-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathinit.go
584 lines (510 loc) · 18 KB
/
init.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
// Copyright (c) 2014-2018 by Michael Dvorkin. All Rights Reserved.
// Use of this source code is governed by a MIT-style license that can
// be found in the LICENSE file.
//
// I am making my contributions/submissions to this project solely in my
// personal capacity and am not conveying any rights to any intellectual
// property of any third parties.
package donna
import `math`
type Magic struct {
mask Bitmask
magic Bitmask
}
var (
kingMoves [64]Bitmask
knightMoves [64]Bitmask
pawnAttacks [2][64]Bitmask
rookMagicMoves [64][4096]Bitmask
bishopMagicMoves [64][512]Bitmask
maskPassed [2][64]Bitmask
maskInFront [2][64]Bitmask
// Complete file, rank or diagonal mask if both squares reside on on the
// same file, rank, or diagonal. For example, maskLine[C3][F6] has bits
// set for the entire A1-H8 diagonal.
maskLine [64][64]Bitmask
// If a king on square [x] gets checked from square [y] it can evade the
// check from all squares except maskEvade[x][y]. For example, if white
// king on B2 gets checked by black bishop on G7 the king can't step back
// to A1 (despite not being attacked by black).
maskEvade [64][64]Bitmask
// If a king on square [x] gets checked from square [y] the check can be
// evaded by moving a piece to maskBlock[x][y]. For example, if white
// king on B2 gets checked by black bishop on G7 the check can be evaded
// by moving white piece onto C3-G7 diagonal (including capture on G7).
maskBlock [64][64]Bitmask
// Bitmask to indicate pawn attacks for a square. For example, C3 is being
// attacked by white pawns on B2 and D2, and black pawns on B4 and D4.
maskPawn [2][64]Bitmask
// Bitmasks to detect unstoppable passers (pawn square rule).
maskSquare[2][64]Bitmask // King doesn't have the right to move.
maskSquareEx[2][64]Bitmask // King has the right to move (border bits added).
// Two arrays to simplify incremental polyglot hash computation.
hashCastle [16]uint64
hashEnpassant [8]uint64
// Distance between two squares.
distance [64][64]int
// Late move reductions indexed by depth and move number.
lateMoveReductions [64][64]int
// Precomputed database of material imbalance scores, evaluation flags,
// and endgame handlers. I wish they all could be California girls.
materialBase [2*2*3*3*3*3*3*3*9*9]MaterialEntry
)
func init() {
initMasks()
initArrays()
initPST()
initMaterial()
}
func initMasks() {
for sq := A1; sq <= H8; sq++ {
row, col := coordinate(sq)
// Distance, Blocks, Evasions, Lines, Knights, and Kings.
for i := A1; i <= H8; i++ {
r, c := coordinate(i)
distance[sq][i] = max(abs(row - r), abs(col - c))
setupMasks(sq, i, row, col, r, c)
if i == sq || abs(i-sq) > 17 {
continue // No king or knight can reach that far.
}
rows, cols := abs(row - r), abs(col - c)
if rows <= 1 && cols <= 1 {
kingMoves[sq].set(i)
}
if (rows == 2 && cols == 1) || (rows == 1 && cols == 2) {
knightMoves[sq].set(i)
}
}
// Rooks.
mask := createRookMask(sq)
bits := uint(mask.count())
for i := 0; i < (1 << bits); i++ {
bitmask := mask.charm(i)
index := (bitmask * rookMagic[sq].magic) >> 52
rookMagicMoves[sq][index] = createRookAttacks(sq, bitmask)
}
// Bishops.
mask = createBishopMask(sq)
bits = uint(mask.count())
for i := 0; i < (1 << bits); i++ {
bitmask := mask.charm(i)
index := (bitmask * bishopMagic[sq].magic) >> 55
bishopMagicMoves[sq][index] = createBishopAttacks(sq, bitmask)
}
// Pawns.
if row >= A2H2 && row <= A7H7 {
if col > 0 {
pawnAttacks[White][sq].set(square(row + 1, col - 1))
pawnAttacks[Black][sq].set(square(row - 1, col - 1))
}
if col < 7 {
pawnAttacks[White][sq].set(square(row + 1, col + 1))
pawnAttacks[Black][sq].set(square(row - 1, col + 1))
}
}
// Pawn attacks.
if row > 1 { // White pawns can't attack first two ranks.
if col != 0 {
maskPawn[White][sq].set(sq - 9)
}
if col != 7 {
maskPawn[White][sq].set(sq - 7)
}
}
if row < 6 { // Black pawns can attack 7th and 8th ranks.
if col != 0 {
maskPawn[Black][sq].set(sq + 7)
}
if col != 7 {
maskPawn[Black][sq].set(sq + 9)
}
}
// Vertical squares in front of a pawn.
maskInFront[White][sq] = (maskBlock[sq][A8+col] | bit[A8+col]) & ^bit[sq]
maskInFront[Black][sq] = (maskBlock[A1+col][sq] | bit[A1+col]) & ^bit[sq]
// Masks to check for passed pawns.
if col > 0 {
maskPassed[White][sq] |= maskInFront[White][sq-1]
maskPassed[Black][sq] |= maskInFront[Black][sq-1]
maskPassed[White][sq-1] |= maskInFront[White][sq]
maskPassed[Black][sq-1] |= maskInFront[Black][sq]
}
maskPassed[White][sq] |= maskInFront[White][sq]
maskPassed[Black][sq] |= maskInFront[Black][sq]
}
}
func initArrays() {
// Castle hash values.
for mask := uint8(0); mask < 16; mask++ {
if mask & castleKingside[White] != 0 {
hashCastle[mask] ^= polyglotRandomCastle[0]
}
if mask & castleQueenside[White] != 0 {
hashCastle[mask] ^= polyglotRandomCastle[1]
}
if mask & castleKingside[Black] != 0 {
hashCastle[mask] ^= polyglotRandomCastle[2]
}
if mask & castleQueenside[Black] != 0 {
hashCastle[mask] ^= polyglotRandomCastle[3]
}
}
// Enpassant hash values.
for col := A1; col <= H1; col++ {
hashEnpassant[col] = polyglotRandomEnpassant[col]
}
// Late move reductions.
for i := 0; i < 64; i++ {
for j := 0; j < 64; j++ {
value := math.Log1p(float64(i)) * math.Log1p(float64(j)) / 1.6 - 2.3
if value < 0.0 {
value = 0.0
}
lateMoveReductions[i][j] = int(math.Floor(value))
}
}
}
func initPST() {
for square := A1; square <= H8; square++ {
// White pieces: flip square index since bonus points have been
// set up from black's point of view.
flip := square ^ A8
pst[Pawn] [square].add(Score{bonusPawn [0][flip], bonusPawn [1][flip]}).add(valuePawn)
pst[Knight][square].add(Score{bonusKnight[0][flip], bonusKnight[1][flip]}).add(valueKnight)
pst[Bishop][square].add(Score{bonusBishop[0][flip], bonusBishop[1][flip]}).add(valueBishop)
pst[Rook] [square].add(Score{bonusRook [0][flip], bonusRook [1][flip]}).add(valueRook)
pst[Queen] [square].add(Score{bonusQueen [0][flip], bonusQueen [1][flip]}).add(valueQueen)
pst[King] [square].add(Score{bonusKing [0][flip], bonusKing [1][flip]})
// Black pieces: use square index as is, and assign negative
// values so we could use white + black without extra condition.
pst[BlackPawn] [square].sub(Score{bonusPawn [0][square], bonusPawn [1][square]}).sub(valuePawn)
pst[BlackKnight][square].sub(Score{bonusKnight[0][square], bonusKnight[1][square]}).sub(valueKnight)
pst[BlackBishop][square].sub(Score{bonusBishop[0][square], bonusBishop[1][square]}).sub(valueBishop)
pst[BlackRook] [square].sub(Score{bonusRook [0][square], bonusRook [1][square]}).sub(valueRook)
pst[BlackQueen] [square].sub(Score{bonusQueen [0][square], bonusQueen [1][square]}).sub(valueQueen)
pst[BlackKing] [square].sub(Score{bonusKing [0][square], bonusKing [1][square]})
}
}
func initMaterial() {
var index int
for wQ := 0; wQ < 2; wQ++ {
for bQ := 0; bQ < 2; bQ++ {
for wR := 0; wR < 3; wR++ {
for bR := 0; bR < 3; bR++ {
for wB := 0; wB < 3; wB++ {
for bB := 0; bB < 3; bB++ {
for wN := 0; wN < 3; wN++ {
for bN := 0; bN < 3; bN++ {
for wP := 0; wP < 9; wP++ {
for bP := 0; bP < 9; bP++ {
index = wQ * materialBalance[Queen] +
bQ * materialBalance[BlackQueen] +
wR * materialBalance[Rook] +
bR * materialBalance[BlackRook] +
wB * materialBalance[Bishop] +
bB * materialBalance[BlackBishop] +
wN * materialBalance[Knight] +
bN * materialBalance[BlackKnight] +
wP * materialBalance[Pawn] +
bP * materialBalance[BlackPawn]
// Compute game phase and home turf values.
materialBase[index].phase = 12 * (wN + bN + wB + bB) + 18 * (wR + bR) + 44 * (wQ + bQ)
materialBase[index].turf = (wN + bN + wB + bB) * (wN + bN + wB + bB)
// Set up evaluation flags and endgame handlers.
materialBase[index].flags,
materialBase[index].endgame = endgames(wP, wN, wB, wR, wQ, bP, bN, bB, bR, bQ)
// Compute material imbalance scores.
if wQ != bQ || wR != bR || wB != bB || wN != bN || wP != bP {
white := imbalance(wB/2, wP, wN, wB, wR, wQ, bB/2, bP, bN, bB, bR, bQ)
black := imbalance(bB/2, bP, bN, bB, bR, bQ, wB/2, wP, wN, wB, wR, wQ)
adjustment := (white - black) / 32
materialBase[index].score.midgame += adjustment
materialBase[index].score.endgame += adjustment
}
}
}
}
}
}
}
}
}
}
}
}
// Simplified second-degree polynomial material imbalance by Tord Romstad.
func imbalance(w2, wP, wN, wB, wR, wQ, b2, bP, bN, bB, bR, bQ int) int {
polynom := func(x, a, b, c int) int {
return a * (x * x) + (b + c) * x
}
return polynom(w2, 0, ( 0 ), 1756) +
polynom(wP, 2, ( 39*w2 + 37*b2 ), -164) +
polynom(wN, -4, ( 35*w2 + 271*wP + 10*b2 + 62*bP ), -1067) +
polynom(wB, 0, ( 0*w2 + 105*wP + 4*wN + 57*b2 + 64*bP + 39*bN ), -160) +
polynom(wR, -141, ( -27*w2 + -2*wP + 46*wN + 100*wB + 50*b2 + 40*bP + 23*bN + -22*bB ), 234) +
polynom(wQ, 0, (-177*w2 + 25*wP + 129*wN + 142*wB + -137*wR + 98*b2 + 105*bP + -39*bN + 141*bB + 274*bR), -137)
}
func endgames(wP, wN, wB, wR, wQ, bP, bN, bB, bR, bQ int) (flags uint8, endgame Function) {
wMinor, wMajor := wN + wB, wR + wQ
bMinor, bMajor := bN + bB, bR + bQ
allMinor, allMajor := wMinor + bMinor, wMajor + bMajor
noPawns := (wP + bP == 0)
bareKing := ((wP + wMinor + wMajor) * (bP + bMinor + bMajor) == 0) // Bare king (white, black or both).
// Set king safety flags if the opposing side has a queen and at least one piece.
if wQ > 0 && (wN + wB + wR) > 0 {
flags |= blackKingSafety
}
if bQ > 0 && (bN + bB + bR) > 0 {
flags |= whiteKingSafety
}
// Insufficient material endgames that don't require further evaluation:
// 1) Two bare kings.
if wP + bP + allMinor + allMajor == 0 {
flags |= materialDraw
// 2) No pawns and king with a minor.
} else if noPawns && allMajor == 0 && wMinor < 2 && bMinor < 2 {
flags |= materialDraw
// 3) No pawns and king with two knights.
} else if noPawns && allMajor == 0 && allMinor == 2 && (wN == 2 || bN == 2) {
flags |= materialDraw
// Known endgame: king and a pawn vs. bare king.
} else if wP + bP == 1 && allMinor == 0 && allMajor == 0 {
flags |= knownEndgame
endgame = (*Evaluation).kingAndPawnVsBareKing
// Known endgame: king with a knight and a bishop vs. bare king.
} else if noPawns && allMajor == 0 && ((wN == 1 && wB == 1) || (bN == 1 && bB == 1)) {
flags |= knownEndgame
endgame = (*Evaluation).knightAndBishopVsBareKing
// Known endgame: two bishops vs. bare king.
} else if noPawns && allMajor == 0 && ((wN == 0 && wB == 2) || (bN == 0 && bB == 2)) {
flags |= knownEndgame
endgame = (*Evaluation).twoBishopsVsBareKing
// Known endgame: king with some winning material vs. bare king.
} else if bareKing && allMajor > 0 {
flags |= knownEndgame
endgame = (*Evaluation).winAgainstBareKing
// Lesser known endgame: king and two or more pawns vs. bare king.
} else if bareKing && allMinor + allMajor == 0 && wP + bP > 1 {
flags |= lesserKnownEndgame
endgame = (*Evaluation).kingAndPawnsVsBareKing
// Lesser known endgame: queen vs. rook with pawn(s)
} else if (wP + wMinor + wR == 0 && wQ == 1 && bMinor + bQ == 0 && bP > 0 && bR == 1) ||
(bP + bMinor + bR == 0 && bQ == 1 && wMinor + wQ == 0 && wP > 0 && wR == 1) {
flags |= lesserKnownEndgame
endgame = (*Evaluation).queenVsRookAndPawns
// Lesser known endgame: king and pawn vs. king and pawn.
} else if allMinor + allMajor == 0 && wP == 1 && bP == 1 {
flags |= lesserKnownEndgame
endgame = (*Evaluation).kingAndPawnVsKingAndPawn
// Lesser known endgame: bishop and pawn vs. bare king.
} else if bareKing && allMajor == 0 && wN + bN == 0 && (wB * wP == 1 || bB * bP == 1) {
flags |= lesserKnownEndgame
endgame = (*Evaluation).bishopAndPawnVsBareKing
// Lesser known endgame: rook and pawn vs. rook.
} else if allMinor == 0 && wQ + bQ == 0 && wR + bR == 2 && wP + bP == 1 {
flags |= lesserKnownEndgame
endgame = (*Evaluation).rookAndPawnVsRook
// Lesser known endgame: no pawns left.
} else if (wP == 0 || bP == 0) && wMajor - bMajor == 0 && abs(wMinor - bMinor) <= 1 {
flags |= lesserKnownEndgame
endgame = (*Evaluation).noPawnsLeft
// Lesser known endgame: single pawn with not a lot of material.
} else if (wP == 1 || bP == 1) && wMajor - bMajor == 0 && abs(wMinor - bMinor) <= 1 {
flags |= lesserKnownEndgame
endgame = (*Evaluation).lastPawnLeft
// Check for potential opposite-colored bishops.
} else if wB * bB == 1 {
flags |= singleBishops
if allMajor == 0 && allMinor == 2 {
flags |= lesserKnownEndgame
endgame = (*Evaluation).bishopsAndPawns
} else if flags & (whiteKingSafety | blackKingSafety) == 0 {
flags |= lesserKnownEndgame
endgame = (*Evaluation).drawishBishops
}
}
return
}
func createRookMask(square int) (bitmask Bitmask) {
r, c := coordinate(square)
bitmask = (maskRank[r] | maskFile[c]) ^ bit[square]
return *bitmask.trim(r, c)
}
func createBishopMask(square int) (bitmask Bitmask) {
r, c := coordinate(square)
if sq := square + 7; sq <= H8 && col(sq) == c - 1 {
bitmask = maskLine[square][sq]
} else if sq := square - 7; sq >= A1 && col(sq) == c + 1 {
bitmask = maskLine[square][sq]
}
if sq := square + 9; sq <= H8 && col(sq) == c + 1 {
bitmask |= maskLine[square][sq]
} else if sq := square - 9; sq >= A1 && col(sq) == c - 1 {
bitmask |= maskLine[square][sq]
}
bitmask ^= bit[square]
return *bitmask.trim(r, c)
}
func createRookAttacks(sq int, mask Bitmask) (bitmask Bitmask) {
row, col := coordinate(sq)
// North.
for r := row + 1; r <= 7; r++ {
sq := square(r, col)
bitmask.set(sq)
if mask.on(sq) {
break
}
}
// East.
for c := col + 1; c <= 7; c++ {
sq := square(row, c)
bitmask.set(sq)
if mask.on(sq) {
break
}
}
// South.
for r := row - 1; r >= 0; r-- {
sq := square(r, col)
bitmask.set(sq)
if mask.on(sq) {
break
}
}
// West
for c := col - 1; c >= 0; c-- {
sq := square(row, c)
bitmask.set(sq)
if mask.on(sq) {
break
}
}
return
}
func createBishopAttacks(sq int, mask Bitmask) (bitmask Bitmask) {
row, col := coordinate(sq)
// North East.
for c, r := col + 1, row + 1; c <= 7 && r <= 7; c, r = c+1, r+1 {
sq := square(r, c)
bitmask.set(sq)
if mask.on(sq) {
break
}
}
// South East.
for c, r := col + 1, row - 1; c <= 7 && r >= 0; c, r = c+1, r-1 {
sq := square(r, c)
bitmask.set(sq)
if mask.on(sq) {
break
}
}
// South West.
for c, r := col - 1, row - 1; c >= 0 && r >= 0; c, r = c-1, r-1 {
sq := square(r, c)
bitmask.set(sq)
if mask.on(sq) {
break
}
}
// North West.
for c, r := col - 1, row + 1; c >= 0 && r <= 7; c, r = c-1, r+1 {
sq := square(r, c)
bitmask.set(sq)
if mask.on(sq) {
break
}
}
return
}
func setupMasks(square, target, row, col, r, c int) {
if row == r {
if col < c {
maskBlock[square][target].fill(square, 1, bit[target], maskFull)
maskEvade[square][target].spot(square, -1, ^maskFile[0])
} else if col > c {
maskBlock[square][target].fill(square, -1, bit[target], maskFull)
maskEvade[square][target].spot(square, 1, ^maskFile[7])
}
if col != c {
maskLine[square][target] = maskRank[r]
}
} else if col == c {
if row < r {
maskBlock[square][target].fill(square, 8, bit[target], maskFull)
maskEvade[square][target].spot(square, -8, ^maskRank[0])
} else {
maskBlock[square][target].fill(square, -8, bit[target], maskFull)
maskEvade[square][target].spot(square, 8, ^maskRank[7])
}
if row != r {
maskLine[square][target] = maskFile[c]
}
} else if r+col == row+c { // Diagonals (A1->H8).
if col < c {
maskBlock[square][target].fill(square, 9, bit[target], maskFull)
maskEvade[square][target].spot(square, -9, ^maskRank[0] & ^maskFile[0])
} else {
maskBlock[square][target].fill(square, -9, bit[target], maskFull)
maskEvade[square][target].spot(square, 9, ^maskRank[7] & ^maskFile[7])
}
if shift := (r - c) & 15; shift < 8 { // A1-A8-H8
maskLine[square][target] = maskA1H8 << uint(8*shift)
} else { // B1-H1-H7
maskLine[square][target] = maskA1H8 >> uint(8*(16-shift))
}
} else if row+col == r+c { // AntiDiagonals (H1->A8).
if col < c {
maskBlock[square][target].fill(square, -7, bit[target], maskFull)
maskEvade[square][target].spot(square, 7, ^maskRank[7] & ^maskFile[0])
} else {
maskBlock[square][target].fill(square, 7, bit[target], maskFull)
maskEvade[square][target].spot(square, -7, ^maskRank[0] & ^maskFile[7])
}
if shift := 7 ^ (r + c); shift < 8 { // A8-A1-H1
maskLine[square][target] = maskH1A8 >> uint(8*shift)
} else { // B8-H8-H2
maskLine[square][target] = maskH1A8 << uint(8*(16-shift))
}
}
// Default values are all 0 for maskBlock[square][target] (Go sets it for us)
// and all 1 for maskEvade[square][target].
if maskEvade[square][target] == 0 {
maskEvade[square][target] = maskFull
}
// Pawn square rule masks.
if square != target {
// White king chasing black pawn.
if row > 1 {
if row <= r && abs(col - c) <= 7 - row {
maskSquare[White][square].set(target)
}
if row <= r + 1 && abs(col - c) <= 8 - row {
maskSquareEx[White][square].set(target)
}
} else if row == 1 {
if row < r && abs(col - c) < 7 - row {
maskSquare[White][square].set(target)
}
if row <= r && abs(col - c) < 8 - row {
maskSquareEx[White][square].set(target)
}
}
// Black king chasing white pawn.
if row < 6 {
if row >= r && abs(col - c) <= row {
maskSquare[Black][square].set(target)
}
if row + 1 >= r && abs(col - c) <= row + 1 {
maskSquareEx[Black][square].set(target)
}
} else if row == 6 {
if row > r && abs(col - c) < row {
maskSquare[Black][square].set(target)
}
if row >= r && abs(col - c) <= row {
maskSquareEx[Black][square].set(target)
}
}
}
}