diff --git a/experimentation/Diabetes Ridge Regression Training.ipynb b/experimentation/Diabetes Ridge Regression Training.ipynb
index fa192115..56e25ff3 100644
--- a/experimentation/Diabetes Ridge Regression Training.ipynb	
+++ b/experimentation/Diabetes Ridge Regression Training.ipynb	
@@ -50,240 +50,43 @@
    ]
   },
   {
-   "cell_type": "code",
-   "execution_count": 7,
+   "cell_type": "markdown",
    "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "(442, 10)\n"
-     ]
-    }
-   ],
    "source": [
-    "print(df.shape)"
+    "## Split Data into Training and Validation Sets"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 11,
+   "execution_count": 10,
    "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<div>\n",
-       "<style scoped>\n",
-       "    .dataframe tbody tr th:only-of-type {\n",
-       "        vertical-align: middle;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe tbody tr th {\n",
-       "        vertical-align: top;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe thead th {\n",
-       "        text-align: right;\n",
-       "    }\n",
-       "</style>\n",
-       "<table border=\"1\" class=\"dataframe\">\n",
-       "  <thead>\n",
-       "    <tr style=\"text-align: right;\">\n",
-       "      <th></th>\n",
-       "      <th>age</th>\n",
-       "      <th>sex</th>\n",
-       "      <th>bmi</th>\n",
-       "      <th>bp</th>\n",
-       "      <th>s1</th>\n",
-       "      <th>s2</th>\n",
-       "      <th>s3</th>\n",
-       "      <th>s4</th>\n",
-       "      <th>s5</th>\n",
-       "      <th>s6</th>\n",
-       "      <th>Y</th>\n",
-       "    </tr>\n",
-       "  </thead>\n",
-       "  <tbody>\n",
-       "    <tr>\n",
-       "      <td>count</td>\n",
-       "      <td>4.420000e+02</td>\n",
-       "      <td>4.420000e+02</td>\n",
-       "      <td>4.420000e+02</td>\n",
-       "      <td>4.420000e+02</td>\n",
-       "      <td>4.420000e+02</td>\n",
-       "      <td>4.420000e+02</td>\n",
-       "      <td>4.420000e+02</td>\n",
-       "      <td>4.420000e+02</td>\n",
-       "      <td>4.420000e+02</td>\n",
-       "      <td>4.420000e+02</td>\n",
-       "      <td>442.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <td>mean</td>\n",
-       "      <td>-3.634285e-16</td>\n",
-       "      <td>1.308343e-16</td>\n",
-       "      <td>-8.045349e-16</td>\n",
-       "      <td>1.281655e-16</td>\n",
-       "      <td>-8.835316e-17</td>\n",
-       "      <td>1.327024e-16</td>\n",
-       "      <td>-4.574646e-16</td>\n",
-       "      <td>3.777301e-16</td>\n",
-       "      <td>-3.830854e-16</td>\n",
-       "      <td>-3.412882e-16</td>\n",
-       "      <td>152.133484</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <td>std</td>\n",
-       "      <td>4.761905e-02</td>\n",
-       "      <td>4.761905e-02</td>\n",
-       "      <td>4.761905e-02</td>\n",
-       "      <td>4.761905e-02</td>\n",
-       "      <td>4.761905e-02</td>\n",
-       "      <td>4.761905e-02</td>\n",
-       "      <td>4.761905e-02</td>\n",
-       "      <td>4.761905e-02</td>\n",
-       "      <td>4.761905e-02</td>\n",
-       "      <td>4.761905e-02</td>\n",
-       "      <td>77.093005</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <td>min</td>\n",
-       "      <td>-1.072256e-01</td>\n",
-       "      <td>-4.464164e-02</td>\n",
-       "      <td>-9.027530e-02</td>\n",
-       "      <td>-1.123996e-01</td>\n",
-       "      <td>-1.267807e-01</td>\n",
-       "      <td>-1.156131e-01</td>\n",
-       "      <td>-1.023071e-01</td>\n",
-       "      <td>-7.639450e-02</td>\n",
-       "      <td>-1.260974e-01</td>\n",
-       "      <td>-1.377672e-01</td>\n",
-       "      <td>25.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <td>25%</td>\n",
-       "      <td>-3.729927e-02</td>\n",
-       "      <td>-4.464164e-02</td>\n",
-       "      <td>-3.422907e-02</td>\n",
-       "      <td>-3.665645e-02</td>\n",
-       "      <td>-3.424784e-02</td>\n",
-       "      <td>-3.035840e-02</td>\n",
-       "      <td>-3.511716e-02</td>\n",
-       "      <td>-3.949338e-02</td>\n",
-       "      <td>-3.324879e-02</td>\n",
-       "      <td>-3.317903e-02</td>\n",
-       "      <td>87.000000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <td>50%</td>\n",
-       "      <td>5.383060e-03</td>\n",
-       "      <td>-4.464164e-02</td>\n",
-       "      <td>-7.283766e-03</td>\n",
-       "      <td>-5.670611e-03</td>\n",
-       "      <td>-4.320866e-03</td>\n",
-       "      <td>-3.819065e-03</td>\n",
-       "      <td>-6.584468e-03</td>\n",
-       "      <td>-2.592262e-03</td>\n",
-       "      <td>-1.947634e-03</td>\n",
-       "      <td>-1.077698e-03</td>\n",
-       "      <td>140.500000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <td>75%</td>\n",
-       "      <td>3.807591e-02</td>\n",
-       "      <td>5.068012e-02</td>\n",
-       "      <td>3.124802e-02</td>\n",
-       "      <td>3.564384e-02</td>\n",
-       "      <td>2.835801e-02</td>\n",
-       "      <td>2.984439e-02</td>\n",
-       "      <td>2.931150e-02</td>\n",
-       "      <td>3.430886e-02</td>\n",
-       "      <td>3.243323e-02</td>\n",
-       "      <td>2.791705e-02</td>\n",
-       "      <td>211.500000</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <td>max</td>\n",
-       "      <td>1.107267e-01</td>\n",
-       "      <td>5.068012e-02</td>\n",
-       "      <td>1.705552e-01</td>\n",
-       "      <td>1.320442e-01</td>\n",
-       "      <td>1.539137e-01</td>\n",
-       "      <td>1.987880e-01</td>\n",
-       "      <td>1.811791e-01</td>\n",
-       "      <td>1.852344e-01</td>\n",
-       "      <td>1.335990e-01</td>\n",
-       "      <td>1.356118e-01</td>\n",
-       "      <td>346.000000</td>\n",
-       "    </tr>\n",
-       "  </tbody>\n",
-       "</table>\n",
-       "</div>"
-      ],
-      "text/plain": [
-       "                age           sex           bmi            bp            s1  \\\n",
-       "count  4.420000e+02  4.420000e+02  4.420000e+02  4.420000e+02  4.420000e+02   \n",
-       "mean  -3.634285e-16  1.308343e-16 -8.045349e-16  1.281655e-16 -8.835316e-17   \n",
-       "std    4.761905e-02  4.761905e-02  4.761905e-02  4.761905e-02  4.761905e-02   \n",
-       "min   -1.072256e-01 -4.464164e-02 -9.027530e-02 -1.123996e-01 -1.267807e-01   \n",
-       "25%   -3.729927e-02 -4.464164e-02 -3.422907e-02 -3.665645e-02 -3.424784e-02   \n",
-       "50%    5.383060e-03 -4.464164e-02 -7.283766e-03 -5.670611e-03 -4.320866e-03   \n",
-       "75%    3.807591e-02  5.068012e-02  3.124802e-02  3.564384e-02  2.835801e-02   \n",
-       "max    1.107267e-01  5.068012e-02  1.705552e-01  1.320442e-01  1.539137e-01   \n",
-       "\n",
-       "                 s2            s3            s4            s5            s6  \\\n",
-       "count  4.420000e+02  4.420000e+02  4.420000e+02  4.420000e+02  4.420000e+02   \n",
-       "mean   1.327024e-16 -4.574646e-16  3.777301e-16 -3.830854e-16 -3.412882e-16   \n",
-       "std    4.761905e-02  4.761905e-02  4.761905e-02  4.761905e-02  4.761905e-02   \n",
-       "min   -1.156131e-01 -1.023071e-01 -7.639450e-02 -1.260974e-01 -1.377672e-01   \n",
-       "25%   -3.035840e-02 -3.511716e-02 -3.949338e-02 -3.324879e-02 -3.317903e-02   \n",
-       "50%   -3.819065e-03 -6.584468e-03 -2.592262e-03 -1.947634e-03 -1.077698e-03   \n",
-       "75%    2.984439e-02  2.931150e-02  3.430886e-02  3.243323e-02  2.791705e-02   \n",
-       "max    1.987880e-01  1.811791e-01  1.852344e-01  1.335990e-01  1.356118e-01   \n",
-       "\n",
-       "                Y  \n",
-       "count  442.000000  \n",
-       "mean   152.133484  \n",
-       "std     77.093005  \n",
-       "min     25.000000  \n",
-       "25%     87.000000  \n",
-       "50%    140.500000  \n",
-       "75%    211.500000  \n",
-       "max    346.000000  "
-      ]
-     },
-     "execution_count": 11,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
+   "outputs": [],
    "source": [
-    "# All data in a single dataframe\n",
-    "df.describe()"
+   "def = split_data(df):"
    ]
-  },
-  {
+   },
+   {
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "## Split Data into Training and Validation Sets"
+    "## Split the dataframe into test and train data"
    ]
   },
-  {
+   {
    "cell_type": "code",
-   "execution_count": 12,
+   "execution_count": 10,
    "metadata": {},
    "outputs": [],
    "source": [
+    "def = split_data(df):\n",
     "X = df.drop('Y', axis=1).values\n",
     "y = df['Y'].values\n",
     "\n",
     "X_train, X_test, y_train, y_test = train_test_split(\n",
     "    X, y, test_size=0.2, random_state=0)\n",
     "data = {\"train\": {\"X\": X_train, \"y\": y_train},\n",
-    "        \"test\": {\"X\": X_test, \"y\": y_test}}"
+    "        \"test\": {\"X\": X_test, \"y\": y_test}}"\n,
+    "    return data"     
    ]
   },
   {
@@ -310,7 +113,7 @@
      "output_type": "execute_result"
     }
    ],
-   "source": [
+   "source": [  
     "# experiment parameters\n",
     "args = {\n",
     "    \"alpha\": 0.5\n",