-
Notifications
You must be signed in to change notification settings - Fork 21
/
run_ner.py
742 lines (657 loc) · 32.5 KB
/
run_ner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
"""
Fine-tune Binder for named entity recognition.
"""
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional, List
import datasets
from datasets import load_dataset
import transformers
from transformers import (
AutoTokenizer,
HfArgumentParser,
PreTrainedTokenizerFast,
TrainingArguments,
EarlyStoppingCallback,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from src.config import BinderConfig
from src.model import Binder
from src.trainer import BinderDataCollator, BinderTrainer
from src import utils as postprocess_utils
logger = logging.getLogger(__name__)
@dataclass
class ModelArguments:
"""
Arguments for Binder.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Path to directory to store the pretrained models downloaded from huggingface.co"},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
"with private models)."
},
)
hidden_dropout_prob: float = field(
default=0.1, metadata={"help": "Dropout rate for hidden states."}
)
use_span_width_embedding: bool = field(
default=False, metadata={"help": "Use span width embeddings."}
)
linear_size: int = field(
default=128, metadata={"help": "Size of the last linear layer."}
)
init_temperature: float = field(
default=0.07, metadata={"help": "Init value of temperature used in contrastive loss."}
)
start_loss_weight: float = field(
default=0.2, metadata={"help": "NER span start loss weight."}
)
end_loss_weight: float = field(
default=0.2, metadata={"help": "NER span end loss weight."}
)
span_loss_weight: float = field(
default=0.6, metadata={"help": "NER span loss weight."}
)
threshold_loss_weight: float = field(
default=0.5, metadata={"help": "NER threshold loss weight."}
)
ner_loss_weight: float = field(
default=0.5, metadata={"help": "NER loss weight."}
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
dataset_name: str = field(
metadata={"help": "The name of the dataset to use, from which it will decide entity types to use."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
validation_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
)
test_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input test data file to evaluate the perplexity on (a text file)."},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
max_seq_length: int = field(
default=384,
metadata={
"help": "The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
},
)
pad_to_max_length: bool = field(
default=True,
metadata={
"help": "Whether to pad all samples to `max_seq_length`. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch (which can "
"be faster on GPU but will be slower on TPU)."
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
},
)
max_predict_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
},
)
doc_stride: int = field(
default=128,
metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."},
)
max_span_length: int = field(
default=30,
metadata={
"help": "The maximum length of an entity span."
},
)
entity_type_file: str = field(
default=None,
metadata={"help": "The entity type file contains all entity type names, descriptions, etc."},
)
dataset_entity_types: Optional[List[str]] = field(
default_factory=list,
metadata={"help": "The entity types of this dataset, which are only a part of types in the entity type file."},
)
entity_type_key_field: Optional[str] = field(
default="name",
metadata={"help": "The field in the entity type file that will be used as key to sort entity types."},
)
entity_type_desc_field: Optional[str] = field(
default="description",
metadata={"help": "The field in the entity type file that corresponds to entity descriptions."},
)
prediction_postprocess_func: Optional[str] = field(
default="postprocess_nested_predictions",
metadata={"help": "The name of prediction postprocess function."},
)
wandb_project: Optional[str] = field(
default=None,
metadata={"help": "The name of WANDB project."},
)
def __post_init__(self):
if (
self.dataset_name is None
and self.train_file is None
and self.validation_file is None
and self.test_file is None
):
raise ValueError("Need either a dataset name or a training/validation file/test_file.")
else:
if self.train_file is not None:
extension = self.train_file.split(".")[-1]
assert extension == "json", "`train_file` should be a json file."
if self.validation_file is not None:
extension = self.validation_file.split(".")[-1]
assert extension == "json", "`validation_file` should be a json file."
if self.test_file is not None:
extension = self.test_file.split(".")[-1]
assert extension == "json", "`test_file` should be a json file."
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if sys.argv[-1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[-1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Setup env variables and logging
os.environ["WANDB_PROJECT"] = data_args.wandb_project or data_args.dataset_name
os.environ["WANDB_DIR"] = training_args.output_dir
os.makedirs(training_args.output_dir, exist_ok=True)
log_file_handler = logging.FileHandler(os.path.join(training_args.output_dir, "run.log"), "a")
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout), log_file_handler],
)
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
transformers.utils.logging.add_handler(log_file_handler)
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Training/evaluation parameters {training_args}")
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Set seed before initializing model.
set_seed(training_args.seed)
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
data_files = {}
if data_args.train_file is not None:
data_files["train"] = data_args.train_file
extension = data_args.train_file.split(".")[-1]
if data_args.validation_file is not None:
data_files["validation"] = data_args.validation_file
extension = data_args.validation_file.split(".")[-1]
if data_args.test_file is not None:
data_files["test"] = data_args.test_file
extension = data_args.test_file.split(".")[-1]
raw_datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=True,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
add_prefix_space=True,
)
logger.info("===== Init the model =====")
config = BinderConfig(
pretrained_model_name_or_path=model_args.config_name if model_args.config_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
hidden_dropout_prob=model_args.hidden_dropout_prob,
max_span_width=data_args.max_seq_length + 1,
use_span_width_embedding=model_args.use_span_width_embedding,
linear_size=model_args.linear_size,
init_temperature=model_args.init_temperature,
start_loss_weight=model_args.start_loss_weight,
end_loss_weight=model_args.end_loss_weight,
span_loss_weight=model_args.span_loss_weight,
threshold_loss_weight=model_args.threshold_loss_weight,
ner_loss_weight=model_args.ner_loss_weight,
)
model = Binder(config)
# Tokenizer check: this script requires a fast tokenizer.
if not isinstance(tokenizer, PreTrainedTokenizerFast):
raise ValueError(
"This example script only works for models that have a fast tokenizer. Checkout the big table of models "
"at https://huggingface.co/transformers/index.html#supported-frameworks to find the model types that meet this "
"requirement"
)
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
)
max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)
# Load entity type knowledge
entity_type_knowledge = load_dataset(
"json", data_files=data_args.entity_type_file, cache_dir=model_args.cache_dir
)["train"]
entity_type_knowledge = entity_type_knowledge.filter(
lambda example: (
example["dataset"] == data_args.dataset_name and (
len(data_args.dataset_entity_types) == 0 or
example[data_args.entity_type_key_field] in data_args.dataset_entity_types
)
)
)
entity_type_knowledge = entity_type_knowledge.sort(data_args.entity_type_key_field)
entity_type_id_to_str = [et[data_args.entity_type_key_field] for et in entity_type_knowledge]
entity_type_str_to_id = {t: i for i, t in enumerate(entity_type_id_to_str)}
def prepare_type_features(examples):
tokenized_examples = tokenizer(
examples[data_args.entity_type_desc_field],
truncation=True,
max_length=max_seq_length,
padding="longest" if len(entity_type_knowledge) <= 1000 else "max_length",
)
return tokenized_examples
with training_args.main_process_first(desc="Tokenizing entity type descriptions"):
tokenized_descriptions = entity_type_knowledge.map(
prepare_type_features,
batched=True,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on type descriptions",
remove_columns=entity_type_knowledge.column_names,
)
# Preprocessing the datasets.
# Preprocessing is slightly different for training and evaluation.
if training_args.do_train and "train" in raw_datasets:
column_names = raw_datasets["train"].column_names
elif training_args.do_eval:
column_names = raw_datasets["validation"].column_names
else:
column_names = raw_datasets["test"].column_names
# Training preprocessing
def prepare_train_features(examples):
# Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results
# in one example possible giving several features when a context is long, each of those features having a
# context that overlaps a bit the context of the previous feature.
tokenized_examples = tokenizer(
examples["text"],
truncation=True,
max_length=max_seq_length,
stride=data_args.doc_stride,
return_overflowing_tokens=True,
return_offsets_mapping=True,
padding="max_length" if data_args.pad_to_max_length else False,
)
# Since one example might give us several features if it has a long context, we need a map from a feature to
# its corresponding example. This key gives us just that.
sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping")
# The offset mappings will give us a map from token to character position in the original context. This will
# help us compute the start_positions and end_positions.
offset_mapping = tokenized_examples.pop("offset_mapping")
# Let's label those examples!
processed_examples = {
"input_ids": [],
"attention_mask": [],
"token_start_mask": [],
"token_end_mask": [],
"ner": [],
}
# RoBERTa doesn't need token_type_ids.
if "token_type_ids" in tokenized_examples:
processed_examples["token_type_ids"] = []
for i, offsets in enumerate(offset_mapping):
# We will label impossible answers with the index of the CLS token.
input_ids = tokenized_examples["input_ids"][i]
# Grab the sequence corresponding to that example (to know what is the text and what are special tokens).
sequence_ids = tokenized_examples.sequence_ids(i)
# Start token index of the current text.
text_start_index = 0
while sequence_ids[text_start_index] != 0:
text_start_index += 1
# End token index of the current text.
text_end_index = len(input_ids) - 1
while sequence_ids[text_end_index] != 0:
text_end_index -= 1
# One example can give several spans, this is the index of the example containing this span of text.
sample_index = sample_mapping[i]
# Create token_start_mask and token_end_mask where mask = 1 if the corresponding token is either a start
# or an end of a word in the original dataset.
token_start_mask, token_end_mask = [], []
word_start_chars = examples["word_start_chars"][sample_index]
word_end_chars = examples["word_end_chars"][sample_index]
for index, (start_char, end_char) in enumerate(offsets):
if sequence_ids[index] != 0:
token_start_mask.append(0)
token_end_mask.append(0)
else:
token_start_mask.append(int(start_char in word_start_chars))
token_end_mask.append(int(end_char in word_end_chars))
default_span_mask = [
[
(j - i >= 0) * s * e for j, e in enumerate(token_end_mask)
]
for i, s in enumerate(token_start_mask)
]
start_negative_mask = [token_start_mask[:] for _ in entity_type_id_to_str]
end_negative_mask = [token_end_mask[:] for _ in entity_type_id_to_str]
span_negative_mask = [[x[:] for x in default_span_mask] for _ in entity_type_id_to_str]
# We convert NER into a list of (type_id, start_index, end_index) tuples.
tokenized_ner_annotations = []
entity_types = examples["entity_types"][sample_index]
entity_start_chars = examples["entity_start_chars"][sample_index]
entity_end_chars = examples["entity_end_chars"][sample_index]
assert len(entity_types) == len(entity_start_chars) == len(entity_end_chars)
for entity_type, start_char, end_char in zip(entity_types, entity_start_chars, entity_end_chars):
# Detect if the span is in the text.
if offsets[text_start_index][0] <= start_char and offsets[text_end_index][1] >= end_char:
start_token_index, end_token_index = text_start_index, text_end_index
# Move the start_token_index and end_token_index to the two ends of the span.
# Note: we could go after the last offset if the span is the last word (edge case).
while start_token_index <= text_end_index and offsets[start_token_index][0] <= start_char:
start_token_index += 1
start_token_index -= 1
while offsets[end_token_index][1] >= end_char:
end_token_index -= 1
end_token_index += 1
entity_type_id = entity_type_str_to_id[entity_type]
# Inclusive start and end.
tokenized_ner_annotations.append({
"type_id": entity_type_id,
"start": start_token_index,
"end": end_token_index,
})
# Exclude the start/end of the NER span.
start_negative_mask[entity_type_id][start_token_index] = 0
end_negative_mask[entity_type_id][end_token_index] = 0
span_negative_mask[entity_type_id][start_token_index][end_token_index] = 0
# Skip training examples without annotations.
if len(tokenized_ner_annotations) == 0:
continue
processed_examples["input_ids"].append(input_ids)
if "token_type_ids" in tokenized_examples:
processed_examples["token_type_ids"].append(tokenized_examples["token_type_ids"][i])
processed_examples["attention_mask"].append(tokenized_examples["attention_mask"][i])
processed_examples["token_start_mask"].append(token_start_mask)
processed_examples["token_end_mask"].append(token_end_mask)
processed_examples["ner"].append({
"annotations": tokenized_ner_annotations,
"start_negative_mask": start_negative_mask,
"end_negative_mask": end_negative_mask,
"span_negative_mask": span_negative_mask,
"token_start_mask": token_start_mask,
"token_end_mask": token_end_mask,
"default_span_mask": default_span_mask,
})
return processed_examples
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("--do_train requires a train dataset")
train_dataset = raw_datasets["train"]
if data_args.max_train_samples is not None:
# We will select sample from whole data if argument is specified
train_dataset = train_dataset.select(range(data_args.max_train_samples))
# Create train feature from dataset
with training_args.main_process_first(desc="train dataset map pre-processing"):
train_dataset = train_dataset.map(
prepare_train_features,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on train dataset",
)
# Validation preprocessing
def prepare_validation_features(examples, split: str = "dev"):
# Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results
# in one example possible giving several features when a context is long, each of those features having a
# context that overlaps a bit the context of the previous feature.
tokenized_examples = tokenizer(
examples["text"],
truncation=True,
max_length=max_seq_length,
stride=data_args.doc_stride,
return_overflowing_tokens=True,
return_offsets_mapping=True,
padding="max_length" if data_args.pad_to_max_length else False,
)
# Since one example might give us several features if it has a long context, we need a map from a feature to
# its corresponding example. This key gives us just that.
sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping")
# For evaluation, we will need to convert our predictions to spans of the text, so we keep the
# corresponding example_id and we will store the offset mappings.
tokenized_examples["split"] = []
tokenized_examples["example_id"] = []
tokenized_examples["token_start_mask"] = []
tokenized_examples["token_end_mask"] = []
for i in range(len(tokenized_examples["input_ids"])):
tokenized_examples["split"].append(split)
# Grab the sequence corresponding to that example (to know what is the text and what are special tokens).
sequence_ids = tokenized_examples.sequence_ids(i)
# One example can give several texts, this is the index of the example containing this text.
sample_index = sample_mapping[i]
tokenized_examples["example_id"].append(examples["id"][sample_index])
# Create token_start_mask and token_end_mask where mask = 1 if the corresponding token is either a start
# or an end of a word in the original dataset.
token_start_mask, token_end_mask = [], []
word_start_chars = examples["word_start_chars"][sample_index]
word_end_chars = examples["word_end_chars"][sample_index]
for index, (start_char, end_char) in enumerate(tokenized_examples["offset_mapping"][i]):
if sequence_ids[index] != 0:
token_start_mask.append(0)
token_end_mask.append(0)
else:
token_start_mask.append(int(start_char in word_start_chars))
token_end_mask.append(int(end_char in word_end_chars))
tokenized_examples["token_start_mask"].append(token_start_mask)
tokenized_examples["token_end_mask"].append(token_end_mask)
# Set to None the offset_mapping that are not part of the text so it's easy to determine if a token
# position is part of the text or not.
tokenized_examples["offset_mapping"][i] = [
(o if sequence_ids[k] == 0 else None)
for k, o in enumerate(tokenized_examples["offset_mapping"][i])
]
return tokenized_examples
if training_args.do_eval:
if "validation" not in raw_datasets:
raise ValueError("--do_eval requires a validation dataset")
eval_examples = raw_datasets["validation"]
if data_args.max_eval_samples is not None:
# We will select sample from whole data
eval_examples = eval_examples.select(range(data_args.max_eval_samples))
# Validation Feature Creation
with training_args.main_process_first(desc="validation dataset map pre-processing"):
eval_dataset = eval_examples.map(
prepare_validation_features,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on validation dataset",
)
if training_args.do_predict:
if "test" not in raw_datasets:
raise ValueError("--do_predict requires a test dataset")
predict_examples = raw_datasets["test"]
if data_args.max_predict_samples is not None:
# We will select sample from whole data
predict_examples = predict_examples.select(range(data_args.max_predict_samples))
# Predict Feature Creation
with training_args.main_process_first(desc="prediction dataset map pre-processing"):
predict_dataset = predict_examples.map(
lambda x: prepare_validation_features(x, "test"),
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on prediction dataset",
)
# Data collator
data_collator = BinderDataCollator(
type_input_ids=tokenized_descriptions["input_ids"],
type_attention_mask=tokenized_descriptions["attention_mask"],
type_token_type_ids=tokenized_descriptions["token_type_ids"] if "token_type_ids" in tokenized_descriptions else None,
)
# Post-processing:
def post_processing_function(examples, features, predictions, stage=f"eval"):
# Post-processing: we match the start logits and end logits to answers in the original context.
metrics = getattr(postprocess_utils, data_args.prediction_postprocess_func)(
examples=examples,
features=features,
predictions=predictions,
id_to_type=entity_type_id_to_str,
max_span_length=data_args.max_span_length,
output_dir=training_args.output_dir if training_args.should_save else None,
log_level=log_level,
prefix=stage,
tokenizer=tokenizer,
train_file=data_args.train_file,
)
return metrics
# Initialize our Trainer
trainer = BinderTrainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
eval_examples=eval_examples if training_args.do_eval else None,
tokenizer=tokenizer,
data_collator=data_collator,
callbacks=[EarlyStoppingCallback(early_stopping_patience=20)],
post_process_function=post_processing_function,
compute_metrics=None,
)
# Training
if training_args.do_train:
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
# with profiler_callback.profiler:
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model() # Saves the tokenizer too for easy upload
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate()
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
# Prediction
if training_args.do_predict:
logger.info("*** Predict ***")
results = trainer.predict(predict_dataset, predict_examples)
metrics = results.metrics
max_predict_samples = (
data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
)
metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset))
trainer.log_metrics("predict", metrics)
trainer.save_metrics("predict", metrics)
kwargs = {"finetuned_from": model_args.model_name_or_path, "model_name": "Binder"}
if data_args.dataset_name is not None:
kwargs["dataset_tags"] = data_args.dataset_name
if data_args.dataset_config_name is not None:
kwargs["dataset_args"] = data_args.dataset_config_name
kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
else:
kwargs["dataset"] = data_args.dataset_name
if training_args.push_to_hub:
trainer.push_to_hub(**kwargs)
else:
trainer.create_model_card(**kwargs)
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()