-
Notifications
You must be signed in to change notification settings - Fork 0
/
cnn7.py
227 lines (194 loc) · 9.7 KB
/
cnn7.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
#!/usr/bin/python
# import the necessary packages
from skimage.measure import compare_ssim
import argparse
import imutils
import cv2
##
import os
import sys
import csv
import numpy as np
import tensorflow as tf
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import keras.backend as K
from keras.preprocessing.image import img_to_array, load_img
from keras.models import Sequential, model_from_json
from keras.optimizers import Adam, SGD
from keras.layers import Dense, Activation, Conv2D, MaxPooling2D, Dropout, Flatten, BatchNormalization
from keras.utils import np_utils
from keras.callbacks import EarlyStopping
from tensorflow.python import debug as tf_debug
# global variables
cursor_index = 0
images = list()
labels_list = list()
count = 0
fps = 0
fig = 0 # figure object for veiwing frames and navigation
# function that handels csv data supported
# -----------------------------------------------------------------------------
def process_dataset(images_path, labels_path):
global images
global labels_list
with open(labels_path) as f:
read_file = csv.reader(f, delimiter=',')
for row in read_file:
labels_list.append([row[0], row[2], row[3], row[4]])
# print(row[1])
image_names = [x[0] for x in labels_list]
for image_name in image_names:
for filename in os.listdir(images_path):
# print(os.path.splitext(filename)[0])
if filename.endswith(".jpg") and (os.path.splitext(filename)[0]) == image_name:
images.append(img_to_array(load_img(images_path + '/' + filename)))
break
for row in labels_list:
del row[0]
# print(labels_list)
# print('--------------------------------------------------------')
# print('--------------------------------------------------------')
# print('--------------------------------------------------------')
# print('--------------------------------------------------------')
# print('--------------------------------------------------------')
# print(images[0].shape)
# print('--------------------------------------------------------')
# print('--------------------------------------------------------')
# print('--------------------------------------------------------')
def split_train_valid():
global count
shuffled_index = np.random.permutation(len(images))
indices_train = shuffled_index[0:int(0.9*len(images))]
indices_valid = shuffled_index[int(0.9*len(images)):len(images)]
count = indices_valid
train_data = [images[i] for i in indices_train]
train_labels = [labels_list[i] for i in indices_train]
valid_data = [images[i] for i in indices_valid]
valid_labels = [labels_list[i] for i in indices_valid]
return train_data, train_labels, valid_data, valid_labels
class cnn():
def __init__(self):
self.model = Sequential()
def train_network():
#sess = K.get_session()
#sess = tf_debug.LocalCLIDebugWrapperSession(sess)
#K.set_session(sess)
x, y, x_val, y_val = split_train_valid()
rows = x[0].shape[0]
cols = x[0].shape[1]
channels = x[0].shape[2]
print(np.array(x).shape)
y = np.array(y).astype(float)
y_val = np.array(y_val).astype(float)
cnn_m = cnn()
# Create cnn
#cnn_m.model.add(Conv2D(256, kernel_size=3, kernel_initializer='random_uniform', bias_initializer='zeros', padding='same', data_format="channels_last", input_shape=(rows, cols, channels)))
#cnn_m.model.add(Activation('relu'))
#cnn_m.model.add(MaxPooling2D(pool_size=(2, 2)))
#cnn_m.model.add(BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True, beta_initializer='zeros', gamma_initializer='ones', moving_mean_initializer='zeros', moving_variance_initializer='ones', beta_regularizer=None, gamma_regularizer=None, beta_constraint=None, gamma_constraint=None))
#cnn_m.model.add(MaxPooling2D(pool_size=(2, 2)))
cnn_m.model.add(Conv2D(128, kernel_size=3, kernel_initializer='random_uniform', bias_initializer='zeros', padding='same', data_format="channels_last", input_shape=(rows, cols, channels)))
#cnn_m.model.add(BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True, beta_initializer='zeros', gamma_initializer='ones', moving_mean_initializer='zeros', moving_variance_initializer='ones', beta_regularizer=None, gamma_regularizer=None, beta_constraint=None, gamma_constraint=None))
cnn_m.model.add(Activation('relu'))
cnn_m.model.add(MaxPooling2D(pool_size=(2, 2)))
#cnn_m.model.add(MaxPooling2D(pool_size=(2, 2)))
cnn_m.model.add(Conv2D(64, kernel_size=3, kernel_initializer='random_uniform', bias_initializer='zeros', padding='same'))
#cnn_m.model.add(BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True, beta_initializer='zeros', gamma_initializer='ones', moving_mean_initializer='zeros', moving_variance_initializer='ones', beta_regularizer=None, gamma_regularizer=None, beta_constraint=None, gamma_constraint=None))
cnn_m.model.add(Activation('relu'))
#cnn_m.model.add(MaxPooling2D(pool_size=(2, 2)))
cnn_m.model.add(Conv2D(32, kernel_size=3, kernel_initializer='random_uniform', bias_initializer='zeros', padding='same'))
#cnn_m.model.add(BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True, beta_initializer='zeros', gamma_initializer='ones', moving_mean_initializer='zeros', moving_variance_initializer='ones', beta_regularizer=None, gamma_regularizer=None, beta_constraint=None, gamma_constraint=None))
cnn_m.model.add(Activation('relu'))
#cnn_m.model.add(MaxPooling2D(pool_size=(2, 2)))
cnn_m.model.add(Conv2D(16, kernel_size=3, kernel_initializer='random_uniform', bias_initializer='zeros', padding='same'))
#cnn_m.model.add(BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True, beta_initializer='zeros', gamma_initializer='ones', moving_mean_initializer='zeros', moving_variance_initializer='ones', beta_regularizer=None, gamma_regularizer=None, beta_constraint=None, gamma_constraint=None))
cnn_m.model.add(Activation('relu'))
cnn_m.model.add(Dropout(0.2))
cnn_m.model.add(Flatten())
cnn_m.model.add(Dense(64))
cnn_m.model.add(Activation('relu'))
cnn_m.model.add(Dense(32))
cnn_m.model.add(Activation('relu'))
cnn_m.model.add(Dropout(0.2))
cnn_m.model.add(Dense(3))
#cnn_m.model.add(Activation('linear'))
adam = Adam(lr=0.001, decay=0.0005)
#sgd = SGD(lr=0.00001, decay=0.0005)
# Define attributes of the cnn; categorial, optimizer_type, performance metrics
cnn_m.model.compile(loss='mean_squared_error', optimizer=adam, metrics=['accuracy'])
#cnn_m.model.compile(loss='mean_squared_error', optimizer=sgd, metrics=['accuracy'])
# Fit the model to the training data
#early_stopping = EarlyStopping(monitor='val_loss', patience=2)
history = cnn_m.model.fit(np.array(x), y, epochs=200, batch_size=16, validation_data=(np.asarray(x_val), y_val), shuffle=True)
#history = cnn_m.model.fit(np.array(x), y, epochs=200, batch_size=16, validation_data=(np.asarray(x_val), y_val), shuffle=True, callbacks=[early_stopping])
#score = cnn_m.model.evaluate(np.array(x_val), y_val, batch_size=8)
#print('score', score)
# 2. save your trained model
# serialize model to JSON
model_json = cnn_m.model.to_json()
with open("model.json", "w") as json_file:
json_file.write(model_json)
# serialize weights to HDF5
cnn_m.model.save_weights("model.h5")
print("Saved model to disk")
# list all data in history
print(history.history.keys())
print(count)
# summarize history for accuracy
fig1 = plt.figure()
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
fig1.savefig("model accuracy.png")
#plt.show()
# summarize history for loss
fig2 = plt.figure()
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
fig2.savefig("model loss.png")
#plt.show()
# # function responsible for processing the video and extracting the frames
# # -----------------------------------------------------------------------------
# def process_video(video_path):#, timestamp, events_id):
# # variables initialization
# global count
# global fps
# success = True
# # creating directory for new images
# video_name = os.path.basename(os.path.splitext(video_path)[0])
# print("Start processing: " + video_name)
# if not os.path.isdir(video_name):
# os.mkdir(video_name)
# # initialize captured video and retrieve the frames per second for the video
# vidcap = cv2.VideoCapture(video_path)
# fps = vidcap.get(cv2.CAP_PROP_FPS)
# success, image = vidcap.read() # images are numpy.ndarray
# # saving video frames into images list
# while success:
# images.append((timestamp_list[count], image))
# # save frame as JPEG file, uncomment if needed
# # cv2.imwrite(os.path.join(video_name, "frame%d.jpg" % count), image)
# count += 1
# success, image = vidcap.read()
# print("finished reading %d frames" %count)
# main function
# -----------------------------------------------------------------------------
def main():
if len(sys.argv) == 3:
images_path = sys.argv[1]
labels_path = sys.argv[2]
process_dataset(images_path, labels_path)
train_network()
else:
print('Wrong number of arguments')
if __name__ == '__main__':
main()