-
Notifications
You must be signed in to change notification settings - Fork 15
/
flava.py
86 lines (69 loc) · 4.08 KB
/
flava.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import torch
import numpy as np
from tqdm import tqdm
import torch.nn as nn
from transformers import FlavaProcessor, FlavaForPreTraining, BertTokenizer, FlavaFeatureExtractor
class FlavaWrapper:
def __init__(self, root_dir, device):
self.model = FlavaForPreTraining.from_pretrained("facebook/flava-full", cache_dir=root_dir).eval().to(device)
self.feature_extractor = FlavaFeatureExtractor.from_pretrained("facebook/flava-full", cache_dir=root_dir)
self.tokenizer = BertTokenizer.from_pretrained("facebook/flava-full", cache_dir=root_dir)
self.processor = FlavaProcessor.from_pretrained("facebook/flava-full", cache_dir=root_dir)
self.device = device
@torch.no_grad()
def get_text_embeddings(self, texts, text_batch_size=64, normalize=False):
num_text = len(texts)
text_embeds = []
for i in tqdm(range(0, num_text, text_batch_size)):
text = texts[i: min(num_text, i+text_batch_size)]
text_input = self.tokenizer(text=text, return_tensors="pt", padding="max_length", max_length=77).to(self.device)
text_feats = self.model.flava.get_text_features(**text_input).cpu().numpy()[:, 0, :]
if normalize:
text_feats = text_feats / np.linalg.norm(text_feats, axis=1, keepdims=True)
text_embeds.append(text_feats)
return np.concatenate(text_embeds, axis=0)
@torch.no_grad()
def get_image_embeddings(self, image_loader, normalize=False):
image_embeds = []
for batch in tqdm(image_loader):
images = batch["image"]
inputs = self.feature_extractor(images=images, return_tensors="pt").to(self.device)
image_feats = self.model.flava.get_image_features(**inputs).cpu().numpy()[:, 0, :]
if normalize:
image_feats = image_feats / np.linalg.norm(image_feats, axis=1, keepdims=True)
image_embeds.append(image_feats)
return np.concatenate(image_embeds, axis=0)
def get_retrieval_scores_dataset(self, loader):
texts = loader.dataset.text
text_embeds = self.get_text_embeddings(texts, normalize=True)
image_embeds = self.get_image_embeddings(loader, normalize=True)
scores = image_embeds @ text_embeds.T
return scores
@torch.no_grad()
def get_retrieval_scores_batched(self, joint_loader):
"""Computes the scores for each image_option / caption_option pair in the joint loader.
Args:
joint_loader (DataLoader): batches have "image_options" and "caption_options" fields.
"image_options" is a list of images, and "caption_options" is a list of captions.
Returns:
all_scores: A numpy array containing the scores of the shape NxKxL,
where N is the number of test cases, K is the number of image options per the test case,
and L is the number of caption options per the test case.
"""
scores = []
for batch in tqdm(joint_loader):
batch_scores = []
for i_option in batch["image_options"]:
im_scores = []
for c_option in batch["caption_options"]:
inputs = self.processor(text=list(c_option), images=list(i_option), return_tensors="pt", padding="max_length", max_length=77, return_codebook_pixels=True, return_image_mask=True).to(self.device)
inputs["input_ids_masked"] = inputs["input_ids"].detach().clone()
inputs["bool_masked_pos"] = torch.zeros_like(inputs["bool_masked_pos"])
outputs = self.model(**inputs)
score = nn.functional.softmax(outputs.itm_logits, dim=-1)[:, 1:2].cpu().numpy()
im_scores.append(np.expand_dims(score, -1))
batch_scores.append(np.concatenate(im_scores, axis=-1))
batch_scores = np.concatenate(batch_scores, axis=1)
scores.append(batch_scores)
all_scores = np.concatenate(scores, axis=0) # N x K x L
return all_scores