-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathquadratic-sieve.c
1044 lines (965 loc) · 48.9 KB
/
quadratic-sieve.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Pure C99 Self-Initializing Quadratic Sieve (SIQS) released "as it" into the public domain, without any warranty, express or implied.
int factorization_quadratic_sieve(state * state, int bits) {
// The state contain the request (a number N) and the Quadratic Sieve :
// - must register (ideally prime) factors of N (using the state)
// - must update N (present in the state) accordingly to the registered factors
// - can use resources present in the state (temporary variables + parameters)
// - return a non-zero value if a factor (not necessarily prime) was registered
if (bits < 65 || (220 < bits && !state->params.force))
return 0; // The execution time is doubled for each 10-bit increase.
// On the testing machine 260 bits take 12 minutes, 270-bit take 24 minutes.
qs_sheet qs = {0};
preparation_part_1(&qs, state, bits);
preparation_part_2(&qs);
preparation_part_3(&qs);
qs_parametrize(&qs);
preparation_part_4(&qs);
preparation_part_5(&qs);
preparation_part_6(&qs);
do {
do {
// Keep randomly trying various polynomials.
get_started_iteration(&qs);
iteration_part_1(&qs, &qs.poly.D, &qs.poly.A);
iteration_part_2(&qs, &qs.poly.A, &qs.poly.B);
iteration_part_3(&qs, &qs.poly.A, &qs.poly.B);
for (qs_sm i = 0, addi, *corr; i < qs.poly.gray_max && qs.n_bits != 1; ++i, ++qs.poly.curves) {
addi = iteration_part_4(&qs, i, &corr, &qs.poly.B);
iteration_part_5(&qs, &qs.constants.kN, &qs.poly.B);
iteration_part_6(&qs, &qs.constants.kN, &qs.poly.A, &qs.poly.B, &qs.poly.C);
iteration_part_7(&qs, addi, corr);
iteration_part_8(&qs, addi, corr);
register_relations(&qs, &qs.poly.A, &qs.poly.B, &qs.poly.C);
}
} while (inner_continuation_condition(&qs));
// Analyzes all observations made by the algorithm.
finalization_part_1(&qs, lanczos_block(&qs));
} while (outer_continuation_condition(&qs));
const int res = finalization_part_2(&qs);
free(qs.mem.base);
return res;
}
// Quadratic sieve main condition 1. Continue to search relations or break ?
int inner_continuation_condition(qs_sheet *qs) {
int answer = 1 ;
if (qs->time.tick % 16 == 1 && (qs->time.end || qs->state->params.verbose))
qs->time.now = get_time_ms();
answer &= qs->n_bits != 1 ; // the bit count of N may have changed.
answer &= (qs->relations.length.peak = qs->relations.length.now) < qs->relations.length.needs; // the condition.
answer &= !qs->time.end || qs->time.tick % 16 == 1 || qs->time.now < qs->time.end ;
if (qs->state->params.verbose) {
const double rel_begin = (double) qs->relations.length.now, rel_end = (double) qs->relations.length.needs ;
/*if (qs->time.tick % 16 == 1)
time_remaining(qs);*/
display_progress("Quadratic Sieve", 100. * rel_begin / rel_end); // progress isn't linear.
}
return answer;
}
// Quadratic sieve main condition 2. Return to sieving or stop the algorithm ?
int outer_continuation_condition(qs_sheet *qs) {
int answer = 1 ;
answer &= qs->sieve_again_perms-- > 0; // avoid infinite loop.
answer &= qs->divisors.total_primes < qs->sieve_again_perms; // search prime factors.
answer &= qs->n_bits != 1 ; // the bit count of N isn't 1.
answer &= !qs->time.end || get_time_ms() < qs->time.end ;
if (answer) {
qs_sm new_needs = qs->relations.length.needs;
new_needs += new_needs >> (1 + qs->sieve_again_perms);
DEBUG_CRITICAL("Quadratic Sieve targets %u more relations.\n", new_needs - qs->relations.length.needs);
qs->relations.length.needs = new_needs ;
}
return answer;
}
void qs_parametrize(qs_sheet *qs) {
const qs_sm bits = qs->kn_bits; // N adjusted has at least 115-bit.
qs->kn_bits = (qs_sm) cint_count_bits(qs->state->session.tmp); // kN may be slight larger.
DEBUG_NORMAL("N is a %u-bit number, and kN is a %u-bit number using %u words.\n", (qs_sm) cint_count_bits(&qs->state->session.num), qs->kn_bits, (unsigned)(qs->state->session.tmp->end - qs->state->session.tmp->mem));
DEBUG_NORMAL("Default parameters are to factor a %u-bit number.\n", bits);
qs_md tmp ;
// params as { bits, value } take the extremal value if bits exceed.
static const double param_base_size [][2]= { {135, 1300}, {165, 4200}, {200, 10000}, {260, 20000}, {330, 55000}, {0} };
qs->base.length = (tmp = qs->state->params.qs_base_size) ? tmp : linear_param_resolution(param_base_size, bits);
DEBUG_NORMAL("The factor base will include %u prime numbers.\n", qs->base.length);
static const double param_laziness [][2]= {{150, 95}, {250, 100}, {0} };
// collecting more/fewer relations than recommended (in percentage).
qs->relations.length.needs = qs->base.length * ((tmp = qs->state->params.qs_laziness) ? tmp : linear_param_resolution(param_laziness, bits)) / 100;
DEBUG_NORMAL("The algorithm use the seed %" PRIu64 " and targets %u relations.\n", qs->state->params.rand.custom, qs->relations.length.needs);
static const double param_m_value [][2]= { {120, 1}, {330, 6}, {0} };
qs->m.length = (qs->m.length_half = (qs->state->params.qs_sieve ? qs->state->params.qs_sieve : 31744) * linear_param_resolution(param_m_value, bits)) << 1;
qs->m.cache_size = 95232 ; // algorithm reaches "M length" by steps of "cache size".
static const double param_error [][2]= { {120, 15}, {330, 35}, {0} };
// tolerance for small errors in the smoothness test during relation collection.
qs->error_bits = (tmp = qs->state->params.qs_error_bits) ? tmp : linear_param_resolution(param_error, bits);
static const double param_threshold [][2]= { {120, 60}, {330, 110}, {0} };
qs->threshold.value = (tmp = qs->state->params.qs_threshold) ? tmp : linear_param_resolution(param_threshold, bits);
static const double param_alloc [][2]= { {130, 992}, {140, 1280}, {150, 2176}, {160, 3584}, {170, 7168}, {180, 12288}, {190, 14336}, {190, 14336}, {200, 24576}, {210, 30720}, {220, 40960}, {230, 49152}, {240, 57344}, {250, 67584}, {260, 81920}, {270, 98304}, {280, 114688}, {290, 122880}, {300, 139264}, {310, 163840}, {320, 196608}, {330, 229376}, {0} };
qs->mem.bytes_allocated = (tmp = qs->state->params.qs_alloc_mb) ? tmp << 20 : linear_param_resolution(param_alloc, qs->kn_bits) << 10;
qs->sieve_again_perms = 3; // Sieve again up to 3 times before giving up
// Iterative list
qs->iterative_list[0] = 1; // one
static const double param_first_prime [][2]= { {170, 8}, {210, 12}, {320, 40}, {0} };
qs->iterative_list[1] = linear_param_resolution(param_first_prime, bits); // first
const qs_sm large_base = 5120 < qs->base.length ? 5120 : qs->base.length;
qs->iterative_list[2] = large_base >> 2; // medium
qs->iterative_list[3] = large_base >> 1; // mid
qs->iterative_list[4] = large_base; // sec
DEBUG_NORMAL("Iterative list contain %u, %u, %u and %u.\n", qs->iterative_list[1], qs->iterative_list[2], qs->iterative_list[3], qs->iterative_list[4]);
const qs_md last_prime_in_base = (qs_md) (qs->base.length * 2.5 * log_computation(qs->base.length));
qs->relations.too_large_prime = (tmp = qs->state->params.qs_large_prime) ? tmp : last_prime_in_base << 4;
DEBUG_NORMAL("Primes greater than or equal to %" PRIu64 " are ignored.\n", qs->relations.too_large_prime);
qs->s.values.double_value = (qs->s.values.defined = (qs->s.values.subtract_one = bits / 28) + 1) << 1;
qs->poly.gray_max = 1 << (qs->s.values.defined - 3); // computing the roots of f(x) once for all these polynomials.
DEBUG_NORMAL("Other params include sieve=%u, error_bits=%u, threshold=%u and s=%u.\n", qs->m.length_half, qs->error_bits, qs->threshold.value, qs->s.values.defined);
// The algorithm itself completes its configuration during the last preparation part.
assert(qs->s.values.defined >= 3);
}
// Quadratic sieve parameters (utility, dev configuration)
qs_sm linear_param_resolution(const double v[][2], const qs_sm point) {
qs_sm res, i, j ;
if (v[1][0] == 0)
res = (qs_sm) v[0][1];
else {
for (j = 1; v[j + 1][0] && point > v[j][0]; ++j);
i = j - 1;
if (v[i][0] > point) res = (qs_sm) v[i][1];
else if (v[j][0] < point) res = (qs_sm) v[j][1];
else {
const double a = (v[j][1] - v[i][1]) / (v[j][0] - v[i][0]);
const double b = v[i][1] - a * v[i][0];
res = (qs_sm) (a * point + b);
}
}
return res + (res > 512) * (16 - res % 16) ;
}
// Quadratic sieve source (algorithm)
void preparation_part_1(qs_sheet *qs, state *state, int bits) {
// initializing (until kN is computed) with the caller's resources.
qs->state = state;
DEBUG_NORMAL("\nQuadratic Sieve for %s.\n", simple_cint_string(state, &state->session.num));
qs->sheet = state->session.sheet;
qs->seed = state->params.rand.seed;
qs->n_bits = qs->kn_bits = bits;
if (qs->time.start = get_time_ms(), qs->state->params.timeout)
qs->time.end = qs->time.start + 1000 * qs->state->params.timeout;
}
void preparation_part_2(qs_sheet *qs) {
// Not N, but kN is transparently adjusted by a prime number to measure at least 115-bit.
cint * N = &qs->state->session.num, * kN = qs->state->session.tmp, *ADJUSTOR = kN + 1 ;
static const int prime_generator[] = {
9, 7, 5, 3, 17, 27, 3, 1, 29, 3, 21, 7, 17, 15,
9, 43, 35, 15, 29, 3, 11, 3, 11, 15, 17, 25, 53,
31, 9, 7, 23, 15, 27, 15, 29, 7, 59, 15, 5, 21,
69, 55, 21, 21, 5, 159, 3, 81, 9, 69, 131, 33, 15 };
const qs_sm bits = (qs_sm) qs->n_bits;
if (bits < 115) {
qs->adjustor = (1LLU << (124 - bits)) + prime_generator[115 - bits] ;
simple_int_to_cint(ADJUSTOR, qs->adjustor);
cint_mul(N, ADJUSTOR, kN);
qs->kn_bits = (qs_sm) cint_count_bits(kN);
DEBUG_NORMAL("Input (%u bits) is multiplied by %" PRIu64 " to reach %u bits.\n", bits, qs->adjustor, qs->kn_bits);
} else
qs->adjustor = 1, cint_dup(kN, N);
}
void preparation_part_3(qs_sheet *qs) {
// Frequently select a small multiplier that will outperform a factorization done without a multiplier.
// After it, the algorithm will factor kN instead of N, where k is a small constant named "multiplier".
const qs_sm mul = (qs_sm) qs->state->params.qs_multiplier ;
if (mul){
DEBUG_NORMAL("The multiplier is %u.\n", mul);
qs->multiplier = mul ;
} else {
const size_t total_best = 7;
qs_sm best[total_best];
for (int i = qs->state->params.verbose < 2; i < 2; ++i) {
if (i)
preparation_part_3_default_proposition(qs, best, total_best);
else
preparation_part_3_alternative_proposition(qs, best, total_best);
DEBUG_NORMAL("%s", "Suggested multipliers are [");
for (size_t j = 0; j < total_best - 1; ++j)
DEBUG_NORMAL("%u, ", best[j]);
DEBUG_NORMAL("%u]%s", best[total_best - 1], i ? "" : ".\n");
}
qs->multiplier = *best;
DEBUG_NORMAL(", so use %u.\n", *best);
}
if (qs->multiplier > 1) {
cint *kN = qs->state->session.tmp, *MUL = kN + 1, *N = kN + 2 ;
simple_int_to_cint(MUL, qs->multiplier);
cint_dup(N, kN);
cint_mul(MUL, N, kN);
}
}
static inline void preparation_part_3_default_proposition(qs_sheet *qs, qs_sm *caller_res, const size_t caller_res_len) {
// Choose a multiplier that make the input more favorable for smoothness
// over the future factor base, and lead to faster relation gathering.
struct {
qs_sm mul;
double score;
} res[128] ; // 127 is the greatest multiplier.
cint *N = qs->state->session.tmp, *PRIME = N + 1, *Q = N + 2, *R = N + 3;
const double log_2 = 0.6931471805599453;
const size_t len = sizeof(res) / sizeof(*res) - 1;
for (qs_sm i = 0; i < len ; ++i) {
res[i].mul = i + 1;
res[i].score = -0.5 * log_computation(res[i].mul);
switch (*N->mem * res[i].mul % 8) {
// Special case against 2, the first prime number.
case 3 : case 7 : res[i].score += 0.5 * log_2; break;
case 5 : res[i].score += 1.0 * log_2; break;
case 1 : res[i].score += 3.0 * log_2; break;
}
}
for (qs_sm prime = 3; prime < 312; prime += 2)
if (is_prime_4669913(prime)) {
// Normal case against the odd primes.
simple_int_to_cint(PRIME, prime);
cint_div(qs->sheet, N, PRIME, Q, R);
const qs_sm n_mod_prime = (qs_sm) simple_cint_to_int(R);
const double intake = 2.0 / (prime - 1) * log_computation(prime);
const int kronecker = kronecker_symbol(n_mod_prime, prime);
for (qs_sm i = 0; i < len; ++i)
if (kronecker * kronecker_symbol(res[i].mul, prime) == 1)
res[i].score += intake;
}
// Sort the results.
for (int i = 0; i < len; ++i)
for (int j = 1 + i; j < len; ++j)
if (res[i].score < res[j].score)
res[len] = res[i], res[i] = res[j], res[j] = res[len];
for(int i = 0; i < caller_res_len; ++i)
caller_res[i] = res[i].mul ;
}
static inline void preparation_part_3_alternative_proposition(qs_sheet *qs, qs_sm *caller_res, const size_t caller_res_len) {
// Choose a multiplier that make the input more favorable for smoothness
// over the future factor base, and lead to faster relation gathering.
struct {
qs_sm mul;
double score;
} res[] = {{1, 0}, {2, 0}, {3, 0}, {5, 0}, {6, 0}, {7, 0}, {10, 0}, {11, 0}, {13, 0}, {14, 0}, {15, 0}, {17, 0}, {19, 0}, {21, 0}, {22, 0}, {23, 0}, {26, 0}, {29, 0}, {30, 0}, {31, 0}, {33, 0}, {34, 0}, {35, 0}, {37, 0}, {38, 0}, {39, 0}, {41, 0}, {42, 0}, {43, 0}, {46, 0}, {47, 0}, {51, 0}, {53, 0}, {55, 0}, {57, 0}, {58, 0}, {59, 0}, {61, 0}, {62, 0}, {65, 0}, {66, 0}, {67, 0}, {69, 0}, {70, 0}, {71, 0}, {73, 0}, {79, 0}, {83, 0}, {89, 0}, {97, 0}, {101, 0}, {103, 0}, {107, 0}, {109, 0}, {0, 0}};
cint *N = qs->state->session.tmp, *TMP = N + 1, *Q = N + 2, *R = N + 3;
const double log_2 = 0.6931471805599453;
const size_t len = sizeof(res) / sizeof(*res) - 1;
for (qs_sm i = 0; i < len; ++i) {
res[i].score = -0.5 * log_computation(res[i].mul);
switch (*N->mem * res[i].mul % 8) {
// Special case against 2, the first prime number.
case 3 : case 7 : res[i].score += 0.5 * log_2; break;
case 5 : res[i].score += 1.0 * log_2; break;
case 1 : res[i].score += 3.0 * log_2; break;
}
}
for (qs_sm prime = 3; prime < 504; prime += 2)
if (is_prime_4669913(prime)) {
// Normal case against the odd primes.
simple_int_to_cint(TMP, prime);
cint_div(qs->sheet, N, TMP, Q, R);
const qs_sm n_mod_prime = (qs_sm) simple_cint_to_int(R);
const double intake = log_computation(prime) / (prime - 1);
for (qs_sm i = 0; i < len; ++i) {
const qs_sm kn_mod_prime = n_mod_prime * res[i].mul % prime;
if (kn_mod_prime == 0)
res[i].score += intake;
else if (kronecker_symbol(kn_mod_prime, prime) == 1)
res[i].score += 2.0 * intake;
}
}
// Sort the results.
for (int i = 0; i < len; ++i)
for (int j = 1 + i; j < len; ++j)
if (res[i].score < res[j].score)
res[len] = res[i], res[i] = res[j], res[j] = res[len];
for(int i = 0; i < caller_res_len; ++i)
caller_res[i] = res[i].mul ;
}
void preparation_part_4(qs_sheet *qs) {
void *mem;
mem = qs->mem.base = calloc(1, qs->mem.bytes_allocated);
assert(mem);
// kN was computed into the caller's memory, now the QS has parametrized and allocated
const size_t kn_size = qs->state->session.tmp[0].end - qs->state->session.tmp[0].mem + 1 ;
// the quadratic sieve variables can store at most kN ^ 2 in terms of bits
const size_t vars_size = kn_size << 1 ;
DEBUG_NORMAL("Quadratic Sieve use %u-bit variables for computations.\n", (unsigned)(vars_size * cint_exponent));
const size_t buffers_size = qs->base.length + (qs->iterative_list[1] << 1);
// more relation pointers than "guessed" are available (sieve again feature).
const size_t relations_size = (qs->base.length < qs->relations.length.needs ? qs->relations.length.needs : qs->base.length) * 9 / 4 ;
{
// list of the numbers used by the algorithm
cint * const n[] = {
&qs->vars.N,
// polynomial
&qs->poly.A,
&qs->poly.B,
&qs->poly.C,
&qs->poly.D,
// temporary
&qs->vars.TEMP[0], &qs->vars.TEMP[1], &qs->vars.TEMP[2], &qs->vars.TEMP[3], &qs->vars.TEMP[4],
// "MY" is used to facilitate development controls
&qs->vars.MY[0], &qs->vars.MY[1], &qs->vars.MY[2], &qs->vars.MY[3], &qs->vars.MY[4],
// relations finder
&qs->vars.X,
&qs->vars.KEY,
&qs->vars.VALUE,
&qs->vars.CYCLE,
// a factor of N
&qs->vars.FACTOR,
// constants
&qs->constants.kN,
&qs->constants.ONE,
&qs->constants.M_HALF,
&qs->constants.TOO_LARGE_PRIME,
&qs->constants.MULTIPLIER,
0,
};
for (int i = 0; n[i]; ++i) {
n[i]->mem = n[i]->end = mem_aligned(mem) ;
mem = n[i]->mem + (n[i]->size = vars_size);
}
}
cint_dup(&qs->vars.N, &qs->state->session.num);
cint_dup(&qs->constants.kN, qs->state->session.tmp);
simple_int_to_cint(&qs->constants.ONE, 1);
simple_int_to_cint(&qs->constants.M_HALF, qs->m.length_half);
simple_int_to_cint(&qs->constants.TOO_LARGE_PRIME, qs->relations.too_large_prime);
simple_int_to_cint(&qs->constants.MULTIPLIER, qs->multiplier);
// Allocates "s" rows
qs->s.data = mem_aligned(mem);
mem = mem_aligned(qs->s.data + qs->s.values.defined);
for (qs_sm i = 0; i < qs->s.values.defined; ++i) {
simple_inline_cint(&qs->s.data[i].B_terms, kn_size, &mem); // also "s" more cint
qs->s.data[i].A_inv_double_value_B_terms = mem;
mem = mem_aligned(qs->s.data[i].A_inv_double_value_B_terms + qs->base.length);
}
qs->s.A_indexes = mem_aligned(mem); // the indexes of the prime numbers that compose A
// Allocates "base length" rows
qs->base.data = mem_aligned(qs->s.A_indexes + qs->s.values.double_value);
qs->m.positions[0] = mem_aligned(qs->base.data + qs->base.length);
qs->m.positions[1] = mem_aligned(qs->m.positions[0] + qs->base.length);
qs->m.sieve = mem_aligned(qs->m.positions[1] + qs->base.length);
qs->m.sieve[qs->m.length] = 0xFF ; // the end of the sieve evaluates to "true" under any "truthy" mask.
qs->m.flags = mem_aligned(qs->m.sieve + qs->m.length + sizeof(uint64_t));
// Usage: buffer[0] is zeroed after use, buffer[1] isn't supposed zeroed after use.
qs->buffer[0] = mem_aligned(qs->m.flags + qs->base.length);
qs->buffer[1] = mem_aligned(qs->buffer[0] + buffers_size);
// Other allocations
qs->relations.length.capacity = (qs_sm) relations_size ;
// Lanczos Block has a part of memory, it takes a "lite" snapshot before throwing relations.
qs->lanczos.snapshot = mem_aligned(qs->buffer[1] + buffers_size) ;
qs->relations.data = mem_aligned(qs->lanczos.snapshot + relations_size);
qs->divisors.data = mem_aligned(qs->relations.data + relations_size);
qs->mem.now = mem_aligned(qs->divisors.data + 127);
const qs_sm n_trees = (qs_sm) (sizeof(qs->uniqueness) / sizeof(struct avl_manager));
for (qs_sm i = 0; i < n_trees; ++i) {
// the trees are used to identify duplicates (relations, partials, factors of N)
qs->uniqueness[i].inserter_argument = &qs->mem.now;
qs->uniqueness[i].inserter = &avl_cint_inserter;
qs->uniqueness[i].comparator = (int (*)(const void *, const void *)) &h_cint_compare;
// they use default sign-less comparator.
}
DEBUG_NORMAL("Allocated %u MB of memory with a %u KB structure.\n", qs->mem.bytes_allocated >> 20, (unsigned)((char*)qs->mem.now - (char*)qs->mem.base) >> 10);
}
void preparation_part_5(qs_sheet *qs) {
// Prepare the factor base (a set of small prime numbers used to find smooth numbers).
static const double inv_ln_2 = 1.4426950408889634;
cint *A = qs->vars.TEMP, *B = A + 1, *C = A + 2;
qs_sm i = 0, prime;
// the factor base contain the multiplier if different from 2.
if (qs->multiplier != 2)
qs->base.data[i].size = (qs_sm) (.35 + inv_ln_2 * log_computation(qs->base.data[i].num = qs->multiplier)), ++i;
// then it contains the number 2.
qs->base.data[i].num = 2, qs->base.data[i].size = 1;
qs->base.data[i].sqrt_kN_mod_prime = *qs->constants.kN.mem % 8 == 1 || *qs->constants.kN.mem % 8 == 7, ++i;
// then the prime numbers for which kN is a quadratic residue modulo.
for (prime = 3; i < qs->base.length; prime += 2)
if (is_prime_4669913(prime)) {
simple_int_to_cint(A, prime);
cint_div(qs->sheet, &qs->constants.kN, A, B, C);
const qs_sm kn_mod_prime = (qs_sm) simple_cint_to_int(C);
qs->base.data[i].sqrt_kN_mod_prime = tonelli_shanks(kn_mod_prime, prime);
// Update: if a prime is a prime factor of the multiplier, it's included too.
if (qs->base.data[i].sqrt_kN_mod_prime) {
qs->base.data[i].num = prime;
qs->base.data[i].size = (qs_sm) (.35 + inv_ln_2 * log_computation(prime)), ++i;
}
}
// 2.5 * (base size) * ln(base size) is close to the largest prime number in factor base.
qs->base.largest = qs->base.data[i - 1].num ;
DEBUG_NORMAL("The largest prime in the factor base is %u.\n", qs->base.largest);
}
void preparation_part_6(qs_sheet *qs) {
// completes the configuration by the algorithm itself.
// computes D : a template for the A polynomial coefficient.
qs_sm i, min, span;
const qs_sm s = qs->s.values.defined ;
qs->poly.span.half = (span = qs->base.length / (s * (s + s))) >> 1;
cint *kN = qs->vars.TEMP, *TMP = kN + 1, *R = kN + 2;
cint_dup(kN, &qs->constants.kN);
cint_left_shifti(kN, 1);
cint_sqrt(qs->sheet, kN, TMP, R);
cint_div(qs->sheet, TMP, &qs->constants.M_HALF, &qs->poly.D, R);
qs->poly.d_bits = (qs_sm) cint_count_bits(&qs->poly.D);
cint_nth_root(qs->sheet, &qs->poly.D, s, R); // use the s-th root of D.
const qs_sm root = (qs_sm) simple_cint_to_int(R) ;
for (i = 1; assert(i < qs->base.length), qs->base.data[i].num <= root; ++i);
assert(i >= span);
for (min = i - qs->poly.span.half, i *= i; i / min < span + min; --min);
qs->poly.span.x_1 = min ;
qs->poly.span.x_2 = min + qs->poly.span.half ;
qs->poly.span.x_3 = qs->poly.span.x_2 * qs->poly.span.x_2 ;
assert(qs->poly.span.x_1 < qs->base.length);
assert(qs->poly.span.x_2 < qs->base.length);
}
void get_started_iteration(qs_sheet *qs) {
if (qs->lanczos.snapshot[0].relation) {
// the operation is fast, it shouldn't happen in average case.
// it restores the relations reduced by the linear algebra step that failed.
qs_sm i ;
for(i = 0; qs->lanczos.snapshot[i].relation; ++i) {
qs->relations.data[i] = qs->lanczos.snapshot[i].relation;
qs->relations.data[i]->Y.length = qs->lanczos.snapshot[i].y_length;
qs->lanczos.snapshot[i].relation = 0 ;
}
assert(qs->relations.length.prev == i) ; // When the matrix is reduced, the original (prev) length is stored.
DEBUG_NORMAL("Restore the relations previously reduced for the linear algebra to a size of %u.\n", i);
qs->relations.length.now = i ;
}
// Increase the tick value in each iteration of the algorithm.
if (++qs->time.tick % 32 == 0) {
if (qs->relations.length.prev == qs->relations.length.now) {
// The algorithm notices that no relations accumulates, and reacts to unblock the situation.
// Common issues include insufficient smooth relations, incorrect bounds for the factor base.
DEBUG_NORMAL("Relation counter remained %u, no relation accumulates, D is randomized.\n", qs->relations.length.now);
cint_random_bits(&qs->poly.D, qs->poly.d_bits, &qs->seed);
*qs->poly.D.mem |= 1; // Shouldn't happen, D becomes a randomized odd number.
}
qs->relations.length.prev = qs->relations.length.now;
}
}
void iteration_part_1(qs_sheet * qs, const cint * D, cint * A) {
qs_sm n_tries = 0 ; // several attempts may rarely be necessary.
retry:;
// A is a "random" product of "s" distinct prime numbers from the factor base.
cint * X = qs->vars.TEMP, * Y = X + 1, *TMP, *_A = A ;
qs_sm a, b, i = 0, j;
if (qs->s.values.defined & 1) TMP = A, A = X, X = TMP ;
// swap pointers so the last multiplication completes inside the A variable.
simple_int_to_cint(A, 1);
for (a = 0, b = qs->poly.span.x_3; a < qs->s.values.subtract_one; ++a) {
if (a & 1) i = b / (i + qs->poly.span.x_1) - (qs_sm) xor_rand(&qs->seed, 0, 9);
else i = qs->poly.span.x_2 + (qs_sm) xor_rand(&qs->seed, 0, qs->poly.span.half);
for (j = 0; j < a; j = i == qs->s.data[j].prime_index ? ++i, 0 : j + 1);
qs->s.data[a].prime_index = i; // the selected divisor of A wasn't already present in the product.
simple_int_to_cint(Y, qs->base.data[i].num);
cint_mul(A, Y, X), TMP = A, A = X, X = TMP;
}
// a prime number from the factor base completes A, which must be close to D.
cint_div(qs->sheet, D, A, X, Y);
const qs_sm d_over_a = (qs_sm) simple_cint_to_int(X);
for (i = qs->base.data[0].num != 2 ; qs->base.data[i].num <= d_over_a; ++i);
for (j = 0; j < qs->s.values.subtract_one; j = i == qs->s.data[j].prime_index ? ++i, 0 : j + 1);
if (qs->base.length <= i) {
DEBUG_CRITICAL("Quadratic Sieve inconsistency, %u isn't less than the factor base size.\n", i);
assert(++n_tries <= 9);
A = _A ; // shouldn't happen.
goto retry;
}
qs->s.data[qs->s.values.subtract_one].prime_index = i ;
simple_int_to_cint(Y, qs->base.data[i].num);
cint_mul(A, Y, X); // generated A values should always be distinct, "A" no longer change.
assert(X == &qs->poly.A);
}
void iteration_part_2(qs_sheet * qs, const cint * A, cint * B) {
cint *X = qs->vars.TEMP, *PRIME = X + 1, *Y = X + 2, *R = X + 3;
qs_sm i, *pen = qs->s.A_indexes;
cint_erase(B);
for (i = 0; i < qs->s.values.defined; ++i) {
const qs_sm idx = qs->s.data[i].prime_index, prime = qs->base.data[idx].num;
if (idx >= qs->iterative_list[3])
qs->iterative_list[3] = 8 + idx - idx % 8 ;
// write [index of prime number, power] of the A factors into buffer.
*pen++ = qs->s.data[i].prime_index, *pen++ = 1;
qs->s.data[i].prime_squared = (qs_md)prime * (qs_md)prime ;
simple_int_to_cint(PRIME, prime);
cint_div(qs->sheet, A, PRIME, X, R), assert(R->mem == R->end); // div exact.
cint_div(qs->sheet, X, PRIME, Y, R);
qs->s.data[i].A_over_prime_mod_prime = (qs_sm) simple_cint_to_int(R);
qs_md x = modular_inverse(qs->s.data[i].A_over_prime_mod_prime, prime);
x = x * qs->base.data[qs->s.data[i].prime_index].sqrt_kN_mod_prime % prime;
simple_int_to_cint(X, x > prime >> 1 ? prime - x : x);
cint_mul(A, X, Y);
cint_div(qs->sheet, Y, PRIME, &qs->s.data[i].B_terms, R), assert(R->mem == R->end); // div exact.
cint_addi(B, &qs->s.data[i].B_terms);
}
}
void iteration_part_3(qs_sheet * qs, const cint * A, const cint * B) {
cint *Q = qs->vars.TEMP, *R = Q + 1, *PRIME = Q + 2;
qs_md i, j, x, y;
for (i = 0; i < qs->base.length; ++i) {
// prepare the "roots" and "A_inv_double_value_B_terms". The algorithm will
// fill 2 ** (s - 3) sieves by using these values and adding "prime sizes".
const qs_sm prime = qs->base.data[i].num;
simple_int_to_cint(PRIME, prime);
cint_div(qs->sheet, A, PRIME, Q, R);
const qs_sm a_mod_prime = (qs_sm) simple_cint_to_int(R) ;
cint_div(qs->sheet, B, PRIME, Q, R) ;
const qs_sm b_mod_prime = (qs_sm) simple_cint_to_int(R) ;
const qs_sm a_inv_double_value = modular_inverse(a_mod_prime, prime) << 1 ;
// Arithmetic shifts "<<" and ">>" performs multiplication or division by powers of two.
x = y = prime;
x += qs->base.data[i].sqrt_kN_mod_prime;
y -= qs->base.data[i].sqrt_kN_mod_prime;
x -= b_mod_prime;
x *= a_inv_double_value >> 1;
y *= a_inv_double_value ;
x += qs->m.length_half ;
x %= prime ;
y += x ;
y %= prime ;
qs->base.data[i].root[0] = (qs_sm) x ;
qs->base.data[i].root[1] = (qs_sm) y ;
for (j = 0; j < qs->s.values.defined; ++j) {
// compute the roots update value for all "s".
cint_div(qs->sheet, &qs->s.data[j].B_terms, PRIME, Q, R);
const qs_md b_term = simple_cint_to_int(R);
qs->s.data[j].A_inv_double_value_B_terms[i] = (qs_sm)(a_inv_double_value * b_term % prime);
}
}
// The next function operates over "B_terms" multiplied by 2.
for (i = 0; i < qs->s.values.defined; cint_left_shifti(&qs->s.data[i++].B_terms, 1));
}
qs_sm iteration_part_4(const qs_sheet * qs, const qs_sm nth_curve, qs_sm ** corr, cint *B) {
qs_sm i, gray_act; // the Gray code in "nth_curve" indicates which "B_term" to consider.
for (i = 0; nth_curve >> i & 1; ++i);
if (gray_act = (nth_curve >> i & 2) != 0, gray_act)
cint_addi(B, &qs->s.data[i].B_terms) ;
else // and which action to perform.
cint_subi(B, &qs->s.data[i].B_terms) ;
*corr = qs->s.data[i].A_inv_double_value_B_terms;
return gray_act; // B values generated here should always be distinct.
}
void iteration_part_5(qs_sheet * qs, const cint * kN, const cint * B) {
cint *P = qs->vars.TEMP, *Q = P + 1, *R_kN = P + 2, *R_B = P + 3, *TMP = P + 4;
for (qs_sm a = 0; a < qs->s.values.defined; ++a) {
const qs_sm i = qs->s.data[a].prime_index;
const qs_tmp prime = qs->base.data[i].num ;
simple_int_to_cint(P, qs->s.data[a].prime_squared);
cint_div(qs->sheet, B, P, Q, R_B);
cint_div(qs->sheet, kN, P, Q, R_kN);
if (B->nat < 0) cint_addi(R_B, P); // if B is negative.
const qs_tmp rem_b = (qs_tmp) simple_cint_to_int(R_B);
const qs_tmp rem_kn = (qs_tmp) simple_cint_to_int(R_kN);
qs_tmp s ; // both remainders are modulo the prime number squared.
if (rem_b < 0xb504f334) {
// the multiplication is straightforward.
s = rem_b * rem_b - rem_kn;
s /= prime ;
} else {
// the common multiplication would overflow.
cint_mul(R_B, R_B, TMP);
cint_subi(TMP, R_kN);
simple_int_to_cint(P, (qs_md) prime);
cint_div(qs->sheet, TMP, P, Q, R_B);
s = (qs_tmp) simple_cint_to_int(Q);
if (Q->nat < 0) s = -s ;
}
//
qs_tmp bezout = (rem_b % prime) * (qs_tmp) qs->s.data[a].A_over_prime_mod_prime ;
bezout = (qs_tmp) modular_inverse((qs_sm) (bezout % prime), (qs_sm) prime);
//
s = (qs_tmp) qs->m.length_half - s * bezout ;
s %= prime ;
s += (s < 0) * prime ;
qs->base.data[i].root[0] = (qs_sm) s;
qs->base.data[i].root[1] = (qs_sm) -1;
}
}
void iteration_part_6(qs_sheet *qs, const cint *kN, const cint *A, const cint *B, cint *C) {
cint *TMP = qs->vars.TEMP, *R = TMP + 1;
cint_mul(B, B, TMP); // (B * B) % A = kN % A
cint_subi(TMP, kN); // C = (B * B - kN) / A
cint_div(qs->sheet, TMP, A, C, R), assert(R->mem == R->end); // div exact.
}
void iteration_part_7(qs_sheet * qs, const qs_sm gray_addi, const qs_sm * restrict corr) {
// Sieve for larger prime numbers.
memset(qs->m.sieve, 0, qs->m.length * sizeof(*qs->m.sieve));
memset(qs->m.flags, 0, qs->base.length * sizeof(*qs->m.flags));
uint8_t * restrict end = qs->m.sieve + qs->m.length, *p_0, *p_1;
for(qs_sm i = qs->iterative_list[3], j = qs->iterative_list[4]; i < j; ++i) {
const qs_sm prime = qs->base.data[i].num, size = qs->base.data[i].size, co = gray_addi ? prime - corr[i] : corr[i];
qs->base.data[i].root[0] += co; if (qs->base.data[i].root[0] >= prime) qs->base.data[i].root[0] -= prime;
qs->base.data[i].root[1] += co; if (qs->base.data[i].root[1] >= prime) qs->base.data[i].root[1] -= prime;
p_0 = qs->m.sieve + qs->base.data[i].root[0];
p_1 = qs->m.sieve + qs->base.data[i].root[1];
for (; end > p_0 && end > p_1;)
*p_0 += size, p_0 += prime, *p_1 += size, p_1 += prime;
*p_0 += (end > p_0) * size, *p_1 += (end > p_1) * size;
}
for(qs_sm i = qs->iterative_list[4], j = qs->base.length; i < j; ++i){
const qs_sm prime = qs->base.data[i].num, size = qs->base.data[i].size, co = gray_addi ? prime - corr[i] : corr[i] ;
qs->base.data[i].root[0] += co; if (qs->base.data[i].root[0] >= prime) qs->base.data[i].root[0] -= prime;
qs->base.data[i].root[1] += co; if (qs->base.data[i].root[1] >= prime) qs->base.data[i].root[1] -= prime;
for(p_0 = qs->m.sieve + qs->base.data[i].root[0]; end > p_0; qs->m.flags[i] |= 1 << ((p_0 - qs->m.sieve) & 7), *p_0 += size, p_0 += prime);
for(p_1 = qs->m.sieve + qs->base.data[i].root[1]; end > p_1; qs->m.flags[i] |= 1 << ((p_1 - qs->m.sieve) & 7), *p_1 += size, p_1 += prime);
}
}
void iteration_part_8(qs_sheet * qs, const qs_sm gray_addi, const qs_sm * corr) {
// Sieving means taking an interval [−M/2, +M/2] and determining for
// which X in [−M/2, +M/2] a given prime number divides AX^2 + 2BX + C.
uint8_t * chunk_begin = qs->m.sieve, *chunk_end = chunk_begin;
uint8_t * sieve_end = chunk_begin + qs->m.length ;
qs_sm *buffer = qs->buffer[0], walk_idx, * walk = buffer;
// Since the previous function, the check is performed for the prime numbers of the factor base.
for(qs_sm i = 0; i < qs->iterative_list[3]; ++i)
if (qs->base.data[i].root[1] != (qs_sm) -1) {
*walk++ = i ; // the current prime number isn't a factor of A.
const qs_sm prime = qs->base.data[i].num, co = gray_addi ? prime - corr[i] : corr[i] ;
qs->base.data[i].root[0] += co; if (qs->base.data[i].root[0] >= prime) qs->base.data[i].root[0] -= prime;
qs->base.data[i].root[1] += co; if (qs->base.data[i].root[1] >= prime) qs->base.data[i].root[1] -= prime;
qs->m.positions[0][i] = chunk_begin + qs->base.data[i].root[0];
qs->m.positions[1][i] = chunk_begin + qs->base.data[i].root[1];
}
for(walk_idx = 0; buffer[walk_idx] < qs->iterative_list[1]; ++walk_idx);
do{ // iterates step by step until the entire sieve is filled.
walk = buffer + walk_idx ;
chunk_end = chunk_end + qs->m.cache_size < sieve_end ? chunk_end + qs->m.cache_size : sieve_end;
do{
const qs_sm size = qs->base.data[*walk].size, prime = qs->base.data[*walk].num, times = 4 >> (*walk > qs->iterative_list[2]) ;
uint8_t ** const p_0 = qs->m.positions[0] + *walk, ** const p_1 = qs->m.positions[1] + *walk;
const qs_tmp diff = *p_1 - *p_0 ;
for(const uint8_t * const bound = chunk_end - prime * times; bound > *p_0;)
for(qs_sm i = 0; i < times; ++i)
**p_0 += size, *(*p_0 + diff) += size, *p_0 += prime;
for(; *p_0 < chunk_end && *p_0 + diff < chunk_end;)
**p_0 += size, *(*p_0 + diff) += size, *p_0 += prime;
*p_1 = *p_0 + diff ;
if (*p_0 < chunk_end) **p_0 += size, *p_0 += prime;
if (*p_1 < chunk_end) **p_1 += size, *p_1 += prime;
} while(*++walk);
} while(chunk_begin = chunk_end, chunk_begin < sieve_end);
memset(qs->buffer[0], 0, (walk - qs->buffer[0]) * sizeof(*walk));
}
int qs_register_divisor(qs_sheet *qs) {
// Register a new divisor of N, and update N when a prime factor is discovered.
// Return -1 when the factorization is completed.
int res = 0, pow;
cint *F = &qs->vars.FACTOR, *Q = qs->state->session.tmp + 3, *R = Q + 1;
if (h_cint_compare(F, &qs->constants.ONE) > 0 && h_cint_compare(F, &qs->vars.N) < 0) {
F->nat = 1; // Absolute value ensure this number is greater than 1 and lower than N.
struct avl_node * node ;
next:
if (node = avl_at(&qs->uniqueness[2], F), qs->uniqueness[2].affected) {
// This new divisor of N wasn't present in the AVL tree.
if (++res == 1)
DEBUG_MATH("- New divisor %s shown.\n", simple_cint_string(qs->state, F));
else
DEBUG_MATH(" - So let's verify %s.\n", simple_cint_string(qs->state, F));
if (cint_is_prime(qs->sheet, F, -1)) {
pow = (int) cint_remove(qs->sheet, &qs->vars.N, F);
assert(pow);
manager_add_factor(qs->state, F, pow, 1);
++qs->divisors.total_primes;
qs->n_bits = (qs_sm) cint_count_bits(&qs->vars.N);
if (qs->n_bits == 1) {
DEBUG_MATH("%s", " - The factorization is completed.\n");
res = -1;
} else {
cint_dup(F, &qs->vars.N);
// 200-bit RSA take about 10,000,000+ "duplications".
DEBUG_MATH(" - This prime number reduces N to %u-bit.\n", qs->n_bits);
goto next;
}
} else if ((pow = factorization_any_root_checker(qs->state, F, Q, R))) {
cint_dup(F, Q);
DEBUG_MATH(" - Express it using a power of %d.\n", pow);
goto next;
} else if (cint_div(qs->sheet, &qs->vars.N, F, Q, R), cint_is_prime(qs->sheet, Q, -1)) {
cint_dup(F, Q);
qs->divisors.data[qs->divisors.length++] = node->key;
DEBUG_MATH("%s", " - Just divide N by this number.\n");
goto next;
} else {
for (qs_sm i = 0; i < qs->divisors.length; ++i) {
cint_gcd(qs->sheet, F, qs->divisors.data[i], Q);
if (cint_is_prime(qs->sheet, Q, -1)) {
cint_dup(F, Q);
DEBUG_MATH(" - Perform GCD with the known divisor%s.\n", 1 < qs->divisors.length ? "s" : "");
goto next;
}
}
// Simply register a known divisor of N.
qs->divisors.data[qs->divisors.length++] = node->key;
DEBUG_MATH("%s", " - Store this divisor for further use.\n");
}
}
}
return res;
}
void register_relations(qs_sheet * qs, const cint * A, const cint * B, const cint * C) {
cint * TMP = qs->vars.TEMP, * K = &qs->vars.KEY, * V = &qs->vars.VALUE ;
qs_sm m_idx, idx, mod;
// iterates the values of X in [-M/2, +M/2].
for (m_idx = 0; m_idx < qs->m.length; ++m_idx)
if (qs->m.sieve[m_idx] >= qs->threshold.value) {
// over the threshold, compute f(X) and check candidate for smoothness.
simple_int_to_cint(&qs->vars.X, m_idx);
cint_subi(&qs->vars.X, &qs->constants.M_HALF); // X = "current index" - M/2
cint_mul(A, &qs->vars.X, TMP); // TMP = AX
cint_addi(TMP, B); // TMP = AX + B
cint_dup(K, TMP); // Key = copy of AX + B
cint_addi(TMP, B); // TMP = AX + 2B
cint_mul(TMP, &qs->vars.X, V); // V = AX^2 + 2BX
cint_addi(V, C); // Value = f(X) = AX^2 + 2BX + C
// it should hold that kN = (Key * Key) - (A * Value)
V->nat = 1 ; // absolute value
qs_sm target_bits = (qs_sm) cint_count_bits(V) - qs->error_bits;
qs_sm removed_bits = 0, * restrict pen = qs->buffer[1];
// writes the pairs [index of the prime number, power found in V].
if (qs->base.data[0].num != 1) {
simple_int_to_cint(TMP, qs->base.data[0].num);
*pen++ = 0; // remove powers of the multiplier.
*pen = (qs_sm) cint_remove(qs->sheet, V, TMP);
if (*pen) removed_bits += *pen++ * qs->base.data[0].size; else --pen;
}
for (idx = 1; idx < qs->iterative_list[1]; ++idx)
if (qs->base.data[idx].root[1] == (qs_sm) -1 || (mod = m_idx % qs->base.data[idx].num, mod == qs->base.data[idx].root[0] || mod == qs->base.data[idx].root[1])) {
simple_int_to_cint(TMP, qs->base.data[idx].num);
// for a given prime number of the factor base, "remove" returns
// the numbers of powers that was present in V, and V is updated.
*pen++ = idx;
*pen = (qs_sm) cint_remove(qs->sheet, V, TMP);
if (*pen) removed_bits += *pen++ * qs->base.data[idx].size; else --pen;
}
if (removed_bits + qs->m.sieve[m_idx] >= target_bits) {
// there is a chance to register a new relation.
for (removed_bits = 0, target_bits = qs->m.sieve[m_idx]; idx < qs->iterative_list[4] && removed_bits < target_bits; ++idx)
if (qs->base.data[idx].root[1] == (qs_sm) -1 || (mod = m_idx % qs->base.data[idx].num, mod == qs->base.data[idx].root[0] || mod == qs->base.data[idx].root[1])) {
simple_int_to_cint(TMP, qs->base.data[idx].num);
*pen++ = idx;
*pen = (qs_sm) cint_remove(qs->sheet, V, TMP);
if (*pen) removed_bits += *pen++ * qs->base.data[idx].size; else --pen;
}
for (const uint8_t mask = 1 << (m_idx & 7); idx < qs->base.length && removed_bits < target_bits; ++idx)
if (qs->m.flags[idx] & mask)
if (mod = m_idx % qs->base.data[idx].num, mod == qs->base.data[idx].root[0] || mod == qs->base.data[idx].root[1]) {
simple_int_to_cint(TMP, qs->base.data[idx].num);
*pen++ = idx;
*pen = (qs_sm) cint_remove(qs->sheet, V, TMP);
if (*pen) removed_bits += *pen++ * qs->base.data[idx].size; else --pen;
}
const qs_sm * restrict const prime_indexes_and_powers[4] = {
qs->s.A_indexes, // really factoring A * f(X), commit outstanding A factors.
qs->s.A_indexes + qs->s.values.double_value,
qs->buffer[1],
pen,
};
if (h_cint_compare(V, &qs->constants.ONE) == 0)
register_regular_relation(qs, K, prime_indexes_and_powers);
else if (154 < qs->kn_bits && h_cint_compare(V, &qs->constants.TOO_LARGE_PRIME) < 0)
// Store it until another partial share the same large prime.
register_partial_relation(qs, K, V, prime_indexes_and_powers);
}
}
}
void register_regular_relation(qs_sheet * qs, const cint * KEY, const qs_sm * const restrict args[4]) {
struct avl_node *node = avl_at(&qs->uniqueness[0], KEY);
if (node->value)
return; // duplicates at this stage are ignored.
struct qs_relation * rel = qs->mem.now;
qs_sm i, j ;
qs->mem.now = rel + 1 ; // a relation must be swappable for Lanczos Block reducing.
rel->X = node->key; // constant X is stored by the node key.
rel->Y.data = qs->mem.now; // Y data length only decreases.
const size_t y_length = (args[1] - args[0] + args[3] - args[2]) >> 1 ;
rel->axis.Z.data = rel->Y.data + y_length; // writes Z ahead.
for (i = 0; i < 4;) {
// processes the given column arrays.
const qs_sm * restrict idx = args[i++], * restrict const end_index = args[i++];
for (; idx < end_index; idx += 2) {
const qs_sm power = *(idx + 1) ;
if (power & 1) {
// remove from Y the indexes of the prime numbers that are already listed (factors of A).
for (j = 0; j < rel->Y.length && rel->Y.data[j] != *idx; ++j);
if (j == rel->Y.length) // add, the index wasn't present.
rel->Y.data[rel->Y.length++] = *idx;
else // or remove.
memmove(rel->Y.data + j, rel->Y.data + j + 1, (--rel->Y.length - j) * sizeof(*rel->Y.data));
}
for (j = 0; j < power; ++j)
rel->axis.Z.data[rel->axis.Z.length++] = *idx;
}
}
qs->mem.now = rel->axis.Z.data + rel->axis.Z.length; // Z length is known.
int verified = 0 ;
if (rel->Y.length > qs->s.values.defined) {
// it often passes.
cint *A = qs->vars.TEMP, *B = A + 1;
simple_int_to_cint(A, 1);
for (j = 0; j < rel->axis.Z.length; ++j) {
simple_int_to_cint(B, qs->base.data[rel->axis.Z.data[j]].num);
cint_mul_modi(qs->sheet, A, B, &qs->constants.kN);
}
cint_mul_mod(qs->sheet, rel->X, rel->X, &qs->constants.kN, B);
verified = !cint_compare(A, B) || (cint_addi(A, B), !cint_compare(A, &qs->constants.kN));
}
if (verified){
node->value = qs->relations.data[qs->relations.length.now] = rel;
qs->mem.now = rel->axis.Z.data + rel->axis.Z.length;
rel->id = ++qs->relations.length.now; // Keep the relation
} else {
DEBUG_NORMAL("Discard the relation at index %u.\n", qs->relations.length.now);
char * open = (char*) rel, * close = qs->mem.now ;
qs->mem.now = memset(open, 0, close - open); // Throw
}
}
void register_partial_relation(qs_sheet * qs, const cint * KEY, const cint * VALUE, const qs_sm * const restrict args[4]) {
// searches 2 different KEY sharing the same VALUE.
struct avl_node *node = avl_at(&qs->uniqueness[1], VALUE);
struct qs_relation *old, *new;
cint * BEZOUT = 0;
old = node->value;
if (old) {
if (old->X == 0) return; // the value is already marked as "ignored".
if (old->axis.next) return; // accepting all "next" without caring reduce the chance.
for (; old && h_cint_compare(KEY, old->X); old = old->axis.next);
if (old) return; // same KEY already registered.
old = node->value;
if (old->axis.next == 0) {
// there is an "old" using the same VALUE, and it has no "next" yet.
cint *A = qs->vars.TEMP, *B = A + 1;
if (qs->multiplier != 1)
if (cint_gcd(qs->sheet, VALUE, &qs->constants.MULTIPLIER, A), cint_compare_char(A, 1)){
old->X = 0; // VALUE shouldn't be related so close to the multiplier.
return;
}
// so compute BEZOUT.
cint_modular_inverse(qs->sheet, VALUE, &qs->constants.kN, A);
if (A->mem == A->end) {
old->X = 0; // no solution to the linear congruence.
cint_gcd(qs->sheet, VALUE, &qs->constants.kN, &qs->vars.FACTOR);
cint_div(qs->sheet, &qs->vars.N, &qs->vars.FACTOR, A, B);
if (B->mem == B->end) // found a small factor of N ?
qs_register_divisor(qs);
return; // nothing.
} else
BEZOUT = A;
}
}
new = mem_aligned(qs->mem.now);
qs->mem.now = new + 1;
new->X = qs->mem.now;
if (BEZOUT) {
// BEZOUT is stored directly after the new X, like in an array.
qs->mem.now = new->X + 2;
simple_dup_cint(new->X, KEY, &qs->mem.now);
simple_dup_cint(new->X + 1, BEZOUT, &qs->mem.now);
// The 2nd newcomer become the root of the linked list.
new->axis.next = old, node->value = new = old = new;
} else {
// All but the 2nd have no special treatment.
qs->mem.now = new->X + 1; // they come at the end of the linked list.
simple_dup_cint(new->X, KEY, &qs->mem.now);
if (old) {
for (; old->axis.next; old = old->axis.next);
old->axis.next = new, old = node->value;
} else node->value = new;
}
// data buffered isn't persistent, it may be needed, so it's copied.
qs_sm * data = new->Y.data = mem_aligned(qs->mem.now);
new->Y.length = (qs_sm) (args[1] - args[0]);
memcpy(data, args[0], new->Y.length * sizeof(*data));
memcpy(data + new->Y.length, args[2], (args[3] - args[2]) * sizeof(*data));
new->Y.length += (qs_sm) (args[3] - args[2]);
qs->mem.now = new->Y.data + new->Y.length;
if (old) {
BEZOUT = old->X + 1 ; // the modular inverse was stored here.
cint_mul_mod(qs->sheet, new->X, BEZOUT, &qs->constants.kN, &qs->vars.CYCLE);
do {
if (old != new) {
// combines, it registers a regular relation using the 2 buffers.
cint_mul_mod(qs->sheet, &qs->vars.CYCLE, old->X, &qs->constants.kN, &qs->vars.KEY);
qs_sm * restrict begin = qs->buffer[0], * restrict pen = begin;
data = memset(qs->buffer[1], 0, qs->base.length * sizeof(*data));
for (qs_sm i = 0; i < new->Y.length; i += 2)
data[new->Y.data[i]] += new->Y.data[i + 1];
for (qs_sm i = 0; i < old->Y.length; i += 2)
data[old->Y.data[i]] += old->Y.data[i + 1];
for (qs_sm i = 0; i < qs->base.length; ++i)
if (data[i]) // writes [index of the prime number, power]
*pen++ = i, *pen++ = data[i];
args = (const qs_sm * restrict const[4]){ begin, pen, 0, 0, };
register_regular_relation(qs, &qs->vars.KEY, args);
++qs->relations.length.by_partial;
memset(begin, 0, (char *) pen - (char *) begin); // zeroed.
}
} while ((old = old->axis.next));
// the linked list can handle 2+ entries, but their more complex combinations isn't implemented.
}
}
void finalization_part_1(qs_sheet * qs, const uint64_t * restrict const lanczos_answer) {
const uint64_t mask = *lanczos_answer, * restrict null_rows = lanczos_answer + 1;
// Lanczos "linear algebra" answer is simply "mask followed by null_rows", with read-only.
if (mask == 0 || null_rows == 0)
return;
cint *X = qs->vars.TEMP, *Y = X + 1, *TMP = X + 2, *POW = X + 3;
qs_sm * restrict power_of_primes;
for(qs_sm row = 0; row < 64 && qs->n_bits != 1; ++row)
if (mask >> row & 1){
// use the Fermat's (1607 - 1665) method to compute a factorization of N.
simple_int_to_cint(X, 1), simple_int_to_cint(TMP, 1), simple_int_to_cint(Y, 1);
power_of_primes = memset(qs->buffer[1], 0, qs->base.length * sizeof(*power_of_primes));
for (qs_sm i = 0; i < qs->relations.length.now; ++i)
if (null_rows[i] >> row & 1) {
const struct qs_relation * restrict const rel = qs->relations.data[i];
// The algorithm must retrieve the "X" and "Z" relation fields
// related to the "Y" field initially submitted to Lanczos Block.
cint_mul_modi(qs->sheet, X, rel->X, &qs->vars.N);
for (qs_sm j = 0; j < rel->axis.Z.length; ++j)
++power_of_primes[rel->axis.Z.data[j]];
}
for (qs_sm i = 0; i < qs->base.length; ++i)
if (power_of_primes[i]){
// powers are even ... square root ...
simple_int_to_cint(TMP, qs->base.data[i].num);
simple_int_to_cint(POW, power_of_primes[i] >> 1);
cint_pow_modi(qs->sheet, TMP, POW, &qs->vars.N);