-
Notifications
You must be signed in to change notification settings - Fork 454
/
lyrics_to_melody.py
773 lines (652 loc) · 29.6 KB
/
lyrics_to_melody.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
import sqlite3
import random
import copy
import numpy as np
import argparse
import re
from math import ceil
from utils.lyrics_match import Lyrics_match
from midiutil.MidiFile import MIDIFile
from fairseq.models.transformer_lm import TransformerLanguageModel
from cnsenti import Sentiment
import miditoolkit
from textblob import TextBlob
_CHORD_KIND_PITCHES = {
'': [0, 4, 7],
'm': [0, 3, 7],
'+': [0, 4, 8],
'dim': [0, 3, 6],
'7': [0, 4, 7, 10],
'maj7': [0, 4, 7, 11],
'm7': [0, 3, 7, 10],
'm7b5': [0, 3, 6, 10],
}
custom_lm = TransformerLanguageModel.from_pretrained('music-ckps/', 'checkpoint_best.pt', tokenizer='space',
batch_size=8192).cuda()
def select_melody(is_maj, is_chorus, length, last_bar, chord, chord_ptr, is_last_sentence):
cursor = c.execute(
"SELECT DISTINCT NOTES, CHORDS from MELOLIB where LENGTH = '{}' and CHORUS = '{}' and MAJOR = '{}' ".format(
length, is_chorus, is_maj)) # and MAJOR = '{}'
candidates_bars = []
if is_debug:
print("Retrive melody...")
for row in cursor:
notes = row[0]
cd_ = row[1]
candidates_bars.append((notes, cd_))
# Filter by chords.
chord_list_ = chord.strip().split(' ')
chord_list_ = chord_list_[chord_ptr:] + chord_list_[:chord_ptr]
re_str = ''
if not is_last_sentence:
key = ''
else:
if is_maj:
key = ' C:'
else:
key = ' A:m'
# For the given chord progression, we generate a regex like:
# A:m F: G: C: -> ^A:m( A:m)*( F:)+( G:)+( C:)*$|^A:m( A:m)*( F:)+( G:)*$|^A:m( A:m)*( F:)*$|^A:m( A:m)*$
# Given the regex, we find matched pieces.
# We design the regex like this because alternations in regular expressions are evaluated from left to right,
# the piece with the most various chords will be selected, if there's any.
for j in range(len(chord_list_), 0, -1):
re_str += '^({}( {})*'.format(chord_list_[0], chord_list_[0])
for idx in range(1, j):
re_str += '( {})+'.format(chord_list_[idx])
re_str = re_str[:-1]
re_str += '*{})$|'.format(key)
re_str = re_str[:-1]
tmp_candidates = []
for row in candidates_bars:
if re.match(r'{}'.format(re_str), row[1]):
tmp_candidates.append(row)
if len(tmp_candidates) == 0:
re_str = '^{}( {})*$'.format(chord_list_[-1], chord_list_[-1])
for row in candidates_bars:
if re.match(r'{}'.format(re_str), row[1]):
tmp_candidates.append(row)
if len(tmp_candidates) > 0:
candidates_bars = tmp_candidates
else:
if is_maj:
re_str = '^C:( C:)*$'
else:
re_str = '^A:m( A:m)*$'
for row in candidates_bars:
if re.match(r'{}'.format(re_str), row[1]):
tmp_candidates.append(row)
if len(tmp_candidates) > 0:
candidates_bars = tmp_candidates
candidates_cnt = len(candidates_bars)
if candidates_cnt == 0:
if is_debug:
print('No Matched Rhythm as {}'.format(length))
return []
if last_bar == None: # we are at the begining of a song, random select bars.
if is_debug:
print('Start a song...')
def not_too_high(bar):
notes = bar.split(' ')[:-1][3::5]
notes = [int(x[6:]) for x in notes]
for i in notes:
if 57 > i or i > 66:
return False
return True
tmp = []
for bar in candidates_bars:
if not_too_high(bar[0]):
tmp.append(bar)
return tmp
else:
last_note = int(last_bar.split(' ')[-3][6:])
# tendency
selected_bars = []
prefer_note = None
# Major C
if is_maj:
if last_note % 12 == 2 or last_note % 12 == 9:
prefer_note = last_note - 2
elif last_note % 12 == 5:
prefer_note = last_note - 1
elif last_note % 12 == 11:
prefer_note = last_note + 1
# Minor A
else:
if last_note % 12 == 11 or last_note % 12 == 2: # 2 -> 1, 4 -> 3
prefer_note = last_note - 2
elif last_note % 12 == 6: # 6 -> 5
prefer_note = last_note - 1
elif last_note % 12 == 7: # 7-> 1
prefer_note = last_note + 2
if prefer_note is not None:
for x in candidates_bars:
if x[0][0] == prefer_note:
selected_bars.append(x)
if len(selected_bars) > 0:
if is_debug:
print('Filter by tendency...')
candidates_bars = selected_bars
selected_bars = []
for bar in candidates_bars:
first_pitch = int(bar[0].split(' ')[3][6:])
if (first_pitch > last_note - 8 and first_pitch < last_note + 8):
selected_bars.append(bar)
if len(selected_bars) > 0:
if is_debug:
print('Filter by pitch range...')
return selected_bars
# No candidates yet? randomly return some.
if is_debug:
print("Randomly selected...")
return candidates_bars
def lm_score(bars, note_string, bar_idx):
tmp_string = []
n = ' '.join(note_string.split(' ')[-100:])
for sbar in bars:
sbar_, _ = fill_template(sbar[0], bar_idx)
tmp_string.append(n + sbar_)
score = [x['score'].item() for x in custom_lm.score(tmp_string)]
assert len(score) == len(tmp_string)
tmp = list(zip(bars, score))
tmp.sort(key=lambda x: x[1], reverse=True)
tmp = tmp[:30]
best_score = tmp[0][1]
res = []
for x in tmp:
if best_score - x[1] < 0.1:
res.append(x[0])
return res
def get_chorus(chorus_start, chorus_length, lyrics):
return range(chorus_start, chorus_start + chorus_length)
def save_demo(notes_str, select_chords, name, lang, sentence, word_counter):
pitch_dict = {'C': 0, 'C#': 1, 'D': 2, 'Eb': 3, 'E': 4, 'F': 5, 'F#': 6, 'G': 7, 'Ab': 8, 'A': 9, 'Bb': 10, 'B': 11}
_CHORD_KIND_PITCHES = {
'': [0, 4, 7],
'm': [0, 3, 7],
'+': [0, 4, 8],
'dim': [0, 3, 6],
'7': [0, 4, 7, 10],
'maj7': [0, 4, 7, 11],
'm7': [0, 3, 7, 10],
'm7b5': [0, 3, 6, 10],
}
print('Save the melody to {}.mid'.format(name))
mf = MIDIFile(2) # only 1 track
melody_track = 0 # the only track
chord_track = 1
time = 0 # start at the beginning
channel = 0
mf.addTrackName(melody_track, time, "melody")
mf.addTrackName(chord_track, time, "chord")
mf.addTempo(melody_track, time, 120)
mf.addTempo(chord_track, time, 120)
notes = notes_str.split(' ')
cnt = 0
sen_idx = 0
chord_time = []
for i in range(len(notes) // 5):
if is_debug:
print('wirting idx: ', i)
# cadence = notes[5 * i]
bar = int(notes[5 * i + 1][4:])
pos = int(notes[5 * i + 2][4:]) # // pos_resolution
pitch = int(notes[5 * i + 3][6:])
dur = int(notes[5 * i + 4][4:]) / 4
time = bar * 4 + pos / 4 # + delta
# if cadence == 'HALF':
# delta += 2
# if cadence == 'AUT':
# delta += 4
mf.addNote(melody_track, channel, pitch, time, dur, 100)
# fill all chords into bars before writing notes
if cnt == 0:
cds = select_chords[sen_idx].split(' ')
t = time - time % 2
if len(chord_time) > 0:
blank_dur = t - chord_time[-1] - 2
insert_num = int(blank_dur / 2)
if is_debug:
print('Chords:', cds[0].split(':'))
root, cd_type = cds[0].split(':')
root = pitch_dict[root]
for i in range(insert_num):
for shift in _CHORD_KIND_PITCHES[cd_type]:
mf.addNote(chord_track, channel, 36 + root + shift, chord_time[-1] + 2, 2, 75)
chord_time.append(chord_time[-1] + 2)
if is_debug:
print('begin sentence:', sen_idx)
for cd in cds:
root, cd_type = cd.split(':')
root = pitch_dict[root]
# mf.addNote(chord_track, channel, 36+root, t, 2, 75) # 36 is C3
for shift in _CHORD_KIND_PITCHES[cd_type]:
mf.addNote(chord_track, channel, 36 + root + shift, t, 2, 75)
chord_time.append(t)
t += 2
cnt += 1
if cnt == word_counter[sen_idx]:
cnt = 0
sen_idx += 1
name += '.mid'
with open(name, 'wb') as outf:
mf.writeFile(outf)
midi_obj = miditoolkit.midi.parser.MidiFile(name)
if lang == 'zh':
lyrics = ''.join(sentence)
else:
print(sentence)
lyrics = ' '.join(sentence).split(' ')
print(lyrics)
word_idx = 0
for idx, word in enumerate(lyrics):
if word not in [',', '.', '']:
note = midi_obj.instruments[0].notes[word_idx]
midi_obj.lyrics.append(
miditoolkit.Lyric(text=word, time=note.start))
word_idx += 1
else:
midi_obj.lyrics[-1].text += word
# print(midi_obj.lyrics)
midi_obj.dump(f'{name}', charset='utf-8')
def fill_template(s_bar, bar_idx):
notes = s_bar.split(' ')
tmp = []
last_bar_idx = notes[1][4:]
for i in range(len(notes)):
if i % 5 == 1:
if notes[i][4:] != last_bar_idx:
bar_idx += 1
last_bar_idx = notes[i][4:]
tmp.append('bar_' + str(bar_idx))
else:
tmp.append(notes[i])
return ' '.join(tmp), bar_idx + 1
def splice(bar1, bar2):
"""
Cancatenate bar1 and bar2
In bar1, bar index is replaced while in bar2 X or Y is remained like 'X {} {} {} {} '.format(pos, pitch,dur,cadence)
"""
if bar1 == '':
return bar2
if bar2 == '':
return bar1
assert bar1[-1] == ' ' # For the ease of concatenation, there's a space at the end of bar
assert bar2[-1] == ' '
notes1 = bar1.split(' ')[:-1]
notes2 = bar2.split(' ')[:-1]
bar_cnt = len(set(notes1[1::5]))
# If the last note ending time in bar1 is not far from the begining time of the first note in bar2, just return bar1 + bar2
# Calculate the note intervals in bars. If interval between two bars <= the average interval inside a bar, then it is regarded as 'not far away'.
def get_interval(notes):
begin = []
dur = []
if notes[1][4:] != 'X' and notes[1][4:] != 'Y':
start_bar = int(notes[1][4:])
else:
start_bar = 0
for idx in range(len(notes) // 5):
if notes[5 * idx + 1][4:] == 'X':
bar_idx_ = 0
elif notes[5 * idx + 1][4:] == 'Y':
bar_idx_ = 1
else:
bar_idx_ = int(notes[5 * idx + 1][4:])
begin.append(16 * (bar_idx_ - start_bar) + int(notes[5 * idx + 2][4:]))
dur.append(int(notes[5 * idx + 4][4:]))
end = list(np.array(begin) + np.array(dur))
return list(np.array(begin[1:]) - np.array(end[:-1])), begin[0], end[-1] - 16 if end[-1] > 16 else end[-1]
inter1, _, end1 = get_interval(notes1)
inter2, begin2, _ = get_interval(notes2)
def avg(notes):
return sum(notes) / len(notes)
avg_interval = avg(inter1 + inter2)
last_bar1_idx = int(notes1[-4][4:])
bar2, _ = fill_template(bar2, last_bar1_idx + 1)
if avg_interval < (16 - end1 + begin2):
# If interval between two bars is big, shift the second bar forward.
notes2 = bar2.split(' ')[:-1]
tmp = ''
for idx in range(len(notes2) // 5):
pos = int(notes2[5 * idx + 2][4:]) - (16 - end1 + begin2)
bar_idx_ = int(notes2[5 * idx + 1][4:])
if pos < 0:
bar_idx_ += pos // 16
pos = pos % 16
tmp += '{} bar_{} Pos_{} {} {} '.format(notes2[5 * idx], bar_idx_, pos, notes2[5 * idx + 3],
notes2[5 * idx + 4])
return bar1 + tmp
else:
return bar1 + bar2
def not_mono(bar):
"""
Filter monotonous pieces.
"""
notes = bar.split(' ')[:-1][3::5]
notes = [int(x[6:]) for x in notes]
tmp = [0] * 128
for idx in range(len(notes)):
tmp[int(notes[idx])] = 1
if (1 < len(notes) <= 3 and sum(tmp) == 1) or (len(notes) >= 4 and sum(tmp) < 3):
return False
return True
def not_duplicate(bar1, bar2):
"""
De-duplication, only care about the pitch.
"""
notes1 = bar1.split(' ')[:-1][3::5] # For the ease of concatenation, there's a space at the end of bar
notes2 = bar2.split(' ')[:-1][3::5]
return notes1 != notes2
def no_keep_trend(bars):
def is_sorted(a):
return all([a[i] <= a[i + 1] for i in range(len(a) - 1)])
candidates_bars = []
for bar_and_chord in bars:
bar = bar_and_chord[0]
notes = bar.split(' ')[:-1][3::5]
notes = [int(x[6:]) for x in notes]
if not is_sorted(notes):
candidates_bars.append(bar_and_chord)
return candidates_bars
def polish(bar, last_note_end, iscopy=False):
"""
Three fuctions:
1. Avoid bars overlapping.
2. Make the first note in all bars start at the position 0.
3. Remove rest and cadence in a bar.
"""
notes = bar.strip().split(' ')
tmp = ''
first_note_start = 0
is_tuned = False
for idx in range(len(notes) // 5):
pos = int(notes[5 * idx + 2][4:])
bar_idx_ = int(notes[5 * idx + 1][4:])
dur = int(notes[5 * idx + 4][4:])
this_note_start = 16 * bar_idx_ + pos
cadence = 'NOT'
if idx == 0:
first_note_start = this_note_start
blank_after_last_note = 16 - last_note_end % 16
threshold = blank_after_last_note
else:
threshold = 0
if dur == 1: # the minimum granularity is a 1/8 note.
dur = 2
if dur > 8: # the maximum granularity is a 1/2 note.
dur = 8
# Function 3:
if this_note_start - last_note_end != threshold:
pos += (last_note_end + threshold - this_note_start)
bar_idx_ += pos // 16
pos = pos % 16
if idx == len(notes) // 5 - 2:
if 12 < pos + dur <= 16 or len(notes) // 5 <= 4:
dur = 16 - pos
is_tuned = True
if idx == len(notes) // 5 - 1:
if is_tuned:
pos = 0
else:
if 12 < pos + dur <= 16:
dur += 6
cadence = 'HALF' # just for the ease of model scoring
last_note_end = 16 * bar_idx_ + pos + dur
assert pos <= 16
tmp += '{} bar_{} Pos_{} {} Dur_{} '.format(cadence, bar_idx_, pos, notes[5 * idx + 3], dur)
return tmp, bar_idx_ + 1, last_note_end
def chord_truc(bar, schord):
"""
Given a bar string, remove redundant chords.
"""
schord_list = schord.split(' ')
notes = bar.strip().split(' ')
start_pos = 16 * int(notes[1][4:]) + int(notes[2][4:])
end_pos = 16 * int(notes[-4][4:]) + int(notes[-3][4:]) + int(notes[-1][4:])
duration = end_pos - start_pos
chord_num = ceil(duration / 8)
assert chord_num >= 1, 'bar:{},chord:{}'.format(bar, schord)
if len(schord_list) >= chord_num:
schord_list = schord_list[:chord_num]
else:
tmp = []
for i in schord_list:
tmp.append(i)
tmp.append(i)
schord_list = tmp[:chord_num]
return schord_list
def polish_chord(bar, schord, chord, chord_ptr):
"""
Align chords and the bar. When this function is called, the bar index is already replaced by the true index instead of X or Y.
In our setting, there's 2 chords in a bar. Therefore for any position % 8==0, we write a chord.
Of course, you can modify this setting as needed.
"""
schord_list = chord_truc(bar, schord)
last_chord = schord_list[-1]
schord = ' '.join(schord_list)
chord_list = chord.split(' ')
if last_chord not in chord_list:
chord_ptr = (chord_ptr + 1) % len(chord_list)
else:
chord_ptr = (chord_list.index(last_chord) + 1) % len(chord_list)
return schord, chord_ptr
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='none.')
parser.add_argument('--lyrics_path', default='lyrics.txt')
parser.add_argument('--chord_path', default='chord.txt')
parser.add_argument('--db_path', default='database/ROC.db')
parser.add_argument('--debug', action='store_true', help='Output composition details')
parser.add_argument('--sentiment', action='store_true',
help='If true, the tonality is automatically set by analyzing the sentiment of lyrics. If False, the tonality is major by default.')
config = parser.parse_args()
lyrics_path = config.lyrics_path
chord_path = config.chord_path
use_sentiment = config.sentiment
global is_debug
is_debug = config.debug
conn = sqlite3.connect(config.db_path)
global c
c = conn.cursor()
print("Database connected")
with open(lyrics_path) as lyrics_file, open(chord_path) as chord_file:
lyrics_corpus = lyrics_file.readlines()
chord_corpus = chord_file.readlines()
for lyrics, chord in zip(lyrics_corpus, chord_corpus):
lang = chord[:2]
assert lang in ['zh', 'en'] # Note that ROC is not language-sensitive, you can extend this.
chord = chord[2:].strip()
print('CHORD:', chord)
chord_ptr = 0
is_maj = 1
if lang == 'zh':
sentence = lyrics.strip().split(' ') # The list of lyric sentences
name = sentence[0]
if use_sentiment:
senti = Sentiment()
pos = 0
neg = 0
for s in sentence:
result = senti.sentiment_calculate(s)
pos += result['pos']
neg += result['neg']
if neg < 0 and pos >= 0:
is_maj = 1
elif pos < 0 and neg >= 0:
is_maj = 0
else:
if pos / neg < 1:
is_maj = 0
else:
is_maj = 1
elif lang == 'en':
sentence = lyrics.strip().split('[sep]')
name = sentence[0]
sentence = [len(x.strip().split(' ')) * '_' for x in sentence]
if use_sentiment:
sent = '.'.join(sentence)
blob = TextBlob(sent)
polarity = 0
for s in blob.sentences:
polarity += s.sentiment.polarity
if polarity >= 0:
is_maj = 1
else:
is_maj = 0
print('Tonality:', is_maj)
# structure recognition
parent, chorus_start, chorus_length = Lyrics_match(
sentence) # The last element must be -1, because the chord should go back to tonic
if is_debug:
print('Struct Array: ', parent)
chorus_range = get_chorus(chorus_start, chorus_length, lyrics)
if is_debug:
print('Recognized Chorus: ', chorus_start, chorus_length)
select_notes = [] # selected_melodies
select_chords = [] # selected chords
is_chorus = 0 # is a chorus?
note_string = '' # the 'melody context' mentioned in the paper.
bar_idx = 0 # current bar index. it is used to replace bar index in retrieved pieces.
last_note_end = -16
# is_1smn = 0 # Does 1 Syllable align with Multi Notes? In the future, we will explore better methods to realize this function. Here by default, we disable it.
for i in range(len(sentence)):
if lang == 'zh':
print('Lyrics: ', sentence[i])
else:
print('Lyrics: ', lyrics.strip().split('[sep]')[i])
is_last_sentence = (i == len(sentence) - 1)
if i in chorus_range:
is_chorus = 1
else:
is_chorus = 0
cnt = len(sentence[i])
if cnt <= 2 and parent[i] == -2: # if length is too short, do not partially share
parent[i] = -1
# Following codes correspond to 'Retrieval and Re-ranking' in Section 3.2.
# parent[i] is the 'struct value' in the paper.
if parent[i] == -1:
if is_debug:
print('No sharing.')
# one_syllable_multi_notes_probabilty = random.randint(1,100)
# if one_syllable_multi_notes_probabilty == 1:
# is_1smn = 1
# connect_notes = random.randint(1,2)
# cnt += connect_notes
# connect_start = random.randint(1,cnt)
# print('One Syllable Multi Notes range:',connect_start, connect_start + connect_notes)
if len(select_notes) == 0: # The first sentence of a song.
last_bar = None
else:
last_bar = select_notes[-1]
selected_bars = select_melody(is_maj, is_chorus, cnt, last_bar, chord, chord_ptr, is_last_sentence)
if cnt < 9 and len(selected_bars) > 0:
selected_bars = lm_score(selected_bars, note_string, bar_idx)
# selected_bars = no_keep_trend(selected_bars)
bar_chord = selected_bars[random.randint(0, len(selected_bars) - 1)]
s_bar = bar_chord[0]
s_chord = bar_chord[1]
s_bar, bar_idx = fill_template(s_bar,
bar_idx) # The returned bar index is the first bar index which should be in the next sentence, that is s_bar + 1.
else: # If no pieces is retrieved or there are too many syllables in a lyric.
if is_debug:
print('No pieces is retrieved or there are too many syllables in a lyric. Split the lyric.')
s_bar = ''
s_chord = ''
origin_cnt = cnt
error = 0
while cnt > 0:
l = max(origin_cnt // 3, 5)
r = max(origin_cnt // 2, 7) # Better to use long pieces, for better coherency.
split_len = random.randint(l, r)
if split_len > cnt:
split_len = cnt
if is_debug:
print('Split at ', split_len)
selected_bars = select_melody(is_maj, is_chorus, split_len, last_bar, chord, chord_ptr,
is_last_sentence)
if len(selected_bars) > 0:
selected_bars = lm_score(selected_bars, note_string + s_bar, bar_idx)
bar_chord = selected_bars[random.randint(0, len(selected_bars) - 1)]
last_bar = bar_chord[0]
last_chord = bar_chord[1]
s_bar = splice(s_bar, last_bar)
s_chord += ' ' + last_chord
# Explanation: if this condition is true, i.e., the length of s_bar + last_bar == the length of last_bar,
# then the only possibility is that we are in the first step of this while loop. We need to replace the bar index in retrieved pieces with the true bar index.
# In the following steps, there is no need to do so because there is a implicit 'fill_template' in 'splice'.
if len(s_bar) == len(last_bar):
s_bar, bar_idx = fill_template(s_bar, bar_idx)
s_chord, chord_ptr = polish_chord(s_bar, s_chord, chord, chord_ptr)
last_bar = s_bar
cnt -= split_len
else:
error += 1
if error >= 10:
print('Database has not enough pieces to support ROC.')
exit()
s_chord = s_chord[1:]
s_bar, bar_idx, last_note_end = polish(s_bar, last_note_end)
s_chord, chord_ptr = polish_chord(s_bar, s_chord, chord, chord_ptr)
note_string += s_bar
select_notes.append(s_bar)
select_chords.append(s_chord)
if is_debug:
print('Selected notes: ', s_bar)
print('Chords: ', s_chord)
elif parent[i] == -2:
if is_debug:
print('Share partial melody from the previous lyric.')
l = min(cnt // 3,
3) # As mentioned in 'Concatenation and Polish' Section, for adjacents lyrics having the same syllabels number,
r = min(cnt // 2, 5) # we 'polish their melodies to sound similar'
# modify some notes then share.
replace_len = random.randint(l, r)
last_bar = ' '.join(select_notes[-1].split(' ')[:- replace_len * 5 - 1]) + ' '
tail = select_notes[-1].split(' ')[- replace_len * 5 - 1:]
last_chord = ' '.join(chord_truc(last_bar, select_chords[-1]))
selected_bars = select_melody(is_maj, is_chorus, replace_len, last_bar, chord, chord_ptr,
is_last_sentence)
selected_bars = lm_score(selected_bars, note_string + last_bar, bar_idx)
for bar_chord in selected_bars:
bar = bar_chord[0]
s_chord = bar_chord[1]
s_bar = splice(last_bar, bar)
if not_mono(s_bar) and not_duplicate(s_bar, select_notes[-1]):
s_chord = last_chord + ' ' + s_chord
break
s_bar, bar_idx = fill_template(s_bar, bar_idx)
s_bar = s_bar.split(' ')
for i in range(2, len(tail)): # Modify duration
if i % 5 == 2 or i % 5 == 1: # dur and cadence
s_bar[-i] = tail[-i]
s_bar = ' '.join(s_bar)
s_bar, bar_idx, last_note_end = polish(s_bar, last_note_end, True)
s_chord, chord_ptr = polish_chord(s_bar, s_chord, chord, chord_ptr)
note_string += s_bar
select_notes.append(s_bar)
select_chords.append(s_chord)
if is_debug:
print('Modified notes: ', s_bar)
print('chords: ', s_chord)
else:
# 'struct value is postive' as mentioned in the paper, we directly share melodies.
if is_debug:
print('Share notes with sentence No.', parent[i])
s_bar = copy.deepcopy(select_notes[parent[i]])
s_chord = copy.deepcopy(select_chords[parent[i]])
s_bar, bar_idx = fill_template(s_bar, bar_idx)
s_bar, bar_idx, last_note_end = polish(s_bar, last_note_end, True)
s_chord, chord_ptr = polish_chord(s_bar, s_chord, chord, chord_ptr)
note_string += s_bar
select_notes.append(s_bar)
select_chords.append(s_chord)
if is_debug:
print(
'----------------------------------------------------------------------------------------------------------')
if is_debug:
print(select_chords)
print(select_notes)
save_demo(note_string, select_chords, name, lang,
lyrics.strip().split('[sep]') if lang == 'en' else sentence, [len(i) for i in sentence])
print(
'--------------------------------------------A song is composed.--------------------------------------------')
conn.close()