Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

demo_segmentation.py output being black #90

Open
Lance4Liu opened this issue Jan 18, 2024 · 0 comments
Open

demo_segmentation.py output being black #90

Lance4Liu opened this issue Jan 18, 2024 · 0 comments

Comments

@Lance4Liu
Copy link

Lance4Liu commented Jan 18, 2024

I train the models using train_segmentation.py, with train_config.yml being:

output_root: '../'
pytorch_data_dir: '../'
experiment_name: "exp3"
log_dir: "cocostuff27"
azureml_logging: True
submitting_to_aml: False

# Loader params
num_workers: 0
max_steps: 5000
batch_size: 16

num_neighbors: 7
dataset_name: "directory"

# Used if dataset_name is directory
dir_dataset_name: "dataset_brain"
dir_dataset_n_classes: 3


has_labels: False
crop_type: None
crop_ratio: .5
res: 224
loader_crop_type: "center"

# Model Params
extra_clusters: 0
use_true_labels: False
use_recalibrator: False
model_type: "vit_small"
arch: "dino"
use_fit_model: False
dino_feat_type: "feat"
projection_type: "nonlinear"
#projection_type: linear
dino_patch_size: 8
granularity: 1
continuous: True
dim: 70
dropout: True
zero_clamp: True

lr: 5e-4
pretrained_weights: ~
use_salience: False
stabalize: False
stop_at_zero: True

# Feature Contrastive params
pointwise: True
feature_samples: 11
neg_samples: 5
aug_alignment_weight: 0.0

correspondence_weight: 1.0


# IAROA vit small 1/31/22
neg_inter_weight: 0.63
pos_inter_weight: 0.25
pos_intra_weight: 0.67
neg_inter_shift: 0.46
pos_inter_shift: 0.12
pos_intra_shift: 0.18

rec_weight: 0.0
repulsion_weight: 0.0

# CRF Params
crf_weight: 0.0
alpha: .5
beta: .15
gamma: .05
w1: 10.0
w2: 3.0
shift: 0.00
crf_samples: 1000
color_space: "rgb"

reset_probe_steps: ~

# Logging params
n_images: 5
scalar_log_freq: 10
checkpoint_freq: 50
val_freq: 100
hist_freq: 100


hydra:
  run:
    dir: "."
  output_subdir: ~
  #job_logging: "disabled"
  #hydra_logging: "disabled"

Then I run the demo_segmentation.py with demo_config.yml being:

output_root: '../'
model_path: "../checkpoints/cocostuff27/directory_exp3_date_Jan18_23-39-07/epoch=57-step=799.ckpt"
image_dir: "../test_brain"
experiment_name: "exp3"
res: 320
batch_size: 8
num_workers: 0
use_ddp: False

hydra:
  run:
    dir: "."
  output_subdir: ~
  #job_logging: "disabled"
  #hydra_logging: "disabled"

But the output in results\predictions\cluster is totally dark.
Can someone tell me what should I do for this? More epoches? Or some paths in the configs should be edited?
I train the epoch for about 50.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant