-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_face_gll.py
719 lines (592 loc) · 32.4 KB
/
train_face_gll.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
# Copyright (c) 2017-2023 Mitsubishi Electric Research Laboratories (MERL)
# Copyright (c) Zhiqiang Tang, May 2017
#
# SPDX-License-Identifier: AGPL-3.0-or-later
# SPDX-License-Identifier: Apache-2.0
"""
Sample Run:
python train_mse_gll_MLP.py --exp_dir abhinav_model_dir --exp_id run_2 --lr 0.25e-5 --nEpochs 30 --pp "relu" --saved_wt_file abhinav_model_dir/run_1/lr-0.0000125-19.pth.tar
srun --gres gpu:1 --cpus-per-task 4 -X python train_mse_gll_MLP.py --exp_dir abhinav_model_dir --exp_id run_2 --lr 0.25e-5 --nEpochs 30 --pp "relu" --saved_wt_file abhinav_model_dir/run_1/lr-0.0000125-19.pth.tar --slurm
"""
import os, time, sys
import numpy as np
from collections import OrderedDict
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torchvision
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from torch.autograd import Variable
from torch.nn.parameter import Parameter
from data.face_bbx import FACE
from loss.gaussian_loss import *
from loss.gaussian_regularization_loss import *
from models.cu_net_prev_version_cholesky_common_for_HG import create_cu_net
from options.train_options import TrainOptions
from pylib import FaceAcc, Evaluation, HumanAug
from pylib.HeatmapStats import get_spatial_mean_and_covariance
from utils.checkpoint import Checkpoint
from utils.logger import Logger
from utils.util import *
from utils.visualizer import Visualizer
import pylib.Constants as constants
cudnn.benchmark = True
flip_index = np.array([[0, 16], [1, 15], [2, 14], [3, 13], [4, 12], [5, 11], [6, 10], [7, 9], # outline
[17, 26], [18, 25], [19, 24], [20, 23], [21, 22], # eyebrow
[36, 45], [37, 44], [38, 43], [39, 42], [40, 47], [41, 46], # eye
[31, 35], [32, 34], # nose
[48, 54], [49, 53], [50, 52], [59, 57], [58, 56], # outer mouth
[60, 64], [61, 63], [67, 65]]) # inner mouth
# The below variables are assigned values in the main function
weights_HG = [0, 0, 0, 0, 0, 0, 0, 1.0]
# a dictionary mapping strings of function names to function objects:
dict_of_functions = {'0': adjust_lr, '1': AdjustLR, '2': AdjustLR2, '3': AdjustLR3}
def main():
opt = TrainOptions().parse()
train_history = TrainHistoryFace()
checkpoint = Checkpoint()
visualizer = Visualizer(opt)
exp_dir = os.path.join(opt.exp_dir, opt.exp_id)
log_name = opt.vis_env + 'log.txt'
visualizer.log_name = os.path.join(exp_dir, log_name)
num_classes = opt.class_num
if not opt.slurm:
os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpu_id
layer_num = opt.layer_num
order = opt.order
net = create_cu_net(neck_size= 4, growth_rate= 32, init_chan_num= 128,
class_num= num_classes, layer_num= layer_num, order= order,
loss_num= layer_num, use_spatial_transformer= opt.stn,
mlp_tot_layers= opt.mlp_tot_layers, mlp_hidden_units= opt.mlp_hidden_units,
get_mean_from_mlp= opt.get_mean_from_mlp)
# Load the pre-trained model
saved_wt_file = opt.saved_wt_file
if saved_wt_file == "":
print("=> Training from scratch")
else:
print("=> Loading weights from " + saved_wt_file)
checkpoint_t = torch.load(saved_wt_file)
state_dict = checkpoint_t['state_dict']
tt_names=[]
for names in net.state_dict():
tt_names.append(names)
for name, param in state_dict.items():
name = name[7:]
if name not in net.state_dict():
print("=> not load weights '{}'".format(name))
continue
if isinstance(param, Parameter):
param = param.data
if (net.state_dict()[name].shape[0] == param.shape[0]):
net.state_dict()[name].copy_(param)
else:
print("First dim different. Not loading weights {}".format(name))
if (opt.freeze):
print("\n\t\tFreezing basenet parameters\n")
for param in net.parameters():
param.requires_grad = False
"""
for i in range(layer_num):
net.choleskys[i].fc_1.bias.requires_grad = True
net.choleskys[i].fc_1.weight.requires_grad = True
net.choleskys[i].fc_2.bias.requires_grad = True
net.choleskys[i].fc_2.weight.requires_grad = True
net.choleskys[i].fc_3.bias.requires_grad = True
net.choleskys[i].fc_3.weight.requires_grad = True
"""
net.cholesky.fc_1.bias.requires_grad = True
net.cholesky.fc_1.weight.requires_grad = True
net.cholesky.fc_2.bias.requires_grad = True
net.cholesky.fc_2.weight.requires_grad = True
net.cholesky.fc_3.bias.requires_grad = True
net.cholesky.fc_3.weight.requires_grad = True
else:
print("\n\t\tNot freezing anything. Tuning every parameter\n")
for param in net.parameters():
param.requires_grad = True
net = torch.nn.DataParallel(net).cuda() # use multiple GPUs
# Optimizer
if opt.optimizer == "rmsprop":
optimizer = torch.optim.RMSprop(filter(lambda p: p.requires_grad, net.parameters()), lr=opt.lr, alpha=0.99,
eps=1e-8, momentum=0, weight_decay=0)
elif opt.optimizer == "adam":
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, net.parameters()), lr=opt.lr)
else:
print("Unknown Optimizer. Aborting!!!")
sys.exit(0)
print type(optimizer)
# Optionally resume from a checkpoint
if opt.resume_prefix != '':
# if 'pth' in opt.resume_prefix:
# trunc_index = opt.resume_prefix.index('pth')
# opt.resume_prefix = opt.resume_prefix[0:trunc_index - 1]
checkpoint.save_prefix = os.path.join(exp_dir, opt.resume_prefix)
checkpoint.load_prefix = os.path.join(exp_dir, opt.resume_prefix)[0:-1]
checkpoint.load_checkpoint(net, optimizer, train_history)
else:
checkpoint.save_prefix = exp_dir + '/'
print("Save prefix = {}".format(checkpoint.save_prefix))
# Load data
json_path = opt.json_path
train_json = opt.train_json
val_json = opt.val_json
print("Path added to each image path in JSON = {}".format(json_path))
print("Train JSON path = {}".format(train_json))
print("Val JSON path = {}".format(val_json))
if opt.bulat_aug:
# Use Bulat et al Augmentation Scheme
train_loader = torch.utils.data.DataLoader(
FACE(train_json, json_path, is_train= True, scale_factor= 0.2, rot_factor= 50, use_occlusion= True, keep_pts_inside= True),
batch_size=opt.bs, shuffle= True,
num_workers=opt.nThreads, pin_memory= True)
else:
train_loader = torch.utils.data.DataLoader(
FACE(train_json, json_path, is_train= True, keep_pts_inside= True),
batch_size=opt.bs, shuffle= True,
num_workers=opt.nThreads, pin_memory= True)
val_loader = torch.utils.data.DataLoader(
FACE(val_json, json_path, is_train=False),
batch_size=opt.bs, shuffle=False,
num_workers=opt.nThreads, pin_memory=True)
logger = Logger(os.path.join(opt.exp_dir, opt.exp_id, opt.resume_prefix+'face-training-log.txt'),
title='face-training-summary')
logger.set_names(['Epoch', 'LR', 'Train Loss', 'Val Loss', 'Train RMSE', 'Val RMSE', 'Train RMSE Box', 'Val RMSE Box', 'Train RMSE Meta', 'Val RMSE Meta'])
if not opt.is_train:
visualizer.log_path = os.path.join(opt.exp_dir, opt.exp_id, 'val_log.txt')
val_loss, val_rmse, predictions = validate(val_loader, net,
train_history.epoch[-1]['epoch'], visualizer, num_classes, flip_index)
checkpoint.save_preds(predictions)
return
global weights_HG
weights_HG = [float(x) for x in opt.hg_wt.split(",")]
if opt.is_covariance:
print("Covariance used from the heatmap")
else:
print("Covariance calculated from MLP")
if opt.stn:
print("Using spatial transformer on heatmaps")
print ("Postprocessing applied = {}".format(opt.pp))
if (opt.smax):
print("Scaled softmax used with tau = {}".format(opt.tau))
else:
print("No softmax used")
print("Individual Hourglass loss weights")
print(weights_HG)
print("wt_MSE (tradeoff between GLL and MSE in each hourglass)= " + str(opt.wt_mse))
print("wt_gauss_regln (tradeoff between GLL and Gaussian Regularisation in each hourglass)= " + str(opt.wt_gauss_regln))
if opt.bulat_aug:
print("Using Bulat et al, ICCV 2017 Augmentation Scheme")
print("Using Learning Policy {}".format(opt.lr_policy))
chosen_lr_policy = dict_of_functions[opt.lr_policy]
# Optionally resume from a checkpoint
start_epoch = 0
if opt.resume_prefix != '':
start_epoch = train_history.epoch[-1]['epoch'] + 1
# Training and validation
start_epoch = 0
if opt.resume_prefix != '':
start_epoch = train_history.epoch[-1]['epoch'] + 1
train_loss_orig_epoch = []
train_loss_gau_t1_epoch = []
train_loss_gau_t2_epoch = []
train_nme_orig_epoch = []
train_nme_gau_epoch = []
train_nme_new_epoch = []
val_loss_orig_epoch = []
val_loss_gau_t1_epoch = []
val_loss_gau_t2_epoch = []
val_nme_orig_epoch = []
val_nme_gau_epoch = []
val_nme_new_epoch = []
for epoch in range(start_epoch, opt.nEpochs):
chosen_lr_policy(opt, optimizer, epoch)
# Train for one epoch
train_loss, train_loss_mse,train_loss_gau_t1, train_loss_gau_t2,train_rmse_orig, train_rmse_gau, train_rmse_new_gd_box, train_rmse_new_meta_box = train(train_loader, net, optimizer, epoch, visualizer, opt)
#train_loss_gau_epoch.append(train_loss_gau)
train_loss_gau_t1_epoch.append(train_loss_gau_t1)
train_loss_gau_t2_epoch.append(train_loss_gau_t2)
train_nme_orig_epoch.append(train_rmse_orig)
train_nme_gau_epoch.append(train_rmse_gau)
train_loss_orig_epoch.append(train_loss_mse)
# Evaluate on validation set
val_loss, val_loss_mse, val_loss_gau_t1, val_loss_gau_t2 , val_rmse_orig, val_rmse_gau, val_rmse_new_gd_box, val_rmse_new_meta_box, predictions= validate(val_loader, net, epoch, visualizer, opt, num_classes, flip_index)
val_loss_orig_epoch.append(val_loss_mse)
val_loss_gau_t1_epoch.append(val_loss_gau_t1)
val_loss_gau_t2_epoch.append(val_loss_gau_t2)
val_nme_orig_epoch.append(val_rmse_orig)
val_nme_gau_epoch.append(val_rmse_gau)
# Update training history
e = OrderedDict( [('epoch', epoch)] )
lr = OrderedDict( [('lr', optimizer.param_groups[0]['lr'])] )
loss = OrderedDict( [('train_loss', train_loss),('val_loss', val_loss)] )
rmse = OrderedDict( [('val_rmse', val_rmse_gau)] )
train_history.update(e, lr, loss, rmse)
checkpoint.save_checkpoint(net, optimizer, train_history, predictions)
visualizer.plot_train_history_face(train_history)
logger.append([epoch, optimizer.param_groups[0]['lr'], train_loss, val_loss, train_rmse_gau, val_rmse_gau, train_rmse_new_gd_box, val_rmse_new_gd_box, train_rmse_new_meta_box, val_rmse_new_meta_box])
logger.close()
def train(train_loader, net, optimizer, epoch, visualizer, opt):
batch_time = AverageMeter()
data_time = AverageMeter()
rmses_orig = AverageMeter()
rmses_gau = AverageMeter()
rmses1 = AverageMeter()
rmses2 = AverageMeter()
rmses_new = AverageMeter()
rmses_new_gd_box = AverageMeter()
rmses_new_meta_box = AverageMeter()
rms_per_img_orig = []
rms_per_img1 = []
rms_per_img_gau = []
# Objects which keep track of the loss across the entire epoch
losses = AverageMeter()
losses_gau = AverageMeter()
losses_gau_t1 = AverageMeter()
losses_gau_t2 = AverageMeter()
losses_mse = AverageMeter()
losses_regln = AverageMeter()
losses_vis = AverageMeter()
# Loss functions
mse_loss = nn.MSELoss()
bce_loss = nn.BCELoss()
if not opt.use_heatmaps:
loss_fn = FaceAlignLoss(laplacian= opt.laplacian, form= opt.laplacian_form)
gauss_regln_loss = GaussianRegularizationLoss()
# Switch to train mode
net.train()
end = time.time()
wt_gau_new = opt.wt_gau
wt_gauss_regln_new = opt.wt_gauss_regln
wt_mse_new = opt.wt_mse
if opt.use_heatmaps:
wt_mse_new = 1.
wt_gau_new = 0.
print("weight_MSE= {} weight_GLL= {} weight_GR= {}".format(wt_mse_new, wt_gau_new, wt_gauss_regln_new))
for i, (img, heatmap, pts, htp_mask, _, visible_multiclass, meta_box_input_res) in enumerate(train_loader):
# Measure data loading time
data_time.update(time.time() - end)
# Input and groundtruth
img_var = Variable(img)
vis = visible_multiclass.clone()
vis[vis > 1] = 1
vis = Variable(vis[:,:, None].float()).cuda()
# vis with zero points was producing weird error. Add a small constant
# to the invisibile points
vis[vis<1] = constants.EPSILON
# pts contain the invalid points in the center. If you use pts to calculate
# MSE it is going to be bad. Make a masked version of points for MSE
pts_masked = pts.float() * vis.data.cpu().float()
pts_var = Variable(pts.float()/4.0).cuda() * vis
heatmap = heatmap.cuda(async=True)
target_heatmap = Variable(heatmap)
# Tensor at the output and neck of every hourglass
output, out_y = net(img_var)
# Scalar loss values
loss = 0.
loss_term1 = 0.
loss_term2 = 0.
loss_mse = 0.
loss_regln = 0.
loss_vis = 0.
hg_cnt = 0
# For each of the HGs
for per_out in output:
# Weight of this Hourglass
weight_hg = weights_HG[hg_cnt]
hg_cnt += 1
# Do not calculate the spatial mean if weight_hg is zero since it is
# useless.
if (weight_hg > 0):
if opt.use_heatmaps:
# Calculate MSE between the heatmaps
tmp_loss = (per_out - target_heatmap) ** 2
loss_t = tmp_loss.sum() / tmp_loss.numel()
# All other loss as zeros
loss_gau = Variable(torch.zeros(1,).float()).cuda()
loss_gauss_regln = loss_gau.clone()
loss_term1_temp = loss_gau.clone()
loss_term2_temp = loss_gau.clone()
loss_vis_hg = loss_gau.clone()
else:
# Go for pointwise operations
cholesky = out_y[hg_cnt-1]
pred_pts_new, covar, normalized_heatmaps = get_spatial_mean_and_covariance(per_out, use_softmax= opt.smax, tau= opt.tau, postprocess= opt.pp)
pred_pts_new = pred_pts_new * vis
covar = covar.view(covar.shape[0], covar.shape[1], 4)
vis_estimated = cholesky[:,:, 3]
# Concat the calculations for each image and each landmark.
# pred_pts_new: batch_size x 68 x 2
# out_y : batch_size x 68 x 3
# covar : batch_size x 68 x 4
if opt.is_covariance:
# pre_pts : batch_size x 68 x 6
pre_pts = torch.cat((pred_pts_new, covar) ,2)
else:
if opt.get_mean_from_mlp:
pred_pts_new = cholesky[:, :, 4:6]
cholesky = cholesky[:, :, 0:3]
# pre_pts : batch_size x 68 x 5
pre_pts = torch.cat((pred_pts_new,cholesky),2)
# Gaussian_loss, Gaussian Loss in stages, Loss_term1, Loss_term2, Loss_term1 in stages, Loss_term2 in stages
loss_gau, loss_stages, loss_term1_temp, loss_term2_temp, loss_term1_stages, loss_term2_stages= loss_fn([pre_pts], pts_var, is_covariance= opt.is_covariance)
# Loss used is MSE but error metric used is NME
loss_t = mse_loss(pred_pts_new, pts_var)
# Regularization to force heatmaps to be gaussian
loss_gauss_regln = gauss_regln_loss(normalized_heatmaps, pred_pts_new, covar)
if opt.use_visibility:
loss_vis_hg = bce_loss(vis_estimated, vis.squeeze())
else:
loss_vis_hg = Variable(torch.zeros(1,).float()).cuda()
loss += weight_hg * (wt_gau_new*loss_gau + wt_mse_new*loss_t + wt_gauss_regln_new*loss_gauss_regln + loss_vis_hg)
loss_term1 += weight_hg * wt_gau_new*loss_term1_temp
loss_term2 += weight_hg * wt_gau_new*loss_term2_temp
loss_mse += weight_hg * wt_mse_new*loss_t
loss_regln += weight_hg * wt_gauss_regln_new * loss_gauss_regln
loss_vis += weight_hg * loss_vis_hg
# Calculate gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Measure optimization time
batch_time.update(time.time() - end)
end = time.time()
# Update the losses
N = img.shape[0]
losses.update (loss.data[0] , N)
losses_gau_t1.update(loss_term1.data[0], N)
losses_gau_t2.update(loss_term2.data[0], N)
losses_mse.update (loss_mse.data[0] , N)
losses_regln.update (loss_regln.data[0], N)
losses_vis.update (loss_vis.data[0] , N)
# pred_pts_0: Integer coordinates where heatmap is maximum
# pred_pts_1: pred_pts_0 + 0.25*sign(gradient of pred_pts_0 at pt shifted by 1 pixel)
# pred_pts_2: pred_pts_0 + 0.5 + 0.25*sign(gradient of pred_pts_0 at pt shifted by 1 pixel)
# Each coords is batch_size x 68 x 2
pred_pts_0, pred_pts_1, pred_pts_2 = FaceAcc.heatmap2pts(output[-1].data.cpu(), flag=0)
pred_pts_2 -= 1
pred_pts_2 = Variable(pred_pts_2).cuda()*vis
pred_pts_2 = pred_pts_2.data.cpu()
#===================================================================
# NME in reality since the code calculate norm-2 values using numpy
#===================================================================
# rmse_orig = NME(pred_pts_0 - 0.5 + 0.25*sign(gradient of pred_pts_0 at pt shifted by 1 pixel), ground_truth)
rmse_orig = np.sum(FaceAcc.per_image_rmse(pred_pts_2.numpy() * 4., pts_masked.numpy())) / img.size(0)
rmses_orig.update(rmse_orig, img.size(0))
if opt.use_heatmaps:
# We will use the prediction from the heatmap since there is no spatial mean
# available
pred_pts_new = Variable(torch.Tensor(pred_pts_2)).cuda()* vis
# rmse_new = NME(centroid, ground_truth)
rmse_new = np.sum(FaceAcc.per_image_rmse((pred_pts_new).data.cpu().numpy() * 4., pts_masked.numpy())) / img.size(0)
rmses_new.update(rmse_new, img.size(0))
# rmse_new_gd_box = NME(centroid, ground_truth, ground_bounding_box)
# For box calculation remember to use pts and not pts_masked
# since min of pts_masked is always zero
max_box, _ = torch.max(pts, 1)
min_box, _ = torch.min(pts, 1)
width_height_gd = max_box - min_box
rmse_new_gd_box = np.sum(FaceAcc.per_image_rmse_with_bounding_box(pred_pts_new.data.cpu().numpy() * 4., pts_masked.numpy(), width_height_gd.numpy())) / img.size(0)
rmses_new_gd_box.update(rmse_new_gd_box, img.size(0))
# rmse_new_meta_box = NME(centroid, ground_truth, meta_bounding_box)
rmse_new_meta_box = np.sum(FaceAcc.per_image_rmse_with_bounding_box(pred_pts_new.data.cpu().numpy() * 4., pts_masked.numpy(), meta_box_input_res.numpy(), is_scale= True)) / img.size(0)
rmses_new_meta_box.update(rmse_new_meta_box, img.size(0))
loss_dict = OrderedDict([('loss_all', losses.avg), ('loss_vis', losses_vis.avg), ('loss_gau_t1', losses_gau_t1.avg), ('loss_gau_t2', losses_gau_t2.avg), ('loss_mse', losses_mse.avg), ('loss_regln', losses_regln.avg), ('rmse_orig', rmses_orig.avg), ('rmse_new', rmses_new.avg), ('rmse_new_gd_box', rmses_new_gd_box.avg), ('rmse_new_meta_box', rmses_new_meta_box.avg)])
if i % opt.print_freq == 0 or i==len(train_loader)-1 or i==len(train_loader)-2:
visualizer.print_log(epoch, i, len(train_loader), value1=loss_dict)
if i == len(train_loader)-2:
break
return losses.avg, losses_mse.avg, losses_gau_t1.avg, losses_gau_t2.avg, rmses_orig.avg, rmses_new.avg, rmses_new_gd_box.avg, rmses_new_meta_box.avg
def validate(val_loader, net, epoch, visualizer, opt, num_classes, flip_index):
batch_time = AverageMeter()
rmses0 = AverageMeter()
rmses1 = AverageMeter()
rmses2 = AverageMeter()
rmses_orig = AverageMeter()
rmses_gau = AverageMeter()
rmses_new = AverageMeter()
rmses_new_gd_box = AverageMeter()
rmses_new_meta_box = AverageMeter()
rmses_new_0 = AverageMeter()
rmses_new_1 = AverageMeter()
rmses_new_2 = AverageMeter()
# Objects which keep track of the loss across the entire epoch
losses = AverageMeter()
losses_gau = AverageMeter()
losses_gau_t1 = AverageMeter()
losses_gau_t2 = AverageMeter()
losses_mse = AverageMeter()
losses_regln = AverageMeter()
losses_vis = AverageMeter()
# Loss functions
mse_loss = nn.MSELoss()
bce_loss = nn.BCELoss()
if not opt.use_heatmaps:
loss_fn = FaceAlignLoss(laplacian= opt.laplacian, form= opt.laplacian_form)
gauss_regln_loss = GaussianRegularizationLoss()
# Switch to evaluate mode
net.eval()
end = time.time()
wt_gau_new = opt.wt_gau
wt_gauss_regln_new = opt.wt_gauss_regln
wt_mse_new = opt.wt_mse
if opt.use_heatmaps:
wt_mse_new = 1.
wt_gau_new = 0.
print("weight_MSE= {} weight_GLL= {} weight_GR= {}".format(wt_mse_new, wt_gau_new, wt_gauss_regln_new))
for i, (img, heatmap, pts, index, _, _, _, _, visible_multiclass, meta_box_input_res) in enumerate(val_loader):
# Input and Groundtruth
img_var = Variable(img, volatile=True)
vis = visible_multiclass.clone()
vis[vis > 1] = 1
vis = Variable(vis[:,:, None].float()).cuda()
# vis with zero points was producing weird error. Add a small constant
# to the invisibile points
vis[vis<1] = constants.EPSILON
# pts contain the invalid points in the center. If you use pts to calculate
# MSE it is going to be bad. Make a masked version of points for MSE
pts_masked = pts.float() * vis.data.cpu().float()
pts_var = Variable(pts.float()/4.0).cuda() * vis
heatmap = heatmap.cuda(async=True)
target_heatmap = Variable(heatmap)
#htp_mask = Variable(htp_mask.cuda())
# Tensor at the output and neck of every hourglass
output, out_y = net(img_var) # output batch_size x 68 x 64 x 64
batch_size = pts.shape[0]
num_points = pts.shape[1]
# Scalar loss values
loss = 0.
loss_term1 = 0.
loss_term2 = 0.
loss_mse = 0.
loss_regln = 0.
loss_vis = 0.
hg_cnt = 0
for per_out in output:
# Weight of this Hourglass
weight_hg = weights_HG[hg_cnt]
hg_cnt += 1
# Do not calculate the spatial mean if weight_hg is zero since it is
# useless.
if (weight_hg > 0):
if opt.use_heatmaps:
# Calculate MSE between the heatmaps
tmp_loss = (per_out - target_heatmap) ** 2
loss_t = tmp_loss.sum() / tmp_loss.numel()
# All other loss as zeros
loss_gau = Variable(torch.zeros(1,).float()).cuda()
loss_gauss_regln = loss_gau.clone()
loss_term1_temp = loss_gau.clone()
loss_term2_temp = loss_gau.clone()
loss_vis_hg = loss_gau.clone()
else:
# Go for pointwise operations
cholesky = out_y[hg_cnt-1]
pred_pts_new, covar, normalized_heatmaps = get_spatial_mean_and_covariance(per_out, use_softmax= opt.smax, tau= opt.tau, postprocess= opt.pp)
pred_pts_new = pred_pts_new * vis
covar = covar.view(covar.shape[0], covar.shape[1], 4)
vis_estimated = cholesky[:,:, 3]
# Concat the calculations for each image and each landmark.
# pred_pts_new: batch_size x 68 x 2
# out_y : batch_size x 68 x 3
# covar : batch_size x 68 x 4
if opt.is_covariance:
# pre_pts : batch_size x 68 x 6
pre_pts = torch.cat((pred_pts_new, covar) ,2)
else:
if opt.get_mean_from_mlp:
pred_pts_new = cholesky[:, :, 4:6]
cholesky = cholesky[:, :, 0:3]
# pre_pts : batch_size x 68 x 5
pre_pts = torch.cat((pred_pts_new,cholesky),2)
# Gaussian_loss, Gaussian Loss in stages, Loss_term1, Loss_term2, Loss_term1 in stages, Loss_term2 in stages
loss_gau, loss_stages, loss_term1_temp, loss_term2_temp, loss_term1_stages, loss_term2_stages= loss_fn([pre_pts], pts_var, is_covariance= opt.is_covariance)
# Loss used is MSE but error metric used is NME
loss_t = mse_loss(pred_pts_new, pts_var)
# Regularization to force heatmaps to be gaussian
loss_gauss_regln = gauss_regln_loss(normalized_heatmaps, pred_pts_new, covar)
if opt.use_visibility:
loss_vis_hg = bce_loss(vis_estimated, vis.squeeze())
else:
loss_vis_hg = Variable(torch.zeros(1,).float()).cuda()
loss += weight_hg * (wt_gau_new*loss_gau + wt_mse_new*loss_t + wt_gauss_regln_new*loss_gauss_regln + loss_vis_hg)
loss_term1 += weight_hg * wt_gau_new*loss_term1_temp
loss_term2 += weight_hg * wt_gau_new*loss_term2_temp
loss_mse += weight_hg * wt_mse_new*loss_t
loss_regln += weight_hg * wt_gauss_regln_new * loss_gauss_regln
loss_vis += weight_hg * loss_vis_hg
# Measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# Update the losses
N = img.shape[0]
losses.update (loss.data[0] , N)
losses_gau_t1.update(loss_term1.data[0], N)
losses_gau_t2.update(loss_term2.data[0], N)
losses_mse.update (loss_mse.data[0] , N)
losses_regln.update (loss_regln.data[0], N)
losses_vis.update (loss_vis.data[0] , N)
# pred_pts_0: Integer coordinates where heatmap is maximum
# pred_pts_1: pred_pts_0 + 0.25*sign(gradient of pred_pts_0 at pt shifted by 1 pixel)
# pred_pts_2: pred_pts_0 + 0.5 + 0.25*sign(gradient of pred_pts_0 at pt shifted by 1 pixel)
# Each coords is batch_size x 68 x 2
pred_pts_0, pred_pts_1, pred_pts_2 = FaceAcc.heatmap2pts(output[-1].data.cpu(), flag=0)
pred_pts_2 -= 1
pred_pts_2 = Variable(pred_pts_2).cuda()*vis
pred_pts_2 = pred_pts_2.data.cpu()
#===================================================================
# NME in reality since the code calculate norm-2 values using numpy
#===================================================================
# rmse_orig = NME(pred_pts_0 - 0.5 + 0.25*sign(gradient of pred_pts_0 at pt shifted by 1 pixel), ground_truth)
rmse_orig = np.sum(FaceAcc.per_image_rmse(pred_pts_2.numpy() * 4., pts_masked.numpy())) / img.size(0)
rmses_orig.update(rmse_orig, img.size(0))
if opt.use_heatmaps:
# We will use the prediction from the heatmap since there is no spatial mean
# available
pred_pts_new = Variable(torch.Tensor(pred_pts_2)).cuda()* vis
# rmse_new = NME(centroid, ground_truth)
rmse_new_per_image = FaceAcc.per_image_rmse(pred_pts_new.data.cpu().numpy() * 4., pts_masked.numpy())
rmse_new = np.sum(rmse_new_per_image) / img.size(0)
rmses_new.update(rmse_new, img.size(0))
# rmse_new_gd_box = NME(centroid, ground_truth, ground_bounding_box)
# For box calculation remember to use pts and not pts_masked
# since min of pts_masked is always zero
max_box, _ = torch.max(pts, 1)
min_box, _ = torch.min(pts, 1)
width_height_gd = max_box - min_box
rmse_new_gd_box_per_image = FaceAcc.per_image_rmse_with_bounding_box(pred_pts_new.data.cpu().numpy() * 4., pts_masked.numpy(), width_height_gd.numpy())
rmse_new_gd_box = np.sum(rmse_new_gd_box_per_image) / img.size(0)
rmses_new_gd_box.update(rmse_new_gd_box, img.size(0))
# rmse_new_meta_box = NME(centroid, ground_truth, meta_bounding_box)
rmse_new_meta_box = np.sum(FaceAcc.per_image_rmse_with_bounding_box(pred_pts_new.data.cpu().numpy() * 4., pts_masked.numpy(), meta_box_input_res.numpy(), is_scale= True)) / img.size(0)
rmses_new_meta_box.update(rmse_new_meta_box, img.size(0))
# Applies rounding to the coordinates of the predicted heatmap. The next
# 'new' variables with underscore study effect of quantization of maximum
# value of predictions
# pred_pts_new_0: Rounds them to integer and then adds 1
# pred_pts_new_1: pred_pts_new_0 + 0.25*sign(gradient of pred_pts_new_0 at pt shifted by 1 pixel)
# pred_pts_new_2: pred_pts_new_0 + 0.5 + 0.25*sign(gradient of pred_pts_new_0 at pt shifted by 1 pixel)
pred_pts_new_0, pred_pts_new_1, pred_pts_new_2 = FaceAcc.pts_trans(output[-1].data.cpu(),pred_pts_new.data.cpu())
# rmse_new_0 = NME(pred_pts_new_0, ground_truth)
# rmse_new_1 = NME(pred_pts_new_1, ground_truth)
# rmse_new_2 = NME(pred_pts_new_2, ground_truth)
rmse_new_0 = np.sum(FaceAcc.per_image_rmse(pred_pts_new_0.numpy() * 4., pts_masked.numpy())) / img.size(0)
rmse_new_1 = np.sum(FaceAcc.per_image_rmse(pred_pts_new_1.numpy() * 4., pts_masked.numpy())) / img.size(0)
rmse_new_2 = np.sum(FaceAcc.per_image_rmse(pred_pts_new_2.numpy() * 4., pts_masked.numpy())) / img.size(0)
rmses_new_0.update(rmse_new_0, img.size(0))
rmses_new_1.update(rmse_new_1, img.size(0))
rmses_new_2.update(rmse_new_2, img.size(0))
loss_dict = OrderedDict([('loss_val', losses.avg), ('loss_vis', losses_vis.avg), ('loss_val_t1', losses_gau_t1.avg), ('loss_val_t2', losses_gau_t2.avg), ('loss_mse', losses_mse.avg), ('loss_regln', losses_regln.avg), ('rmse_orig', rmses_orig.avg), ('rmse_new', rmses_new.avg), ('rmse_new_gd_box', rmses_new_gd_box.avg), ('rmse_new_meta_box', rmses_new_meta_box.avg), ('rmse_new_0', rmses_new_0.avg), ('rmse_new_1', rmses_new_1.avg), ('rmse_new_2', rmses_new_2.avg) ])
if i % opt.print_freq == 0 or i==len(val_loader)-1:
visualizer.print_log(epoch, i, len(val_loader), value1=loss_dict)
if i == 0:
tt = pred_pts_2
if i>0:
tt = torch.cat((tt,pred_pts_2),0)
predictions = tt
return losses.avg, losses_mse.avg,losses_gau_t1.avg, losses_gau_t2.avg, rmses_orig.avg, rmses_new.avg, rmses_new_gd_box.avg, rmses_new_meta_box.avg, predictions
if __name__ == '__main__':
main()