-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutil.py
460 lines (344 loc) · 14.3 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
# coding=utf-8
# Copyright 2018 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tools."""
# pylint: disable=missing-docstring,g-doc-args,g-doc-return-or-yield
# pylint: disable=g-short-docstring-punctuation,g-no-space-after-docstring-summary
# pylint: disable=invalid-name,broad-except
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import time
from absl import logging
import numpy as np
import tensorflow.compat.v1 as tf
from tensorflow_probability import bijectors as tfb
from tensorflow_probability import distributions as tfd
from tensorflow_probability import edward2 as ed
from tensorflow_probability.python.experimental.edward2.generated_random_variables import Normal
from tensorflow_probability.python.experimental.edward2.interceptor import tape
from tensorflow_probability.python.experimental.edward2.program_transformations import make_log_joint_fn
from tensorflow.python.ops.parallel_for import pfor
import program_transformations as program_transformations
FLAGS = tf.app.flags.FLAGS
# pylint: disable=g-import-not-at-top
try:
import __builtin__
except ImportError:
# Python 3
import builtins as __builtin__
# pylint: enable=g-import-not-at-top
__all__ = [
'condition_number_cp',
'condition_number_ncp',
'compute_V_cp',
'compute_V_ncp',
'mean_field_variational_inference',
'approximate_mcmc_step_size',
]
def compute_V_cp(q, v):
r = (v * q + q + 1.)
return np.array([[1. + v, 1.], [1., q*v + 1.]]) / r
def compute_V_ncp(q, v):
r = 1 / (v * q + q + 1)
return r * np.array([[q + 1, -np.sqrt(v)*q], [-np.sqrt(v)*q, v*q + 1]])
def condition_number_cp(q, v):
sqrt_det = 2 * np.sqrt((v * q + 1) * (v * q + 1) - v * (v * q + q + 1) *
(v * q + 1) / (v + 1))
lambda1 = 2*(v*q + 1) - sqrt_det
lambda2 = 2*(v*q + 1) + sqrt_det
return lambda2 / lambda1
def condition_number_ncp(q, v):
sqrt_det = 2 * np.sqrt((v * q + 1) * (v * q + 1) - (v * q + q + 1) *
(v * q + 1) / (q + 1))
lambda1 = 2*(v*q + 1) - sqrt_det
lambda2 = 2*(v*q + 1) + sqrt_det
return lambda2 / lambda1
def mean_field_variational_inference(model, *args, **kwargs):
num_optimization_steps = kwargs.get('num_optimization_steps', 2000)
del kwargs['num_optimization_steps']
(variational_model,
variational_parameters) = program_transformations.make_variational_model(
model, *args, **kwargs)
log_joint = make_log_joint_fn(model)
def target(**parameters):
full_kwargs = dict(parameters, **kwargs)
return log_joint(*args, **full_kwargs)
log_joint_q = make_log_joint_fn(variational_model)
def target_q(**parameters):
return log_joint_q(*args, **parameters)
elbo_sum = 0.
for _ in range(16):
with tape() as variational_tape:
_ = variational_model(*args)
params = variational_tape
elbo_sum = elbo_sum + target(**params) - target_q(**params)
elbo = elbo_sum / 16.
best_elbo = None
learning_rate_ph = tf.compat.v1.placeholder(shape=[], dtype=tf.float32)
learning_rate = tf.Variable(learning_rate_ph, trainable=False)
optimizer = tf.compat.v1.train.AdamOptimizer(learning_rate=learning_rate)
train = optimizer.minimize(-elbo)
init = tf.compat.v1.global_variables_initializer()
start_time = time.time()
for learning_rate_val in [0.01, 0.1, 0.01, 0.1, 0.01, 0.1]:
feed_dict = {learning_rate_ph: learning_rate_val}
with tf.compat.v1.Session() as sess:
sess.run(init, feed_dict=feed_dict)
this_timeline = []
print('VI with {} optimization steps'.format(num_optimization_steps))
for _ in range(num_optimization_steps):
_, e = sess.run([train, elbo], feed_dict=feed_dict)
this_timeline.append(e)
this_elbo = np.mean(this_timeline[-100:])
if best_elbo is None or best_elbo < this_elbo:
timeline = this_timeline
best_elbo = this_elbo
vals = sess.run(
list(variational_parameters.values()), feed_dict=feed_dict)
learned_variational_params = collections.OrderedDict(
zip(variational_parameters.keys(), vals))
vi_time = time.time() - start_time
results = collections.OrderedDict()
results['vp'] = learned_variational_params
print('ELBO: {}'.format(best_elbo))
return results, best_elbo, timeline, vi_time
def _marshal(*rvs):
"""Args: a list of ed.RandomVariables each with vector or scalar event shape
(which must be staticly known), and all having the same batch shape.
Returns: a Tensor from concatenating their values along a single vector
dimension.
"""
vector_rvs = []
for rv in rvs:
v = rv.value
if v.shape.ndims == 0:
vector_rvs.append([v])
else:
vector_rvs.append(v)
print(vector_rvs)
return tf.concat(vector_rvs, axis=-1)
def _to_vector_shape(tensor_shape):
if tensor_shape.ndims > 1:
raise Exception('cannot convert {} to vector shape!'.format(tensor_shape))
elif tensor_shape.ndims == 0:
return tf.TensorShape([1])
return tensor_shape
def _tensorshape_size(tensor_shape):
if tensor_shape.ndims > 1:
raise Exception(
'shapes of ndims >1 are bad! (saw: {})!'.format(tensor_shape))
elif tensor_shape.ndims == 0:
return 1
return tensor_shape[0].value
def get_iaf_elbo(target, num_mc_samples, param_shapes):
shape_sizes = [_tensorshape_size(pshape) for pshape in param_shapes.values()]
overall_shape = [sum(shape_sizes)]
def unmarshal(variational_sample):
results = []
n_dimensions_used = 0
for (n_to_add, result_shape) in zip(shape_sizes, param_shapes.values()):
result = variational_sample[Ellipsis, n_dimensions_used:
n_dimensions_used + n_to_add]
results.append(tf.reshape(result, result_shape))
n_dimensions_used += n_to_add
return tuple(results)
variational_dist = tfd.TransformedDistribution(
distribution=tfd.Normal(loc=0., scale=1.),
bijector=tfb.Invert(
tfb.MaskedAutoregressiveFlow(
shift_and_log_scale_fn=tfb.masked_autoregressive_default_template(
hidden_layers=[256, 256]))),
event_shape=overall_shape,
name='q_iaf')
variational_samples = variational_dist.sample(num_mc_samples)
target_q_sum = tf.reduce_sum(input_tensor=variational_dist.log_prob(variational_samples))
target_sum = 0.
for s in range(num_mc_samples):
params = unmarshal(variational_samples[s, Ellipsis])
target_sum = target_sum + target(*params)
energy = target_sum / float(num_mc_samples)
entropy = -target_q_sum / float(num_mc_samples)
elbo = energy + entropy
tf.compat.v1.summary.scalar('energy', energy)
tf.compat.v1.summary.scalar('entropy', entropy)
tf.compat.v1.summary.scalar('elbo', elbo)
return elbo
def get_mean_field_elbo(model, target, num_mc_samples, model_args,
model_obs_kwargs, vi_kwargs):
if FLAGS.reparameterise_variational and 'cVIP' in FLAGS.method:
combined_kwargs = model_obs_kwargs.copy()
combined_kwargs.update(vi_kwargs)
variational_model, variational_parameters = make_variational_model_special(
model, *model_args, **combined_kwargs)
else:
variational_model, variational_parameters = program_transformations.make_variational_model(
model, *model_args, **model_obs_kwargs)
log_joint_q = make_log_joint_fn(variational_model)
def target_q(**parameters):
return log_joint_q(*model_args, **parameters)
#beta = tf.get_variable("beta", trainable=False, initializer=0.)
#beta_incr = tf.assign(beta, tf.clip_by_value(beta + 0.1*beta + 0.0000001, 0., 1.))
#with tf.control_dependencies([beta_incr]):
def loop_body(mc_sample):
with tape() as variational_tape:
_ = variational_model(*model_args)
params = variational_tape.values()
energy = target(*params)
entropy = tf.negative(target_q(**variational_tape))
return energy + entropy
if num_mc_samples == 1:
elbo = tf.reduce_sum(loop_body(0))
else:
elbo = tf.reduce_sum(input_tensor=pfor(loop_body, num_mc_samples)) / num_mc_samples
tf.compat.v1.summary.scalar('elbo', elbo)
return elbo, variational_parameters
def get_approximate_step_size(variational_parameters, num_leapfrog_steps):
return [
variational_parameters[key] / num_leapfrog_steps**2
for key in variational_parameters.keys()
if key.endswith('_scale')
]
# FIXME: need to make this nicer than with all these weird kwargs
def approximate_mcmc_step_size(model, *args, **kwargs):
with tf.compat.v1.variable_scope('approx_step_size_{}'.format(model.__name__)):
if 'diagnostics' in kwargs.keys():
diagnostics = kwargs.pop('diagnostics')
else:
diagnostics = False
if 'num_leapfrog_steps' in kwargs.keys():
num_leapfrog_steps = kwargs.pop('num_leapfrog_steps')
else:
num_leapfrog_steps = 4
results, final_elbo_val, _, vi_time = mean_field_variational_inference(
model, *args, **kwargs)
stepsize = [(np.array(np.array(results['vp'][key], dtype=np.float32)) /
(float(num_leapfrog_steps)**2))
for key in results['vp'].keys()
if key.endswith('_scale')]
if diagnostics:
print('Estimated goodness of {}: {}'.format(model.__name__,
final_elbo_val))
print('Estimated stepsize of {}: {}'.format(model.__name__, stepsize))
return stepsize, final_elbo_val, vi_time
def stddvs_to_mcmc_step_sizes(results, num_leapfrog_steps):
stepsize = [(np.sqrt(2 * np.mean(results[key])) / float(num_leapfrog_steps))
for key in results.keys()
if key.endswith('_scale')]
return stepsize
def estimate_true_mean(sample_groups, esss):
true_mean = [0 for group in range(len(sample_groups))]
r = float(sum(esss))
for group in range(len(sample_groups)):
samples = sample_groups[group]
mean = [np.mean(v) for v in samples]
true_mean[group] = [
(true_mean[group] + esss[group] * var_mean / r) for var_mean in mean
]
return true_mean
def make_variational_model_special(model, *args, **kwargs):
variational_parameters = collections.OrderedDict()
param_params = kwargs['parameterisation']
def get_or_init(name, a, b, L=None, std_mean=None,
prior_mean=None, prior_scale=None, shape=None):
loc_name = name + '_loc'
scale_name = name + '_scale'
if loc_name in variational_parameters.keys() and \
scale_name in variational_parameters.keys():
return (variational_parameters[loc_name],
variational_parameters[scale_name])
else:
# shape must not be None
pre_loc = tf.compat.v1.get_variable(
name=loc_name, initializer=1e-2 * tf.random.normal(shape, dtype=tf.float32))
pre_scale = tf.nn.softplus(
tf.compat.v1.get_variable(
name=scale_name,
initializer=-2 * tf.ones(shape, dtype=tf.float32)))
variational_parameters[loc_name] = (a + 0.1) * pre_loc
variational_parameters[scale_name] = pre_scale**(b + 0.1)
return (variational_parameters[loc_name],
variational_parameters[scale_name])
def mean_field(rv_constructor, *rv_args, **rv_kwargs):
name = rv_kwargs['name']
if name not in kwargs.keys():
rv = rv_constructor(*rv_args, **rv_kwargs)
try:
a, b = param_params[name + '_a'], param_params[name + '_b']
except Exception as err:
print('couldn\'t get centering params for variable {}: {}'.format(
name, err))
a, b = 1., 1.
loc, scale = get_or_init(name, a=a, b=b, shape=rv.shape)
# NB: name must be the same as original variable,
# in order to be able to do black-box VI (setting
# parameters to variational values obtained via trace).
return Normal(loc=loc, scale=scale, name=name)
else:
rv_kwargs['value'] = kwargs[name]
return rv_constructor(*rv_args, **rv_kwargs)
def variational_model(*args):
with ed.interception(mean_field):
return model(*args)
_ = variational_model(*args)
return variational_model, variational_parameters
def variational_inits_from_params(learned_variational_params, param_names,
num_inits):
"""Sample from a normal variational dist, given saved parameters."""
locs = collections.OrderedDict()
stddevs = collections.OrderedDict()
samples = collections.OrderedDict()
for k, v in learned_variational_params.items():
if k.endswith('_loc'):
locs[k[:-4]] = v
elif k.endswith('_scale'):
stddevs[k[:-6]] = v
for k in param_names:
shape = (num_inits,) + np.asarray(locs[k]).shape
samples[k] = (np.random.randn(*shape) * stddevs[k] + locs[k]).astype(
np.float32)
return samples
def print(*args): # pylint: disable=redefined-builtin
__builtin__.print(*args)
logging.info(' '.join(args))
def reject_outliers(data, m=1.5):
ret = data[abs(data - np.mean(data)) < m * np.std(data)]
if len(ret) > 0:
return ret
else:
return data
def get_min_ess_other(ess):
ess = [[np.nan_to_num(e) for e in es] for es in ess]
min_ess = []
for c in range(FLAGS.num_chains):
min_ess_c = min([np.array(e).min() for e in ess[c]])
#print(" Min ess of chain {} is {}.".format(c, min_ess_c))
min_ess.append(min_ess_c)
min_ess = reject_outliers(np.array(min_ess))
print(' Filtred {} outliers.'.format(FLAGS.num_chains - len(min_ess)))
mean_ess = np.mean(min_ess)
sem_ess = np.std(min_ess) / np.sqrt(len(min_ess))
return mean_ess, sem_ess
def get_min_ess(ess):
ess = [np.nan_to_num(e) for e in ess]
min_ess = []
for c in range(FLAGS.num_chains):
min_ess_c = min([np.array(e[c]).min() for e in ess])
min_ess.append(min_ess_c)
# min_ess = reject_outliers(np.array(min_ess))
# print(" Filtred {} outliers.".format(FLAGS.num_chains - len(min_ess)))
mean_ess = np.mean(min_ess)
sem_ess = np.std(min_ess) / np.sqrt(len(min_ess))
return mean_ess, sem_ess