-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmanager.c
747 lines (699 loc) · 30.4 KB
/
manager.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
void print_help(const char *path) {
printf("=== Factorization software using Quadratic Sieve ===\n");
printf("\n");
printf("This software is released \"as it is\" into the public domain, without any warranty, express or implied.\n");
printf("\n");
printf("DESCRIPTION:\n");
printf(" This software supports factoring numbers through a Self-Initializing Quadratic Sieve (SIQS).\n");
printf(" The Factorization Manager reads numbers to be factored from either a file or the command line.\n");
printf(" It performs preliminary check before invoking more advanced algorithms like the Quadratic Sieve.\n");
printf("\n");
printf("USAGE:\n");
printf(" %s [options] [numbers]\n", path);
printf("\n");
printf("OPTIONS:\n");
printf(" -i, --input-file <FILE> Factor all numbers from the specified input file.\n");
printf(" -o, --output-file <FILE> Write results to the specified output file.\n");
printf(" -t, --timeout <SECONDS> Set a timeout in seconds to interrupt the Quadratic Sieve after the specified duration.\n");
printf(" -f, --force Override default limits (8191 digits for numbers and 220-bit for the Quadratic Sieve).\n");
printf(" -v, --verbose Display detailed information, including Quadratic Sieve progress.\n");
printf(" -h, --help Show this help message and exit.\n");
printf("\n");
printf("QUADRATIC SIEVE OPTIONS:\n");
printf(" --qs-multiplier <value>\n");
printf(" --qs-base-size <value>\n");
printf(" --qs-large-prime <value>\n");
printf(" --qs-alloc-mb <value>\n");
printf(" --qs-sieve <value>\n");
printf(" --qs-threshold <value>\n");
printf(" --qs-error-bits <value>\n");
printf(" --qs-laziness <value>\n\n");
printf(" Navigate through the source code to see their default value and usage.\n");
printf("\n");
printf("EXAMPLES:\n");
printf(" %s -i input.txt -o output.txt --output-csv # Factor all numbers from \"input.txt\" to \"output.txt\" in CSV.\n", path);
printf(" %s 27333597444727959277 36190584594536893817 # Factor the numbers.\n", path);
printf("\n");
printf("EXIT STATUS:\n");
printf(" 0 All numbers were successfully fully factored.\n");
printf(" 1 At least one number among the results is not fully factored.\n");
printf(" \n");
printf("REPORTING BUGS:\n");
printf(" You can read the full documentation and report issues to the \"github.com/michel-leonard/C-Quadratic-Sieve\" repository.\n");
printf("\n");
printf("TESTING:\n");
printf(" %s -g -r 123 # provide a 'generated.txt' file that depends on the seed 123, suitable as input file.\n", path);
printf(" %s -g 150 # provide a 'generated.txt' file containing a single 150-bit sample number.\n", path);
printf(" %s -g 60 150 # provide a 'generated.txt' file containing sample numbers ranging from 60-bit to 150-bit.\n", path);
printf(" %s -g 150 150 1000 # provide a 'generated.txt' file containing 1000 sample numbers of 150-bit.\n", path);
printf("\n");
printf("ADDITIONAL RESOURCES:\n");
printf(" For online factorization tasks, consider tools such as:\n");
printf(" - Dario Alpern's Integer Factorization Calculator: https://www.alpertron.com.ar/ECM.HTM\n");
printf(" - Number Empire Factoring Calculator: https://www.numberempire.com/factoringcalculator.php\n");
printf("\n");
printf(" The last source code update by Michel was made on Tuesday, October 8, 2024.\n\n");
}
qs_md get_num(char *s) {
char *end = 0;
const qs_md res = strtoull(s + (*s == '-'), &end, 10);
return end != s && !*end ? *s == '-' ? -res : res : 0;
}
int cli_param_match(const char * str, const char * long_name, const char * short_name){
return (short_name && !strcmp(str, short_name)) || !strcmp(str, long_name);
}
int read_key_and_3_values(char **argv, state *state) {
#define READ(name_1, shortcut, name_2) \
if (cli_param_match(key, "--" #name_1, "-" #shortcut) && \
(n_1 = get_num(val_1)) && \
(n_2 = get_num(val_2)) && \
(n_3 = get_num(val_3))) { \
state->params.name_2[0] = n_1; \
state->params.name_2[1] = n_2; \
state->params.name_2[2] = n_3; \
}
char *key = *argv, *val_1 = *(argv + 1), *val_2 = *(argv + 2), *val_3 = *(argv + 3);
qs_md n_1, n_2, n_3;
READ(generate, g, generate)
else
return 0;
*argv = *(argv + 1) = *(argv + 2) = *(argv + 3) = 0;
return 1;
}
int read_key_and_2_values(char **argv, state *state) {
#define FETCH ((n_1 = get_num(val_1)) && (n_2 = get_num(val_2)))
char *key = *argv, *val_1 = *(argv + 1), *val_2 = *(argv + 2);
qs_md n_1, n_2;
if (cli_param_match(key, "--generate", "-g") && FETCH)
state->params.generate[0] = n_1, state->params.generate[1] = n_2;
else
return 0;
*argv = *(argv + 1) = *(argv + 2) = 0;
return 1;
#undef FETCH
}
int read_key_value(char **argv, state *state) {
char *key = *argv, *value = *(argv + 1);
if (cli_param_match(key, "--verbose", "-v") && *value >= '0' && *value <= '9' && !*(value + 1))
state->params.verbose = *value - '0' ;
else if (cli_param_match(key, "--input-file", "-i"))
state->params.input_file = value;
else if (cli_param_match(key, "--output-file", "-o"))
state->params.output_file = value;
else if (cli_param_match(key, "--timeout", "-t"))
state->params.timeout = get_num(value) ;
else if (cli_param_match(key, "--rand-seed", "-r"))
state->params.rand.seed ^= (state->params.rand.custom = get_num(value));
else if (cli_param_match(key, "--generate", "-g") && get_num(value))
state->params.generate[0] = get_num(value);
// Quadratic Sieve specific parameters.
#define QS_PARAM(name_1, name_2) \
else if (cli_param_match(key, "--qs-" #name_1, 0)) \
state->params.qs_##name_2 = get_num(value);
QS_PARAM(multiplier, multiplier)
QS_PARAM(base-size, base_size)
QS_PARAM(large-prime, large_prime)
QS_PARAM(alloc-mb, alloc_mb)
QS_PARAM(sieve, sieve)
QS_PARAM(threshold, threshold)
QS_PARAM(error-bits, error_bits)
QS_PARAM(laziness, laziness)
else
return 0;
#undef QS_PARAM
*argv = *(argv + 1) = 0;
return 1;
}
int read_flags(char **argv, state *state) {
char *key = *argv;
if (cli_param_match(key, "--verbose", "-v"))
state->params.verbose = 1;
else if (cli_param_match(key, "--output-json", "-j"))
state->params.output_format = 'J';
else if (cli_param_match(key, "--output-json-compact", "-J"))
state->params.output_format = 'j';
else if (cli_param_match(key, "--output-csv", "-c"))
state->params.output_format = 'c';
else if (cli_param_match(key, "--output-sql", "-sql"))
state->params.output_format = 's';
else if (cli_param_match(key, "--force", "-f"))
state->params.force = 1;
else if (cli_param_match(key, "--help", "-h"))
state->params.help = 1;
else if (cli_param_match(key, "--generate", "-g"))
state->params.generate[0] = -1;
else
return 0;
*argv = 0;
return 1;
}
void simple_rand(cint_sheet *sheet, uint64_t *seed, cint *arr, char * comment, int n_factors, int n_bits) {
// The specified number of bits and prime factors will be assembled to provide a
// non-trivial sample number for factoring, with all choices based on the seed.
cint *res = arr, * calc = arr + 1, *tmp;
arr += 2 ;
int bits[n_factors], i;
const int begin = n_bits + (n_factors >> 1), big_size = n_factors + 1, upto = n_bits / n_factors + 2;
do {
do {
// Determinate the bit-size of each prime factor of N.
for (bits[0] = begin, i = 1; i < n_factors; bits[0] -= bits[i], ++i)
while (bits[i] = (int) xor_rand(seed, 0, upto - 1), bits[i] * big_size < n_bits);
} while (bits[0] * big_size < n_bits);
cint_reinit(res, 1);
*comment = 0 ;
for (i = 0; i < n_factors; ++i) {
// Occasionally propose a square (N = P * Q^2), a cube (N = P * Q^3) or a quartic (N = P * Q^4).
if (i == 2 && 2 < n_factors && bits[1] == bits[2] && !xor_rand(seed, 0, 4))
sprintf(comment, " and a square"), cint_dup(arr + i, arr + i - 1); // 1 for 350
else if(i == 3 && 3 < n_factors && !h_cint_compare(arr + i - 1, arr + i - 2))
sprintf(comment, " and a cube"), cint_dup(arr + i, arr + i - 1); // 1 for 900
else if(i == 4 && 4 < n_factors && !h_cint_compare(arr + i - 1, arr + i - 2) && !h_cint_compare(arr + i - 2, arr + i - 3))
sprintf(comment, " and a quartic"), cint_dup(arr + i, arr + i - 1); // 1 for 4,500
else
do cint_random_bits(arr + i, bits[i], seed), *arr[i].mem |= 1;
while (!cint_is_prime(sheet, arr + i, -1));
cint_mul(res, arr + i, calc), tmp = res, res = calc, calc = tmp;
}
// Ensure the size of the resulting N correspond to the request.
} while (cint_count_bits(res) != n_bits);
if (res != arr - 2)
cint_dup(calc, res);
}
void generate_input_file(state *state) {
// Generate sample numbers based on the command line option -g <min-bits> <max-bits> <count>.
// The "generated.txt" file is dependent on --rand-seed and consistent across all platforms.
// For example "--generate 130 140 1000" propose 1000 non-trivial numbers between 130 and 140 bits.
FILE *fp = fopen("generated.txt", "w");
if (fp) {
qs_md *p = state->params.generate;
if (p[0] == -1)
p[0] = 60, p[1] = 220, p[2] = 0;
else if(p[1] == 0)
p[1] = p[0], p[2] = 0 ;
for(int i = 0; i < 2; ++i)
p[i] = p[i] < 16 ? 16 : 512 < p[i] ? p[i] : p[i] ;
qs_md seed = state->params.rand.seed, *r = &seed;
int min_bits = (int)p[p[1] < p[0]] , max_bits = (int)p[p[0] < p[1]] ;
int delta = max_bits - min_bits + 1 ;
int limit = (int)(p[2] < delta ? (p[2] = delta, 1) : p[2] / delta) ;
int start_bits = min_bits + (int)p[2] - limit * delta ;
int count = limit * delta + start_bits - min_bits ;
cint_sheet *sheet = cint_new_sheet(max_bits << 2);
cint nums[7];
int n_nums = sizeof(nums) / sizeof(*nums), max_len = cint_approx_digits_from_bits(max_bits, 10);
char buf[max_len], title[127], comment[63], * _s = 1 < count ? "s" : "";
for(int i = 0; i < n_nums; ++i)
cint_init(nums + i, max_bits << 1, 1);
sprintf(title, "# Generated %d sample number%s ", count, _s);
if (min_bits == max_bits)
sprintf(title + strlen(title), "of %d-bit", max_bits);
else
sprintf(title + strlen(title), "ranging from %d-bit to %d-bit", min_bits, max_bits);
if (state->params.rand.custom)
sprintf(title + strlen(title), " using seed %" PRIu64, state->params.rand.custom);
fprintf(fp, "%s\n# Simply use \"--generate %d %d %d" , title, min_bits, max_bits, count);
if (state->params.rand.custom)
fprintf(fp, " --rand-seed %" PRIu64, state->params.rand.custom);
fprintf(fp, "\" to retrieve this file\n\n");
for(int b = min_bits, total = 0; b <= max_bits; ++b){
for(int i = -(b < start_bits); i < limit; ++i){
*r ^= *r << 11, *r ^= *r >> 27, *r ^= (1 + *r) << 26;
int n_factors = xor_rand(r, 2, xor_rand(r, 2, 5));
simple_rand(sheet, r, nums, comment, n_factors, b);
cint_to_string_buffer(nums, buf, 10);
fprintf(fp, "%-*s # %d bits with %d factors %s\n", max_len, buf, b, n_factors, comment);
if (!(++total & 0XF))
display_progress("Factorization file preparation", (double)total * 100.0 / (double)count);
}
}
display_progress(0, 100);
for(int i = 0; i < n_nums; ++i)
free(nums[i].mem);
cint_clear_sheet(sheet);
fprintf(stdout, "%s in file 'generated.txt'.\n", title);
} else
perror("Factorization program generator");
}
void output_sql(state *state, int has_prev, int has_next) {
if (has_prev == 0)
fprintf(state->out, "INSERT INTO factorizations (number, factor, power, is_prime, duration_ms) VALUES\n");
for (int i = 0; state->session.res[i].power; ++i) {
const char *s = cint_to_string_buffer(&state->session.res[i].num, state->session.output_string, 10);
const char * comma = has_next || state->session.res[i + 1].power ? ",\n" : "";
fprintf(state->out, "('%s','%s',%d,%d,%" PRIu64 ")%s", state->session.input_string, s, state->session.res[i].power, state->session.res[i].prime, state->session.duration_ms, comma);
}
if (has_next == 0)
fprintf(state->out, ";\n");
}
void output_json_pretty_print(state *state, int has_prev, int has_next) {
fprintf(state->out, has_prev ? " {" : "[\n {");
fprintf(state->out, "\n \"input\": \"%s\",\n \"factors\": [", state->session.input_string);
for (int i = 0, pow; (pow = state->session.res[i].power); ++i) {
const char *s = cint_to_string_buffer(&state->session.res[i].num, state->session.output_string, 10);
const char *c = i ? "," : "", *p = state->session.res[i].prime ? "true" : "false";
fprintf(state->out, "%s\n {\n \"num\": \"%s\",\n \"power\": %d,\n \"prime\": %s\n }", c, s, pow, p);
}
fprintf(state->out, has_next ? "%s]%s},\n" : "%s]%s}\n]\n", "\n ", "\n ");
}
void output_json_compact(state *state, int has_prev, int has_next) {
fprintf(state->out, has_prev ? "{" : "[\n{");
fprintf(state->out, "\"input\":\"%s\",\"factors\":[", state->session.input_string);
for (int i = 0, pow; (pow = state->session.res[i].power); ++i) {
const char *s = cint_to_string_buffer(&state->session.res[i].num, state->session.output_string, 10);
const char *c = i ? "," : "", *p = state->session.res[i].prime ? "true" : "false";
fprintf(state->out, "%s{\"num\":\"%s\",\"power\":%d,\"prime\":%s}", c, s, pow, p);
}
fprintf(state->out, has_next ? "]},\n" : "]}\n]\n");
}
void output_csv(state *state, int has_prev, int has_next) {
assert(has_next != -1);
if (has_prev == 0)
fprintf(state->out, "Input,Factors\r\n");
fprintf(state->out, "%s,", state->session.input_string);
for (int i = 0, pow; (pow = state->session.res[i].power); ++i) {
const char *s = cint_to_string_buffer(&state->session.res[i].num, state->session.output_string, 10);
for (int j = 0; j < pow; ++j)
fprintf(state->out, !i && !j ? "%s" : ";%s", s);
}
fprintf(state->out, "\r\n");
}
void output_default(state *state, int has_prev, int has_next) {
assert(has_prev != -1);
fprintf(state->out, "Number: %s\nFactors: ", state->session.input_string);
for (int i = 0, pow; (pow = state->session.res[i].power); ++i) {
const char *s = cint_to_string_buffer(&state->session.res[i].num, state->session.output_string, 10);
const char *c = i ? ", " : "";
if (pow == 1)
fprintf(state->out, "%s%s (%s)", c, s, state->session.res[i].prime ? "prime" : "not prime");
else
fprintf(state->out, "%s%s^%d", c, s, pow);
}
fprintf(state->out, has_next ? "\n\n" : "\n");
}
void display_progress(const char *name, double percentage) {
static int chars = 0;
if (percentage < 100.)
// Print a progression percentage.
chars = printf("\r- %s at %.02f %% ...\r", name, percentage);
else
// Clear the progression line.
chars = !printf("\r%*s\r", chars, "");
fflush(stdout);
}
void output(state *state) {
int has_prev = state->scale.row_idx != 0, has_next = state->scale.row_idx + 1 != state->scale.total_rows ;
display_progress(0, 100);
switch (state->params.output_format) {
case 'J' : output_json_pretty_print(state, has_prev, has_next); break;
case 'j' : output_json_compact(state, has_prev, has_next); break;
case 'c' : output_csv(state, has_prev, has_next); break;
case 's' : output_sql(state, has_prev, has_next); break;
default : output_default(state, has_prev, has_next); break;
}
++state->scale.row_idx; // Update the index after each factorization.
if (1 < state->params.verbose)
display_progress("Overall Progress", (double)state->scale.row_idx / (double) state->scale.total_rows * 100.0);
fflush(state->out);
}
int validate_input_file(state *state) {
FILE *fp = state->in;
qs_md line = 0;
while (!feof(fp)) {
++line;
char c = fgetc(fp);
size_t digits = c >= '1' && c <= '9';
if (digits || c == '-' || c == '+') {
while (!feof(fp) && (c = fgetc(fp)) >= '0' && c <= '9')
++digits;
if (feof(fp) || c == ' ' || c == '\t' || c == '\r' || c == '\n') {
++state->scale.total_rows;
if (state->scale.max_digits < digits)
state->scale.max_digits = digits;
} else if (!feof(fp))
return !fprintf(stderr, "Factorization program input: Unknown character '%c' (0x%x) at line %" PRIu64 "\n", c, c, line);
}
if (c != '\n')
while (!feof(fp) && fgetc(fp) != '\n');
}
fseek(fp, 0, SEEK_SET);
return 1;
}
size_t prepare_file_descriptors(state *state) {
if (state->params.output_file) {
state->out = fopen(state->params.output_file, "w");
if (!state->out)
return perror("Factorization program output"), 0;
} else
state->out = stdout; // Standard output.
if (state->params.input_file) {
state->in = fopen(state->params.input_file, "rb");
if (!state->in) {
perror("Factorization program input");
if (state->out != stdout)
fclose(state->out);
return 0;
} else if (!validate_input_file(state)) {
if (state->out != stdout)
fclose(state->out);
fclose(state->in);
return 0;
}
}
// Set a limit for the input size.
if (state->scale.max_digits >> 13 && !state->params.force)
return !fprintf(stderr, "A number of %" PRIu64 " digits when \x1b[37;40;1moption -f\033[0m isn't set is too large for the %d limit.\n", state->scale.max_digits, 1 << 13);
return state->scale.total_rows;
}
int validate_string_number(const char *s, state *state) {
// Ensure that the string (number to factor) is well-formed, count the
// total of submitted numbers, and note the size (decimal digits) of the largest.
size_t digits;
s += *s == '-' || *s == '+';
if (*s >= '1' && *s <= '9' && !s[digits = 1 + strspn(s + 1, "0123456789")]) {
if (state->scale.max_digits < digits)
state->scale.max_digits = digits;
return ++state->scale.total_rows, 1;
}
return 0;
}
void debug_print(const state * state, int level, const char *format, ...) {
if (level < state->params.verbose) {
va_list args;
va_start(args, format);
vfprintf(stderr, format, args);
va_end(args);
}
}
char * simple_cint_string(state * state, const cint * N){
char * s = cint_to_string_buffer(N, state->session.output_string, 10);
if (0) // Add a thousand separator for large number.
for(int len = (int)strlen(s), i = len - 3, j = *s == '-'; j < i; i -= 3)
memmove(s + i + 1, s + i, ++len - i), s[i] = ',';
return s ;
}
// cint shortcuts
void simple_inline_cint(cint *N, const size_t size, void **mem) {
// Fixed size cint is inlined, given mem is updated accordingly.
N->mem = N->end = (h_cint_t *) *mem;
*mem = N->mem + (N->size = size + 1);
}
void simple_dup_cint(cint *A, const cint *B, void **mem) {
// Duplicates cint using the given memory, which is updated accordingly.
// It uses the minimal size, the duplicate is not resizable.
A->mem = A->end = (h_cint_t *) *mem;
cint_dup(A, B);
A->size = A->end - A->mem + 1;
*mem = A->mem + A->size;
}
void simple_int_to_cint(cint *num, qs_md value) {
// Pass the given 64-bit number into the given cint (positive only).
for (cint_erase(num); value; *num->end++ = (h_cint_t) (value & cint_mask), value >>= cint_exponent);
}
qs_md simple_cint_to_int(const cint *num) {
// Return the value of a cint as a 64-bit integer (sign is ignored).
qs_md res = 0;
for (h_cint_t *ptr = num->end; ptr > num->mem; res = (qs_md) (res * cint_base + *--ptr));
return res;
}
// Avl
struct avl_node *avl_cint_inserter(void *args, const void *key_to_save) {
// it expects as result a new node containing the given constant key.
void *mem = *(void **) args;
struct avl_node *res = mem;
res->key = (cint *) (res + 1);
mem = (cint *) res->key + 1;
simple_dup_cint(res->key, key_to_save, &mem);
assert(res->value == 0);
*(void **) args = mem;
return res;
}
// System
void *mem_aligned(void *ptr) {
// Default alignment of the return value is 64.
char *res __attribute__((aligned(64)));
res = (char *) ptr + (64 - (uintptr_t) ptr) % 64;
return res;
}
qs_md get_time_ms() {
// returns the current Unix timestamp with milliseconds.
struct timeval time;
gettimeofday(&time, NULL);
return (qs_md) time.tv_sec * 1000 + (qs_md) time.tv_usec / 1000;
}
void manager_add_factor(state *state, cint *num, int pow, int is_prime) {
assert(pow);
int i = 0;
while (state->session.res[i].power && h_cint_compare(&state->session.res[i].num, num))
++i;
simple_inline_cint(&state->session.res[i].num, num->end - num->mem, &state->session.mem.now);
cint_dup(&state->session.res[i].num, num);
state->session.res[i].power = state->session.power * pow;
state->session.res[i].prime = is_prime;
//
}
void manager_add_simple_factor(state *state, qs_md num, int pow, int is_prime) {
assert(pow);
simple_int_to_cint(state->session.tmp, num);
manager_add_factor(state, state->session.tmp, pow, is_prime);
}
void factorization_64_bits(state *state) {
fac64_row res[16];
qs_md num = simple_cint_to_int(&state->session.num);
fac_64_worker(state, num, res);
for (fac64_row *r = res; (*r).power; ++r)
manager_add_simple_factor(state, (*r).prime, (*r).power, (*r).prime != 1);
cint_reinit(&state->session.num, 1);
}
int factorization_trial_division(state *state, int stage, int bits) {
assert(64 < bits);
int calc = stage == 1 ? (1 << 20) - 23250 * bits + 127 * bits * bits : 4669914 ;
const qs_md trial_upto = calc < 65522 ? 65522 : 4669914 < calc ? 4669914 : calc;
cint *a = state->session.tmp, *b = a + 1, *c = a + 2, *tmp;
cint *n = &state->session.num;
cint_sheet *sheet = state->session.sheet;
cint_reinit(a, 1);
qs_md trial = state->session.trial_start;
for (; trial < trial_upto; trial += 2)
if (is_prime_4669913(trial)) {
a->mem[0] = (h_cint_t) trial;
cint_div(sheet, n, a, b, c);
if (c->mem == c->end) {
int pow = 0;
do {
++pow;
tmp = n, n = b, b = tmp;
cint_div(sheet, n, a, b, c);
} while (c->mem == c->end);
manager_add_simple_factor(state, trial, pow, 1);
if (n != &state->session.num)
cint_dup(&state->session.num, n);
state->session.trial_start = trial + 2;
return 1;
}
}
state->session.trial_start = trial + 2;
return 0;
}
int factorization_any_root_checker(state *state, const cint *n, cint *root, cint *rem) {
int res = 0;
cint_sheet *sheet = state->session.sheet;
cint *max = state->session.tmp;
cint_reinit(max, (h_cint_t) state->session.trial_start - 2);
const int max_root = (int) cint_count_bits(n);
for (int nth = 2; nth < max_root; nth += 2)
if (is_prime_4669913((qs_md) nth)) {
cint_nth_root_remainder(sheet, n, nth, root, rem);
if (rem->mem == rem->end) {
res = nth;
break;
}
if (h_cint_compare(root, max) <= 0)
break;
nth -= !(nth & 1);
}
return res;
}
int factorization_perfect_power_checker(state *state, int bits) {
assert(64 < bits);
cint *root = state->session.tmp + 1, *rem = root + 1;
int power = factorization_any_root_checker(state, &state->session.num, root, rem);
if (power) {
manager_add_factor(state, root, power, -1);
cint_reinit(&state->session.num, 1);
}
return power;
}
int factorization_prime_number_checker(state *state, int bits) {
assert(64 < bits);
cint_sheet *sheet = state->session.sheet;
int is_prime = cint_is_prime(sheet, &state->session.num, -1) != 0;
if (is_prime) {
manager_add_factor(state, &state->session.num, 1, 1);
cint_reinit(&state->session.num, 1);
}
return is_prime;
}
int factorization_give_up(state *state, int bits) {
assert(64 < bits);
manager_add_factor(state, &state->session.num, state->session.power, 0);
cint_reinit(&state->session.num, 1);
return 1;
}
void factor(state *state) {
state->session.duration_ms = get_time_ms();
state->session.trial_start = 3;
state->session.power = 1;
int start_idx = 0, end_idx;
cint_dup(state->session.tmp + 9, &state->session.num);
if (state->session.num.nat < 0) {
// Add -1 as factor for a negative number.
cint_reinit(state->session.tmp, -1);
manager_add_factor(state, state->session.tmp, 1, 0);
state->session.num.nat = 1;
++start_idx;
}
int bits = (int) cint_count_zeros(&state->session.num);
if (bits) {
// Remove the powers of two from the number.
manager_add_simple_factor(state, 2, bits, 1);
cint_right_shifti(&state->session.num, bits);
// The number is odd.
++start_idx;
}
start :;
bits = (int) cint_count_bits(&state->session.num);
display_progress(0, 100);
if (bits < 65) {
// 64-bit simple Pollard's Rho.
if (1 < bits || start_idx == 0)
factorization_64_bits(state);
} else {
int res = factorization_trial_division(state, 1, bits)
|| factorization_perfect_power_checker(state, bits)
|| factorization_prime_number_checker(state, bits)
|| factorization_quadratic_sieve(state, bits)
|| factorization_trial_division(state, 2, bits)
|| factorization_give_up(state, bits);
assert(res);
if (cint_compare_char(&state->session.num, 1))
manager_add_factor(state, &state->session.num, 1, -1);
}
end_idx = start_idx ;
for (int i = (int)state->scale.max_factors - 1; start_idx <= i ; --i)
if (state->session.res[i].prime == -1) {
cint_dup(&state->session.num, &state->session.res[i].num);
state->session.power = state->session.res[i].power;
cint_erase(&state->session.res[i].num);
if (end_idx == start_idx)
state->session.mem.now = state->session.res[i].num.mem ;
state->session.res[i].power = state->session.res[i].prime = 0;
goto start;
} else if (end_idx == start_idx && state->session.res[i].power)
end_idx = 1 + i;
// Sort the results (they start with a cint) using the unsigned cint comparator.
qsort(state->session.res + start_idx, end_idx - start_idx, sizeof(*state->session.res), (int (*)(const void *, const void *)) h_cint_compare);
// Verify the correctness of all factorizations with a fatal error level.
cint *A = state->session.tmp, *B = A + 1, *PRODUCT_OF_FACTORS = A + 2, *INPUT_NUMBER = A + 9, *TMP;
cint_reinit(PRODUCT_OF_FACTORS, 1);
for (int i = 0; state->session.res[i].power; ++i) {
cint_reinit(B, state->session.res[i].power);
cint_pow(state->session.sheet, &state->session.res[i].num, B, A);
cint_mul(PRODUCT_OF_FACTORS, A, B), TMP = PRODUCT_OF_FACTORS, PRODUCT_OF_FACTORS = B, B = TMP;
}
// Exit with a non-zero status code if the product of all factors isn't equal to the input number.
assert(cint_compare(INPUT_NUMBER, PRODUCT_OF_FACTORS) == 0);
if(state->code == 0)
for (int i = start_idx; state->session.res[i].power; ++i)
// Exit code 0 will mean that the software has fully factored all inputs.
state->code |= !state->session.res[i].prime && cint_count_bits(&state->session.res[i].num) != 1 ;
state->session.duration_ms = get_time_ms() - state->session.duration_ms;
}
// Manager
void prepare_sessions(state *state) {
// Prepare a session containing enough memory to handle the largest (in terms of digits) number.
state->scale.max_bits = cint_approx_bits_from_digits(state->scale.max_digits, 10);
for (int i = 3, bits = (int) state->scale.max_bits; 0 < bits; i += 2)
if (is_prime_4669913(i))
for (int j = (++state->scale.max_factors, i); j >>= 1; --bits);
state->session.output_string = malloc(state->scale.max_bits + 32 - state->scale.max_bits % 16) ;
assert(state->session.output_string); // String buffer to store any number represented in any base.
const size_t bits = (2 + (state->scale.max_bits >> 4)) << 5;
cint_init(&state->session.num, bits, 0); // The number to be factored.
const size_t el_count = sizeof(state->session.tmp) / sizeof(*state->session.tmp);
const size_t el_size = state->session.num.size * sizeof(*state->session.num.mem);
cint *T = state->session.tmp;
T[0].mem = T[0].end = calloc(el_count, el_size);
assert(T[0].mem); // Temporary variables.
T[0].size = state->session.num.size;
for (size_t i = 1; i < el_count; ++i)
T[i].mem = T[i].end = T[i - 1].mem + (T[i].size = T[i - 1].size);
state->session.sheet = cint_new_sheet(bits);
assert(state->session.sheet); // A computation sheet.
state->session.mem.base = calloc(1, state->scale.max_factors * (sizeof(*state->session.res) + sizeof(*state->session.num.mem)) + (el_size << 1));
assert(state->session.mem.base);
state->session.res = state->session.mem.base ;
state->session.mem.now = state->session.res + state->scale.max_factors ;
}
void erase_session(state *state) {
// Erase the session (clear variables, number, and results).
for (size_t i = 0; i < sizeof(state->session.tmp) / sizeof(*state->session.tmp); ++i)
if (state->session.tmp[i].mem != state->session.tmp[i].end)
cint_erase(&state->session.tmp[i]);
cint_erase(&state->session.num);
memset(state->session.mem.base, 0, (char*)state->session.mem.now - (char*)state->session.mem.base);
state->session.mem.now = state->session.res + state->scale.max_factors ;
}
void clear_sessions(state *state) {
// Free all memory, close all descriptors.
free(state->session.output_string);
free(state->session.tmp[0].mem);
free(state->session.num.mem);
cint_clear_sheet(state->session.sheet);
free(state->session.mem.base);
if (state->in)
fclose(state->in);
if (state->out != stdout)
fclose(state->out);
}
/*
How are performed memory allocations ?
- A session is created for the largest number to be processed.
- The session contains the memory (string buffer, numbers, results).
- When processing multiple numbers in a row, the session is reused.
- The Quadratic Sieve manage its memory independently.
*/
void process_single(state *state) {
cint_reinit_by_string(&state->session.num, state->session.input_string, 10);
factor(state);
output(state);
state->duration_ms += state->session.duration_ms ;
if (state->scale.row_idx != state->scale.total_rows)
// Get ready for the next request.
erase_session(state);
}
void process_multi(int argc, char **argv, state *state) {
prepare_sessions(state);
if (state->params.input_file) {
// Process request(s) incoming from a file.
const size_t buf_size = state->scale.max_digits + 4096;
char *s = state->session.input_string = malloc(buf_size);
assert(s);
while (fgets(s, buf_size, state->in))
if ((*s >= '1' && *s <= '9') || ((*s == '+' || *s == '-') && *(s + 1) >= '1' && *(s + 1) <= '9')) {
s[strspn(s, "+-0123456789")] = 0;
process_single(state);
}
free(s);
} else
// Process request(s) incoming from the command line.
for (int i = 1; i < argc; ++i)
if (argv[i]) {
state->session.input_string = argv[i];
process_single(state);
}
if (1 < state->params.verbose)
fprintf(stderr, "\nTook: %.02f s.\n", (double)state->duration_ms * 0.001);
// Clear all memory used to process the requests.
clear_sessions(state);
}