forked from ESCOMP/CLUBB_CESM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadvance_helper_module.F90
877 lines (651 loc) · 31.1 KB
/
advance_helper_module.F90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
!-------------------------------------------------------------------------
! $Id: advance_helper_module.F90 8769 2018-08-11 22:54:36Z [email protected] $
!===============================================================================
module advance_helper_module
! Description:
! This module contains helper methods for the advance_* modules.
!------------------------------------------------------------------------
implicit none
public :: &
set_boundary_conditions_lhs, &
set_boundary_conditions_rhs, &
calc_stability_correction, &
calc_brunt_vaisala_freq_sqd, &
compute_Cx_fnc_Richardson, &
term_wp2_splat, term_wp3_splat
private ! Set Default Scope
contains
!---------------------------------------------------------------------------
subroutine set_boundary_conditions_lhs( diag_index, low_bound, high_bound, lhs, &
diag_index2, low_bound2, high_bound2 )
! Description:
! Sets the boundary conditions for a left-hand side LAPACK matrix.
!
! References:
! none
!---------------------------------------------------------------------------
use clubb_precision, only: &
core_rknd ! Variable(s)
implicit none
! Exernal
intrinsic :: present
! Input Variables
integer, intent(in) :: &
diag_index, low_bound, high_bound ! boundary indexes for the first variable
! Input / Output Variables
real( kind = core_rknd ), dimension(:,:), intent(inout) :: &
lhs ! left hand side of the LAPACK matrix equation
! Optional Input Variables
integer, intent(in), optional :: &
diag_index2, low_bound2, high_bound2 ! boundary indexes for the second variable
! --------------------- BEGIN CODE ----------------------
if ( ( present( low_bound2 ) .or. present( high_bound2 ) ) .and. &
( .not. present( diag_index2 ) ) ) then
stop "Boundary index provided without diag_index."
end if
! Set the lower boundaries for the first variable
lhs(:,low_bound) = 0.0_core_rknd
lhs(diag_index,low_bound) = 1.0_core_rknd
! Set the upper boundaries for the first variable
lhs(:,high_bound) = 0.0_core_rknd
lhs(diag_index,high_bound) = 1.0_core_rknd
! Set the lower boundaries for the second variable, if it is provided
if ( present( low_bound2 ) ) then
lhs(:,low_bound2) = 0.0_core_rknd
lhs(diag_index2,low_bound2) = 1.0_core_rknd
end if
! Set the upper boundaries for the second variable, if it is provided
if ( present( high_bound2 ) ) then
lhs(:,high_bound2) = 0.0_core_rknd
lhs(diag_index2,high_bound2) = 1.0_core_rknd
end if
return
end subroutine set_boundary_conditions_lhs
!--------------------------------------------------------------------------
subroutine set_boundary_conditions_rhs( &
low_value, low_bound, high_value, high_bound, &
rhs, &
low_value2, low_bound2, high_value2, high_bound2 )
! Description:
! Sets the boundary conditions for a right-hand side LAPACK vector.
!
! References:
! none
!---------------------------------------------------------------------------
use clubb_precision, only: &
core_rknd ! Variable(s)
implicit none
! Exernal
intrinsic :: present
! Input Variables
! The values for the first variable
real( kind = core_rknd ), intent(in) :: low_value, high_value
! The bounds for the first variable
integer, intent(in) :: low_bound, high_bound
! Input / Output Variables
! The right-hand side vector
real( kind = core_rknd ), dimension(:), intent(inout) :: rhs
! Optional Input Variables
! The values for the second variable
real( kind = core_rknd ), intent(in), optional :: low_value2, high_value2
! The bounds for the second variable
integer, intent(in), optional :: low_bound2, high_bound2
! -------------------- BEGIN CODE ------------------------
! Stop execution if a boundary was provided without a value
if ( (present( low_bound2 ) .and. (.not. present( low_value2 ))) .or. &
(present( high_bound2 ) .and. (.not. present( high_value2 ))) ) then
stop "Boundary condition provided without value."
end if
! Set the lower and upper bounds for the first variable
rhs(low_bound) = low_value
rhs(high_bound) = high_value
! If a lower bound was given for the second variable, set it
if ( present( low_bound2 ) ) then
rhs(low_bound2) = low_value2
end if
! If an upper bound was given for the second variable, set it
if ( present( high_bound2 ) ) then
rhs(high_bound2) = high_value2
end if
return
end subroutine set_boundary_conditions_rhs
!===============================================================================
function calc_stability_correction( thlm, Lscale, em, exner, rtm, rcm, &
p_in_Pa, thvm, ice_supersat_frac, &
l_brunt_vaisala_freq_moist, &
l_use_thvm_in_bv_freq ) &
result ( stability_correction )
!
! Description:
! Stability Factor
!
! References:
!
!--------------------------------------------------------------------
use parameters_tunable, only: &
lambda0_stability_coef ! Variable(s)
use constants_clubb, only: &
zero ! Constant(s)
use grid_class, only: &
gr, & ! Variable(s)
zt2zm ! Procedure(s)
use clubb_precision, only: &
core_rknd ! Variable(s)
implicit none
! Input Variables
real( kind = core_rknd ), intent(in), dimension(gr%nz) :: &
Lscale, & ! Turbulent mixing length [m]
em, & ! Turbulent Kinetic Energy (TKE) [m^2/s^2]
thlm, & ! th_l (thermo. levels) [K]
exner, & ! Exner function [-]
rtm, & ! total water mixing ratio, r_t [kg/kg]
rcm, & ! cloud water mixing ratio, r_c [kg/kg]
p_in_Pa, & ! Air pressure [Pa]
thvm, & ! Virtual potential temperature [K]
ice_supersat_frac
logical, intent(in) :: &
l_brunt_vaisala_freq_moist, & ! Use a different formula for the Brunt-Vaisala frequency in
! saturated atmospheres (from Durran and Klemp, 1982)
l_use_thvm_in_bv_freq ! Use thvm in the calculation of Brunt-Vaisala frequency
! Result
real( kind = core_rknd ), dimension(gr%nz) :: &
stability_correction
real( kind = core_rknd ), dimension(gr%nz) :: &
brunt_vaisala_freq_sqd, & ! []
brunt_vaisala_freq_sqd_mixed, &
brunt_vaisala_freq_sqd_dry, & ! []
brunt_vaisala_freq_sqd_moist, &
brunt_vaisala_freq_sqd_plus, &
lambda0_stability
!------------ Begin Code --------------
call calc_brunt_vaisala_freq_sqd( thlm, exner, rtm, rcm, p_in_Pa, thvm, &
ice_supersat_frac, &
l_brunt_vaisala_freq_moist, &
l_use_thvm_in_bv_freq, &
brunt_vaisala_freq_sqd, &
brunt_vaisala_freq_sqd_mixed,&
brunt_vaisala_freq_sqd_dry, &
brunt_vaisala_freq_sqd_moist, &
brunt_vaisala_freq_sqd_plus )
lambda0_stability = merge( lambda0_stability_coef, zero, brunt_vaisala_freq_sqd > zero )
stability_correction = 1.0_core_rknd &
+ min( lambda0_stability * brunt_vaisala_freq_sqd * zt2zm( Lscale )**2 / em, 3.0_core_rknd )
return
end function calc_stability_correction
!===============================================================================
subroutine calc_brunt_vaisala_freq_sqd( thlm, exner, rtm, rcm, p_in_Pa, thvm, &
ice_supersat_frac, &
l_brunt_vaisala_freq_moist, &
l_use_thvm_in_bv_freq, &
brunt_vaisala_freq_sqd, &
brunt_vaisala_freq_sqd_mixed,&
brunt_vaisala_freq_sqd_dry, &
brunt_vaisala_freq_sqd_moist, &
brunt_vaisala_freq_sqd_plus )
! Description:
! Calculate the Brunt-Vaisala frequency squared, N^2.
! References:
! ?
!-----------------------------------------------------------------------
use clubb_precision, only: &
core_rknd ! Konstant
use constants_clubb, only: &
grav, & ! Constant(s)
Lv, Cp, Rd, ep, &
one
use parameters_model, only: &
T0 ! Variable!
use grid_class, only: &
gr, & ! Variable
ddzt, & ! Procedure(s)
zt2zm
use T_in_K_module, only: &
thlm2T_in_K ! Procedure
use saturation, only: &
sat_mixrat_liq ! Procedure
implicit none
! Input Variables
real( kind = core_rknd ), dimension(gr%nz), intent(in) :: &
thlm, & ! th_l (thermo. levels) [K]
exner, & ! Exner function [-]
rtm, & ! total water mixing ratio, r_t [kg/kg]
rcm, & ! cloud water mixing ratio, r_c [kg/kg]
p_in_Pa, & ! Air pressure [Pa]
thvm, & ! Virtual potential temperature [K]
ice_supersat_frac
logical, intent(in) :: &
l_brunt_vaisala_freq_moist, & ! Use a different formula for the Brunt-Vaisala frequency in
! saturated atmospheres (from Durran and Klemp, 1982)
l_use_thvm_in_bv_freq ! Use thvm in the calculation of Brunt-Vaisala frequency
! Output Variables
real( kind = core_rknd ), dimension(gr%nz), intent(out) :: &
brunt_vaisala_freq_sqd, & ! Brunt-Vaisala frequency squared, N^2 [1/s^2]
brunt_vaisala_freq_sqd_mixed, &
brunt_vaisala_freq_sqd_dry,&
brunt_vaisala_freq_sqd_moist, &
brunt_vaisala_freq_sqd_plus
! Local Variables
real( kind = core_rknd ), dimension(gr%nz) :: &
T_in_K, T_in_K_zm, rsat, rsat_zm, thm, thm_zm, ddzt_thlm, &
ddzt_thm, ddzt_rsat, ddzt_rtm, thvm_zm, ddzt_thvm
real( kind = core_rknd ), dimension(gr%nz) :: &
stat_dry, stat_liq, ddzt_stat_liq, ddzt_stat_liq_zm, &
stat_dry_virtual, stat_dry_virtual_zm, ddzt_rtm_zm
integer :: k
!---------------------------------------------------------------------
!----- Begin Code -----
ddzt_thlm = ddzt( thlm )
thvm_zm = zt2zm( thvm )
ddzt_thvm = ddzt( thvm )
if ( .not. l_brunt_vaisala_freq_moist ) then
! Dry Brunt-Vaisala frequency
if ( l_use_thvm_in_bv_freq ) then
brunt_vaisala_freq_sqd(:) = ( grav / thvm_zm(:) ) * ddzt_thvm(:)
else
brunt_vaisala_freq_sqd(:) = ( grav / T0 ) * ddzt_thlm(:)
end if
T_in_K = thlm2T_in_K( thlm, exner, rcm )
T_in_K_zm = zt2zm( T_in_K )
rsat = sat_mixrat_liq( p_in_Pa, T_in_K )
rsat_zm = zt2zm( rsat )
ddzt_rsat = ddzt( rsat )
thm = thlm + Lv/(Cp*exner) * rcm
thm_zm = zt2zm( thm )
ddzt_thm = ddzt( thm )
ddzt_rtm = ddzt( rtm )
stat_dry = Cp * T_in_K + grav * gr%zt
stat_liq = stat_dry -Lv * rcm
ddzt_stat_liq = ddzt( stat_liq )
ddzt_stat_liq_zm = zt2zm( ddzt_stat_liq)
stat_dry_virtual = stat_dry + Cp * T_in_K *(0.608*(rtm-rcm)- rcm)
stat_dry_virtual_zm = zt2zm(stat_dry_virtual)
ddzt_rtm_zm = zt2zm( ddzt_rtm )
brunt_vaisala_freq_sqd_dry(:) = ( grav / thm_zm)* ddzt_thm(:)
do k=1, gr%nz
brunt_vaisala_freq_sqd_plus(k) = grav/stat_dry_virtual (k) * &
( (ice_supersat_frac(k) * 0.5 + (1- ice_supersat_frac(k))) * ddzt_stat_liq_zm (k) + &
(ice_supersat_frac(k) * Lv - (1- ice_supersat_frac(k)) *0.608*Cp)* ddzt_rtm_zm(k) )
end do ! k=1, gr%nz
do k=1, gr%nz
! In-cloud Brunt-Vaisala frequency. This is Eq. (36) of Durran and
! Klemp (1982)
brunt_vaisala_freq_sqd_moist(k) = &
grav * ( ((one + Lv*rsat_zm(k) / (Rd*T_in_K_zm(k))) / &
(one + ep*(Lv**2)*rsat_zm(k)/(Cp*Rd*T_in_K_zm(k)**2))) * &
( (one/thm_zm(k) * ddzt_thm(k)) + (Lv/(Cp*T_in_K_zm(k)))*ddzt_rsat(k)) - &
ddzt_rtm(k) )
end do ! k=1, gr%nz
brunt_vaisala_freq_sqd_mixed(:) = &
merge (brunt_vaisala_freq_sqd_moist,brunt_vaisala_freq_sqd_dry,&
ice_supersat_frac > 0 )
else ! l_brunt_vaisala_freq_moist
T_in_K = thlm2T_in_K( thlm, exner, rcm )
T_in_K_zm = zt2zm( T_in_K )
rsat = sat_mixrat_liq( p_in_Pa, T_in_K )
rsat_zm = zt2zm( rsat )
ddzt_rsat = ddzt( rsat )
thm = thlm + Lv/(Cp*exner) * rcm
thm_zm = zt2zm( thm )
ddzt_thm = ddzt( thm )
ddzt_rtm = ddzt( rtm )
do k=1, gr%nz
! In-cloud Brunt-Vaisala frequency. This is Eq. (36) of Durran and
! Klemp (1982)
brunt_vaisala_freq_sqd(k) = &
grav * ( ((one + Lv*rsat_zm(k) / (Rd*T_in_K_zm(k))) / &
(one + ep*(Lv**2)*rsat_zm(k)/(Cp*Rd*T_in_K_zm(k)**2))) * &
( (one/thm_zm(k) * ddzt_thm(k)) +(Lv/(Cp*T_in_K_zm(k)))*ddzt_rsat(k)) - &
ddzt_rtm(k) )
end do ! k=1, gr%nz
end if ! .not. l_brunt_vaisala_freq_moist
return
end subroutine calc_brunt_vaisala_freq_sqd
!===============================================================================
subroutine compute_Cx_fnc_Richardson( thlm, um, vm, em, Lscale, exner, rtm, &
rcm, p_in_Pa, thvm, rho_ds_zm, &
ice_supersat_frac, &
l_brunt_vaisala_freq_moist, &
l_use_thvm_in_bv_freq, &
Cx_fnc_Richardson )
! Description:
! Compute Cx as a function of the Richardson number
! References:
! cam:ticket:59
!-----------------------------------------------------------------------
use clubb_precision, only: &
core_rknd ! Konstant
use grid_class, only: &
gr, & ! Variable
ddzt, & ! Procedure(s)
zt2zm
use constants_clubb, only: &
one_fourth, & ! Constant(s)
one_third, &
one
use interpolation, only: &
linear_interp_factor ! Procedure
use stats_variables, only: &
iRichardson_num, & ! Variable(s)
ibrunt_vaisala_freq_sqd, &
ishear_sqd, &
stats_zm, &
l_stats_samp
use stats_type_utilities, only: &
stat_update_var ! Procedure
implicit none
! Constant Parameters
real( kind = core_rknd ), parameter :: &
Richardson_num_divisor_threshold = 1.0e-6_core_rknd, &
Richardson_num_min = one_fourth, &
Richardson_num_max = 400._core_rknd, &
Cx_min = one_third, &
Cx_max = 0.95_core_rknd, &
Cx_fnc_Richardson_below_ground_value = one
logical, parameter :: &
l_Cx_fnc_Richardson_vert_avg = .false.,& ! Vertically average Cx_fnc_Richardson over a
! distance of Lscale
l_Richardson_vert_avg = .false. , & ! Vertically average Richardson_num over a
! distance of Lscale
l_use_shear_turb_freq_sqd = .false.! Use turb_freq_sqd and shear_sqd in denominator of
! Richardson_num
! Input Variables
real( kind = core_rknd ), dimension(gr%nz), intent(in) :: &
thlm, & ! th_l (liquid water potential temperature) [K]
um, & ! u mean wind component (thermodynamic levels) [m/s]
vm, & ! v mean wind component (thermodynamic levels) [m/s]
em, & ! Turbulent Kinetic Energy (TKE) [m^2/s^2]
Lscale, & ! Turbulent mixing length [m]
exner, & ! Exner function [-]
rtm, & ! total water mixing ratio, r_t [kg/kg]
rcm, & ! cloud water mixing ratio, r_c [kg/kg]
p_in_Pa, & ! Air pressure [Pa]
thvm, & ! Virtual potential temperature [K]
rho_ds_zm, & ! Dry static density on momentum levels [kg/m^3]
ice_supersat_frac ! ice cloud fraction
logical, intent(in) :: &
l_brunt_vaisala_freq_moist, & ! Use a different formula for the Brunt-Vaisala frequency in
! saturated atmospheres (from Durran and Klemp, 1982)
l_use_thvm_in_bv_freq ! Use thvm in the calculation of Brunt-Vaisala frequency
! Output Variable
real( kind = core_rknd), dimension(gr%nz), intent(out) :: &
Cx_fnc_Richardson
! Local Variables
real( kind = core_rknd ), dimension(gr%nz) :: &
brunt_vaisala_freq_sqd, &
brunt_vaisala_freq_sqd_mixed,&
brunt_vaisala_freq_sqd_dry, &
brunt_vaisala_freq_sqd_moist, &
brunt_vaisala_freq_sqd_plus, &
Richardson_num, &
dum_dz, dvm_dz, &
shear_sqd, &
turb_freq_sqd, &
Lscale_zm
real ( kind = core_rknd ), dimension(gr%nz) :: &
invrs_min_max_diff, &
invrs_num_div_thresh
!-----------------------------------------------------------------------
!----- Begin Code -----
call calc_brunt_vaisala_freq_sqd( thlm, exner, rtm, rcm, p_in_Pa, thvm, &
ice_supersat_frac, &
l_brunt_vaisala_freq_moist, &
l_use_thvm_in_bv_freq, &
brunt_vaisala_freq_sqd, &
brunt_vaisala_freq_sqd_mixed,&
brunt_vaisala_freq_sqd_dry, &
brunt_vaisala_freq_sqd_moist, &
brunt_vaisala_freq_sqd_plus )
invrs_min_max_diff = 1.0_core_rknd / ( Richardson_num_max - Richardson_num_min )
invrs_num_div_thresh = 1.0_core_rknd / Richardson_num_divisor_threshold
! Statistics sampling
if ( l_stats_samp ) then
! NOTE: This is a kludgy place to sample brunt_vaisala_freq_sqd, because
! it is used in multiple places, and depending on CLUBB parameters, it
! could be computed in another place and not here. In the future, we
! should compute brunt_vaisala_freq_sqd once, and pass it around
! everywhere. This will save on computational expense as well.
call stat_update_var( ibrunt_vaisala_freq_sqd, brunt_vaisala_freq_sqd, stats_zm )
end if ! l_stats_samp
Lscale_zm = zt2zm( Lscale )
if ( l_use_shear_turb_freq_sqd ) then
! Calculate shear_sqd
dum_dz = ddzt( um )
dvm_dz = ddzt( vm )
shear_sqd = dum_dz**2 + dvm_dz**2
turb_freq_sqd = em / Lscale_zm**2
Richardson_num = brunt_vaisala_freq_sqd / max( shear_sqd, turb_freq_sqd, &
Richardson_num_divisor_threshold )
if ( l_stats_samp ) &
call stat_update_var( ishear_sqd, shear_sqd, stats_zm )
else
Richardson_num = brunt_vaisala_freq_sqd * invrs_num_div_thresh
end if
if ( l_Richardson_vert_avg ) then
! Clip below-min values of Richardson_num
Richardson_num = max( Richardson_num, Richardson_num_min )
Richardson_num = Lscale_width_vert_avg( Richardson_num, Lscale_zm, rho_ds_zm, &
Richardson_num_max )
end if
! Cx_fnc_Richardson is interpolated based on the value of Richardson_num
! The min function ensures that Cx does not exceed Cx_max, regardless of the
! value of Richardson_num_max.
Cx_fnc_Richardson = linear_interp_factor( &
( max(min(Richardson_num_max,Richardson_num),Richardson_num_min) &
- Richardson_num_min ) * invrs_min_max_diff, Cx_max, Cx_min )
if ( l_Cx_fnc_Richardson_vert_avg ) then
Cx_fnc_Richardson = Lscale_width_vert_avg( Cx_fnc_Richardson, Lscale_zm, rho_ds_zm, &
Cx_fnc_Richardson_below_ground_value )
end if
! On some compilers, roundoff error can result in Cx_fnc_Richardson being
! slightly outside the range [0,1]. Thus, it is clipped here.
Cx_fnc_Richardson = max( 0.0_core_rknd, min( 1.0_core_rknd, Cx_fnc_Richardson ) )
! Stats sampling
if ( l_stats_samp ) then
call stat_update_var( iRichardson_num, Richardson_num, stats_zm )
end if
end subroutine compute_Cx_fnc_Richardson
!----------------------------------------------------------------------
!----------------------------------------------------------------------
function Lscale_width_vert_avg( var_profile, Lscale_zm, rho_ds_zm, var_below_ground_value )
! Description:
! Averages a profile with a running mean of width Lscale_zm
! References:
! cam:ticket:59
use clubb_precision, only: &
core_rknd ! Precision
use grid_class, only: &
gr ! Variable
implicit none
! Input Variables
real( kind = core_rknd ), dimension(gr%nz), intent(in) :: &
var_profile, & ! Profile on momentum levels
Lscale_zm, & ! Lscale on momentum levels
rho_ds_zm ! Dry static energy on momentum levels!
real( kind = core_rknd ), intent(in) :: &
var_below_ground_value ! Value to use below ground
! Result Variable
real( kind = core_rknd ), dimension(gr%nz) :: &
Lscale_width_vert_avg ! Vertically averaged profile (on momentum levels)
! Local Variables
integer :: &
k, i, & ! Loop variable
k_avg_lower, &
k_avg_upper
real( kind = core_rknd ), dimension(gr%nz) :: &
one_half_avg_width, &
numer_terms, &
denom_terms
integer :: n_below_ground_levels
real( kind = core_rknd ) :: &
numer_integral, & ! Integral in the numerator (see description)
denom_integral ! Integral in the denominator (see description)
!----------------------------------------------------------------------
!----- Begin Code -----
one_half_avg_width = max( Lscale_zm, 500.0_core_rknd )
! Pre calculate numerator and denominator terms
do k=1, gr%nz
numer_terms(k) = rho_ds_zm(k) * gr%dzm(k) * var_profile(k)
denom_terms(k) = rho_ds_zm(k) * gr%dzm(k)
end do
k_avg_upper = 2
k_avg_lower = 1
! For every grid level
do k=1, gr%nz
!-----------------------------------------------------------------------
! Hunt down all vertical levels with one_half_avg_width(k) of gr%zm(k).
!
! k_avg_upper and k_avg_lower are saved each loop iteration, this
! improves computational efficiency since their values are likely
! within one or two grid levels of where they were last found to
! be. This is because one_half_avg_width does not change drastically
! from one grid level to the next. Thus, less searching is required
! by allowing the search to start at a value that is close to the
! desired value and allowing each value to increment or decrement
! as needed.
!-----------------------------------------------------------------------
! Determine if k_avg_upper needs to increment or decrement
if ( gr%zm(k_avg_upper) - gr%zm(k) > one_half_avg_width(k) ) then
! k_avg_upper is too large, decrement it
do while ( gr%zm(k_avg_upper) - gr%zm(k) > one_half_avg_width(k) )
k_avg_upper = k_avg_upper - 1
end do
elseif ( k_avg_upper < gr%nz ) then
! k_avg_upper is too small, increment it
do while ( gr%zm(k_avg_upper+1) - gr%zm(k) <= one_half_avg_width(k) )
k_avg_upper = k_avg_upper + 1
if ( k_avg_upper == gr%nz ) exit
end do
end if
! Determine if k_avg_lower needs to increment or decrement
if ( gr%zm(k) - gr%zm(k_avg_lower) > one_half_avg_width(k) ) then
! k_avg_lower is too small, increment it
do while ( gr%zm(k) - gr%zm(k_avg_lower) > one_half_avg_width(k) )
k_avg_lower = k_avg_lower + 1
end do
elseif ( k_avg_lower > 1 ) then
! k_avg_lower is too large, decrement it
do while ( gr%zm(k) - gr%zm(k_avg_lower-1) <= one_half_avg_width(k) )
k_avg_lower = k_avg_lower - 1
if ( k_avg_lower == 1 ) exit
end do
end if
! Compute the number of levels below ground to include.
if ( k_avg_lower > 1 ) then
! k=1, the lowest "real" level, is not included in the average, so no
! below-ground levels should be included.
n_below_ground_levels = 0
numer_integral = 0.0_core_rknd
denom_integral = 0.0_core_rknd
else
! The number of below-ground levels included is equal to the distance
! below the lowest level spanned by one_half_avg_width(k)
! divided by the distance between vertical levels below ground; the
! latter is assumed to be the same as the distance between the first and
! second vertical levels.
n_below_ground_levels = int( ( one_half_avg_width(k)-(gr%zm(k)-gr%zm(1)) ) / &
( gr%zm(2)-gr%zm(1) ) )
numer_integral = n_below_ground_levels * denom_terms(1) * var_below_ground_value
denom_integral = n_below_ground_levels * denom_terms(1)
end if
! Add numerator and denominator terms for all above-ground levels
do i = k_avg_lower, k_avg_upper
numer_integral = numer_integral + numer_terms(i)
denom_integral = denom_integral + denom_terms(i)
end do
Lscale_width_vert_avg(k) = numer_integral / denom_integral
end do
return
end function Lscale_width_vert_avg
!============================================================================
subroutine term_wp2_splat( C_wp2_splat, nz, dt, wp2, wp2_zt, tau_zm, &
wp2_splat )
! Description:
! This subroutine computes the (negative) tendency of wp2 due
! to "splatting" of eddies, e.g., near the ground or a Sc inversion.
! term_splat is intended to be added to the right-hand side of
! the wp2 equation, and -0.5*term_splat is intended to be added to each
! of the up2 and vp2 equations. The functional form of term splat is
!
! term_splat \propto - w'2 * (turbulent time scale) * ( d/dz( sqrt(w'2) ) )^2
! Included Modules
use grid_class, only: &
ddzt ! Procedure(s)
use clubb_precision, only: &
core_rknd
use constants_clubb, only: &
five ! Constant(s)
implicit none
! Input Variables
integer, intent(in) :: &
nz ! Number of vertical levels [-]
real( kind = core_rknd ), intent(in) :: &
C_wp2_splat, & ! Tuning parameter [-]
dt ! CLUBB computational time step [s]
real( kind = core_rknd ), dimension(nz), intent(in) :: &
wp2, & ! Variance of vertical velocity on the momentum grid [m^2/s^2]
wp2_zt, & ! Variance of vertical velocity on the thermodynamic grid [m^2/s^2]
tau_zm ! Turbulent time scale on the momentum grid [s]
! Output Variable
real( kind = core_rknd ), dimension(nz), intent(out) :: &
wp2_splat ! Tendency of <w'^2> due to splatting of eddies (on zm grid) [m^2/s^3]
! Local Variable
real( kind = core_rknd ), dimension(nz) :: &
d_sqrt_wp2_dz ! d/dz( sqrt( w'2 ) ) [1/s]
! ---- Begin Code ----
d_sqrt_wp2_dz = ddzt( sqrt( wp2_zt ) )
! The splatting term is clipped so that the incremental change doesn't exceed 5 times the
! value of wp2 itself. This prevents spikes in wp2 from being propagated to up2 and vp2.
! However, it does introduce undesired dependence on the time step.
! Someday we may wish to treat this term using a semi-implicit discretization.
wp2_splat = - wp2 * min( five/dt, C_wp2_splat * tau_zm * d_sqrt_wp2_dz**2 )
!wp2_splat = - C_wp2_splat * wp2 * 900.0_core_rknd * d_sqrt_wp2_dz**2
end subroutine term_wp2_splat
!============================================================================
subroutine term_wp3_splat( C_wp2_splat, nz, dt, wp2, wp3, tau_zt, &
wp3_splat )
! Description:
! This subroutine computes the damping of wp3 due
! to "splatting" of eddies, e.g., as they approach the ground or a Sc inversion.
! term_wp3_splat is intended to be added to the right-hand side of
! the wp3 equation. The functional form of wp3_splat is
!
! wp3_splat \propto - w'3 * (turbulent time scale) * ( d/dz( sqrt(w'2) ) )^2
!
! If the coefficient on wp3_splat is at least 1.5 times greater than the
! coefficient on wp2_splat, then skewness will be damped, promoting
! more stratiform layers.
! Included Modules
use grid_class, only: &
ddzm ! Procedure(s)
use clubb_precision, only: &
core_rknd
use constants_clubb, only: &
three, & ! Constant(s)
five
implicit none
! Input Variables
integer, intent(in) :: &
nz ! Number of vertical levels [-]
real( kind = core_rknd ), intent(in) :: &
C_wp2_splat, & ! Tuning parameter [-]
dt ! CLUBB computational time step [s]
real( kind = core_rknd ), dimension(nz), intent(in) :: &
wp2, & ! Variance of vertical velocity on the momentum grid [m^2/s^2]
wp3, & ! Third moment of vertical velocity on the momentum grid [m^3/s^3]
tau_zt ! Turbulent time scale on the thermal grid [s]
! Output Variable
real( kind = core_rknd ), dimension(nz), intent(out) :: &
wp3_splat ! Tendency of <w'^3> due to splatting of eddies (on zt grid) [m^3/s^4]
! Local Variable
real( kind = core_rknd ), dimension(nz) :: &
d_sqrt_wp2_dz ! d/dz( sqrt( w'2 ) ) [1/s]
! ---- Begin Code ----
d_sqrt_wp2_dz = ddzm( sqrt( wp2 ) )
! The splatting term is clipped so that the incremental change doesn't exceed 5 times the
! value of wp2 itself. This prevents spikes in wp2 from being propagated to up2 and vp2.
! However, it does introduce undesired dependence on the time step.
! Someday we may wish to treat this term using a semi-implicit discretization.
wp3_splat = - wp3 * min( five/dt, three * C_wp2_splat * tau_zt * d_sqrt_wp2_dz**2 )
!wp3_splat = - three * C_wp2_splat * wp3 * 900._core_rknd * d_sqrt_wp2_dz**2
end subroutine term_wp3_splat
end module advance_helper_module