-
Notifications
You must be signed in to change notification settings - Fork 33
/
nlprun.py
executable file
·276 lines (253 loc) · 12.8 KB
/
nlprun.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
#!/u/nlp/anaconda/main/anaconda3/bin/python
from __future__ import print_function
import argparse
import math
import random
import re
import subprocess
import sys
from datetime import datetime
# slurm constants
SBATCH_COMMAND = "sbatch"
SRUN_COMMAND = "srun"
# load machine info
MACHINE_INFO_PATH = "/u/nlp/machine-info"
ALL_MACHINE_NAMES = open(MACHINE_INFO_PATH+"/slurm_machines.txt", "r").read().split("\n")[:-1]
# function for loading machine info from yaml file
mem_line_regex = re.compile(":memtot: ([0-9]+)")
cores_line_regex = re.compile(":cores: ([0-9]+)")
# load info about machines from yaml
def load_machine_info(machine_yaml_file_path):
machine_info = {}
info_lines = open(machine_yaml_file_path, "r").read().split("\n")
for info_line in info_lines:
if mem_line_regex.match(info_line):
machine_info["mem"] = float(mem_line_regex.match(info_line).group(1))/float(1000)
if cores_line_regex.match(info_line):
machine_info["cores"] = float(cores_line_regex.match(info_line).group(1))
return machine_info
# build up machine info dictionary
MACHINE_INFO = {}
for machine_name in ALL_MACHINE_NAMES:
MACHINE_INFO[machine_name] = load_machine_info(MACHINE_INFO_PATH+"/"+machine_name+".yaml")
# load gpu counts
gpu_count_lines = open(MACHINE_INFO_PATH+"/gpu_counts.yaml", "r").read().split("\n")[1:-1]
for (machine_name, gpu_count) in [gc.split(":") for gc in gpu_count_lines]:
MACHINE_INFO[machine_name]["gpu_count"] = gpu_count
# function for mapping nlprun args to slurm args
# this is where specific defaults and policies are generally enforced as well
# e.g. you can't specify a specific machine with --nodelist when submitting to jag-hi
def map_nlprun_args_to_slurm_args(cl_args):
slurm_args = {}
# translate nlprun settings to slurm settings
# determine queue from machine type and priority
queue_to_use = cl_args.queue
# jag is default if no machine name or queue is specified
# if no queue is specified but a john machine is requested, set queue appropriately
if (queue_to_use is None and cl_args.machine_name and cl_args.machine_name[:4] == "john") or queue_to_use == "john":
queue_to_use = "john"
else:
queue_to_use = "jag"
# map "urgent", "high" or "low" to "jag-urgent", "jag-hi" or "jag-lo"
if queue_to_use == "jag":
if cl_args.priority == "urgent":
queue_to_use += "-urgent"
elif cl_args.priority == "high":
queue_to_use += "-hi"
elif cl_args.priority == "standard":
queue_to_use += '-standard'
else:
queue_to_use += "-lo"
# set partition value
slurm_args["partition"] = queue_to_use
# set gpu count to 0 if requesting a john machine
# set gpu count to at least 1 if requesting a jagupard machine
# TO DO: is that an unwise policy ?
if queue_to_use == "john":
cl_args.gpu_count = "0"
elif queue_to_use in ["jag-hi", "jag-urgent", "jag-lo"]:
cl_args.gpu_count = str(max(int(cl_args.gpu_count), 1))
# determine gres setting
gpu_gres_value = "gpu"
if cl_args.gpu_type is not None:
gpu_gres_value += (":"+cl_args.gpu_type)
gpu_gres_value += (":"+cl_args.gpu_count)
# set gres value
slurm_args["gres"] = gpu_gres_value
# block targeting a specific machine if requesting "jag-hi" or "jag-urgent"
if queue_to_use in ["jag-hi"]:
cl_args.machine_name = None
# set machine name
if cl_args.machine_name is not None:
slurm_args["nodelist"] = cl_args.machine_name
# set the exclude list
if cl_args.exclude is not None:
slurm_args["exclude"] = cl_args.exclude
# set cpu and ram
# handle case where cpu count was not specified by user
# None means nothing was specified
# for john queue, just set to 1
# for jagupards try to pick a reasonable default
if queue_to_use == "john" and cl_args.cpu_count is None:
slurm_args["cpus-per-task"] = "1"
elif queue_to_use in ["jag-hi", "jag-urgent", "jag-standard", "jag-lo"] and cl_args.cpu_count is None:
if cl_args.machine_name is None:
# go with 3 cpu cores by default
slurm_args["cpus-per-task"] = "3"
else:
# if a specific machine is requested, allocate percent gpu's requested of resources
total_cores = MACHINE_INFO[cl_args.machine_name]["cores"]
machine_gpu_count = MACHINE_INFO[cl_args.machine_name]["gpu_count"]
percent_of_gpus_requested = float(cl_args.gpu_count)/float(machine_gpu_count)
slurm_args["cpus-per-task"] = str(int(math.floor(percent_of_gpus_requested * total_cores)))
else:
slurm_args["cpus-per-task"] = cl_args.cpu_count
# set ram
# handle case where ram was not specified
if queue_to_use == "john" and cl_args.memory is None:
slurm_args["mem"] = "8G"
elif queue_to_use in ["jag-hi", "jag-urgent", "jag-standard", "jag-lo"] and cl_args.memory is None:
if cl_args.machine_name is None:
# go with 16G of memory by default
slurm_args["mem"] = "16G"
else:
# if a specific machine is requested, allocate percent gpu's requested of resources
total_ram = MACHINE_INFO[cl_args.machine_name]["mem"]
machine_gpu_count = MACHINE_INFO[cl_args.machine_name]["gpu_count"]
percent_of_gpus_requested = float(cl_args.gpu_count)/float(machine_gpu_count)
slurm_args["mem"] = str(int(math.floor(percent_of_gpus_requested * total_ram))) + "G"
else:
slurm_args["mem"] = cl_args.memory
# set job name
slurm_args["job-name"] = cl_args.job_name
# set output file name
if cl_args.output is None:
slurm_args["output"] = cl_args.job_name + ".out"
else:
slurm_args["output"] = cl_args.output
# set time length for job
slurm_args["time"] = cl_args.time
# set output files to append so you can add logging info
slurm_args["open-mode"] = 'append'
# return the slurm args
return slurm_args
# function for creating the body of the sbatch script
def create_sbatch_script_body(cl_args):
# set up commands to run
job_commands = ["'"+command_to_run+"'" for command_to_run in cl_args.commands]
launch_command = "run_as_child_processes "+" ".join(job_commands)
# create sbatch script body
sbatch_script_body = (
"\n# activate your desired anaconda environment\n"
"source activate %s\n"
"\n"
"# cd to working directory\n"
"cd %s\n"
"\n"
"# launch commands\n"
"srun --unbuffered %s"
)
sbatch_script_body = sbatch_script_body % (cl_args.anaconda_environment,
cl_args.working_directory,
launch_command)
return str(sbatch_script_body)
# function that creates entire sbatch script
def create_sbatch_script(cl_args):
sbatch_options = [(k, "#SBATCH --%s=%s" % (k, v)) for k, v in map_nlprun_args_to_slurm_args(cl_args).items()]
sbatch_options.sort()
sbatch_options = [v for (k, v) in sbatch_options]
sbatch_body = create_sbatch_script_body(cl_args)
sbatch_script = "#!/bin/bash\n\n" + "\n".join(sbatch_options) + "\n" + sbatch_body
return sbatch_script
# function that creates srun command
def create_srun_command(cl_args, interactive=False):
srun_options = ["--%s=%s" % (k, v) for k, v in map_nlprun_args_to_slurm_args(cl_args).items()]
# filter out output
srun_options = [srop for srop in srun_options if srop[:8] != "--output"]
srun_options.sort()
if interactive:
srun_options.append('--export=ANACONDA_ENV=%s,ALL' % cl_args.anaconda_environment)
srun_options.append("--pty %s" % cl_args.shell)
srun_command = "srun "+(" ".join(srun_options))
return srun_command
# create a random job id
def create_random_job_id():
# handle Python 2 vs. Python 3
if sys.version_info[0] < 3:
return subprocess.check_output("whoami")[:-1] + "-job-" + str(random.randint(0, 5000000))
else:
return str(subprocess.check_output("whoami")[:-1], encoding="utf8") + "-job-" + str(random.randint(0, 5000000))
if __name__ == '__main__':
# parse arguments from command line
parser = argparse.ArgumentParser()
parser.add_argument('-a', '--anaconda-environment', help='anaconda environment to start up | default: py-3.6.8',
default='py-3.6.8')
parser.add_argument('-c', '--cpu-count', help='number of cpus to claim | default: None', default=None)
parser.add_argument('-d', '--gpu-type', choices=['k40', 'titanx', 'titanxp', 'titanv'],
help='type of gpu: titanv, titanxp, titanx, or k40 | default: None', default=None)
parser.add_argument('-g', '--gpu-count', help='number of gpus to claim | default: 1', default='1')
parser.add_argument('-m', '--machine-name', choices=ALL_MACHINE_NAMES,
help='name of machine to use | default: None', default=None)
parser.add_argument('-n', '--job-name', help='name of job | default: username-job-random_id',
default=create_random_job_id())
parser.add_argument('-o', '--output', help='path to write output of slurm job | default: None', default=None)
parser.add_argument('-p', '--priority', choices=['urgent', 'high', 'standard', 'low'],
help='priority of job: urgent, high or low | default: low', default='standard')
parser.add_argument('-q', '--queue', choices=['jag', 'john'],
help='which machine type to use: jag or john | default: jag', default=None)
parser.add_argument('-r', '--memory', help='amount of memory to request | default: 8G', default=None)
parser.add_argument('-t', '--time',
help='max job run time ; specify minutes or days-hours | default: 10-0 (10 days, 0 hours)',
default='10-0')
parser.add_argument('-w', '--working-directory', help='working directory | default: current directory', default='.')
parser.add_argument('-x', '--exclude', help='comma separated list of machines to not request', default=None)
parser.add_argument('-s', '--shell', default='bash', help='shell to use (only applies to interactive sessions) | default: bash')
parser.add_argument('-H', '--hold', action='store_true', help='Hold job in queue | default: False')
parser.add_argument('commands', nargs='*')
args = parser.parse_args()
# create sbatch script or start interactive session based on args
if len(args.commands) > 0 and args.commands[-1] == "test":
args.commands = args.commands[:-1]
print("###############################")
print("test mode")
print("")
srun_command_for_job = create_srun_command(args)
print("starting interactive session with this command:")
print("")
print(srun_command_for_job)
print("")
sbatch_script_for_job = create_sbatch_script(args)
print("created following sbatch script: ")
print("")
print("###############################")
print(sbatch_script_for_job)
print("")
print("###############################")
elif args.commands == [] or args.commands == ["interactive"]:
srun_command_for_job = create_srun_command(args, interactive=True)
print("starting interactive session with this command:")
print("")
print(srun_command_for_job)
subprocess.call(srun_command_for_job, shell=True)
else:
# create sbatch script and submit if not interactive
sbatch_script_for_job = create_sbatch_script(args)
sbatch_script_pre_message = "created following sbatch script: \n\n###############################\n\n"
sbatch_script_post_message = "\n\n###############################\n\nsubmission to slurm complete!\n\n"
print(sbatch_script_pre_message)
print(sbatch_script_for_job)
output_file_path = map_nlprun_args_to_slurm_args(args)['output']
log_file = open(output_file_path, "w")
log_file.write('slurm submission log: '+str(datetime.now()) + '\n')
log_file.write(sbatch_script_pre_message+sbatch_script_for_job+sbatch_script_post_message)
log_file.close()
p = subprocess.Popen([SBATCH_COMMAND, "--hold" if args.hold else ""], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
slurm_sub_out, slurm_sub_err = p.communicate(input=str.encode(sbatch_script_for_job))
slurm_submission_message = \
'\n###############################\nslurm submission output\n\n' + str(slurm_sub_out, encoding='utf8') + '\n\n' + \
str(slurm_sub_err, encoding='utf8') + '\n###############################\n\n'
log_file = open(output_file_path, "a")
log_file.write(slurm_submission_message)
log_file.close()
print(sbatch_script_post_message)
print(slurm_submission_message)