-
Notifications
You must be signed in to change notification settings - Fork 0
/
dang_eda_final_project.Rmd
783 lines (450 loc) · 21.3 KB
/
dang_eda_final_project.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
---
title : DANG_final_project_EDA
author: Michael Li
---
================================================================================
This report is to explore a dataset containing red wine quality and other attribute
for around 1599 samples.
```{r echo=FALSE, message=FALSE, warning=FALSE,include = FALSE,package}
# Note that the `echo = FALSE` parameter was added to the code chunk to prevent
# printing of the R code that generated the plot.
# Load all of the packages that you end up using in your analysis in this code
# chunk.
# Notice that the parameter "echo" was set to FALSE for this code chunk. This
# prevents the code from displaying in the knitted HTML output. You should set
# echo=FALSE for all code chunks in your file, unless it makes sense for your
# report to show the code that generated a particular plot.
# The other parameters for "message" and "warning" should also be set to FALSE
# for other code chunks once you have verified that each plot comes out as you
# want it to. This will clean up the flow of your report.
install.packages("ggplot2", dependencies = T,
repos = "http://cran.us.r-project.org")
install.packages("knitr", dependencies = T,
repos = "http://cran.us.r-project.org")
install.packages("tidyverse", dependencies = T,
repos = "http://cran.us.r-project.org")
install.packages("RColorBrewer", dependencies = T,
repos = "http://cran.us.r-project.org")
install.packages("memisc",repos = "http://cran.us.r-project.org")
install.packages("GGally",repos = "http://cran.us.r-project.org")
library(ggplot2)
library(tidyverse)
library(GGally)
library(RColorBrewer)
library(memisc)
```
```{r echo=FALSE, message=FALSE, warning=FALSE,Load_the_Data}
# Load the Data
#setwd("/Users/yaozhenli/Google Drive/data_science_mac/DANG/7_EXPLORATORY_DATA_ANALYSIS/EDA/3/project/RMD file")
#import data and clean data
winequalitydata <- read.table("C:/Users/Michael Li/Google Drive/data_science_mac/DANG/7_EXPLORATORY_DATA_ANALYSIS/EDA/3/project/Data set/wineQualityReds.csv", header = T,sep = ",")
winequalitydata$X <- NULL
```
data introductioin: This is Reb Wine Quality data set. Contain1599 red wines
with 11 varaibles on the chemical properties of the wine
# Univariate Plots Section
### How many observations?
```{r echo=FALSE, message=FALSE, warning=FALSE, observation_count}
nrow(winequalitydata)
# 1599 observation
```
Total 1599 observation
###Which columns/factors we are measuring?
```{r echo=FALSE, message=FALSE, warning=FALSE,factoring}
colnames(winequalitydata)
```
### How does the quality of wine distribute among dataset?
```{r echo=FALSE,message=FALSE, warning=FALSE,quality_distribution}
ggplot(aes(x = factor(quality)),data = winequalitydata)+
geom_bar()+
ggtitle("quality distribution")+
theme(plot.title = element_text(hjust = 0.5))+
labs(x="quality ")
```
most of quality is 5 or 6
### How alcohol distribute among this dataset
```{r echo=FALSE, message=FALSE, warning=FALSE,alcohol_level_distribution}
ggplot(aes(x = alcohol), data= winequalitydata)+
geom_histogram(binwidth = 0.5)+
ggtitle("alcohol distribution")+
theme(plot.title = element_text(hjust = 0.5))+
labs(x="alcohol(%) ")+
scale_x_continuous(breaks=seq(8,20,0.5))
```
```{r echo=FALSE, message=FALSE, warning=FALSE}
summary(winequalitydata$alcohol)
```
majority of alcohol is under under 9.25 ~9.75.Some extreme value exists in high
alcohol
### How PH distribute among this dateset
```{r echo=FALSE, message=FALSE, warning=FALSE,ph_level_distribution}
ggplot(aes(x = pH), data= winequalitydata)+
geom_histogram(binwidth = 0.1)+
scale_x_continuous(breaks=seq(2,5,0.1))+
ggtitle("ph distribution")+
theme(plot.title = element_text(hjust = 0.5))
```
```{r echo=FALSE, message=FALSE, warning=FALSE}
summary(winequalitydata$pH)
```
majority of ph is under under 3.05 ~3.65. Close to normal distribution
### how fixed.acidity distribute among this dataset
```{r echo=FALSE,message=FALSE, warning=FALSE, fixed_acidity_distribution}
ggplot(aes(x = fixed.acidity), data= winequalitydata)+
geom_histogram(binwidth = 0.1)+
scale_x_continuous(breaks=seq(4,16,0.5))+
ggtitle("fixed.acidity distribution")+
theme(plot.title = element_text(hjust = 0.5))+
labs(x="fixed acidity (g/dm^3) ")
```
```{r echo=FALSE, message=FALSE, warning=FALSE}
summary(winequalitydata$fixed.acidity)
```
majority of fixed.acidity is under around 6.5~10. Some extrem highv value in
fixed.acidity
### how density distribute among this dateset
```{r echo=FALSE,density_distribution}
ggplot(aes(x = density), data = winequalitydata)+
geom_histogram()+
scale_x_continuous(breaks=seq(0.99,1.02,0.001))+
ggtitle("density distribution")+
theme(plot.title = element_text(hjust = 0.5))+
labs(x="density (g/cm^3) ")
```
```{r echo=FALSE}
summary(winequalitydata$density)
```
majority of density is under around 0.995 to 1.000. Close to normal distribution
### how sulphates distribute among this dateset
```{r echo=FALSE}
ggplot(aes(x = sulphates), data = winequalitydata)+
geom_histogram()+
scale_x_continuous(breaks = seq(0.2,1.2,0.1))+
ggtitle("sulphates distribution")+
theme(plot.title = element_text(hjust = 0.5))+
labs(x="sulphates (g/dm^3) ")
```
```{r echo=FALSE}
summary(winequalitydata$sulphates)
```
majority of density is under around 0.55 to 0.73. Some extreme high value \
in there.
### how volatile.acidity distribute among this dateset
```{r echo=FALSE,message=FALSE, warning=FALSE}
ggplot(aes(x = volatile.acidity), data = winequalitydata)+
geom_histogram()+
scale_x_continuous(breaks=seq(0.1,1.5,0.1))+
ggtitle("volatile.acidity distribution")+
theme(plot.title = element_text(hjust = 0.5))+
labs(x="volatile acidity(g/dm^3) ")
```
```{r echo=FALSE}
summary(winequalitydata$volatile.acidity)
```
Most volatile.acidity is between 0.2 and 0.8 group
# Univariate Analysis
### What is the structure of your dataset?
This is 1599 variable. And 12 dimention of the wine data involved.
All of dimention is numerical data
### What is/are the main feature(s) of interest in your dataset?
fixed.acidity,pH,alchol,quality,density
### What other features in the dataset do you think will help support your \
investigation into your feature(s) of interest?
volcatile.acidity, citric.acid,residual.sugar
### Did you create any new variables from existing variables in the dataset?
Yes.I create quality_category since extreme value is small and may cause biased
### Of the features you investigated, were there any unusual distributions? \
Did you perform any operations on the data to tidy, adjust, or change the form \
of the data? If so, why did you do this?
After analysis, I will add group feature into the dataset.based on the outlier \
and distribution of volume, I break the quality into 3 group. [3,4),[4,7],[8]
### how quality category distibute
```{r echo=FALSE,message=FALSE, warning=FALSE}
winequalitydata$quality_category <- cut(winequalitydata$quality, breaks = c(0,4,6,8))
ggplot(aes(x = quality_category), data = winequalitydata)+
geom_bar()+
scale_y_continuous(breaks = seq(0,1600,200))
```
after put the quality into category, we can put our focus on the most common
group
(4,6].
# Bivariate Plots Section
### relationship between combination of each two factors and coefficient
```{r fig1, fig.height =10, fig.width =10, echo=FALSE,message=FALSE, warning=FALSE}
#ggpair
numbervariable <- winequalitydata[c(1:12)]
ggpairs(numbervariable,lower = list(continuous ='smooth'))+
ggtitle("correlation between each varialbe and variable distribution")+
theme(plot.title = element_text(hjust = 0.5))
```
1. Factor of Highest coefficient with quality is alcohol. Coeffecient is 0.476\
2. Factor of second highes coefficient with quality is volatile.acidity. \
Coeffecient is -0.391
### more plot on coefficient chart.
```{r fig2, fig.height =10, fig.width =10, echo=FALSE,message=FALSE, warning=FALSE}
numbervariable <- winequalitydata[c(1:12)]
corr <-cor(numbervariable)
ggcorr(corr,label= TRUE, hjust = 0.65,label_round = 3, method = c("pairwise","pearson"))
```
### plot relationship between fixed.acidity and volatile.acidity
```{r echo=FALSE,message=FALSE, warning=FALSE}
#scatter plot
ggplot(aes(x = fixed.acidity, y = volatile.acidity), data = winequalitydata)+
geom_jitter(alpha= 1/5)+
geom_smooth()+
scale_x_continuous(breaks = seq(6,15,1))+
ggtitle("relationship between fixed.acidity and volatile.acidity")+
theme(plot.title = element_text(hjust = 0.5))+
labs(x="fixed.acidity(g / dm^3)", y="volatile.acidity(g / dm^3)")
```
### correlation between fixed.acidity and volatile.acidity
```{r echo=FALSE,message=FALSE, warning=FALSE}
cor(winequalitydata$fixed.acidity,winequalitydata$volatile.acidity)
```
Assume both factors should have strong positive correlation. \
actual two variable have a little negative correlation, which against \
my expectation
### plot relationship between volatile.acidity and sulphates
```{r echo=FALSE,message=FALSE, warning=FALSE}
#scatter plot
ggplot(aes(x = volatile.acidity, y = sulphates), data = winequalitydata)+
geom_jitter(alpha= 1/5)+
geom_smooth()+
scale_x_continuous(breaks = seq(0.1,1.3,0.1))+
scale_y_continuous(breaks= seq(0.55,1.5,0.1))+
ggtitle("relationship between sulphates and volatile.acidity")+
theme(plot.title = element_text(hjust = 0.5))+
labs(x="volatile.acidity(g / dm3)", y="sulphates(g / dm3)")
```
### correlation between sulphates and volatile.acidity
```{r echo=FALSE,message=FALSE, warning=FALSE}
cor(winequalitydata$sulphates,winequalitydata$volatile.acidity)
```
actual two variable have a little negative correlation
### plot relationship between alcohol and quality
```{r echo=FALSE,message=FALSE, warning=FALSE, relationship_between_alcohol_and_quality}
#scatter plot
ggplot(aes(x = alcohol, y = quality), data = winequalitydata)+
geom_jitter(aes(colour = factor(quality)))+
stat_summary(fun.x = "median", colour = 'blue', size = 1, geom = "point",
shape = 2)+
geom_smooth()+
scale_x_continuous(breaks = seq(9,14,0.4))+
guides(colour = guide_legend(override.aes = list(alpha =1),
title = "quality"))+
scale_color_brewer(type ="div",palette = 'RdYlGn')+
ggtitle("quality vs alcohol")+
theme(plot.title = element_text(hjust = 0.5))+
labs(x="alcohol(%)")
```
show indication that with the increase of the average alcohol (between 9 and 12)\
,the quality is higher.But since the quality category is too much\
and some outlier among
### calculate relationship between quality and average_alcohol
```{r echo=FALSE, message=FALSE, warning=FALSE}
winequalitydata %>%
group_by(quality) %>%
summarise(
average_alcohol = mean(alcohol)
)
```
### boxplot to take another look of relationship between quality and alcohol
```{r echo=FALSE,message=FALSE, warning=FALSE}
ggplot(aes(x = quality, y= alcohol,group = quality), data = winequalitydata)+
geom_boxplot(notch = FALSE, color = 'blue')+
scale_x_discrete(limits = c(3:8))+
labs(y="alcohol(%)")+
geom_jitter(alpha = 0.3)+
stat_summary(fun.y = 'mean',
geom = "point",
color = "red",
shape =8,
size = 4)
```
from 5 to 8 quality group,the alcohol level is increasing, \
similar as we discoverd in the scatter plot
### explore relationship between fixed.acidity and quality
```{r echo=FALSE,message=FALSE, warning=FALSE}
ggplot(aes(x = fixed.acidity, y = quality), data = winequalitydata)+
geom_jitter(aes(colour= factor(quality)))+
scale_x_continuous(breaks = seq(5,15,1))+
geom_smooth()+
stat_summary(fun.x = "median", colour = 'blue', size = 1,
geom = "point",shape = 2)+
scale_color_brewer(type ="div",palette = 'RdYlGn')+
guides(colour = guide_legend(override.aes = list(alpha =1),
title = "quality"))+
ggtitle("quality vs fixed.acidity")+
theme(plot.title = element_text(hjust = 0.5))+
labs(x="fixed.acitidy(g / dm^3)")
```
does not show clearn relationship between those two variables
### explore relationship between ph and quality
```{r echo=FALSE,message=FALSE, warning=FALSE}
ggplot(aes(x = pH, y = quality), data = winequalitydata)+
geom_jitter(aes(colour = factor(quality)))+
scale_x_continuous(breaks = seq(2.9,4,0.1),)+
stat_summary(fun.x = "median", colour = 'blue', size = 1,
geom = "point",shape = 2)+
geom_smooth()+
scale_color_brewer(type ="div",palette = 'RdYlGn')+
guides(colour = guide_legend(override.aes = list(alpha =1),
title = "quality"))+
ggtitle("quality vs ph")+
theme(plot.title = element_text(hjust = 0.5))
```
does not show clearn relationship between those two variable
### Explore relationship between volatile.acidity and quality
```{r echo=FALSE,message=FALSE, warning=FALSE}
ggplot(aes(x = volatile.acidity, y = quality), data = winequalitydata)+
geom_jitter(height = 0.3,aes(colour = factor(quality)))+
scale_x_continuous(breaks = seq(0.2,2,0.2))+
stat_summary(fun.x = "median", colour = 'blue', size = 1,
geom = "point" ,shape = 2)+
geom_smooth()+
scale_y_discrete(limits = c(3:8))+
scale_color_brewer(type ="div",palette = 'RdYlGn')+
guides(colour = guide_legend(override.aes = list(alpha =1),
title = "quality"))+
ggtitle("quality vs volatile.acidity")+
theme(plot.title = element_text(hjust = 0.5))+
labs(x="volatile.acidity(g / dm^3)")
```
clean indication between volatile.acidity and quality.\
With Volatile.acidity increase, quality decrease
# Bivariate Analysis
### What was the strongest relationship you found?
Most strong relationship I found ti between alcohol and quality.\
If we set limit the applied range, the coefficient will be even higher\
That is why I did winequality factor into the dataset\
# Multivariate Plots Section
### alcohol, volatile.acidity and quality relatinship
```{r echo=FALSE,message=FALSE, warning=FALSE }
ggplot(aes(x = alcohol, y = volatile.acidity, color = factor(quality)), data = winequalitydata)+
geom_jitter(alpha = 1/2,aes(colour = factor(quality)))+
guides(colour = guide_legend(override.aes = list(alpha =1)))+
ggtitle("relationship between alcohol, volatile.acidity and quality")+
theme(plot.title = element_text(hjust = 0.5))+
guides(colour = guide_legend(override.aes = list(alpha =1),
title = "quality"))+
scale_color_brewer(type ="div",palette = 'RdYlGn')+
labs(y="volatile.acidity(g / dm^3)", x = "alcohol(%)")+
geom_smooth(method = 'lm',size =1, se =FALSE)
```
we can see the trend that. Most high quality with high alcohol\
and lower volatile.acidity lower quality of wine\
However, the trend is not clear since we have 6 category of quality\
and some sample is outlier with volatile.acidity. Let's use group quality \
together and remove some outlier from data
### scatter map among quality, alchohol and volatile.acidity
```{r echo=FALSE,message=FALSE, warning=FALSE}
ggplot(aes(x= alcohol, y = volatile.acidity, color = quality_category),
data= winequalitydata)+
geom_jitter(aes(colour = quality_category))+
scale_x_continuous(limits = c(min(winequalitydata$alcohol),
quantile(winequalitydata$alcohol,0.95)),
breaks = seq(8,13,0.5))+
scale_y_continuous(limits = c(min(winequalitydata$volatile.acidity),
quantile(winequalitydata$volatile,0.95)))+
ggtitle("relationship between alcohol, volatile.acidity and quality category")+
theme(plot.title = element_text(hjust = 0.5))+
labs(y="volatile.acidity(g / dm^3)", x = "alcohol(%)")+
geom_smooth(method='lm',size =1)
```
Much clear relationship between quiality, alchohol and volatile.acidity.\
very few sample from (0,4] group. For (4,6] and (6,8] shows clear indication \
between alcohol and violatile .acidity. (Higher quality group tend to\
have high alcohol and lower volatile.acidity)
# Multivariate Analysis
### Building the linear model for price
### using mtable to try different parameter for linear regression model
```{r echo=FALSE,message=FALSE, warning=FALSE}
m1 <-lm(I(quality) ~ I(alcohol), data = winequalitydata)
m2 <- update(m1,~. +volatile.acidity)
m3 <- update(m2, ~ . + sulphates)
mtable(m1, m2, m3)
```
even with 3 different variable. R-squared is not really good.\
only explain 33.6 percent fo quality. Maybe it is not fit for linear
regression model
------
# Final Plots and Summary
### Plot One
```{r echo=FALSE,message=FALSE, warning=FALSE, Plot_one}
ggplot(aes(x = factor(quality)),data = winequalitydata)+
geom_bar()+
ggtitle("quality distribution")+
theme(plot.title = element_text(hjust = 0.5))+
labs(x="quality ")
```
```{r echo=FALSE,message=FALSE, warning=FALSE}
summary(winequalitydata$quality_category)
prop.table(table(winequalitydata$quality))
```
### Description first
Since we are talking about quality, I want to explore the quality distribution\
Most of quality is 5,6. Very few in 3,4,8. Data is very centrialized.\
4 to 6 group accounmt 82%. And that is one of reason I group the middle\
high proportion into one group(4,6] later.so we can focus the big trend \
rather the minor difference
### Plot two
```{r echo=FALSE,message=FALSE, warning=FALSE, Plot_Three}
#scatter plot
ggplot(aes(x = alcohol, y = quality), data = winequalitydata)+
geom_jitter(aes(colour = factor(quality)))+
stat_summary(fun.x = "median", colour = 'blue', size = 1,
geom = "point",shape = 2)+
geom_smooth()+
scale_x_continuous(breaks = seq(9,14,0.4))+
guides(colour = guide_legend(override.aes = list(alpha =1),
title = "quality"))+
scale_color_brewer(type ="div",palette = 'RdYlGn')+
ggtitle("quality vs alcohol")+
theme(plot.title = element_text(hjust = 0.5))+
labs( x = "alcohol(%)")
```
### Description two
Based on GGpair to explore the coeffecient between any two variable, we find\
alcohol have most strong corelation with quality. So, this plot is to visualize\
how that relationship between quality and alcohol\
From the chart, we can tell clean relationship indicating higher alcohol% trend\
to have higher quality, especailly when the alcohol(%) betwween 9.4 to 12.2\
### Plot three
```{r echo=FALSE, message=FALSE, warning=FALSE,Plot_One}
ggplot(aes(x= alcohol, y = volatile.acidity, color = quality_category),
data= winequalitydata)+
geom_jitter(aes(colour = quality_category))+
scale_x_continuous(limits = c(min(winequalitydata$alcohol),
quantile(winequalitydata$alcohol,0.95)),
breaks = seq(8,13,0.5))+
scale_y_continuous(limits = c(min(winequalitydata$volatile.acidity),
quantile(winequalitydata$volatile,0.95)))+
ggtitle("relationship between alcohol, volatile.acidity and quality category")+
theme(plot.title = element_text(hjust = 0.5))+
labs(y="volatile.acidity(g / dm^3)", x = "alcohol(%)")+
geom_smooth(method='lm',size =1)
```
### Description three
From the coeffecient chart information, we can tell that alcohol and volatile.acidity\
are two most influencial factors for qualitys. So, we want to discorver how those\
two factors influence quality simultaneously
In order to clear see how alcohol and volatile.acidity influnece the quality\
first, we group similar quality into smaller group so we can see better trend\
Since (0,4] group have few sample, we could not see much trend.\
For (4,6] and (6,8] shows clear indication between alcohol and violatile .acidity\
(Higher quality group tend to have high alcohol and lower volatile.acidity)
------
# Reflection
From the analysis, we can tell the most quality is under 4,5,6. Most influence\
factor to determine quality of wine is alcohol and volatile.acidity \
among the 13 variables.
Hihger alcohol and lower volatile.acidity normally indicate high quality of wine
Previous, I think ph should have strong relationship with quality. However\
that does not supported by data.
Previous, I want to plot based on quality. however, since the category variable\
have 6 different values, it will difficult to distinguish the different. \
After group those 6 different value into 3 ban, the trend is more clear\
and we filter out some information which is less important. \
In addition, even with those two factors + sulphates, \
regression model indicates can only explain 33% data in the dataset\
we need to large dataset or other model to predict the quality of wine