forked from jdkato/prose
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.go
177 lines (144 loc) · 4.1 KB
/
model.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
package prose
import (
"io"
"io/fs"
"os"
"path/filepath"
)
// A Model holds the structures and data used internally by prose.
type Model struct {
Name string
tagger *perceptronTagger
extracter *entityExtracter
}
// DataSource provides training data to a Model.
type DataSource func(model *Model)
// UsingEntities creates a NER from labeled data.
func UsingEntities(data []EntityContext) DataSource {
return UsingEntitiesAndTokenizer(data, NewIterTokenizer())
}
// UsingEntities creates a NER from labeled data and custom tokenizer.
func UsingEntitiesAndTokenizer(data []EntityContext, tokenizer Tokenizer) DataSource {
return func(model *Model) {
corpus := makeCorpus(data, model.tagger, tokenizer)
model.extracter = extracterFromData(corpus)
}
}
// LabeledEntity represents an externally-labeled named-entity.
type LabeledEntity struct {
Start int
End int
Label string
}
// EntityContext represents text containing named-entities.
type EntityContext struct {
// Is this is a correct entity?
//
// Some annotation software, e.g. Prodigy, include entities "rejected" by
// its user. This allows us to handle those cases.
Accept bool
Spans []LabeledEntity // The entity locations relative to `Text`.
Text string // The sentence containing the entities.
}
// ModelFromData creates a new Model from user-provided training data.
func ModelFromData(name string, sources ...DataSource) *Model {
model := DefaultModel(true, true)
model.Name = name
for _, source := range sources {
source(model)
}
return model
}
// ModelFromDisk loads a Model from the user-provided location.
func ModelFromDisk(path string) *Model {
filesys := os.DirFS(path)
return &Model{
Name: filepath.Base(path),
extracter: loadClassifier(filesys),
tagger: newPerceptronTagger(),
}
}
// ModelFromFS loads a model from the
func ModelFromFS(name string, filesys fs.FS) *Model {
// Locate a folder matching name within filesys
var modelFS fs.FS
err := fs.WalkDir(
filesys, ".", func(path string, d fs.DirEntry, err error) error {
if err != nil {
return err
}
// Model located. Exit tree traversal
if d.Name() == name {
modelFS, err = fs.Sub(filesys, path)
if err != nil {
return err
}
return io.EOF
}
return nil
},
)
if err != io.EOF {
checkError(err)
}
return &Model{
Name: name,
extracter: loadClassifier(modelFS),
tagger: newPerceptronTagger(),
}
}
// Write saves a Model to the user-provided location.
func (m *Model) Write(path string) error {
err := os.MkdirAll(path, os.ModePerm)
// m.Tagger.model.Marshal(path)
checkError(m.extracter.model.marshal(path))
return err
}
/* TODO: External taggers
func loadTagger(path string) *perceptronTagger {
var wts map[string]map[string]float64
var tags map[string]string
var classes []string
loc := filepath.Join(path, "AveragedPerceptron")
dec := getDiskAsset(filepath.Join(loc, "weights.gob"))
checkError(dec.Decode(&wts))
dec = getDiskAsset(filepath.Join(loc, "tags.gob"))
checkError(dec.Decode(&tags))
dec = getDiskAsset(filepath.Join(loc, "classes.gob"))
checkError(dec.Decode(&classes))
model := newAveragedPerceptron(wts, tags, classes)
return newTrainedPerceptronTagger(model)
}*/
func loadClassifier(filesys fs.FS) *entityExtracter {
var mapping map[string]int
var weights []float64
var labels []string
maxent, err := fs.Sub(filesys, "Maxent")
checkError(err)
file, err := maxent.Open("mapping.gob")
checkError(err)
checkError(getDiskAsset(file).Decode(&mapping))
file, err = maxent.Open("weights.gob")
checkError(err)
checkError(getDiskAsset(file).Decode(&weights))
file, err = maxent.Open("labels.gob")
checkError(err)
checkError(getDiskAsset(file).Decode(&labels))
model := newMaxentClassifier(weights, mapping, labels)
return newTrainedEntityExtracter(model)
}
func DefaultModel(tagging, classifying bool) *Model {
var tagger *perceptronTagger
var classifier *entityExtracter
if tagging || classifying {
tagger = newPerceptronTagger()
}
if classifying {
classifier = newEntityExtracter()
}
return &Model{
Name: "en-v2.0.0",
tagger: tagger,
extracter: classifier,
}
}