-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathblock-lanczos.c
369 lines (345 loc) · 13.3 KB
/
block-lanczos.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
// Block Lanczos algorithm released "as it" into the public domain, without any warranty, express or implied.
// Results of operations are last AND non-const arguments.
// Kornél Lánczos (1893 - 1974) was a Hungarian-American and later Hungarian-Irish mathematician and physicist.
void lanczos_mul_MxN_Nx64(const qs_sheet *qs, const uint64_t *X, const qs_sm max_size, uint64_t *Y) {
assert(Y != X);
memset(Y, 0, max_size * sizeof(uint64_t));
for (qs_sm a = 0, b; a < qs->relations.length.now; ++a) {
struct qs_relation *const rel = qs->relations.data[a];
for (b = 0; b < rel->Y.length; ++b)
Y[rel->Y.data[b]] ^= X[a];
}
}
void lanczos_mul_trans_MxN_Nx64(const qs_sheet *qs, const uint64_t *X, uint64_t *Y) {
assert(Y != X);
for (qs_sm a = 0, b; a < qs->relations.length.now; ++a) {
struct qs_relation *const rel = qs->relations.data[a];
for (Y[a] = 0, b = 0; b < rel->Y.length; ++b)
Y[a] ^= X[rel->Y.data[b]];
}
}
void lanczos_mul_64xN_Nx64(const qs_sheet *qs, const uint64_t *X, const uint64_t *Y, uint64_t *Z, uint64_t *T) {
assert(X != Z && Y != Z);
qs_sm a, b, c, d;
memset(Z, 0, 256 * 8 * sizeof(*Z));
memset(T, 0, 64 * sizeof(*T));
for (a = 0; a < qs->relations.length.now; ++a) {
const uint64_t tmp = X[a]; // read while writing ?!
for (b = 0, c = 0; c < 64; c += 8, b += 256)
Z[b + (tmp >> c & 0xff)] ^= Y[a];
}
for (a = 0; a < 8; ++a, ++T) {
uint64_t tmp[8] = {0};
for (b = 0; b < 256; ++b)
if (b >> a & 1)
for (c = d = 0; c < 8; ++c, d += 256)
tmp[c] ^= Z[b + d];
for (b = 0, c = 0; b < 8; ++b, c += 8)
T[c] = tmp[b];
}
}
uint64_t lanczos_find_non_singular_sub(const uint64_t *t, const uint64_t *last_s, uint64_t *s, uint64_t last_dim, uint64_t *w) {
uint64_t i, j, dim, cols[64];
uint64_t M[64][2], mask, *row_i, *row_j, m_0, m_1;
for (i = 0; i < 64; ++i)
M[i][0] = t[i], M[i][1] = (uint64_t) 1 << i;
mask = 0;
for (i = 0; i < last_dim; ++i)
mask |= (uint64_t) 1 << (cols[63 - i] = last_s[i]);
for (i = j = 0; i < 64; ++i)
if (!(mask & ((uint64_t) 1 << i)))
cols[j++] = i;
for (i = dim = 0; i < 64; ++i) {
mask = (uint64_t) 1 << (cols[i]);
row_i = M[cols[i]];
for (j = i; j < 64; ++j) {
row_j = M[cols[j]];
if (row_j[0] & mask) {
m_0 = row_j[0];
m_1 = row_j[1];
row_j[0] = row_i[0];
row_j[1] = row_i[1];
row_i[0] = m_0;
row_i[1] = m_1;
break;
}
}
if (j < 64) {
for (j = 0; j < 64; ++j) {
row_j = M[cols[j]];
if (row_i != row_j && (row_j[0] & mask))
row_j[0] ^= row_i[0], row_j[1] ^= row_i[1];
}
s[dim++] = cols[i];
continue;
}
for (j = i; j < 64; ++j) {
row_j = M[cols[j]];
if (row_j[1] & mask) {
m_0 = row_j[0];
m_1 = row_j[1];
row_j[0] = row_i[0];
row_j[1] = row_i[1];
row_i[0] = m_0;
row_i[1] = m_1;
break;
}
}
if (j == 64) return 0; // sub-matrix is not invertible
for (j = 0; j < 64; ++j) {
row_j = M[cols[j]];
if (row_i != row_j && (row_j[1] & mask))
row_j[0] ^= row_i[0], row_j[1] ^= row_i[1];
}
row_i[0] = row_i[1] = 0;
}
for (i = 0; i < 64; ++i)
w[i] = M[i][1];
mask = 0;
for (i = 0; i < dim; ++i)
mask |= (uint64_t) 1 << s[i];
for (i = 0; i < last_dim; ++i)
mask |= (uint64_t) 1 << last_s[i];
dim *= mask == -(uint64_t) 1;
return dim;
}
void lanczos_mul_Nx64_64x64_acc(qs_sheet *qs, const uint64_t *X, const uint64_t *Y, uint64_t *Z, uint64_t *T) {
qs_sm a;
uint64_t b, c, d, e;
for (b = 0; b < 8; Y += 8, Z += 256, ++b)
for (c = 0; c < 256; ++c)
for (d = Z[c] = 0, e = c; e; e >>= 1, ++d)
Z[c] ^= (e & 1) * Y[d];
for (a = 0, Z -= 2048; a < qs->relations.length.now; ++a)
for (c = d = 0; c < 64; c += 8, d += 256) {
const uint64_t w = X[a];
T[a] ^= Z[d + (w >> c & 0xff)];
}
}
void lanczos_mul_64x64_64x64(const uint64_t *X, const uint64_t *Y, uint64_t *Z) {
uint64_t a, b, c, d, tmp[64];
for (a = 0; a < 64; tmp[a++] = c) {
for (b = 0, c = 0, d = X[a]; d; d >>= 1, ++b)
c ^= (d & 1) * Y[b];
}
memcpy(Z, tmp, sizeof(tmp));
}
void lanczos_transpose_vector(qs_sheet *qs, const uint64_t *X, uint64_t **Y) {
qs_sm a; // Z will be zeroed automatically by the loop.
uint64_t b, c, d, *Z;
Z = memcpy(qs->mem.now, X, qs->relations.length.now * sizeof(*X));
for (a = 0; a < qs->relations.length.now; ++a)
for (b = 0, c = a >> 6, d = (uint64_t) 1 << (a % 64); Z[a]; Z[a] >>= 1, ++b)
Y[b][c] |= (Z[a] & 1) * d;
}
void lanczos_combine_cols(qs_sheet *qs, uint64_t *x, uint64_t *v, uint64_t *ax, uint64_t *av) {
qs_sm i, j, bit_pos, num_deps;
uint64_t k, col, col_words;
uint64_t mask, *mat_1[128], *mat_2[128], *tmp;
num_deps = 64 << (v && av);
col_words = (qs->relations.length.now + 63) / 64;
for (i = 0; i < num_deps; ++i) {
mat_1[i] = qs->mem.now;
mat_2[i] = mat_1[i] + col_words;
qs->mem.now = mat_2[i] + col_words;
}
lanczos_transpose_vector(qs, x, mat_1);
lanczos_transpose_vector(qs, ax, mat_2);
if (num_deps == 128) {
lanczos_transpose_vector(qs, v, mat_1 + 64);
lanczos_transpose_vector(qs, av, mat_2 + 64);
}
for (i = bit_pos = 0; i < num_deps && bit_pos < qs->relations.length.now; ++bit_pos) {
mask = (uint64_t) 1 << (bit_pos % 64);
col = bit_pos / 64;
for (j = i; j < num_deps; ++j)
if (mat_2[j][col] & mask) {
tmp = mat_1[i];
mat_1[i] = mat_1[j];
mat_1[j] = tmp;
tmp = mat_2[i];
mat_2[i] = mat_2[j];
mat_2[j] = tmp;
break;
}
if (j == num_deps)
continue;
for (++j; j < num_deps; ++j)
if (mat_2[j][col] & mask)
for (k = 0; k < col_words; ++k) {
mat_2[j][k] ^= mat_2[i][k];
mat_1[j][k] ^= mat_1[i][k];
}
++i;
}
for (j = 0; j < qs->relations.length.now; ++j) {
uint64_t word = 0;
col = j / 64;
mask = (uint64_t) 1 << (j % 64);
for (k = i; k < 64; ++k)
if (mat_1[k][col] & mask)
word |= (uint64_t) 1 << k;
x[j] = word;
}
char *open = (char *) mat_1[0], *close = qs->mem.now;
qs->mem.now = memset(open, 0, close - open);
}
void lanczos_build_array(qs_sheet *qs, uint64_t **target, const size_t quantity, const size_t size) {
// ensure it remains memory for linear algebra
const char *mem_needs = (char *) qs->mem.now + quantity * size * sizeof(uint64_t);
const char *mem_ends = (char *) qs->mem.now + qs->mem.bytes_allocated;
assert(mem_needs < mem_ends);
for (size_t i = 0; i < quantity; ++i)
target[i] = qs->mem.now, qs->mem.now = mem_aligned(target[i] + size);
}
uint64_t *lanczos_block_worker(qs_sheet *qs) {
const qs_sm n_cols = qs->relations.length.now, v_size = n_cols > qs->base.length ? n_cols : qs->base.length;
const uint64_t safe_size = qs->lanczos.safe_length;
uint64_t *md[6], *xl[2], *sm[13], *tmp, *res, mask_0, mask_1, endless_guard = 1 << 11;
qs_sm i, dim_0, dim_1;
qs->mem.now = mem_aligned((uint64_t *) qs->mem.now + 1); // keep some padding.
lanczos_build_array(qs, md, 6, safe_size);
lanczos_build_array(qs, sm, 13, 64);
lanczos_build_array(qs, xl, 2, safe_size < 2048 ? 2048 : safe_size);
res = (*md) - 1; // simple "trick" to return mask + null_rows
for (i = 0; i < 64; ++i)
sm[12][i] = i;
dim_0 = 0;
dim_1 = 64;
mask_1 = (uint64_t) -1;
for (i = 0; i < qs->relations.length.now; ++i)
md[1][i] = xor_random(&qs->seed);
memcpy(md[0], md[1], v_size * sizeof(uint64_t));
lanczos_mul_MxN_Nx64(qs, md[1], v_size, xl[1]);
lanczos_mul_trans_MxN_Nx64(qs, xl[1], md[1]);
memcpy(xl[0], md[1], v_size * sizeof(uint64_t));
do {
lanczos_mul_MxN_Nx64(qs, md[1], v_size, xl[1]);
lanczos_mul_trans_MxN_Nx64(qs, xl[1], md[4]);
lanczos_mul_64xN_Nx64(qs, md[1], md[4], xl[1], sm[3]);
lanczos_mul_64xN_Nx64(qs, md[4], md[4], xl[1], sm[5]);
for (i = 0; i < 64 && !(sm[3][i]); ++i);
if (i != 64) {
dim_0 = (qs_sm) lanczos_find_non_singular_sub(sm[3], sm[12], sm[11], dim_1, sm[0]);
if (dim_0) {
mask_0 = 0;
for (i = 0; i < dim_0; ++i)
mask_0 |= (uint64_t) 1 << sm[11][i];
for (i = 0; i < 64; ++i)
sm[7][i] = (sm[5][i] & mask_0) ^ sm[3][i];
lanczos_mul_64x64_64x64(sm[0], sm[7], sm[7]);
for (i = 0; i < 64; ++i)
sm[7][i] ^= (uint64_t) 1 << i;
lanczos_mul_64x64_64x64(sm[1], sm[3], sm[8]);
for (i = 0; i < 64; ++i)
sm[8][i] &= mask_0;
lanczos_mul_64x64_64x64(sm[4], sm[1], sm[9]);
for (i = 0; i < 64; ++i)
sm[9][i] ^= (uint64_t) 1 << i;
lanczos_mul_64x64_64x64(sm[2], sm[9], sm[9]);
for (i = 0; i < 64; ++i)
sm[10][i] = ((sm[6][i] & mask_1) ^ sm[4][i]) & mask_0;
lanczos_mul_64x64_64x64(sm[9], sm[10], sm[9]);
for (i = 0; i < qs->relations.length.now; ++i)
md[4][i] &= mask_0;
lanczos_mul_Nx64_64x64_acc(qs, md[1], sm[7], xl[1], md[4]);
lanczos_mul_Nx64_64x64_acc(qs, md[3], sm[8], xl[1], md[4]);
lanczos_mul_Nx64_64x64_acc(qs, md[2], sm[9], xl[1], md[4]);
lanczos_mul_64xN_Nx64(qs, md[1], xl[0], xl[1], sm[7]);
lanczos_mul_64x64_64x64(sm[0], sm[7], sm[7]);
lanczos_mul_Nx64_64x64_acc(qs, md[1], sm[7], xl[1], md[0]);
tmp = md[2], md[2] = md[3], md[3] = md[1], md[1] = md[4], md[4] = tmp;
tmp = sm[2], sm[2] = sm[1], sm[1] = sm[0], sm[0] = tmp;
tmp = sm[4], sm[4] = sm[3], sm[3] = tmp;
tmp = sm[6], sm[6] = sm[5], sm[5] = tmp;
memcpy(sm[12], sm[11], 64 * sizeof(uint64_t));
mask_1 = mask_0;
dim_1 = dim_0;
}
}
} while (dim_0 && i != 64 && --endless_guard);
// it sometimes succeeds at 400+ iterations during software testing.
dim_0 *= endless_guard != 0;
// ===== answer finalization =====
// result will be a simple array of the form [mask, null_rows...]
// it's assumed that a null mask means "miss, no answer"
*res = 0; // mask
if (dim_0) {
lanczos_mul_MxN_Nx64(qs, md[0], v_size, md[3]);
lanczos_mul_MxN_Nx64(qs, md[1], v_size, md[2]);
lanczos_combine_cols(qs, md[0], md[1], md[3], md[2]);
lanczos_mul_MxN_Nx64(qs, md[0], v_size, md[1]);
if (*md[1] == 0) // should hold (the buffer must contain only zero)
if (memcmp(md[1], md[1] + 1, (v_size - 1) * sizeof(uint64_t)) == 0)
for (i = 0; i < n_cols; *res |= (*md)[i++]);
}
// if no mask found : clears everything, otherwise leave [mask + null rows]
char *open = (char *) md[*res != 0], *close = qs->mem.now;
qs->mem.now = memset(open, 0, close - open);
return res;
}
void lanczos_reduce_matrix(qs_sheet *qs) {
// a filtering is not always necessary to make "lanczos_block_worker" succeed :
// - it writes to the relations [ Y lengths, relation counter ] will change
qs_sm a, b, c, row, col, reduced_rows = qs->base.length, *counts;
counts = memset(qs->buffer[1], 0, qs->base.length * sizeof(*qs->buffer[1]));
if (qs->sieve_again_perms)
for (a = 0; a < qs->relations.length.now; ++a) {
// "snapshot" pointers, so they can be restored if "sieve again" is fired.
qs->lanczos.snapshot[a].relation = qs->relations.data[a];
qs->lanczos.snapshot[a].y_length = qs->relations.data[a]->Y.length;
}
for (a = 0; a < qs->relations.length.now; ++a)
for (b = 0; b < qs->relations.data[a]->Y.length; ++b)
++counts[qs->relations.data[a]->Y.data[b]];
// the counter of relations will change, store the original counter for debug purpose.
qs->relations.length.prev = qs->relations.length.now;
//
do {
row = reduced_rows;
do {
col = qs->relations.length.now;
for (a = b = 0; a < qs->relations.length.now; ++a) {
struct qs_relation *restrict const rel = qs->relations.data[a];
for (c = 0; c < rel->Y.length && counts[rel->Y.data[c]] > 1; ++c);
if (c < rel->Y.length)
for (; rel->Y.length;)
--counts[rel->Y.data[--rel->Y.length]];
else
qs->relations.data[b++] = qs->relations.data[a]; // relation is thrown.
}
} while (qs->relations.length.now = b, b != col);
for (a = reduced_rows = 0; a < qs->base.length; reduced_rows += counts[a++] != 0);
if (b = reduced_rows + 64, qs->relations.length.now > b) { // 64 extra rows
for (a = b; a < qs->relations.length.now; ++a)
for (struct qs_relation *restrict const rel = qs->relations.data[a]; rel->Y.length;)
--counts[rel->Y.data[--rel->Y.length]];
qs->relations.length.now = b;
}
} while (row != reduced_rows);
// Author message: Amusez-vous bien avec ce logiciel.
DEBUG_NORMAL("Matrix size reduced from %u to %u for linear algebra.\n", qs->relations.length.prev, qs->relations.length.now);
}
uint64_t *lanczos_block(qs_sheet *qs) {
// the worker algorithm is probabilistic with high success rate.
// it is interested in the Y field of the relations (to build its matrix).
// it receives as input the raw relations, then (as needed) the reduced relations.
if (qs->n_bits == 1)
return (uint64_t *) qs->mem.now; // nothing to solve when N = 1, return any zeroed buffer.
uint64_t *res;
qs_sm tries = 2 << ((qs->sieve_again_perms < 2) + (qs->sieve_again_perms < 3));
qs_sm reduce_at = tries >> 1;
//
if (qs->lanczos.safe_length < qs->relations.length.now) qs->lanczos.safe_length = qs->relations.length.now;
if (qs->lanczos.safe_length < qs->base.length) qs->lanczos.safe_length = qs->base.length;
qs->lanczos.safe_length += 64 - qs->lanczos.safe_length % 64;
//
do {
if (tries == reduce_at) // 230-bit can need reduce
lanczos_reduce_matrix(qs);
// Try to find a subset of all exponent vectors such that
// the sum of their exponent vectors is the zero vector.
res = lanczos_block_worker(qs);
} while (!*res && --tries);
return res;
}