-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmc_livingston.py
144 lines (114 loc) · 4.45 KB
/
mc_livingston.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import numpy as np
import pickle
from tqdm import tqdm
from functools import partial
import click
import random
import cupy as cp
from cuda_power_function import compute_power_cupy as compute_power
@click.command()
@click.option(
"--use-range",
is_flag=True,
help="Flag for using the range discrepancy rather than l1",
)
@click.option(
"--uuid",
default=f"{int(random.random()*(10**8)):08d}",
help="A unique integer for identifying the run",
)
@click.option("--burst-length", default=1, help="The length of the burst to run")
@click.option("--n-bursts", default=1000, help="The number of bursts to run the ")
@click.option("--threshold", default=0.5, help="The threshold for the discrep")
@click.option(
"--show-progress",
is_flag=True,
help="Flag for showing the progress bar. Useful for testing",
)
def main(use_range, uuid, burst_length, n_bursts, threshold, show_progress):
# fmt: off
m_orig = np.array(
[6945.,4158,2322,10242,1464,2087,4156,7508,4452,5341,2695,725,765,1583,2292,1157,3187,]
)
m_orig.sort()
m = m_orig / np.sum(m_orig)
# fmt: on
if threshold == 0.67:
threshold = 2.0 / 3
# Note that NYS_counties does not cover all possible subsets. There is an assumption of
# one town always voting in the affirmative. This substantially reduces the size of the
# matrix that
with open("NYS_counties_livingston_full.pkl", "rb") as f:
A_subsets = pickle.load(f)
subset_masks = np.zeros((len(m), len(A_subsets)), dtype=np.float64)
for j, subset in enumerate(A_subsets):
subset_masks[subset, j] = True
subset_masks_bool = subset_masks.astype(np.bool_)
subset_masks_float = subset_masks.astype(np.float64)
population = 10000
mround = np.around(m_orig / np.sum(m_orig) * population, 0)
in_arr = mround
cu_m = cp.asarray(m)
cu_u = cp.asarray(in_arr)
cu_umat = cp.asarray(in_arr)[:, cp.newaxis]
cu_subset_masks_bool = cp.asarray(subset_masks_bool)
cu_subset_masks_float = cp.asarray(subset_masks_float)
pow_fn = partial(
compute_power,
subset_masks_bool=cu_subset_masks_bool,
subset_masks_float=cu_subset_masks_float,
T=threshold,
)
discrep_function = lambda x: cp.sum(cp.abs(x))
if use_range:
discrep_function = lambda x: cp.max(x) - cp.min(x)
curr_diff = pow_fn(u_matrix=cu_umat) - cu_m
initial_discrep = discrep_function(curr_diff)
best_so_far = initial_discrep
best_u = cu_u.copy()
file_name = f"Livingston_MCMC_discrep_L1_lenburst_{burst_length}_iters_{n_bursts}_T_{threshold}_id_{uuid}.txt"
if use_range:
file_name = f"Livingston_MCMC_discrep_range_lenburst_{burst_length}_iters_{n_bursts}_T_{threshold}_id_{uuid}.txt"
with open(f"./MCMC_results/{file_name}", "w") as f:
print(
f"{-1}, {initial_discrep}, {best_u.astype(int).tolist()}",
file=f,
flush=True,
)
cur_discrep = initial_discrep
for i in tqdm(
range(0, n_bursts * burst_length, burst_length),
miniters=n_bursts / 1000,
disable=not show_progress,
):
# Compute the sampling probabilities
probabilities = cp.abs(curr_diff)
probabilities /= cp.sum(probabilities)
# Sample indices based on the probabilities
indices = cp.random.choice(
len(curr_diff), size=burst_length, p=probabilities
)
update_values = cp.where(curr_diff[indices] < 0, 1, -1)
values = cp.zeros_like(curr_diff, dtype=cp.int32)
cp.add.at(values, indices, update_values)
cp.add.at(cu_u, indices, values[indices])
cu_umat = cu_u[:, cp.newaxis]
new_diff = pow_fn(u_matrix=cu_umat) - cu_m
new_discrep = discrep_function(new_diff)
if new_discrep < best_so_far:
best_so_far = new_discrep
best_u = cu_u.copy()
print(
f"{i}, {new_discrep}, {best_u.astype(int).tolist()}",
file=f,
flush=True,
)
else:
reject_cut = np.exp(-new_discrep / cur_discrep)
if np.random.rand() >= reject_cut:
cp.add.at(cu_u, indices, -values[indices])
continue
cur_discrep = new_discrep
curr_diff = new_diff
if __name__ == "__main__":
main()