-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels.py
650 lines (578 loc) · 28.6 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
import os, sys
sys.path.insert(1, os.getcwd())
import torch, numpy as np
from utils import init_weights, HistogramConverter, cyclical_schedule
from modules import ResidualBlock, TopKMultiheadAttention
class CVAE_MiniGrid_Separate2(torch.nn.Module):
def __init__(
self,
layout_extractor,
decoder,
sample_input,
num_categoricals=8,
num_categories=8,
beta=0.0005,
KL_balance=False,
maximize_entropy=True,
alpha_KL_balance=0.8,
activation=torch.nn.ReLU,
interval_beta=2500,
batchnorm=False,
argmax_latents=True,
argmax_reconstruction=True,
**kwargs,
):
super(CVAE_MiniGrid_Separate2, self).__init__(**kwargs)
self.argmax_latents = bool(argmax_latents)
self.argmax_reconstruction = bool(argmax_reconstruction)
self.num_categoricals, self.num_categories = num_categoricals, num_categories
self.len_code = num_categoricals * num_categories
self.decoder = decoder
self.layout_extractor = layout_extractor
self.KL_balance, self.maximize_entropy = KL_balance, maximize_entropy
self.beta, self.alpha_KL_balance = beta, alpha_KL_balance
from minigrid import OBJECT_TO_IDX
self.object_to_idx = OBJECT_TO_IDX
self.interval_beta = interval_beta
self.steps_trained = 0
self.size_input = sample_input.shape[-2]
self.encoder_context = Embedder_MiniGrid_BOW(
dim_embed=32, width=sample_input.shape[-3], height=sample_input.shape[-2], channels_obs=sample_input.shape[-1], ebd_pos=False
)
self.encoder_obs = Embedder_MiniGrid_BOW(
dim_embed=32, width=sample_input.shape[-3], height=sample_input.shape[-2], channels_obs=sample_input.shape[-1], ebd_pos=False
)
self.compressor = torch.nn.Sequential(
ResidualBlock(len_in=32, depth=2, kernel_size=3, stride=1, padding=1, activation=activation),
torch.nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=0),
ResidualBlock(len_in=64, depth=2, kernel_size=3, stride=1, padding=1, activation=activation),
torch.nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=0),
ResidualBlock(len_in=128, depth=2, kernel_size=3, stride=1, padding=1, activation=activation),
torch.nn.AdaptiveMaxPool2d(1),
torch.nn.Flatten(),
torch.nn.Linear(128, self.len_code),
)
self.decompressor = torch.nn.Sequential(
torch.nn.Linear(self.len_code, 128),
activation(True),
torch.nn.Unflatten(1, (128, 1, 1)),
torch.nn.ConvTranspose2d(128, 32, kernel_size=self.size_input, stride=1, padding=0),
)
self.fuser = torch.nn.Sequential(
ResidualBlock(len_in=32 + 32, depth=2, kernel_size=3, stride=1, padding=1, activation=activation),
torch.nn.Conv2d(64, 1, kernel_size=1, stride=1, padding=0),
)
tensors_to_mesh = []
for idx_category in range(self.num_categoricals):
tensors_to_mesh.append(torch.arange(self.num_categories))
indices_mesh = torch.meshgrid(*tensors_to_mesh)
indices_mesh = torch.concatenate([indices.reshape(1, -1) for indices in indices_mesh], 0).permute(1, 0).contiguous()
self.samples_uniform = torch.nn.functional.one_hot(indices_mesh, num_classes=self.num_categories).float()
self.minus_log_uniform = float(np.log(self.num_categories))
def compress_from_obs(self, obs):
obs_encoded = self.encoder_obs(obs)
logits_code = self.compressor(obs_encoded).reshape(-1, self.num_categoricals, self.num_categories)
return logits_code
def fuse_samples_with_context(self, samples, context):
size_batch = samples.shape[0]
assert context.shape[0] == size_batch
samples_decompressed = self.decompressor(samples.reshape(size_batch, -1))
logits_mask_agent = self.fuser(torch.cat([samples_decompressed, context], 1))
return logits_mask_agent
def to(self, device):
super().to(device)
self.encoder_context.to(device)
self.encoder_obs.to(device)
self.compressor.to(device)
self.decompressor.to(device)
self.fuser.to(device)
def parameters(self):
parameters = []
parameters += list(self.encoder_context.parameters())
parameters += list(self.encoder_obs.parameters())
parameters += list(self.compressor.parameters())
parameters += list(self.decompressor.parameters())
parameters += list(self.fuser.parameters())
return parameters
@torch.no_grad()
def mask_from_logits(self, logits_mask_agent, noargmax=False):
size_batch = logits_mask_agent.shape[0]
logits_mask_agent = logits_mask_agent.reshape(size_batch, -1)
assert logits_mask_agent.shape[-1] == self.size_input**2
if self.argmax_reconstruction and not noargmax:
mask_agent_pred = torch.nn.functional.one_hot(logits_mask_agent.argmax(-1), num_classes=self.size_input**2)
else:
mask_agent_pred = torch.distributions.OneHotCategorical(logits=logits_mask_agent).sample()
mask_agent_pred = mask_agent_pred.reshape(-1, self.size_input, self.size_input)
return mask_agent_pred
@torch.no_grad()
def sample_from_uniform_prior(self, obs_curr, num_samples=None, code2exclude=None):
if self.samples_uniform.device != obs_curr.device:
self.samples_uniform = self.samples_uniform.to(obs_curr.device)
samples = self.samples_uniform
assert samples.shape[0] == self.num_categories**self.num_categoricals
if code2exclude is not None:
assert isinstance(code2exclude, torch.Tensor) and len(code2exclude.shape) == 2
to_remove = torch.zeros(samples.shape[0], dtype=torch.bool, device=samples.device)
all_codes = samples.reshape(-1, self.num_categories * self.num_categoricals).bool()
for idx_row in range(code2exclude.shape[0]):
to_exclude = code2exclude[idx_row, :].reshape(1, -1).bool()
coincidence = (to_exclude == all_codes).all(-1)
to_remove |= coincidence
samples = samples[~to_remove]
if num_samples is not None and num_samples < samples.shape[0]:
indices = torch.randperm(samples.shape[0])[:num_samples]
samples = samples[indices]
if obs_curr.shape[0] == 1:
obs_curr = torch.repeat_interleave(obs_curr, samples.shape[0], 0)
else:
assert obs_curr.shape[0] == samples.shape[0]
samples = samples.float()
return samples, self.forward(obs_curr, samples=samples, train=False)
@torch.no_grad()
def generate_from_obs(self, obs, num_samples=None):
assert num_samples is not None
size_batch = obs.shape[0]
if size_batch > 1:
assert size_batch == num_samples
layout, _ = self.layout_extractor(obs)
layout = layout.float().detach()
code, mask_agent_pred = self.sample_from_uniform_prior(obs, num_samples=num_samples)
mask_agent_pred = mask_agent_pred.reshape(num_samples, self.size_input, self.size_input)
obses_pred = self.decoder(layout, mask_agent_pred)
return code, obses_pred
@torch.no_grad()
def imagine_batch_from_obs(self, obs):
layout, _ = self.layout_extractor(obs)
layout = layout.float().detach()
context = self.encoder_context(obs)
size_batch = obs.shape[0]
samples = (
torch.distributions.OneHotCategorical(
probs=torch.ones(size_batch, self.num_categoricals, self.num_categories, dtype=torch.float32, device=obs.device)
)
.sample()
.reshape(size_batch, -1)
)
logits_mask_agent = self.fuse_samples_with_context(samples.float(), context)
mask_agent_pred = self.mask_from_logits(logits_mask_agent, noargmax=True)
obses_pred = self.decoder(layout, mask_agent_pred)
return obses_pred
@torch.no_grad()
def encode_from_obs(self, obs, no_argmax=False):
logits_samples = self.compress_from_obs(obs)
if self.argmax_latents and not no_argmax:
samples = torch.nn.functional.one_hot(logits_samples.argmax(-1), num_classes=self.num_categories)
else:
dist = torch.distributions.OneHotCategorical(logits=logits_samples)
samples = dist.sample()
return samples
@torch.no_grad()
def decode_to_obs(self, samples, obs):
size_batch = obs.shape[0]
assert samples.shape[0] == size_batch
layout, mask_agent = self.layout_extractor(obs)
layout = layout.float().detach()
context = self.encoder_context(obs)
samples = samples.reshape(size_batch, -1)
logits_mask_agent = self.fuse_samples_with_context(samples, context)
mask_agent_pred = self.mask_from_logits(logits_mask_agent)
obses_pred = self.decoder(layout, mask_agent_pred)
return obses_pred
def forward(self, obs_curr, obs_targ=None, samples=None, train=False):
size_batch = obs_curr.shape[0]
context = self.encoder_context(obs_curr)
if samples is None:
assert obs_targ is not None
logits_samples = self.compress_from_obs(obs_targ)
if self.argmax_latents:
argmax_samples = logits_samples.argmax(-1)
samples = torch.nn.functional.one_hot(argmax_samples, num_classes=self.num_categories)
probs_samples = logits_samples.softmax(-1)
samples = probs_samples + (samples - probs_samples).detach()
else:
samples = torch.distributions.OneHotCategoricalStraightThrough(logits=logits_samples).rsample()
samples = samples.reshape(size_batch, -1)
logits_mask_agent = self.fuse_samples_with_context(samples, context)
logits_mask_agent = logits_mask_agent.reshape(size_batch, -1)
if train:
return logits_samples, logits_mask_agent
else:
with torch.no_grad():
mask_agent_pred = self.mask_from_logits(logits_mask_agent)
return mask_agent_pred.bool()
def compute_loss(self, batch_processed, debug=False):
batch_obs_curr, batch_action, batch_reward, batch_obs_next, batch_done, batch_obs_targ, weights, batch_idxes = batch_processed
with torch.no_grad():
obses_context, obses_chosen = batch_obs_targ, batch_obs_curr
size_batch = obses_chosen.shape[0]
obses_chosen_train = obses_chosen
layouts_train, masks_agent_train = self.layout_extractor(obses_chosen_train)
logits_samples, logits_mask_agent_train = self.forward(obs_curr=obses_context, obs_targ=obses_chosen, train=True)
logsoftmax_mask_agent = logits_mask_agent_train.log_softmax(-1)
loss_recon = torch.nn.functional.kl_div(
input=logsoftmax_mask_agent, target=masks_agent_train.float().reshape(size_batch, -1), log_target=False, reduction="none"
).sum(-1)
loss_align = None
# maximize the kl-loss
eps = 1e-7
probs_samples = logits_samples.softmax(-1)
h1_minus_h2 = probs_samples * ((probs_samples + eps).log() + self.minus_log_uniform)
loss_entropy = h1_minus_h2.reshape(size_batch, -1).sum(-1)
loss_conditional_prior = None
coeff_schedule = cyclical_schedule(step=self.steps_trained, interval=self.interval_beta)
loss_overall = self.beta * coeff_schedule * loss_entropy + loss_recon
if loss_conditional_prior is not None:
loss_overall += self.beta * loss_conditional_prior
if loss_align is not None:
loss_overall += self.beta * loss_align
self.steps_trained += 1
if not debug:
return loss_overall, loss_recon, loss_entropy, loss_conditional_prior, loss_align, None, None, None, None, None, None, None
else:
with torch.no_grad():
masks_agent_pred = (
torch.nn.functional.one_hot(logits_mask_agent_train.argmax(-1), obses_chosen.shape[-3] * obses_chosen.shape[-2])
.bool()
.reshape(size_batch, obses_chosen.shape[-3], obses_chosen.shape[-2])
)
obses_pred = self.decoder(layouts_train, masks_agent_pred)
code_chosen = torch.eye(logits_samples.shape[-1], device=logits_samples.device, dtype=torch.long)[logits_samples.argmax(-1)]
code_pred = self.encode_from_obs(obses_pred)
ratio_aligned = (code_chosen == code_pred).reshape(size_batch, -1).all(-1).float().mean()
dist_L1 = torch.abs(obses_pred.float() - obses_chosen.float())
mask_perfect_recon = dist_L1.reshape(dist_L1.shape[0], -1).sum(-1) == 0
ratio_perfect_recon = mask_perfect_recon.sum() / mask_perfect_recon.shape[0]
mask_agent = obses_chosen[:, :, :, 0] == self.object_to_idx["agent"]
dist_L1_mean = dist_L1.mean()
dist_L1_nontrivial = dist_L1[mask_agent].mean()
dist_L1_trivial = dist_L1[~mask_agent].mean()
uniformity = (probs_samples.mean(0) - 1.0 / self.num_categories).abs_().mean()
entropy_prior = None
return (
loss_overall,
loss_recon,
loss_entropy,
loss_conditional_prior,
loss_align,
dist_L1_mean,
dist_L1_nontrivial,
dist_L1_trivial,
uniformity,
entropy_prior,
ratio_perfect_recon,
ratio_aligned,
)
class Encoder_MiniGrid_Separate(torch.nn.Module):
def __init__(self):
super(Encoder_MiniGrid_Separate, self).__init__()
from minigrid import OBJECT_TO_IDX, COLOR_TO_IDX
self.object_to_idx = OBJECT_TO_IDX
self.color_to_idx = COLOR_TO_IDX
@torch.no_grad()
def forward(self, obs):
if len(obs.shape) == 3:
obs = obs[None, :, :, :]
size_batch = obs.shape[0]
mask_agent = obs[:, :, :, 0] == self.object_to_idx["agent"]
colors = obs[mask_agent][:, 1]
mask_on_lava = colors == self.color_to_idx["yellow"]
mask_on_goal = colors == self.color_to_idx["green"]
mask_agent_on_empty = (~mask_on_lava & ~mask_on_goal).reshape(size_batch, 1, 1) & mask_agent
mask_agent_on_lava = mask_on_lava.reshape(size_batch, 1, 1) & mask_agent
mask_agent_on_goal = mask_on_goal.reshape(size_batch, 1, 1) & mask_agent
layout = obs[:, :, :, [0]]
layout[mask_agent_on_empty] = self.object_to_idx["empty"]
layout[mask_agent_on_lava] = self.object_to_idx["lava"]
layout[mask_agent_on_goal] = self.object_to_idx["goal"]
return layout, mask_agent
class Decoder_MiniGrid_Separate(torch.nn.Module):
def __init__(self):
super(Decoder_MiniGrid_Separate, self).__init__()
from minigrid import OBJECT_TO_IDX, COLOR_TO_IDX
self.object_to_idx, self.color_to_idx = OBJECT_TO_IDX, COLOR_TO_IDX
@torch.no_grad()
def forward(self, layout, mask_agent):
size_batch = mask_agent.shape[0]
if layout.shape[0] == 1:
layout = layout.repeat(size_batch, 1, 1, 1)
mask_agent = mask_agent.bool()
obs = torch.cat([layout, torch.zeros_like(layout)], dim=-1)
colors = torch.full([size_batch], self.color_to_idx["red"], device=obs.device, dtype=obs.dtype)
mask_lava = obs[:, :, :, 0] == self.object_to_idx["lava"]
mask_on_lava = torch.logical_and(mask_agent.reshape(size_batch, -1), mask_lava.reshape(size_batch, -1)).any(-1)
colors[mask_on_lava] = self.color_to_idx["yellow"]
mask_goal = obs[:, :, :, 0] == self.object_to_idx["goal"]
mask_on_goal = torch.logical_and(mask_agent.reshape(size_batch, -1), mask_goal.reshape(size_batch, -1)).any(-1)
colors[mask_on_goal] = self.color_to_idx["green"]
mask_agent = mask_agent.reshape(size_batch, layout.shape[-3], layout.shape[-2])
obs[mask_agent] = torch.stack([torch.full([size_batch], self.object_to_idx["agent"], device=obs.device, dtype=obs.dtype), colors], dim=-1)
return obs
class Pseudo_Encoder_MiniGrid(torch.nn.Module):
def __init__(self, atoms=4, compact=False):
super(Pseudo_Encoder_MiniGrid, self).__init__()
self.atoms = atoms
self.compact = compact
def to(self, device):
super().to(device)
def parameters(self):
return []
@torch.no_grad()
def forward(self, obs, from_compact=True):
if self.compact:
return (2.0 / (self.atoms - 1)) * (obs.permute(0, 3, 1, 2).contiguous().float()) - 1.0
elif from_compact:
return torch.nn.functional.one_hot(obs.long(), num_classes=self.atoms).reshape(*obs.shape[:-1], -1).permute(0, 3, 1, 2).contiguous().detach()
else:
return (2.0 / (self.atoms - 1)) * obs.reshape(*obs.shape[:-2], -1).permute(0, 3, 1, 2).contiguous().float() / (self.atoms - 1) - 1.0
class Pseudo_Decoder_MiniGrid(torch.nn.Module):
def __init__(self, atoms=4, compact=False):
super(Pseudo_Decoder_MiniGrid, self).__init__()
self.atoms = atoms
self.compact = compact
def to(self, device):
super().to(device)
def parameters(self):
return []
def forward(self, state_pred, compact=False, learn=False):
if self.compact:
if learn:
return (state_pred.permute(0, 2, 3, 1).contiguous() + 1) * ((self.atoms - 1) / 2.0)
else:
return (torch.round(((state_pred + 1) * ((self.atoms - 1) / 2.0)).clamp(0, self.atoms - 1))).long().permute(0, 2, 3, 1).contiguous()
else:
obs_pred = state_pred.reshape(state_pred.shape[0], -1, self.atoms, *state_pred.shape[2:])
if compact:
obs_pred = state_pred.reshape(state_pred.shape[0], -1, self.atoms, *state_pred.shape[2:])
return obs_pred.argmax(2).permute(0, 2, 3, 1).contiguous()
else:
obs_pred = state_pred
return obs_pred.permute(0, 2, 3, 1).contiguous()
class Embedder_MiniGrid_BOW(torch.nn.Module): # adapted from BabyAI 1.1
def __init__(self, max_value=32, dim_embed=8, channels_obs=2, height=8, width=8, ebd_pos=False):
super().__init__()
self.max_value = max_value
self.dim_embed = dim_embed
self.width, self.height = width, height
self.ebd_pos = ebd_pos
self.channels_obs = channels_obs + int(self.ebd_pos) * 2
if self.ebd_pos:
self.meshgrid_x, self.meshgrid_y = torch.meshgrid(torch.arange(self.width), torch.arange(self.height), indexing="ij")
self.meshgrid_x = self.meshgrid_x.reshape(1, self.width, self.height, 1).contiguous().detach()
self.meshgrid_y = self.meshgrid_y.reshape(1, self.width, self.height, 1).contiguous().detach()
self.max_value = max(max_value, self.width, self.height)
self.embedding = torch.nn.Embedding(self.channels_obs * self.max_value, dim_embed) # NOTE(H): +2 for X and Y
if self.channels_obs > 1:
offset = []
for index_channel in range(self.channels_obs):
offset.append(index_channel * self.max_value)
self.register_buffer("offsets", torch.Tensor(offset).long().reshape(1, 1, 1, -1).contiguous().to(self.embedding.weight.device))
def to(self, device):
super().to(device)
self.embedding.to(device)
if self.ebd_pos:
self.meshgrid_x = self.meshgrid_x.to(device)
self.meshgrid_y = self.meshgrid_y.to(device)
if self.channels_obs > 1:
self.offsets = self.offsets.to(device)
def parameters(self):
parameters = list(self.embedding.parameters())
return parameters
def forward(self, inputs):
with torch.no_grad():
if self.ebd_pos:
inputs = torch.cat(
[
inputs,
self.meshgrid_x.expand(inputs.shape[0], self.width, self.height, 1).detach(),
self.meshgrid_y.expand(inputs.shape[0], self.width, self.height, 1).detach(),
],
dim=-1,
)
else:
inputs = inputs.long()
if self.channels_obs > 1:
inputs += self.offsets
return self.embedding(inputs.detach()).sum(-2).permute(0, 3, 1, 2).contiguous()
class Encoder_MiniGrid(torch.nn.Module):
"""
minigrid observation encoder from the Conscious Planning paper
inputs an observation from the environment and outputs a vector representation of the states
"""
def __init__(self, dim_embed, sample_obs, norm=True, append_pos=False, activation=torch.nn.ReLU):
super(Encoder_MiniGrid, self).__init__()
self.norm = norm
self.activation = activation
self.embedder = Embedder_MiniGrid_BOW(
dim_embed=dim_embed, width=sample_obs.shape[-3], height=sample_obs.shape[-2], channels_obs=sample_obs.shape[-1], ebd_pos=bool(append_pos)
)
self.layers = ResidualBlock(len_in=dim_embed, width=None, kernel_size=3, depth=2, stride=1, padding=1, activation=activation)
def to(self, device):
super().to(device)
self.embedder.to(device)
self.layers.to(device)
def parameters(self):
parameters = list(self.embedder.parameters())
parameters += list(self.layers.parameters())
return parameters
def forward(self, obs_minigrid):
rep_bow = self.embedder(obs_minigrid)
return self.layers(rep_bow)
class Binder_MiniGrid(torch.nn.Module):
"""
create a local perception field with state_curr and state_targ
"""
def __init__(self, sample_input, len_rep, norm=True, activation=torch.nn.ReLU, num_heads=1, size_bottleneck=4, size_field=8, type_arch="CP"):
super(Binder_MiniGrid, self).__init__()
self.norm = norm
dim_embed = sample_input.shape[1]
self.len_rep = len_rep
self.len_out = 2 * len_rep
self.activation = activation
self.local_perception = "local" in type_arch.lower()
if self.local_perception:
self.extractor_fields = torch.nn.Conv2d(dim_embed, len_rep, kernel_size=size_field, stride=1, padding=0)
self.register_buffer("query", torch.zeros(1, 1, len_rep))
if size_bottleneck == 0:
print("BINDER: size_bottleneck == 0, fall back to standard attention")
self.attn = torch.nn.MultiheadAttention(embed_dim=len_rep, num_heads=num_heads, kdim=len_rep, vdim=len_rep, batch_first=True, dropout=0.0)
else:
self.attn = TopKMultiheadAttention(
embed_dim=len_rep,
num_heads=num_heads,
kdim=len_rep,
vdim=len_rep,
batch_first=True,
dropout=0.0,
size_bottleneck=size_bottleneck,
no_out_proj=num_heads == 1,
)
if self.norm:
self.layer_norm_1 = torch.nn.LayerNorm(len_rep)
self.layer_norm_2 = torch.nn.LayerNorm(len_rep)
else:
self.flattener = torch.nn.Sequential(
activation(False),
torch.nn.Flatten(),
torch.nn.Linear(sample_input.shape[-1] * sample_input.shape[-2] * sample_input.shape[-3], len_rep),
)
def to(self, device):
super().to(device)
if self.local_perception:
self.extractor_fields.to(device)
self.query = self.query.to(device)
self.attn.to(device)
if self.norm:
self.layer_norm_1.to(device)
self.layer_norm_2.to(device)
else:
self.flattener.to(device)
def parameters(self):
if self.local_perception:
parameters = list(self.extractor_fields.parameters())
if self.norm:
parameters += list(self.layer_norm_1.parameters())
parameters += list(self.layer_norm_2.parameters())
parameters += list(self.attn.parameters())
return parameters
else:
return list(self.flattener.parameters())
def extract_local_field(self, state):
size_batch = state.shape[0]
fields = self.extractor_fields(state).permute(0, 2, 3, 1).reshape(size_batch, -1, self.len_rep)
if self.norm:
fields = self.layer_norm_1(fields)
state_local, _ = self.attn(self.query.expand(size_batch, 1, self.len_rep), fields, fields, need_weights=False)
if self.norm:
state_local = self.layer_norm_2(state_local)
state_local = self.activation()(state_local)
state_local = state_local.reshape(size_batch, self.len_rep)
return state_local
def forward(self, state_curr, state_targ, return_curr=False):
size_batch = state_curr.shape[0]
states_stacked_curr_targ = torch.cat([state_curr, state_targ], dim=0)
if self.local_perception:
state_local_curr_targ = self.extract_local_field(states_stacked_curr_targ)
else:
state_local_curr_targ = self.flattener(states_stacked_curr_targ)
state_local_curr, state_local_targ = torch.split(state_local_curr_targ, [size_batch, size_batch], dim=0)
state_binded = torch.cat([state_local_curr, state_local_targ], dim=-1)
if return_curr:
return state_binded, state_local_curr
else:
return state_binded
class Predictor_MiniGrid(torch.nn.Module):
"""
on top of the extracted states, this predicts interesting values
"""
def __init__(
self,
num_actions,
len_input,
depth=3,
width=256,
activation=torch.nn.ReLU,
norm=True,
dict_head=[{"len_predict": None, "dist_out": True, "value_min": 0.0, "value_max": 1.0, "atoms": 4, "classify": False}],
):
super(Predictor_MiniGrid, self).__init__()
self.len_input = len_input
self.num_actions = num_actions
self.dict_head = dict_head
self.dist_output = bool(dict_head["dist_out"])
self.norm = norm
if dict_head["len_predict"] is None:
self.len_predict = self.num_actions
else:
self.len_predict = dict_head["len_predict"]
if dict_head["dist_out"]:
assert "value_min" in dict_head and "value_max" in dict_head
assert "atoms" in dict_head and "classify" in dict_head
self.histogram_converter = HistogramConverter(value_min=dict_head["value_min"], value_max=dict_head["value_max"], atoms=dict_head["atoms"])
self.len_output = self.len_predict * dict_head["atoms"]
self.atoms = dict_head["atoms"]
self.classify = dict_head["classify"]
else:
self.histogram_converter = None
self.len_output = self.len_predict
self.layers = []
for idx_layer in range(depth):
len_in, len_out = width, width
if idx_layer == 0:
len_in = self.len_input
if idx_layer == depth - 1:
len_out = self.len_output
if idx_layer > 0:
self.layers.append(activation(True))
self.layers.append(torch.nn.Linear(len_in, len_out))
self.layers = torch.nn.Sequential(*self.layers)
init_weights(self.layers)
def to(self, device):
super().to(device)
self.layers.to(device)
if self.histogram_converter is not None:
self.histogram_converter.to(device)
def parameters(self):
return list(self.layers.parameters())
def forward(self, input, action=None, scalarize=False):
size_batch = input.shape[0]
predicted = self.layers(input.reshape(size_batch, -1))
if action is not None:
assert action.device == predicted.device
predicted = predicted.reshape(size_batch, self.len_predict, -1)
predicted = predicted[torch.arange(size_batch, device=predicted.device), action.squeeze()]
if self.dist_output:
if action is None:
predicted = predicted.reshape(size_batch, -1, self.atoms).contiguous()
else:
predicted = predicted.reshape(size_batch, self.atoms).contiguous()
if scalarize:
with torch.no_grad():
if self.classify:
return self.histogram_converter.support[predicted.argmax(-1)]
else:
return self.histogram_converter.from_histogram(predicted, logits=True)
else:
return predicted
else:
return predicted