From 187fc224032c6a960cc8f821de67824ed8316a55 Mon Sep 17 00:00:00 2001 From: Jianfeng Wang Date: Thu, 28 Sep 2023 11:53:08 -0700 Subject: [PATCH] add scripts to run vocabulary-constrained decoding --- generativeimage2text/trie_decoder.py | 258 +++++++++++++++++++++++++++ 1 file changed, 258 insertions(+) create mode 100644 generativeimage2text/trie_decoder.py diff --git a/generativeimage2text/trie_decoder.py b/generativeimage2text/trie_decoder.py new file mode 100644 index 0000000..9d7a155 --- /dev/null +++ b/generativeimage2text/trie_decoder.py @@ -0,0 +1,258 @@ +from torch.nn import functional as F +import torch +from collections import defaultdict + + +def get_trie(tokenizer): + output_tokens = get_output_vocab_tokens(tokenizer) + from .trie_decoder import TokenTrie + ret = TokenTrie.construct(output_tokens) + return ret + +def get_trie_vocab_texts(): + # please create this image net file based on readme or replace it with a + # new file name + fname = './aux_data/imagenet/imagenet_unique_readable_names.txt' + with open(fname, 'r') as fp: + return list(fp) + +def get_output_vocab_tokens(tokenizer): + answermap = get_trie_vocab_texts() + ret = [] + for a in answermap: + token = tokenizer(a, padding='do_not_pad', add_special_tokens=False) + ret.append(token['input_ids'] + [tokenizer.sep_token_id]) + return ret + +class TrieAutoRegressiveBeamSearch(object): + def __init__( + self, + eos_index: int, + max_steps: int = 50, + beam_size: int = 5, + trie=None, + ): + self._eos_index = eos_index + self.max_steps = max_steps + assert beam_size == 1 + self.beam_size = beam_size + self.per_node_beam_size = 1 + self.trie = trie + + def search(self, start_predictions, step, + only_return_best=True, + do_sample=False, + top_k=0, + top_p=None, + num_return_sequences=1, + temperature=1, + ): + self.trie.reset() + if num_return_sequences > 1: + start_predictions = start_predictions[:, None, :].expand( + start_predictions.shape[0], + num_return_sequences, + start_predictions.shape[1]) + start_predictions = start_predictions.reshape(-1, start_predictions.shape[-1]) + + batch_size = start_predictions.size()[0] + predictions = start_predictions.unsqueeze(1).expand((batch_size, self.beam_size, start_predictions.shape[-1])) + start_class_logits = step(start_predictions) + start_class_logprobs = F.log_softmax(start_class_logits, dim=1) + idx = self.trie.get_curr_valid() + start_class_logprobs[0, idx] += start_class_logits.max() - start_class_logits.min() + 1 + + num_classes = start_class_logprobs.size()[1] + + # shape: (batch_size, beam_size), (batch_size, beam_size) + start_top_logprobs, start_predicted_classes = start_class_logprobs.topk( + self.beam_size + ) + self.trie.move(start_predicted_classes[0, 0].item()) + + if ( + self.beam_size == 1 + and (start_predicted_classes == self._eos_index).all() + ): + if only_return_best: + return start_predicted_classes, start_top_logprobs + else: + return start_predicted_classes.unsqueeze(-1), start_top_logprobs + + # The log probs for the last time step. + # shape: (batch_size, beam_size) + last_logprobs = start_top_logprobs + + # shape: (batch_size, beam_size, sequence_length) + predictions = torch.cat([predictions, start_predicted_classes.unsqueeze(-1)], dim=-1) + + # Log probability tensor that mandates that the end token is selected. + # shape: (batch_size * beam_size, num_classes) + logprobs_after_end = start_class_logprobs.new_full( + (batch_size * self.beam_size, num_classes), float("-inf") + ) + logprobs_after_end[:, self._eos_index] = 0.0 + + logits_after_end = start_class_logprobs.new_full( + (batch_size * self.beam_size, num_classes), float("-inf") + ) + logits_after_end[:, self._eos_index] = 0 + + #for timestep in range(self.max_steps - 1): + while predictions.shape[-1] < self.max_steps: + # shape: (batch_size * beam_size,) + last_predictions = predictions[:, :, -1].reshape(batch_size * self.beam_size) + + # If every predicted token from the last step is `self._eos_index`, + # then we can stop early. + if (last_predictions == self._eos_index).all(): + break + + predictions_so_far = predictions.view( + batch_size * self.beam_size, -1 + ) + # shape: (batch_size * beam_size, num_classes) + class_logits = step(predictions_so_far) + + # Set logprobs of last predicted tokens as high negative value to avoid + # repetition in caption. + class_logits = class_logits.scatter(1, predictions_so_far[:, -1].view((-1, 1)), -10000) + + # shape: (batch_size * beam_size, num_classes) + last_predictions_expanded = last_predictions.unsqueeze(-1).expand( + batch_size * self.beam_size, num_classes + ) + + # Here we are finding any beams where we predicted the end token in + # the previous timestep and replacing the distribution with a + # one-hot distribution, forcing the beam to predict the end token + # this timestep as well. + # shape: (batch_size * beam_size, num_classes) + #cleaned_logprobs = torch.where( + #last_predictions_expanded == self._eos_index, + #logprobs_after_end, + #class_logprobs, + #) + class_logits = torch.where( + last_predictions_expanded == self._eos_index, + logits_after_end, + class_logits, + ) + + # Convert logits to logprobs. + # shape: (batch_size * beam_size, vocab_size) + #for index in range(batch_size * self.beam_size): + ##class_logprobs[index, predictions_so_far[index, -1]] = -10000 + #class_logprobs[index, predictions_so_far[index, -1]] = -10000 + class_logprobs = F.log_softmax(class_logits, dim=1) + idx = self.trie.get_curr_valid() + class_logprobs[0, idx] += class_logits.max() - class_logits.min() + 1 + + # Set logprobs of last predicted tokens as high negative value to avoid + # repetition in caption. + #class_logprobs = class_logprobs.scatter(1, predictions_so_far[:, -1].view((-1, 1)), -10000) + + # shape (both): (batch_size * beam_size, per_node_beam_size) + top_logprobs, predicted_classes = class_logprobs.topk( + self.per_node_beam_size + ) + self.trie.move(predicted_classes[0, 0].item()) + + # Here we expand the last log probs to `(batch_size * beam_size, + # per_node_beam_size)` so that we can add them to the current log + # probs for this timestep. This lets us maintain the log + # probability of each element on the beam. + # shape: (batch_size * beam_size, per_node_beam_size) + expanded_last_logprobs = ( + last_logprobs.unsqueeze(2) + .expand(batch_size, self.beam_size, self.per_node_beam_size) + .reshape(batch_size * self.beam_size, self.per_node_beam_size) + ) + # shape: (batch_size * beam_size, per_node_beam_size) + summed_top_logprobs = top_logprobs + expanded_last_logprobs + + # shape: (batch_size, beam_size * per_node_beam_size) + reshaped_summed = summed_top_logprobs.reshape( + batch_size, self.beam_size * self.per_node_beam_size + ) + # shape: (batch_size, beam_size * per_node_beam_size) + reshaped_predicted_classes = predicted_classes.reshape( + batch_size, self.beam_size * self.per_node_beam_size + ) + # Append the predictions to the current beam. + reshaped_beam = ( + predictions.view(batch_size * self.beam_size, 1, -1) + .repeat(1, self.per_node_beam_size, 1) + .reshape(batch_size, self.beam_size * self.per_node_beam_size, -1) + ) + # batch_size, (beam_size * per_node_beach_size), #token + reshaped_beam = torch.cat([reshaped_beam, reshaped_predicted_classes.unsqueeze(-1)], dim=-1) + + # Keep only the top `beam_size` beam indices. + # shape: (batch_size, beam_size), (batch_size, beam_size) + restricted_beam_logprobs, restricted_beam_indices = reshaped_summed.topk( + self.beam_size + ) + predictions = reshaped_beam.gather( + 1, restricted_beam_indices.unsqueeze(-1).repeat(1,1,reshaped_beam.shape[-1]) + ) + + # shape: (batch_size, beam_size) + last_logprobs = restricted_beam_logprobs + + if not torch.isfinite(last_logprobs).all(): + pass + + # Optionally select best beam and its logprobs. + if only_return_best: + # shape: (batch_size, sequence_length) + predictions = predictions[:, 0, :] + last_logprobs = last_logprobs[:, 0] + num_valid = (predictions != self._eos_index).sum(dim=-1) + num_valid += (predictions == self._eos_index).sum(dim=-1) > 0 + num_valid = num_valid - start_predictions.shape[1] + num_valid = num_valid.clip(min=1) + + last_logprobs = last_logprobs / num_valid + + return predictions, last_logprobs + +class TokenNode(): + def __init__(self): + self.children = defaultdict(TokenNode) + +class TokenTrie(object): + def __init__(self): + self.root = TokenNode() + self.curr = self.root + + @classmethod + def construct(self, all_tokens): + ret = TokenTrie() + for ts in all_tokens: + ret.insert(ts) + return ret + + def insert(self, tokens): + cur = self.root + for t in tokens: + cur = cur.children[t] + + def get_valid(self, tokens): + r = self.root + for t in tokens: + r = r.children.get(t) + if r is None: + return [] + return list(r.children.keys()) + + def reset(self): + self.curr = self.root + + def get_curr_valid(self): + return list(self.curr.children.keys()) + + def move(self, t): + assert t in self.curr.children + self.curr = self.curr.children[t] +