From 8544e4a874b87e363e2cf66d79342c2b3ee539d0 Mon Sep 17 00:00:00 2001 From: Fabrice Normandin Date: Thu, 21 Nov 2024 15:21:12 -0500 Subject: [PATCH] Add missing regression files for ImageNet Signed-off-by: Fabrice Normandin --- .../resnet18_imagenet_image_classifier.yaml | 1017 +++++++ .../resnet50_imagenet_image_classifier.yaml | 2667 +++++++++++++++++ .../imagenet_algorithm_no_op_test.yaml | 19 + .../imagenet_algorithm_no_op_train.yaml | 19 + .../imagenet_algorithm_no_op_validate.yaml | 19 + 5 files changed, 3741 insertions(+) create mode 100644 .regression_files/project/algorithms/image_classifier_test/test_initialization_is_reproducible/cuda/resnet18_imagenet_image_classifier.yaml create mode 100644 .regression_files/project/algorithms/image_classifier_test/test_initialization_is_reproducible/cuda/resnet50_imagenet_image_classifier.yaml create mode 100644 .regression_files/project/datamodules/datamodules_test/test_first_batch/imagenet_algorithm_no_op_test.yaml create mode 100644 .regression_files/project/datamodules/datamodules_test/test_first_batch/imagenet_algorithm_no_op_train.yaml create mode 100644 .regression_files/project/datamodules/datamodules_test/test_first_batch/imagenet_algorithm_no_op_validate.yaml diff --git a/.regression_files/project/algorithms/image_classifier_test/test_initialization_is_reproducible/cuda/resnet18_imagenet_image_classifier.yaml b/.regression_files/project/algorithms/image_classifier_test/test_initialization_is_reproducible/cuda/resnet18_imagenet_image_classifier.yaml new file mode 100644 index 00000000..a3a1a99d --- /dev/null +++ b/.regression_files/project/algorithms/image_classifier_test/test_initialization_is_reproducible/cuda/resnet18_imagenet_image_classifier.yaml @@ -0,0 +1,1017 @@ +network.bn1.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 64 + sum: '0.e+00' +network.bn1.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.bn1.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 64 + sum: '0.e+00' +network.bn1.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 64 + sum: '6.4e+01' +network.bn1.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 64 + sum: '6.4e+01' +network.conv1.weight: + device: cuda:0 + max: '9.327e-02' + mean: '4.984e-04' + min: '-1.072e-01' + shape: + - 64 + - 3 + - 7 + - 7 + sum: '4.689e+00' +network.fc.bias: + device: cuda:0 + max: '4.419e-02' + mean: '1.212e-06' + min: '-4.419e-02' + shape: + - 1000 + sum: '1.212e-03' +network.fc.weight: + device: cuda:0 + max: '4.419e-02' + mean: '-6.997e-07' + min: '-4.419e-02' + shape: + - 1000 + - 512 + sum: '-3.583e-01' +network.layer1.0.bn1.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 64 + sum: '0.e+00' +network.layer1.0.bn1.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer1.0.bn1.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 64 + sum: '0.e+00' +network.layer1.0.bn1.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 64 + sum: '6.4e+01' +network.layer1.0.bn1.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 64 + sum: '6.4e+01' +network.layer1.0.bn2.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 64 + sum: '0.e+00' +network.layer1.0.bn2.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer1.0.bn2.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 64 + sum: '0.e+00' +network.layer1.0.bn2.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 64 + sum: '6.4e+01' +network.layer1.0.bn2.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 64 + sum: '6.4e+01' +network.layer1.0.conv1.weight: + device: cuda:0 + max: '2.442e-01' + mean: '1.259e-04' + min: '-2.666e-01' + shape: + - 64 + - 64 + - 3 + - 3 + sum: '4.642e+00' +network.layer1.0.conv2.weight: + device: cuda:0 + max: '2.456e-01' + mean: '1.807e-04' + min: '-2.376e-01' + shape: + - 64 + - 64 + - 3 + - 3 + sum: '6.660e+00' +network.layer1.1.bn1.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 64 + sum: '0.e+00' +network.layer1.1.bn1.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer1.1.bn1.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 64 + sum: '0.e+00' +network.layer1.1.bn1.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 64 + sum: '6.4e+01' +network.layer1.1.bn1.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 64 + sum: '6.4e+01' +network.layer1.1.bn2.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 64 + sum: '0.e+00' +network.layer1.1.bn2.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer1.1.bn2.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 64 + sum: '0.e+00' +network.layer1.1.bn2.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 64 + sum: '6.4e+01' +network.layer1.1.bn2.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 64 + sum: '6.4e+01' +network.layer1.1.conv1.weight: + device: cuda:0 + max: '2.338e-01' + mean: '-3.408e-04' + min: '-2.402e-01' + shape: + - 64 + - 64 + - 3 + - 3 + sum: '-1.256e+01' +network.layer1.1.conv2.weight: + device: cuda:0 + max: '2.224e-01' + mean: '2.189e-04' + min: '-2.588e-01' + shape: + - 64 + - 64 + - 3 + - 3 + sum: '8.07e+00' +network.layer2.0.bn1.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 128 + sum: '0.e+00' +network.layer2.0.bn1.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer2.0.bn1.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 128 + sum: '0.e+00' +network.layer2.0.bn1.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 128 + sum: '1.28e+02' +network.layer2.0.bn1.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 128 + sum: '1.28e+02' +network.layer2.0.bn2.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 128 + sum: '0.e+00' +network.layer2.0.bn2.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer2.0.bn2.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 128 + sum: '0.e+00' +network.layer2.0.bn2.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 128 + sum: '1.28e+02' +network.layer2.0.bn2.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 128 + sum: '1.28e+02' +network.layer2.0.conv1.weight: + device: cuda:0 + max: '2.008e-01' + mean: '8.513e-05' + min: '-1.854e-01' + shape: + - 128 + - 64 + - 3 + - 3 + sum: '6.276e+00' +network.layer2.0.conv2.weight: + device: cuda:0 + max: '1.766e-01' + mean: '1.21e-04' + min: '-1.79e-01' + shape: + - 128 + - 128 + - 3 + - 3 + sum: '1.784e+01' +network.layer2.0.downsample.0.weight: + device: cuda:0 + max: '5.054e-01' + mean: '-9.048e-04' + min: '-4.751e-01' + shape: + - 128 + - 64 + - 1 + - 1 + sum: '-7.412e+00' +network.layer2.0.downsample.1.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 128 + sum: '0.e+00' +network.layer2.0.downsample.1.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer2.0.downsample.1.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 128 + sum: '0.e+00' +network.layer2.0.downsample.1.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 128 + sum: '1.28e+02' +network.layer2.0.downsample.1.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 128 + sum: '1.28e+02' +network.layer2.1.bn1.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 128 + sum: '0.e+00' +network.layer2.1.bn1.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer2.1.bn1.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 128 + sum: '0.e+00' +network.layer2.1.bn1.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 128 + sum: '1.28e+02' +network.layer2.1.bn1.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 128 + sum: '1.28e+02' +network.layer2.1.bn2.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 128 + sum: '0.e+00' +network.layer2.1.bn2.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer2.1.bn2.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 128 + sum: '0.e+00' +network.layer2.1.bn2.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 128 + sum: '1.28e+02' +network.layer2.1.bn2.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 128 + sum: '1.28e+02' +network.layer2.1.conv1.weight: + device: cuda:0 + max: '1.714e-01' + mean: '6.508e-05' + min: '-1.811e-01' + shape: + - 128 + - 128 + - 3 + - 3 + sum: '9.597e+00' +network.layer2.1.conv2.weight: + device: cuda:0 + max: '1.677e-01' + mean: '-1.988e-05' + min: '-1.746e-01' + shape: + - 128 + - 128 + - 3 + - 3 + sum: '-2.932e+00' +network.layer3.0.bn1.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 256 + sum: '0.e+00' +network.layer3.0.bn1.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer3.0.bn1.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 256 + sum: '0.e+00' +network.layer3.0.bn1.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 256 + sum: '2.56e+02' +network.layer3.0.bn1.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 256 + sum: '2.56e+02' +network.layer3.0.bn2.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 256 + sum: '0.e+00' +network.layer3.0.bn2.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer3.0.bn2.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 256 + sum: '0.e+00' +network.layer3.0.bn2.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 256 + sum: '2.56e+02' +network.layer3.0.bn2.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 256 + sum: '2.56e+02' +network.layer3.0.conv1.weight: + device: cuda:0 + max: '1.360e-01' + mean: '3.475e-05' + min: '-1.442e-01' + shape: + - 256 + - 128 + - 3 + - 3 + sum: '1.025e+01' +network.layer3.0.conv2.weight: + device: cuda:0 + max: '1.345e-01' + mean: '-1.856e-05' + min: '-1.299e-01' + shape: + - 256 + - 256 + - 3 + - 3 + sum: '-1.095e+01' +network.layer3.0.downsample.0.weight: + device: cuda:0 + max: '3.523e-01' + mean: '1.2e-04' + min: '-3.863e-01' + shape: + - 256 + - 128 + - 1 + - 1 + sum: '3.931e+00' +network.layer3.0.downsample.1.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 256 + sum: '0.e+00' +network.layer3.0.downsample.1.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer3.0.downsample.1.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 256 + sum: '0.e+00' +network.layer3.0.downsample.1.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 256 + sum: '2.56e+02' +network.layer3.0.downsample.1.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 256 + sum: '2.56e+02' +network.layer3.1.bn1.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 256 + sum: '0.e+00' +network.layer3.1.bn1.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer3.1.bn1.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 256 + sum: '0.e+00' +network.layer3.1.bn1.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 256 + sum: '2.56e+02' +network.layer3.1.bn1.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 256 + sum: '2.56e+02' +network.layer3.1.bn2.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 256 + sum: '0.e+00' +network.layer3.1.bn2.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer3.1.bn2.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 256 + sum: '0.e+00' +network.layer3.1.bn2.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 256 + sum: '2.56e+02' +network.layer3.1.bn2.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 256 + sum: '2.56e+02' +network.layer3.1.conv1.weight: + device: cuda:0 + max: '1.395e-01' + mean: '6.754e-05' + min: '-1.476e-01' + shape: + - 256 + - 256 + - 3 + - 3 + sum: '3.984e+01' +network.layer3.1.conv2.weight: + device: cuda:0 + max: '1.443e-01' + mean: '4.953e-05' + min: '-1.376e-01' + shape: + - 256 + - 256 + - 3 + - 3 + sum: '2.921e+01' +network.layer4.0.bn1.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 512 + sum: '0.e+00' +network.layer4.0.bn1.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer4.0.bn1.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 512 + sum: '0.e+00' +network.layer4.0.bn1.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 512 + sum: '5.12e+02' +network.layer4.0.bn1.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 512 + sum: '5.12e+02' +network.layer4.0.bn2.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 512 + sum: '0.e+00' +network.layer4.0.bn2.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer4.0.bn2.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 512 + sum: '0.e+00' +network.layer4.0.bn2.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 512 + sum: '5.12e+02' +network.layer4.0.bn2.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 512 + sum: '5.12e+02' +network.layer4.0.conv1.weight: + device: cuda:0 + max: '1.003e-01' + mean: '-1.587e-05' + min: '-1.011e-01' + shape: + - 512 + - 256 + - 3 + - 3 + sum: '-1.872e+01' +network.layer4.0.conv2.weight: + device: cuda:0 + max: '1.049e-01' + mean: '-1.442e-05' + min: '-1.011e-01' + shape: + - 512 + - 512 + - 3 + - 3 + sum: '-3.403e+01' +network.layer4.0.downsample.0.weight: + device: cuda:0 + max: '2.673e-01' + mean: '2.869e-04' + min: '-3.001e-01' + shape: + - 512 + - 256 + - 1 + - 1 + sum: '3.761e+01' +network.layer4.0.downsample.1.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 512 + sum: '0.e+00' +network.layer4.0.downsample.1.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer4.0.downsample.1.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 512 + sum: '0.e+00' +network.layer4.0.downsample.1.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 512 + sum: '5.12e+02' +network.layer4.0.downsample.1.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 512 + sum: '5.12e+02' +network.layer4.1.bn1.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 512 + sum: '0.e+00' +network.layer4.1.bn1.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer4.1.bn1.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 512 + sum: '0.e+00' +network.layer4.1.bn1.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 512 + sum: '5.12e+02' +network.layer4.1.bn1.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 512 + sum: '5.12e+02' +network.layer4.1.bn2.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 512 + sum: '0.e+00' +network.layer4.1.bn2.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer4.1.bn2.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 512 + sum: '0.e+00' +network.layer4.1.bn2.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 512 + sum: '5.12e+02' +network.layer4.1.bn2.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 512 + sum: '5.12e+02' +network.layer4.1.conv1.weight: + device: cuda:0 + max: '1.056e-01' + mean: '1.585e-06' + min: '-1.011e-01' + shape: + - 512 + - 512 + - 3 + - 3 + sum: '3.74e+00' +network.layer4.1.conv2.weight: + device: cuda:0 + max: '1.072e-01' + mean: '-2.285e-05' + min: '-1.042e-01' + shape: + - 512 + - 512 + - 3 + - 3 + sum: '-5.392e+01' diff --git a/.regression_files/project/algorithms/image_classifier_test/test_initialization_is_reproducible/cuda/resnet50_imagenet_image_classifier.yaml b/.regression_files/project/algorithms/image_classifier_test/test_initialization_is_reproducible/cuda/resnet50_imagenet_image_classifier.yaml new file mode 100644 index 00000000..929934db --- /dev/null +++ b/.regression_files/project/algorithms/image_classifier_test/test_initialization_is_reproducible/cuda/resnet50_imagenet_image_classifier.yaml @@ -0,0 +1,2667 @@ +network.bn1.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 64 + sum: '0.e+00' +network.bn1.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.bn1.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 64 + sum: '0.e+00' +network.bn1.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 64 + sum: '6.4e+01' +network.bn1.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 64 + sum: '6.4e+01' +network.conv1.weight: + device: cuda:0 + max: '1.019e-01' + mean: '2.309e-04' + min: '-8.332e-02' + shape: + - 64 + - 3 + - 7 + - 7 + sum: '2.172e+00' +network.fc.bias: + device: cuda:0 + max: '2.203e-02' + mean: '4.486e-04' + min: '-2.206e-02' + shape: + - 1000 + sum: '4.486e-01' +network.fc.weight: + device: cuda:0 + max: '2.21e-02' + mean: '6.154e-06' + min: '-2.21e-02' + shape: + - 1000 + - 2048 + sum: '1.260e+01' +network.layer1.0.bn1.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 64 + sum: '0.e+00' +network.layer1.0.bn1.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer1.0.bn1.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 64 + sum: '0.e+00' +network.layer1.0.bn1.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 64 + sum: '6.4e+01' +network.layer1.0.bn1.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 64 + sum: '6.4e+01' +network.layer1.0.bn2.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 64 + sum: '0.e+00' +network.layer1.0.bn2.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer1.0.bn2.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 64 + sum: '0.e+00' +network.layer1.0.bn2.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 64 + sum: '6.4e+01' +network.layer1.0.bn2.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 64 + sum: '6.4e+01' +network.layer1.0.bn3.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 256 + sum: '0.e+00' +network.layer1.0.bn3.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer1.0.bn3.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 256 + sum: '0.e+00' +network.layer1.0.bn3.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 256 + sum: '2.56e+02' +network.layer1.0.bn3.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 256 + sum: '2.56e+02' +network.layer1.0.conv1.weight: + device: cuda:0 + max: '6.509e-01' + mean: '1.445e-03' + min: '-6.027e-01' + shape: + - 64 + - 64 + - 1 + - 1 + sum: '5.919e+00' +network.layer1.0.conv2.weight: + device: cuda:0 + max: '2.359e-01' + mean: '1.355e-04' + min: '-2.49e-01' + shape: + - 64 + - 64 + - 3 + - 3 + sum: '4.995e+00' +network.layer1.0.conv3.weight: + device: cuda:0 + max: '3.852e-01' + mean: '3.642e-04' + min: '-3.478e-01' + shape: + - 256 + - 64 + - 1 + - 1 + sum: '5.966e+00' +network.layer1.0.downsample.0.weight: + device: cuda:0 + max: '3.423e-01' + mean: '-6.033e-04' + min: '-3.476e-01' + shape: + - 256 + - 64 + - 1 + - 1 + sum: '-9.884e+00' +network.layer1.0.downsample.1.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 256 + sum: '0.e+00' +network.layer1.0.downsample.1.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer1.0.downsample.1.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 256 + sum: '0.e+00' +network.layer1.0.downsample.1.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 256 + sum: '2.56e+02' +network.layer1.0.downsample.1.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 256 + sum: '2.56e+02' +network.layer1.1.bn1.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 64 + sum: '0.e+00' +network.layer1.1.bn1.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer1.1.bn1.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 64 + sum: '0.e+00' +network.layer1.1.bn1.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 64 + sum: '6.4e+01' +network.layer1.1.bn1.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 64 + sum: '6.4e+01' +network.layer1.1.bn2.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 64 + sum: '0.e+00' +network.layer1.1.bn2.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer1.1.bn2.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 64 + sum: '0.e+00' +network.layer1.1.bn2.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 64 + sum: '6.4e+01' +network.layer1.1.bn2.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 64 + sum: '6.4e+01' +network.layer1.1.bn3.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 256 + sum: '0.e+00' +network.layer1.1.bn3.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer1.1.bn3.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 256 + sum: '0.e+00' +network.layer1.1.bn3.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 256 + sum: '2.56e+02' +network.layer1.1.bn3.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 256 + sum: '2.56e+02' +network.layer1.1.conv1.weight: + device: cuda:0 + max: '7.347e-01' + mean: '1.03e-03' + min: '-6.643e-01' + shape: + - 64 + - 256 + - 1 + - 1 + sum: '1.687e+01' +network.layer1.1.conv2.weight: + device: cuda:0 + max: '2.614e-01' + mean: '3.465e-04' + min: '-2.217e-01' + shape: + - 64 + - 64 + - 3 + - 3 + sum: '1.277e+01' +network.layer1.1.conv3.weight: + device: cuda:0 + max: '3.091e-01' + mean: '4.206e-05' + min: '-3.557e-01' + shape: + - 256 + - 64 + - 1 + - 1 + sum: '6.892e-01' +network.layer1.2.bn1.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 64 + sum: '0.e+00' +network.layer1.2.bn1.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer1.2.bn1.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 64 + sum: '0.e+00' +network.layer1.2.bn1.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 64 + sum: '6.4e+01' +network.layer1.2.bn1.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 64 + sum: '6.4e+01' +network.layer1.2.bn2.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 64 + sum: '0.e+00' +network.layer1.2.bn2.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer1.2.bn2.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 64 + sum: '0.e+00' +network.layer1.2.bn2.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 64 + sum: '6.4e+01' +network.layer1.2.bn2.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 64 + sum: '6.4e+01' +network.layer1.2.bn3.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 256 + sum: '0.e+00' +network.layer1.2.bn3.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer1.2.bn3.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 256 + sum: '0.e+00' +network.layer1.2.bn3.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 256 + sum: '2.56e+02' +network.layer1.2.bn3.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 256 + sum: '2.56e+02' +network.layer1.2.conv1.weight: + device: cuda:0 + max: '6.524e-01' + mean: '-1.441e-03' + min: '-6.990e-01' + shape: + - 64 + - 256 + - 1 + - 1 + sum: '-2.362e+01' +network.layer1.2.conv2.weight: + device: cuda:0 + max: '2.666e-01' + mean: '-3.895e-05' + min: '-2.347e-01' + shape: + - 64 + - 64 + - 3 + - 3 + sum: '-1.436e+00' +network.layer1.2.conv3.weight: + device: cuda:0 + max: '3.408e-01' + mean: '5.479e-04' + min: '-3.091e-01' + shape: + - 256 + - 64 + - 1 + - 1 + sum: '8.977e+00' +network.layer2.0.bn1.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 128 + sum: '0.e+00' +network.layer2.0.bn1.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer2.0.bn1.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 128 + sum: '0.e+00' +network.layer2.0.bn1.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 128 + sum: '1.28e+02' +network.layer2.0.bn1.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 128 + sum: '1.28e+02' +network.layer2.0.bn2.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 128 + sum: '0.e+00' +network.layer2.0.bn2.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer2.0.bn2.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 128 + sum: '0.e+00' +network.layer2.0.bn2.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 128 + sum: '1.28e+02' +network.layer2.0.bn2.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 128 + sum: '1.28e+02' +network.layer2.0.bn3.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 512 + sum: '0.e+00' +network.layer2.0.bn3.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer2.0.bn3.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 512 + sum: '0.e+00' +network.layer2.0.bn3.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 512 + sum: '5.12e+02' +network.layer2.0.bn3.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 512 + sum: '5.12e+02' +network.layer2.0.conv1.weight: + device: cuda:0 + max: '5.176e-01' + mean: '-5.491e-04' + min: '-4.999e-01' + shape: + - 128 + - 256 + - 1 + - 1 + sum: '-1.799e+01' +network.layer2.0.conv2.weight: + device: cuda:0 + max: '1.808e-01' + mean: '-1.218e-04' + min: '-1.887e-01' + shape: + - 128 + - 128 + - 3 + - 3 + sum: '-1.796e+01' +network.layer2.0.conv3.weight: + device: cuda:0 + max: '2.875e-01' + mean: '-1.799e-04' + min: '-2.593e-01' + shape: + - 512 + - 128 + - 1 + - 1 + sum: '-1.179e+01' +network.layer2.0.downsample.0.weight: + device: cuda:0 + max: '3.018e-01' + mean: '-5.660e-05' + min: '-2.697e-01' + shape: + - 512 + - 256 + - 1 + - 1 + sum: '-7.419e+00' +network.layer2.0.downsample.1.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 512 + sum: '0.e+00' +network.layer2.0.downsample.1.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer2.0.downsample.1.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 512 + sum: '0.e+00' +network.layer2.0.downsample.1.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 512 + sum: '5.12e+02' +network.layer2.0.downsample.1.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 512 + sum: '5.12e+02' +network.layer2.1.bn1.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 128 + sum: '0.e+00' +network.layer2.1.bn1.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer2.1.bn1.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 128 + sum: '0.e+00' +network.layer2.1.bn1.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 128 + sum: '1.28e+02' +network.layer2.1.bn1.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 128 + sum: '1.28e+02' +network.layer2.1.bn2.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 128 + sum: '0.e+00' +network.layer2.1.bn2.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer2.1.bn2.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 128 + sum: '0.e+00' +network.layer2.1.bn2.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 128 + sum: '1.28e+02' +network.layer2.1.bn2.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 128 + sum: '1.28e+02' +network.layer2.1.bn3.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 512 + sum: '0.e+00' +network.layer2.1.bn3.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer2.1.bn3.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 512 + sum: '0.e+00' +network.layer2.1.bn3.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 512 + sum: '5.12e+02' +network.layer2.1.bn3.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 512 + sum: '5.12e+02' +network.layer2.1.conv1.weight: + device: cuda:0 + max: '5.314e-01' + mean: '-3.536e-04' + min: '-5.475e-01' + shape: + - 128 + - 512 + - 1 + - 1 + sum: '-2.318e+01' +network.layer2.1.conv2.weight: + device: cuda:0 + max: '1.754e-01' + mean: '7.783e-05' + min: '-1.808e-01' + shape: + - 128 + - 128 + - 3 + - 3 + sum: '1.148e+01' +network.layer2.1.conv3.weight: + device: cuda:0 + max: '2.382e-01' + mean: '-1.054e-05' + min: '-2.517e-01' + shape: + - 512 + - 128 + - 1 + - 1 + sum: '-6.906e-01' +network.layer2.2.bn1.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 128 + sum: '0.e+00' +network.layer2.2.bn1.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer2.2.bn1.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 128 + sum: '0.e+00' +network.layer2.2.bn1.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 128 + sum: '1.28e+02' +network.layer2.2.bn1.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 128 + sum: '1.28e+02' +network.layer2.2.bn2.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 128 + sum: '0.e+00' +network.layer2.2.bn2.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer2.2.bn2.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 128 + sum: '0.e+00' +network.layer2.2.bn2.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 128 + sum: '1.28e+02' +network.layer2.2.bn2.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 128 + sum: '1.28e+02' +network.layer2.2.bn3.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 512 + sum: '0.e+00' +network.layer2.2.bn3.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer2.2.bn3.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 512 + sum: '0.e+00' +network.layer2.2.bn3.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 512 + sum: '5.12e+02' +network.layer2.2.bn3.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 512 + sum: '5.12e+02' +network.layer2.2.conv1.weight: + device: cuda:0 + max: '4.971e-01' + mean: '-3.09e-04' + min: '-5.291e-01' + shape: + - 128 + - 512 + - 1 + - 1 + sum: '-2.025e+01' +network.layer2.2.conv2.weight: + device: cuda:0 + max: '2.107e-01' + mean: '-7.661e-06' + min: '-1.779e-01' + shape: + - 128 + - 128 + - 3 + - 3 + sum: '-1.13e+00' +network.layer2.2.conv3.weight: + device: cuda:0 + max: '3.236e-01' + mean: '2.725e-05' + min: '-3.006e-01' + shape: + - 512 + - 128 + - 1 + - 1 + sum: '1.786e+00' +network.layer2.3.bn1.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 128 + sum: '0.e+00' +network.layer2.3.bn1.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer2.3.bn1.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 128 + sum: '0.e+00' +network.layer2.3.bn1.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 128 + sum: '1.28e+02' +network.layer2.3.bn1.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 128 + sum: '1.28e+02' +network.layer2.3.bn2.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 128 + sum: '0.e+00' +network.layer2.3.bn2.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer2.3.bn2.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 128 + sum: '0.e+00' +network.layer2.3.bn2.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 128 + sum: '1.28e+02' +network.layer2.3.bn2.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 128 + sum: '1.28e+02' +network.layer2.3.bn3.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 512 + sum: '0.e+00' +network.layer2.3.bn3.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer2.3.bn3.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 512 + sum: '0.e+00' +network.layer2.3.bn3.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 512 + sum: '5.12e+02' +network.layer2.3.bn3.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 512 + sum: '5.12e+02' +network.layer2.3.conv1.weight: + device: cuda:0 + max: '5.317e-01' + mean: '9.857e-05' + min: '-5.177e-01' + shape: + - 128 + - 512 + - 1 + - 1 + sum: '6.460e+00' +network.layer2.3.conv2.weight: + device: cuda:0 + max: '1.874e-01' + mean: '6.223e-05' + min: '-1.855e-01' + shape: + - 128 + - 128 + - 3 + - 3 + sum: '9.176e+00' +network.layer2.3.conv3.weight: + device: cuda:0 + max: '2.559e-01' + mean: '-2.673e-04' + min: '-2.529e-01' + shape: + - 512 + - 128 + - 1 + - 1 + sum: '-1.752e+01' +network.layer3.0.bn1.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 256 + sum: '0.e+00' +network.layer3.0.bn1.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer3.0.bn1.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 256 + sum: '0.e+00' +network.layer3.0.bn1.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 256 + sum: '2.56e+02' +network.layer3.0.bn1.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 256 + sum: '2.56e+02' +network.layer3.0.bn2.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 256 + sum: '0.e+00' +network.layer3.0.bn2.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer3.0.bn2.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 256 + sum: '0.e+00' +network.layer3.0.bn2.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 256 + sum: '2.56e+02' +network.layer3.0.bn2.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 256 + sum: '2.56e+02' +network.layer3.0.bn3.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 1024 + sum: '0.e+00' +network.layer3.0.bn3.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer3.0.bn3.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 1024 + sum: '0.e+00' +network.layer3.0.bn3.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 1024 + sum: '1.024e+03' +network.layer3.0.bn3.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 1024 + sum: '1.024e+03' +network.layer3.0.conv1.weight: + device: cuda:0 + max: '3.843e-01' + mean: '3.586e-04' + min: '-3.99e-01' + shape: + - 256 + - 512 + - 1 + - 1 + sum: '4.701e+01' +network.layer3.0.conv2.weight: + device: cuda:0 + max: '1.38e-01' + mean: '-3.53e-06' + min: '-1.294e-01' + shape: + - 256 + - 256 + - 3 + - 3 + sum: '-2.082e+00' +network.layer3.0.conv3.weight: + device: cuda:0 + max: '2.052e-01' + mean: '-7.496e-06' + min: '-1.973e-01' + shape: + - 1024 + - 256 + - 1 + - 1 + sum: '-1.965e+00' +network.layer3.0.downsample.0.weight: + device: cuda:0 + max: '2.020e-01' + mean: '1.340e-05' + min: '-2.257e-01' + shape: + - 1024 + - 512 + - 1 + - 1 + sum: '7.027e+00' +network.layer3.0.downsample.1.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 1024 + sum: '0.e+00' +network.layer3.0.downsample.1.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer3.0.downsample.1.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 1024 + sum: '0.e+00' +network.layer3.0.downsample.1.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 1024 + sum: '1.024e+03' +network.layer3.0.downsample.1.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 1024 + sum: '1.024e+03' +network.layer3.1.bn1.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 256 + sum: '0.e+00' +network.layer3.1.bn1.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer3.1.bn1.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 256 + sum: '0.e+00' +network.layer3.1.bn1.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 256 + sum: '2.56e+02' +network.layer3.1.bn1.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 256 + sum: '2.56e+02' +network.layer3.1.bn2.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 256 + sum: '0.e+00' +network.layer3.1.bn2.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer3.1.bn2.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 256 + sum: '0.e+00' +network.layer3.1.bn2.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 256 + sum: '2.56e+02' +network.layer3.1.bn2.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 256 + sum: '2.56e+02' +network.layer3.1.bn3.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 1024 + sum: '0.e+00' +network.layer3.1.bn3.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer3.1.bn3.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 1024 + sum: '0.e+00' +network.layer3.1.bn3.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 1024 + sum: '1.024e+03' +network.layer3.1.bn3.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 1024 + sum: '1.024e+03' +network.layer3.1.conv1.weight: + device: cuda:0 + max: '4.143e-01' + mean: '1.499e-05' + min: '-3.709e-01' + shape: + - 256 + - 1024 + - 1 + - 1 + sum: '3.93e+00' +network.layer3.1.conv2.weight: + device: cuda:0 + max: '1.309e-01' + mean: '1.100e-05' + min: '-1.368e-01' + shape: + - 256 + - 256 + - 3 + - 3 + sum: '6.490e+00' +network.layer3.1.conv3.weight: + device: cuda:0 + max: '2.051e-01' + mean: '-1.367e-04' + min: '-1.971e-01' + shape: + - 1024 + - 256 + - 1 + - 1 + sum: '-3.584e+01' +network.layer3.2.bn1.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 256 + sum: '0.e+00' +network.layer3.2.bn1.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer3.2.bn1.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 256 + sum: '0.e+00' +network.layer3.2.bn1.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 256 + sum: '2.56e+02' +network.layer3.2.bn1.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 256 + sum: '2.56e+02' +network.layer3.2.bn2.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 256 + sum: '0.e+00' +network.layer3.2.bn2.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer3.2.bn2.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 256 + sum: '0.e+00' +network.layer3.2.bn2.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 256 + sum: '2.56e+02' +network.layer3.2.bn2.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 256 + sum: '2.56e+02' +network.layer3.2.bn3.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 1024 + sum: '0.e+00' +network.layer3.2.bn3.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer3.2.bn3.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 1024 + sum: '0.e+00' +network.layer3.2.bn3.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 1024 + sum: '1.024e+03' +network.layer3.2.bn3.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 1024 + sum: '1.024e+03' +network.layer3.2.conv1.weight: + device: cuda:0 + max: '3.993e-01' + mean: '-1.212e-04' + min: '-4.269e-01' + shape: + - 256 + - 1024 + - 1 + - 1 + sum: '-3.178e+01' +network.layer3.2.conv2.weight: + device: cuda:0 + max: '1.517e-01' + mean: '1.648e-05' + min: '-1.378e-01' + shape: + - 256 + - 256 + - 3 + - 3 + sum: '9.721e+00' +network.layer3.2.conv3.weight: + device: cuda:0 + max: '1.958e-01' + mean: '-6.993e-06' + min: '-1.987e-01' + shape: + - 1024 + - 256 + - 1 + - 1 + sum: '-1.833e+00' +network.layer3.3.bn1.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 256 + sum: '0.e+00' +network.layer3.3.bn1.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer3.3.bn1.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 256 + sum: '0.e+00' +network.layer3.3.bn1.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 256 + sum: '2.56e+02' +network.layer3.3.bn1.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 256 + sum: '2.56e+02' +network.layer3.3.bn2.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 256 + sum: '0.e+00' +network.layer3.3.bn2.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer3.3.bn2.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 256 + sum: '0.e+00' +network.layer3.3.bn2.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 256 + sum: '2.56e+02' +network.layer3.3.bn2.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 256 + sum: '2.56e+02' +network.layer3.3.bn3.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 1024 + sum: '0.e+00' +network.layer3.3.bn3.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer3.3.bn3.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 1024 + sum: '0.e+00' +network.layer3.3.bn3.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 1024 + sum: '1.024e+03' +network.layer3.3.bn3.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 1024 + sum: '1.024e+03' +network.layer3.3.conv1.weight: + device: cuda:0 + max: '4.290e-01' + mean: '-2.493e-04' + min: '-3.916e-01' + shape: + - 256 + - 1024 + - 1 + - 1 + sum: '-6.535e+01' +network.layer3.3.conv2.weight: + device: cuda:0 + max: '1.365e-01' + mean: '1.203e-05' + min: '-1.364e-01' + shape: + - 256 + - 256 + - 3 + - 3 + sum: '7.097e+00' +network.layer3.3.conv3.weight: + device: cuda:0 + max: '2.011e-01' + mean: '9.821e-05' + min: '-2.042e-01' + shape: + - 1024 + - 256 + - 1 + - 1 + sum: '2.575e+01' +network.layer3.4.bn1.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 256 + sum: '0.e+00' +network.layer3.4.bn1.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer3.4.bn1.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 256 + sum: '0.e+00' +network.layer3.4.bn1.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 256 + sum: '2.56e+02' +network.layer3.4.bn1.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 256 + sum: '2.56e+02' +network.layer3.4.bn2.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 256 + sum: '0.e+00' +network.layer3.4.bn2.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer3.4.bn2.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 256 + sum: '0.e+00' +network.layer3.4.bn2.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 256 + sum: '2.56e+02' +network.layer3.4.bn2.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 256 + sum: '2.56e+02' +network.layer3.4.bn3.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 1024 + sum: '0.e+00' +network.layer3.4.bn3.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer3.4.bn3.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 1024 + sum: '0.e+00' +network.layer3.4.bn3.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 1024 + sum: '1.024e+03' +network.layer3.4.bn3.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 1024 + sum: '1.024e+03' +network.layer3.4.conv1.weight: + device: cuda:0 + max: '3.968e-01' + mean: '-2.179e-04' + min: '-3.871e-01' + shape: + - 256 + - 1024 + - 1 + - 1 + sum: '-5.712e+01' +network.layer3.4.conv2.weight: + device: cuda:0 + max: '1.392e-01' + mean: '-2.276e-05' + min: '-1.360e-01' + shape: + - 256 + - 256 + - 3 + - 3 + sum: '-1.342e+01' +network.layer3.4.conv3.weight: + device: cuda:0 + max: '2.100e-01' + mean: '9.087e-05' + min: '-2.052e-01' + shape: + - 1024 + - 256 + - 1 + - 1 + sum: '2.382e+01' +network.layer3.5.bn1.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 256 + sum: '0.e+00' +network.layer3.5.bn1.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer3.5.bn1.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 256 + sum: '0.e+00' +network.layer3.5.bn1.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 256 + sum: '2.56e+02' +network.layer3.5.bn1.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 256 + sum: '2.56e+02' +network.layer3.5.bn2.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 256 + sum: '0.e+00' +network.layer3.5.bn2.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer3.5.bn2.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 256 + sum: '0.e+00' +network.layer3.5.bn2.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 256 + sum: '2.56e+02' +network.layer3.5.bn2.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 256 + sum: '2.56e+02' +network.layer3.5.bn3.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 1024 + sum: '0.e+00' +network.layer3.5.bn3.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer3.5.bn3.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 1024 + sum: '0.e+00' +network.layer3.5.bn3.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 1024 + sum: '1.024e+03' +network.layer3.5.bn3.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 1024 + sum: '1.024e+03' +network.layer3.5.conv1.weight: + device: cuda:0 + max: '3.732e-01' + mean: '4.573e-05' + min: '-4.036e-01' + shape: + - 256 + - 1024 + - 1 + - 1 + sum: '1.199e+01' +network.layer3.5.conv2.weight: + device: cuda:0 + max: '1.382e-01' + mean: '3.509e-05' + min: '-1.344e-01' + shape: + - 256 + - 256 + - 3 + - 3 + sum: '2.07e+01' +network.layer3.5.conv3.weight: + device: cuda:0 + max: '2.12e-01' + mean: '-2.857e-05' + min: '-2.015e-01' + shape: + - 1024 + - 256 + - 1 + - 1 + sum: '-7.489e+00' +network.layer4.0.bn1.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 512 + sum: '0.e+00' +network.layer4.0.bn1.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer4.0.bn1.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 512 + sum: '0.e+00' +network.layer4.0.bn1.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 512 + sum: '5.12e+02' +network.layer4.0.bn1.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 512 + sum: '5.12e+02' +network.layer4.0.bn2.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 512 + sum: '0.e+00' +network.layer4.0.bn2.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer4.0.bn2.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 512 + sum: '0.e+00' +network.layer4.0.bn2.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 512 + sum: '5.12e+02' +network.layer4.0.bn2.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 512 + sum: '5.12e+02' +network.layer4.0.bn3.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 2048 + sum: '0.e+00' +network.layer4.0.bn3.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer4.0.bn3.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 2048 + sum: '0.e+00' +network.layer4.0.bn3.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 2048 + sum: '2.048e+03' +network.layer4.0.bn3.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 2048 + sum: '2.048e+03' +network.layer4.0.conv1.weight: + device: cuda:0 + max: '2.853e-01' + mean: '2.027e-04' + min: '-2.964e-01' + shape: + - 512 + - 1024 + - 1 + - 1 + sum: '1.063e+02' +network.layer4.0.conv2.weight: + device: cuda:0 + max: '1.022e-01' + mean: '-7.219e-06' + min: '-1.115e-01' + shape: + - 512 + - 512 + - 3 + - 3 + sum: '-1.703e+01' +network.layer4.0.conv3.weight: + device: cuda:0 + max: '1.469e-01' + mean: '1.062e-05' + min: '-1.472e-01' + shape: + - 2048 + - 512 + - 1 + - 1 + sum: '1.113e+01' +network.layer4.0.downsample.0.weight: + device: cuda:0 + max: '1.643e-01' + mean: '1.053e-05' + min: '-1.525e-01' + shape: + - 2048 + - 1024 + - 1 + - 1 + sum: '2.209e+01' +network.layer4.0.downsample.1.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 2048 + sum: '0.e+00' +network.layer4.0.downsample.1.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer4.0.downsample.1.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 2048 + sum: '0.e+00' +network.layer4.0.downsample.1.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 2048 + sum: '2.048e+03' +network.layer4.0.downsample.1.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 2048 + sum: '2.048e+03' +network.layer4.1.bn1.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 512 + sum: '0.e+00' +network.layer4.1.bn1.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer4.1.bn1.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 512 + sum: '0.e+00' +network.layer4.1.bn1.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 512 + sum: '5.12e+02' +network.layer4.1.bn1.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 512 + sum: '5.12e+02' +network.layer4.1.bn2.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 512 + sum: '0.e+00' +network.layer4.1.bn2.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer4.1.bn2.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 512 + sum: '0.e+00' +network.layer4.1.bn2.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 512 + sum: '5.12e+02' +network.layer4.1.bn2.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 512 + sum: '5.12e+02' +network.layer4.1.bn3.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 2048 + sum: '0.e+00' +network.layer4.1.bn3.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer4.1.bn3.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 2048 + sum: '0.e+00' +network.layer4.1.bn3.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 2048 + sum: '2.048e+03' +network.layer4.1.bn3.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 2048 + sum: '2.048e+03' +network.layer4.1.conv1.weight: + device: cuda:0 + max: '3.313e-01' + mean: '1.118e-04' + min: '-3.093e-01' + shape: + - 512 + - 2048 + - 1 + - 1 + sum: '1.172e+02' +network.layer4.1.conv2.weight: + device: cuda:0 + max: '1.056e-01' + mean: '-1.704e-05' + min: '-1.123e-01' + shape: + - 512 + - 512 + - 3 + - 3 + sum: '-4.019e+01' +network.layer4.1.conv3.weight: + device: cuda:0 + max: '1.447e-01' + mean: '3.966e-06' + min: '-1.413e-01' + shape: + - 2048 + - 512 + - 1 + - 1 + sum: '4.158e+00' +network.layer4.2.bn1.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 512 + sum: '0.e+00' +network.layer4.2.bn1.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer4.2.bn1.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 512 + sum: '0.e+00' +network.layer4.2.bn1.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 512 + sum: '5.12e+02' +network.layer4.2.bn1.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 512 + sum: '5.12e+02' +network.layer4.2.bn2.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 512 + sum: '0.e+00' +network.layer4.2.bn2.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer4.2.bn2.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 512 + sum: '0.e+00' +network.layer4.2.bn2.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 512 + sum: '5.12e+02' +network.layer4.2.bn2.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 512 + sum: '5.12e+02' +network.layer4.2.bn3.bias: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 2048 + sum: '0.e+00' +network.layer4.2.bn3.num_batches_tracked: + device: cuda:0 + max: 0 + mean: '0.e+00' + min: 0 + shape: [] + sum: 0 +network.layer4.2.bn3.running_mean: + device: cuda:0 + max: '0.e+00' + mean: '0.e+00' + min: '0.e+00' + shape: + - 2048 + sum: '0.e+00' +network.layer4.2.bn3.running_var: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 2048 + sum: '2.048e+03' +network.layer4.2.bn3.weight: + device: cuda:0 + max: '1.e+00' + mean: '1.e+00' + min: '1.e+00' + shape: + - 2048 + sum: '2.048e+03' +network.layer4.2.conv1.weight: + device: cuda:0 + max: '2.966e-01' + mean: '-2.162e-05' + min: '-2.997e-01' + shape: + - 512 + - 2048 + - 1 + - 1 + sum: '-2.267e+01' +network.layer4.2.conv2.weight: + device: cuda:0 + max: '9.663e-02' + mean: '-1.553e-06' + min: '-1.052e-01' + shape: + - 512 + - 512 + - 3 + - 3 + sum: '-3.664e+00' +network.layer4.2.conv3.weight: + device: cuda:0 + max: '1.522e-01' + mean: '-1.257e-05' + min: '-1.512e-01' + shape: + - 2048 + - 512 + - 1 + - 1 + sum: '-1.318e+01' diff --git a/.regression_files/project/datamodules/datamodules_test/test_first_batch/imagenet_algorithm_no_op_test.yaml b/.regression_files/project/datamodules/datamodules_test/test_first_batch/imagenet_algorithm_no_op_test.yaml new file mode 100644 index 00000000..5fb33a1f --- /dev/null +++ b/.regression_files/project/datamodules/datamodules_test/test_first_batch/imagenet_algorithm_no_op_test.yaml @@ -0,0 +1,19 @@ +'0': + device: cpu + max: '2.640e+00' + mean: '-1.807e-01' + min: '-2.118e+00' + shape: + - 64 + - 3 + - 224 + - 224 + sum: '-1.741e+06' +'1': + device: cpu + max: 1 + mean: '2.188e-01' + min: 0 + shape: + - 64 + sum: 14 diff --git a/.regression_files/project/datamodules/datamodules_test/test_first_batch/imagenet_algorithm_no_op_train.yaml b/.regression_files/project/datamodules/datamodules_test/test_first_batch/imagenet_algorithm_no_op_train.yaml new file mode 100644 index 00000000..4b3e2d09 --- /dev/null +++ b/.regression_files/project/datamodules/datamodules_test/test_first_batch/imagenet_algorithm_no_op_train.yaml @@ -0,0 +1,19 @@ +'0': + device: cpu + max: '2.640e+00' + mean: '-6.663e-02' + min: '-2.118e+00' + shape: + - 64 + - 3 + - 224 + - 224 + sum: '-6.419e+05' +'1': + device: cpu + max: 988 + mean: '5.182e+02' + min: 0 + shape: + - 64 + sum: 33166 diff --git a/.regression_files/project/datamodules/datamodules_test/test_first_batch/imagenet_algorithm_no_op_validate.yaml b/.regression_files/project/datamodules/datamodules_test/test_first_batch/imagenet_algorithm_no_op_validate.yaml new file mode 100644 index 00000000..1e7308c1 --- /dev/null +++ b/.regression_files/project/datamodules/datamodules_test/test_first_batch/imagenet_algorithm_no_op_validate.yaml @@ -0,0 +1,19 @@ +'0': + device: cpu + max: '2.640e+00' + mean: '-1.183e-01' + min: '-2.118e+00' + shape: + - 64 + - 3 + - 224 + - 224 + sum: '-1.139e+06' +'1': + device: cpu + max: 0 + mean: '0.e+00' + min: 0 + shape: + - 64 + sum: 0