy:.2%}") + + print("Done!") + + +@torch.no_grad() +def validation_loop(model: nn.Module, dataloader: DataLoader, device: torch.device): + model.eval() + + total_loss = 0.0 + n_samples = 0 + correct_predictions = 0 + + for batch in dataloader: + batch = tuple(item.to(device) for item in batch) + x, y = batch + + logits: Tensor = model(x) + loss = F.cross_entropy(logits, y) + + batch_n_samples = x.shape[0] + batch_correct_predictions = logits.argmax(-1).eq(y).sum() + + total_loss += loss.item() + n_samples += batch_n_samples + correct_predictions += batch_correct_predictions + + accuracy = correct_predictions / n_samples + return total_loss, accuracy + + +def make_datasets(dataset_path: str): + """Returns the training, validation, and test splits for ImageNet. + + NOTE: We don't use transforms here for simplicity. + Having different transformations for train and validation would complicate things a bit. + Later examples will show how to do the train/val/test split properly when using transforms. + """ + builder = datasets.load_dataset_builder(dataset_path, subsets=["all"], version="0.0.0") + train_dataset = builder.as_dataset(split="train").with_format("torch") + valid_dataset = builder.as_dataset(split="validation").with_format("torch") + test_dataset = builder.as_dataset(split="test").with_format("torch") + return train_dataset, valid_dataset, test_dataset + + +def get_num_workers() -> int: + """Gets the optimal number of DatLoader workers to use in the current job.""" + if "SLURM_CPUS_PER_TASK" in os.environ: + return int(os.environ["SLURM_CPUS_PER_TASK"]) + if hasattr(os, "sched_getaffinity"): + return len(os.sched_getaffinity(0)) + return torch.multiprocessing.cpu_count() + + +if __name__ == "__main__": + main() diff --git a/docs/examples/data/hf/prepare_data.py b/docs/examples/data/hf/prepare_data.py new file mode 100644 index 00000000..595539e1 --- /dev/null +++ b/docs/examples/data/hf/prepare_data.py @@ -0,0 +1,52 @@ +"""Preprocess the dataset. +In this example, HuggingFace is used and the resulting dataset will be stored in +$HF_DATASETS_CACHE. It is preferable to set the datasets cache to a location in +$SCRATCH""" +import sys +import time + +import datasets + + +_LOCAL_DS = sys.argv[1] +_LOCAL_DS_SPLITS = _LOCAL_DS.split("/") +try: + _WORKERS = int(sys.argv[2]) +except IndexError: + _WORKERS = 16 + +dl_config = datasets.DownloadConfig(cache_dir=_LOCAL_DS) + +# 'datasets' does not allow to use a local storage for the datasets' files using +# it's exposed API. Mocking the download func to for the usage of the local file +dl_man = datasets.DownloadManager(download_config=dl_config) +def dl(url_or_urls, *args, **kwargs): + import glob + local_files = ["/".join(_f.split("/")[len(_LOCAL_DS_SPLITS):]) + for _f in glob.glob(f"{_LOCAL_DS}/**", recursive=True)] + local_files.sort() + if isinstance(url_or_urls, str): + url_or_urls = [url_or_urls] + + # Replace all urls by local files if they can be found + for v in (url_or_urls.values() if isinstance(url_or_urls, dict) else {".":url_or_urls}): + for i, url in enumerate(v): + for lf in local_files: + if lf and url.endswith(lf): + v[i] = f"{_LOCAL_DS}/{lf}" + local_files.remove(lf) + break + + # Continue normal download process which should only checksum the local + # files instead of downloading them + return _download(url_or_urls, *args, **kwargs) + +_download = dl_man.download +dl_man.download = dl +builder = datasets.load_dataset_builder("the_pile", download_config=dl_config, subsets=["all"], version="0.0.0") + +t = -time.time() +builder.download_and_prepare(dl_manager=dl_man, num_proc=_WORKERS) +t += time.time() + +print(f"Prepared data in {t/60:.2f}m") diff --git a/docs/examples/data/torchvision/README.rst b/docs/examples/data/torchvision/README.rst new file mode 100644 index 00000000..77ab7445 --- /dev/null +++ b/docs/examples/data/torchvision/README.rst @@ -0,0 +1,43 @@ +Torchvision +=========== + + +**Prerequisites** + +Make sure to read the following sections of the documentation before using this example: + +* :ref:`pytorch_setup` +* :ref:`001 - Single GPU Job` + +The full source code for this example is available on `the mila-docs GitHub repository. `_ + + +**job.sh** + +.. literalinclude:: examples/data/torchvision/job.sh.diff + :language: diff + + +**main.py** + +.. literalinclude:: examples/data/torchvision/main.py.diff + :language: diff + + +**data.sh** + +.. literalinclude:: examples/data/torchvision/data.sh + :language: bash + + +**data.py** + +.. literalinclude:: examples/data/torchvision/data.py + :language: python + + +**Running this example** + +.. code-block:: bash + + $ sbatch job.sh diff --git a/docs/examples/data/torchvision/data.py b/docs/examples/data/torchvision/data.py new file mode 100644 index 00000000..a43129c4 --- /dev/null +++ b/docs/examples/data/torchvision/data.py @@ -0,0 +1,12 @@ +"""Make sure the data is available""" +import sys +import time + +from torchvision.datasets import INaturalist + + +t = -time.time() +INaturalist(root=sys.argv[1], version="2021_train", download=True) +INaturalist(root=sys.argv[1], version="2021_valid", download=True) +t += time.time() +print(f"Prepared data in {t/60:.2f}m") diff --git a/docs/examples/data/torchvision/data.sh b/docs/examples/data/torchvision/data.sh new file mode 100644 index 00000000..981a7f73 --- /dev/null +++ b/docs/examples/data/torchvision/data.sh @@ -0,0 +1,26 @@ +#!/bin/bash +set -o errexit + +_SRC=$1 +_DEST=$2 +_WORKERS=$3 + +# Clone the dataset structure locally and reorganise the raw files if needed +(cd "${_SRC}" && find -L * -type f) | while read f +do + mkdir --parents "${_DEST}/$(dirname "$f")" + # echo source first so it is matched to the ln's '-T' argument + readlink --canonicalize "${_SRC}/$f" + # echo output last so ln understands it's the output file + echo "${_DEST}/$f" +done | xargs -n2 -P${_WORKERS} ln --symbolic --force -T + +( + cd "${_DEST}" + # Torchvision expects these names + mv train.tar.gz 2021_train.tgz + mv val.tar.gz 2021_valid.tgz +) + +# Extract and prepare the data +python3 data.py "${_DEST}" diff --git a/docs/examples/data/torchvision/job.sh b/docs/examples/data/torchvision/job.sh new file mode 100644 index 00000000..5423e372 --- /dev/null +++ b/docs/examples/data/torchvision/job.sh @@ -0,0 +1,50 @@ +#!/bin/bash +#SBATCH --gpus-per-task=rtx8000:1 +#SBATCH --cpus-per-task=4 +#SBATCH --ntasks-per-node=1 +#SBATCH --mem=16G +#SBATCH --time=01:30:00 +set -o errexit + + +# Echo time and hostname into log +echo "Date: $(date)" +echo "Hostname: $(hostname)" + + +# Ensure only anaconda/3 module loaded. +module purge +# This example uses Conda to manage package dependencies. +# See https://docs.mila.quebec/Userguide.html#conda for more information. +module load anaconda/3 + + +# Creating the environment for the first time: +# conda create -y -n pytorch python=3.9 pytorch torchvision torchaudio \ +# pytorch-cuda=11.6 scipy -c pytorch -c nvidia +# Other conda packages: +# conda install -y -n pytorch -c conda-forge rich tqdm + +# Activate pre-existing environment. +conda activate pytorch + + +# Prepare data for training +mkdir -p "$SLURM_TMPDIR/data" + +if [[ -z "${_DATA_PREP_WORKERS}" ]] +then + _DATA_PREP_WORKERS=${SLURM_JOB_CPUS_PER_NODE} +fi +if [[ -z "${_DATA_PREP_WORKERS}" ]] +then + _DATA_PREP_WORKERS=16 +fi + +# Copy the dataset to $SLURM_TMPDIR so it is close to the GPUs for +# faster training +srun --ntasks=$SLURM_JOB_NUM_NODES --ntasks-per-node=1 \ + time -p bash data.sh "/network/datasets/inat" "$SLURM_TMPDIR/data" ${_DATA_PREP_WORKERS} + +# Execute Python script +python main.py diff --git a/docs/examples/data/torchvision/main.py b/docs/examples/data/torchvision/main.py new file mode 100644 index 00000000..015394e0 --- /dev/null +++ b/docs/examples/data/torchvision/main.py @@ -0,0 +1,187 @@ +"""Torchvision training example.""" +import logging +import os + +import rich.logging +import torch +from torch import Tensor, nn +from torch.nn import functional as F +from torch.utils.data import DataLoader, random_split +from torchvision import transforms +from torchvision.datasets import INaturalist +from torchvision.models import resnet18 +from tqdm import tqdm + + +def main(): + training_epochs = 1 + learning_rate = 5e-4 + weight_decay = 1e-4 + batch_size = 256 + + # Check that the GPU is available + assert torch.cuda.is_available() and torch.cuda.device_count() > 0 + device = torch.device("cuda", 0) + + # Setup logging (optional, but much better than using print statements) + logging.basicConfig( + level=logging.INFO, + handlers=[rich.logging.RichHandler(markup=True)], # Very pretty, uses the `rich` package. + ) + + logger = logging.getLogger(__name__) + + # Create a model and move it to the GPU. + model = resnet18(num_classes=10000) + model.to(device=device) + + optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate, weight_decay=weight_decay) + + # Setup ImageNet + num_workers = get_num_workers() + try: + dataset_path = f"{os.environ['SLURM_TMPDIR']}/data" + except KeyError: + dataset_path = "../dataset" + train_dataset, valid_dataset, test_dataset = make_datasets(dataset_path) + train_dataloader = DataLoader( + train_dataset, + batch_size=batch_size, + num_workers=num_workers, + shuffle=True, + ) + valid_dataloader = DataLoader( + valid_dataset, + batch_size=batch_size, + num_workers=num_workers, + shuffle=False, + ) + test_dataloader = DataLoader( # NOTE: Not used in this example. + test_dataset, + batch_size=batch_size, + num_workers=num_workers, + shuffle=False, + ) + + # Checkout the "checkpointing and preemption" example for more info! + logger.debug("Starting training from scratch.") + + for epoch in range(training_epochs): + logger.debug(f"Starting epoch {epoch}/{training_epochs}") + + # Set the model in training mode (this is important for e.g. BatchNorm and Dropout layers) + model.train() + + # NOTE: using a progress bar from tqdm because it's nicer than using `print`. + progress_bar = tqdm( + total=len(train_dataloader), + desc=f"Train epoch {epoch}", + ) + + # Training loop + for batch in train_dataloader: + # Move the batch to the GPU before we pass it to the model + batch = tuple(item.to(device) for item in batch) + x, y = batch + + # Forward pass + logits: Tensor = model(x) + + loss = F.cross_entropy(logits, y) + + optimizer.zero_grad() + loss.backward() + optimizer.step() + + # Calculate some metrics: + n_correct_predictions = logits.detach().argmax(-1).eq(y).sum() + n_samples = y.shape[0] + accuracy = n_correct_predictions / n_samples + + logger.debug(f"Accuracy: {accuracy.item():.2%}") + logger.debug(f"Average Loss: {loss.item()}") + + # Advance the progress bar one step, and update the "postfix" () the progress bar. (nicer than just) + progress_bar.update(1) + progress_bar.set_postfix(loss=loss.item(), accuracy=accuracy.item()) + progress_bar.close() + + val_loss, val_accuracy = validation_loop(model, valid_dataloader, device) + logger.info(f"Epoch {epoch}: Val loss: {val_loss:.3f} accuracy: {val_accuracy:.2%}") + + print("Done!") + + +@torch.no_grad() +def validation_loop(model: nn.Module, dataloader: DataLoader, device: torch.device): + model.eval() + + total_loss = 0.0 + n_samples = 0 + correct_predictions = 0 + + for batch in dataloader: + batch = tuple(item.to(device) for item in batch) + x, y = batch + + logits: Tensor = model(x) + loss = F.cross_entropy(logits, y) + + batch_n_samples = x.shape[0] + batch_correct_predictions = logits.argmax(-1).eq(y).sum() + + total_loss += loss.item() + n_samples += batch_n_samples + correct_predictions += batch_correct_predictions + + accuracy = correct_predictions / n_samples + return total_loss, accuracy + + +def make_datasets( + dataset_path: str, + val_split: float = 0.1, + val_split_seed: int = 42, +): + """Returns the training, validation, and test splits for ImageNet. + + NOTE: We don't use image transforms here for simplicity. + Having different transformations for train and validation would complicate things a bit. + Later examples will show how to do the train/val/test split properly when using transforms. + """ + train_dataset = INaturalist( + root=dataset_path, + transform=transforms.Compose([ + transforms.Resize(256), + transforms.CenterCrop(224), + transforms.ToTensor(), + ]), + version="2021_train" + ) + test_dataset = INaturalist( + root=dataset_path, + transform=transforms.Compose([ + transforms.Resize(256), + transforms.CenterCrop(224), + transforms.ToTensor(), + ]), + version="2021_valid" + ) + # Split the training dataset into a training and validation set. + train_dataset, valid_dataset = random_split( + train_dataset, ((1 - val_split), val_split), torch.Generator().manual_seed(val_split_seed) + ) + return train_dataset, valid_dataset, test_dataset + + +def get_num_workers() -> int: + """Gets the optimal number of DatLoader workers to use in the current job.""" + if "SLURM_CPUS_PER_TASK" in os.environ: + return int(os.environ["SLURM_CPUS_PER_TASK"]) + if hasattr(os, "sched_getaffinity"): + return len(os.sched_getaffinity(0)) + return torch.multiprocessing.cpu_count() + + +if __name__ == "__main__": + main() diff --git a/docs/examples/distributed/001_single_gpu/README.rst b/docs/examples/distributed/001_single_gpu/README.rst new file mode 100644 index 00000000..5ddeafbb --- /dev/null +++ b/docs/examples/distributed/001_single_gpu/README.rst @@ -0,0 +1,29 @@ +001 - Single GPU Job +==================== + + +**Prerequisites** +Make sure to read the following sections of the documentation before using this example: + +* :ref:`pytorch_setup` + +The full source code for this example is available on `the mila-docs GitHub repository. `_ + +**job.sh** + +.. literalinclude:: examples/distributed/001_single_gpu/job.sh + :language: bash + + +**main.py** + +.. literalinclude:: examples/distributed/001_single_gpu/main.py + :language: python + + +**Running this example** + + +.. code-block:: bash + + $ sbatch job.sh diff --git a/docs/examples/distributed/001_single_gpu/job.sh b/docs/examples/distributed/001_single_gpu/job.sh new file mode 100644 index 00000000..6dd819bb --- /dev/null +++ b/docs/examples/distributed/001_single_gpu/job.sh @@ -0,0 +1,35 @@ +#!/bin/bash +#SBATCH --gpus-per-task=rtx8000:1 +#SBATCH --cpus-per-task=4 +#SBATCH --ntasks-per-node=1 +#SBATCH --mem=16G +#SBATCH --time=00:15:00 + + +# Echo time and hostname into log +echo "Date: $(date)" +echo "Hostname: $(hostname)" + + +# Ensure only anaconda/3 module loaded. +module purge +# This example uses Conda to manage package dependencies. +# See https://docs.mila.quebec/Userguide.html#conda for more information. +module load anaconda/3 + +# Creating the environment for the first time: +# conda create -y -n pytorch python=3.9 pytorch torchvision torchaudio \ +# pytorch-cuda=11.6 -c pytorch -c nvidia +# Other conda packages: +# conda install -y -n pytorch -c conda-forge rich + +# Activate pre-existing environment. +conda activate pytorch + + +# Stage dataset into $SLURM_TMPDIR +cp -a /network/datasets/cifar10.var/cifar10_torchvision $SLURM_TMPDIR + + +# Execute Python script +python main.py diff --git a/docs/examples/distributed/001_single_gpu/main.py b/docs/examples/distributed/001_single_gpu/main.py new file mode 100644 index 00000000..f859e9f8 --- /dev/null +++ b/docs/examples/distributed/001_single_gpu/main.py @@ -0,0 +1,172 @@ +"""Single-GPU training example.""" +import logging +import os + +import rich.logging +import torch +from torch import Tensor, nn +from torch.nn import functional as F +from torch.utils.data import DataLoader, random_split +from torchvision import transforms +from torchvision.datasets import CIFAR10 +from torchvision.models import resnet18 +from tqdm import tqdm + + +def main(): + training_epochs = 10 + learning_rate = 5e-4 + weight_decay = 1e-4 + batch_size = 128 + + # Check that the GPU is available + assert torch.cuda.is_available() and torch.cuda.device_count() > 0 + device = torch.device("cuda", 0) + + # Setup logging (optional, but much better than using print statements) + logging.basicConfig( + level=logging.INFO, + handlers=[rich.logging.RichHandler(markup=True)], # Very pretty, uses the `rich` package. + ) + + logger = logging.getLogger(__name__) + + # Create a model and move it to the GPU. + model = resnet18(num_classes=10) + model.to(device=device) + + optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate, weight_decay=weight_decay) + + # Setup CIFAR10 + num_workers = get_num_workers() + dataset_path = os.environ.get("SLURM_TMPDIR", "../dataset") + train_dataset, valid_dataset, test_dataset = make_datasets(dataset_path) + train_dataloader = DataLoader( + train_dataset, + batch_size=batch_size, + num_workers=num_workers, + shuffle=True, + ) + valid_dataloader = DataLoader( + valid_dataset, + batch_size=batch_size, + num_workers=num_workers, + shuffle=False, + ) + test_dataloader = DataLoader( # NOTE: Not used in this example. + test_dataset, + batch_size=batch_size, + num_workers=num_workers, + shuffle=False, + ) + + # Checkout the "checkpointing and preemption" example for more info! + logger.debug("Starting training from scratch.") + + for epoch in range(training_epochs): + logger.debug(f"Starting epoch {epoch}/{training_epochs}") + + # Set the model in training mode (this is important for e.g. BatchNorm and Dropout layers) + model.train() + + # NOTE: using a progress bar from tqdm because it's nicer than using `print`. + progress_bar = tqdm( + total=len(train_dataloader), + desc=f"Train epoch {epoch}", + ) + + # Training loop + for batch in train_dataloader: + # Move the batch to the GPU before we pass it to the model + batch = tuple(item.to(device) for item in batch) + x, y = batch + + # Forward pass + logits: Tensor = model(x) + + loss = F.cross_entropy(logits, y) + + optimizer.zero_grad() + loss.backward() + optimizer.step() + + # Calculate some metrics: + n_correct_predictions = logits.detach().argmax(-1).eq(y).sum() + n_samples = y.shape[0] + accuracy = n_correct_predictions / n_samples + + logger.debug(f"Accuracy: {accuracy.item():.2%}") + logger.debug(f"Average Loss: {loss.item()}") + + # Advance the progress bar one step, and update the "postfix" () the progress bar. (nicer than just) + progress_bar.update(1) + progress_bar.set_postfix(loss=loss.item(), accuracy=accuracy.item()) + progress_bar.close() + + val_loss, val_accuracy = validation_loop(model, valid_dataloader, device) + logger.info(f"Epoch {epoch}: Val loss: {val_loss:.3f} accuracy: {val_accuracy:.2%}") + + print("Done!") + + +@torch.no_grad() +def validation_loop(model: nn.Module, dataloader: DataLoader, device: torch.device): + model.eval() + + total_loss = 0.0 + n_samples = 0 + correct_predictions = 0 + + for batch in dataloader: + batch = tuple(item.to(device) for item in batch) + x, y = batch + + logits: Tensor = model(x) + loss = F.cross_entropy(logits, y) + + batch_n_samples = x.shape[0] + batch_correct_predictions = logits.argmax(-1).eq(y).sum() + + total_loss += loss.item() + n_samples += batch_n_samples + correct_predictions += batch_correct_predictions + + accuracy = correct_predictions / n_samples + return total_loss, accuracy + + +def make_datasets( + dataset_path: str, + val_split: float = 0.1, + val_split_seed: int = 42, +): + """Returns the training, validation, and test splits for CIFAR10. + + NOTE: We don't use image transforms here for simplicity. + Having different transformations for train and validation would complicate things a bit. + Later examples will show how to do the train/val/test split properly when using transforms. + """ + train_dataset = CIFAR10( + root=dataset_path, transform=transforms.ToTensor(), download=True, train=True + ) + test_dataset = CIFAR10( + root=dataset_path, transform=transforms.ToTensor(), download=True, train=False + ) + # Split the training dataset into a training and validation set. + train_dataset, valid_dataset = random_split( + train_dataset, ((1 - val_split), val_split), torch.Generator().manual_seed(val_split_seed) + ) + return train_dataset, valid_dataset, test_dataset + + +def get_num_workers() -> int: + """Gets the optimal number of DatLoader workers to use in the current job.""" + if "SLURM_CPUS_PER_TASK" in os.environ: + return int(os.environ["SLURM_CPUS_PER_TASK"]) + if hasattr(os, "sched_getaffinity"): + return len(os.sched_getaffinity(0)) + return torch.multiprocessing.cpu_count() + + +if __name__ == "__main__": + main() diff --git a/docs/examples/distributed/README.rst b/docs/examples/distributed/README.rst new file mode 100644 index 00000000..c6e5c7b4 --- /dev/null +++ b/docs/examples/distributed/README.rst @@ -0,0 +1,6 @@ +******************** +Distributed Training +******************** + + +.. include:: /examples/distributed/001_single_gpu/README.rst diff --git a/docs/examples/frameworks/pytorch_setup/README.rst b/docs/examples/frameworks/pytorch_setup/README.rst index 3be1c08b..f69a1921 100644 --- a/docs/examples/frameworks/pytorch_setup/README.rst +++ b/docs/examples/frameworks/pytorch_setup/README.rst @@ -1,3 +1,5 @@ +.. _pytorch_setup: + PyTorch Setup =================== diff --git a/docs/examples/frameworks/pytorch_setup/job.sh b/docs/examples/frameworks/pytorch_setup/job.sh index db126819..6f50e07d 100644 --- a/docs/examples/frameworks/pytorch_setup/job.sh +++ b/docs/examples/frameworks/pytorch_setup/job.sh @@ -17,6 +17,8 @@ module load anaconda/3 # Creating the environment for the first time: # conda create -y -n pytorch python=3.9 pytorch torchvision torchaudio \ # pytorch-cuda=11.6 -c pytorch -c nvidia +# Other conda packages: +# conda install -y -n pytorch -c conda-forge rich # Activate the environment: conda activate pytorch diff --git a/docs/examples/generate_diffs.sh b/docs/examples/generate_diffs.sh new file mode 100755 index 00000000..24e3c767 --- /dev/null +++ b/docs/examples/generate_diffs.sh @@ -0,0 +1,34 @@ +#!/bin/bash +# Use this to update the diffs based on the contents of the files. + +pushd `dirname "${BASH_SOURCE[0]}"` >/dev/null +_SCRIPT_DIR=`pwd -P` +popd >/dev/null + +set -e + +generate_diff() { + echo "Generating diff for docs/examples/$1 -> docs/examples/$2" + # NOTE: Assuming that this gets run from the `docs` folder (as is the case when building the docs). + + # Write a diff file to be shown in the documentation. + + echo "# $1 -> $2" > "$2.diff" + git diff --no-index -U9999 \ + "$1" \ + "$2" \ + | grep -Ev "^--- |^\+\+\+ |^@@ |^index |^diff --git" \ + >> "$2.diff" +} + +pushd "${_SCRIPT_DIR}" >/dev/null + +# single_gpu -> huggingface +generate_diff distributed/001_single_gpu/job.sh data/hf/job.sh +generate_diff distributed/001_single_gpu/main.py data/hf/main.py + +# single_gpu -> torchvision +generate_diff distributed/001_single_gpu/job.sh data/torchvision/job.sh +generate_diff distributed/001_single_gpu/main.py data/torchvision/main.py + +popd >/dev/null